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Abstract

Researchers who generate data often optimize efficiency and robustness by choosing
stratified over simple random sampling designs. Yet, all theories of inference pro-
posed to justify matching methods are based on simple random sampling. This is
all the more troubling because, although these theories require exact matching, most
matching applications resort to some form of ex post stratification (on a propensity
score, distance metric, or the covariates) to find approximate matches, thus nullify-
ing the statistical properties these theories are designed to ensure. Fortunately, the
type of sampling used in a theory of inference is an axiom, rather than an assump-
tion vulnerable to being proven wrong, and so we can replace simple with stratified
sampling, so long as we can show, as we do here, that the implications of the the-
ory are coherent and remain true. Properties of estimators based on this theory are
much easier to understand and can be satisfied without the unattractive properties of
existing theories, such as assumptions hidden in data analyses rather than stated up
front, asymptotics, unfamiliar estimators, and complex variance calculations. Our
theory of inference makes it possible for researchers to treat matching as a simple
form of preprocessing to reduce model dependence, after which all the familiar in-
ferential techniques and uncertainty calculations can be applied. This theory also
allows binary, multicategory, and continuous treatment variables from the outset and
straightforward extensions for imperfect treatment assignment and different versions
of treatments.
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1 Introduction

Matching is a powerful nonparametric approach for improving causal inferences, espe-

cially in observational studies — that is, where assignment of units to treatment and

control groups is not under the control of the investigator and not necessarily random.

Matching is increasingly popular among applied researchers because it can be simple to

apply and easy to understand. The basic idea is that certain serious statistical problems in

a data set can be sidestepped by limiting inferences to a carefully selected subset. In par-

ticular, by reducing the strength of the relationship between pre-treatment covariates and

the treatment assignment variable, statistical methods applied to the matched subset have

reduced model dependence, estimation error, and bias (Cochran and Rubin, 1973; Ho,

Imai, King, and Stuart, 2007; Rubin, 1974). By removing heterogeneous observations,

matching can sometimes reduce variance but, when variance increases, the bias reduction

usually more than compensates in typically large observational data sets. See Imbens,

(2004), Morgan and Winship, (2014), and Stuart, (2010).

In this article, we discuss the theories of statistical inference that justify the statistical

properties of estimators applied to matched data sets. We begin by observing that every

theory of statistical inference involves an axiom about alternative realities where many

hypothetical data sets could have been generated, and which we are supposed to imagine

also generated our data, under the same conditions at the same moment in time. This

data generation axiom can be modeled after how the one observed data set was actually

drawn, on the theory that it is sometimes easier to imagine how hypothetical data sets

might also have been generated. More common in the observational data sets to which

matching is often applied, the data generation process is not known, and so researchers

arbitrarily choose a data generation process for the observed and hypothetical data sets.

In either case, these hypothetical realities are axioms that define the nature of our infer-

ences, and the meaning of quantities such as standard errors, rather than being claims that

could in principle be proven wrong. Stating the sampling axiom then clarifies the specific

assumptions necessary for causal identification and unbiased estimation, which of course

can be violated and which thus need to be justified by researchers. Applied researchers
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must therefore understand that the specific assumptions to be justified, and how they may

be justified, depends on this data generation axiom.

Until now, theories of statistical inference discussed in the literature on matching use

axiom that the data are generated by simple random sampling, where each population unit

has the same probability of selection (e.g., Abadie and Imbens, 2006). This is a simple-to-

understand data generation process but, under finite sample inference, turns out to require

that treated and control units match exactly on all measured pre-treatment covariates or

on the propensity score (Lechner 2001, Imbens 2000, and Imai and Dyk 2004) — condi-

tions impossible to meet in finite data with at least one continuous variable. In practice,

empirical analysts routinely violate this exact matching requirement by applying various

forms of approximate matching. Interestingly, they do this within a simple random sam-

pling framework by stratifying ex post on the original covariate space, or a propensity

score or distance metric on that space, and treating approximate matches within strata

as if they were exact. Unfortunately, the assumptions necessary to make this procedure

appropriate are virtually never discussed or justified by those implicitly using them. In

other words, theorists assume no stratification in repeated sampling when they are being

explicit about their theory of inference, but they actually do assume stratification in almost

all real applications implicitly during applied data analyses.

In this article, we bring stratification into a theory of causal inference for matching

in an explicit and visible way. Instead of burring the assumption ex post in the data

analysis stage, we include it ex ante via an alternative formally stated axiom about the

data generating process following a stratified sampling framework. We then make explicit

all the assumptions necessary for valid causal inference given this axiom, which must

be followed by researchers if they are to proceed as they analyze data as they do now.

Because the strata under this theory are defined explicitly, ex ante, and in the space of

the investigator’s original variables, rather than ex post on the basis of more complicated

derived variables like a propensity score or standardized (Mahalanobis) distance, it is

easier to understand and, as with the congruence principle (Mielke and Berry, 2007),

more intuitive and statistically robust.
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Other theories of inference that work well in a stratified framework, like the one we

propose, include novel finite sample approaches based on Neyman’s randomization-based

theory (Imai, 2008) and Fisher’s permutation-based inference (Rosenbaum, 1988). These

are not as easy to use as the stratified theory we propose, but easier than those based on

simple random sampling. Alternatively, one can use asymptotic results which, in addition

to the approximations necessary, unfortunately also must assume that the observational

data grows in size at given arbitrary rates that depend upon the number of continuous

covariates (Abadie and Imbens, 2012). These alternative approaches can be of value in

some instances, but none allow researchers the convenience of using whatever point and

uncertainty estimates they might have without a prior matching step.

Section 2 outlines our theory of statistical inference for matching based on stratified

random sampling, and Section 3 gives the properties of estimators that satisfy it. We dis-

cuss what can go wrong in applications in Section 4. Then, in Section 5, we work through

a real data set to show how using matching methods designed for simple random sam-

pling are, as used, implicitly allowing for approximate matching, and how this step leads

to uncontrolled imbalance and bias. This section also shows that by choosing directly

the stratified random sampling matching theory of this paper, researchers can estimate

the same treatment effect without hiding the approximation step. Section 6 concludes.

Appendix A gives the proofs and Appendix B extends the theory to situations where the

true and observed treatment status diverge and where different versions of treatment are

evident.

2 Causal Inference under Stratified Random Sampling
Theory

2.1 Data Generation Process

Theories of statistical inference require an axiom about the assumed data generation pro-

cess in hypothetical repeated samples. In the matching literature, existing theories of

inference for matching assume (usually implicitly) simple random sampling, which we

define formally as follows:
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Axiom A0’ [Simple Random Sampling]: Consider a population of units Θ with covari-

ates X . Draw repeated hypothetical samples, of fixed size n < ∞, at random from this

population (i.e., so that each sample of n observations has equal probability of selection).

In this article, we offer a new theory of inference for matching that replaces Axiom

A0’ with an axiom based on stratified random sampling. Stratification is a well known

technique in statistics that has had a role in matching since at least Cochran, (1968) (see

also Rubin, 1977). To ease the exposition below, we denote by X the space of pre-

treatment covariates and offer a formal definition of stratification as:

Definition 1. Let Π(X ) be a finite partition of the covariate space X , and let Ak ∈ Π(X )

(k = 1, . . . , K <∞) be one generic set of the partition, i.e. ∪kAk = X and Al ∩Am = ∅

for l 6= m.

For example, suppose that X consists of the variables age, gender and earnings, i.e.

X = {age,gender,earnings}. Then Π(X ) can be interpreted as the product (space)

of variables age × gender × earnings = Π(X ). Therefore, in the example, one of

the sets Ak might be the subset of “young adult males making greater than $25,000”, i.e,

Ak = {age ∈ (18, 24]} × {gender = M} × {(earnings > $25000)}. When no

ambiguity is introduced, we drop the subscript k from Ak. Stratified random sampling

involves random sampling from within strata A with given quotas proportional to the

relative weight of the strata {WA, A ∈ Π(X )}.

Finally, we offer our alternative data generating process axiom:

Axiom A0 [Stratified Random Sampling]: Consider a population of units Θ, and denote

the space of covariates as X . Let Π(X ) be a partition of X that stratifies Θ into disjoint

subpopulations of units. Let {WA, A ∈ Π(X )} be fixed weights for the strata. Draw

repeated hypothetical samples of [n · WA] observations, n < ∞, via simple random

sampling (defined in Axiom A0’, above) in each stratum A ∈ Π(X ), so that the total

number of observations is n (and where [x] is the integer part of x).

In this alternative Axiom A0, the strata and the total number of observations for each

hypothetical repeated sample and the observed sample are fixed. Then, the data set within
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each stratum is drawn according to simple random sampling from Axiom A0’.1

The axioms described in Axioms A0 and A0’ cannot be proven true or false on the

basis of comparisons to a single observed data set, arguments about plausibility, or infor-

mation about how matching methods are used. Because the repeated samples are strictly

hypothetical, A0 and A0’ are not even statements that could be true or false in principle.

Instead, the choice of an axiom merely defines how to interpret one’s causal inferences

and uncertainty estimates, the specific type of repeated hypothetical samples, and the ul-

timate inferential target. As all matching methods use some kind of stratification of the

covariates X , Axiom A0 highlights this fact and clarifies the theoretical assumptions nec-

essary for valid inferences, rather than, as under Axiom A0’, keeping it hidden and left to

applied researchers to deal with outside of the process of statistical inference.

2.2 Treatment Assignment

Consider now the data generated in Axiom A0, where subject i (i = 1, . . . , n) has been

exposed to treatment Ti = t, for t ∈ T , where T is either a subset of R or a set of

(ordered or unordered) categories, Ti is a random variable, and t one possible value of it.

Then Y = {Yi(t) : t ∈ T , i = 1, . . . , n} is the set of potential outcomes, the possible

values of the outcome variable when T takes on different values. For each observation,

we observe one and only one of the set of potential outcomes, that for which the treatment

was actually assigned: Yi ≡ Yi(Ti). In this setup, Ti is a random variable, the potential

outcomes are fixed constants for each value of Ti, and Yi(Ti) is a random variable, with

randomness stemming solely from the data generation process for T determining which

of the potential outcomes is observed for each i. Let Xi be the p × 1 vector (X ∈ X ) of

pre-treatment covariates for subject i.2

1Let MA
j = {i : Ti = tj , Xi ∈ A} be the set of indexes of all observations for treatment level

Ti = tj within stratum A ∈ Π(X ) and Mj =
⋃

A∈Π(X )

MA
j be the set of all indexes of the observations

corresponding to treatment T = tj . Denote the number of observations in each set by mA
j = |MA

j | and
mj = |Mj |, respectively and define the weights introduced in Axiom A0 as WA

j = mA
j /mj , j = 1, 2.

We assume that, in our stratified random sampling data generation process, the proportions WA
j are fixed

across repeated samples, and hence the weights in A0 are defined by WA = (mA
1 + mA

2 )/(m1 + m2) for
A ∈ Π(X ).

2We can clarify Axioms A0 and A0’ by giving a contrasting axiom where the repeated hypothetical
sampling distributions are based on the use of the randomized treatment assignment mechanism. This

6



2.3 Treatment Effect

Let t1 and t2 be distinct values of T that happen to be of interest, regardless of whether

T is binary, multicategory, or continuous (and which, for convenience, we refer to as the

treated and control conditions, respectively). Assume T is observed without error (an

assumption we relax in Appendix B). Define the treatment effect for each observation

as the difference between the corresponding two potential outcomes, TEi = Yi(t1) −

Yi(t2), of which at most only one is observed (this is known as the “Fundamental Problem

of Causal Inference”; Holland 1986). (Problems with multiple or continuous values of

treatment variables have multiple treatment effects for each observation, but the same

issues apply.)

The object of statistical inference is usually an average of treatment effects over a

given subset of observations. Researchers then usually estimate one of two types of quan-

tities. The first is the sample average treatment effect on the treated, for which the potential

outcomes and thus TEi are considered fixed, and inference is for all treated units in the

sample at hand: SATT = 1
|M1|

∑
i∈M1

TEi, with the control units used to help estimate

this quantity (Imbens, 2004, p.6). Other causal quantities of this first type are averaged

over different subsets of units, such as from the population, the subset of the population

similar to X , or all units in the sample or population regardless of the value of Ti. Since a

good estimate of one of these quantities will usually be a good estimate of the others, usu-

ally little attention is paid to the differences for point estimation, although there may be

differences with respect to uncertainty estimates under some theories of inference (Imai,

2008; Imbens and Wooldridge, 2009).

The second type of causal quantity is when some treated units have no acceptable

axiom is used for Fisher’s permutation-based inference of sharp null hypotheses (Rosenbaum, 1988) and
Neyman’s randomization-based theory for average treatment effects (Imai, 2008) (See also Ding, (2016).)

Axiom A0” [Randomized Treatment Assignment]: Consider an observed data set of n observations, with
treated variable Ti ∈ {0, 1}, covariates Xi ∈ X , outcome Yi, and i = 1, . . . , n. Define hypothetical
repeated samples that reassign the vector of values of T by randomly drawing a permutation of T , such that
each of the n! possible permutations have equal probability of selection.

We focus on developing a theory of inference around the use of Axiom A0, and so do not use Axiom A0”
further. Nevertheless, the differences among these three axioms help clarify the meaning of each and to
suggest potential avenues for future research.
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matches among a given control group and so are pruned along with unmatched controls,

a common situation which gives rise to “feasible” versions of SATT (which we label

FSATT) or of the other quantities discussed above. This formalizes the common practice

in many types of observational studies by focusing on quantities that can be estimated

well (perhaps in addition to estimating a more model dependent estimate of one of the

original quantities) (see Crump, Hotz, Imbens, and Mitnik, 2009; S. M. Iacus, King, and

Porro, 2011; Rubin, 2010), an issue we return to in Section 3.2. (In multi-level treatment

applications, the researcher must choose whether to keep the feasible set the same across

different treated units so that direct comparison of causal effects is possible, or to let the

sets vary to make it easier to find matches.)

2.4 Assumptions

We now describe Assumptions A1–A3, which establish the theoretical background needed

to justify valid causal inference under finite data with stratified random sampling as de-

fined in Axiom A0; this set of Assumptions can be seen as a natural strata-wide extension

of the pointwise theory by Rosenbaum and Rubin, (1983) which differs because it builds

off of Axiom A0’ instead.

The first assumption (which we generalize in Appendix B) helps to precisely define

the variables used in the analysis:

Assumption A1 [SUTVA: Stable Unit Treatment Value Assumption (Rubin, 1980, 1990,

1991)]: A complete representation of all potential outcomes is Y = {Yi(t) : t ∈ T , i =

1, . . . , n}.

SUTVA can be interpreted in at least three ways (see VanderWeele and Hernan, 2012).

First is “logical consistency,” which connects potential outcomes to the observed values

and thus rules out a situation where say Yi(0) = 5 if Ti = 1 but Yi(0) = 12 if Ti = 0

(Robins, 1986). Second is “no interference,” which indicates that the observed value Ti

does not affect the values of {Yi(t) : t ∈ T } or {Yj(t) : t ∈ T ,∀ j 6= i} (Cox, 1958).

And finally, SUTVA requires that the treatment assignment process produce one potential

outcome value for any (true) treatment value (Neyman, 1935).
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To use our theory to justify a matching method requires that the information in these

strata, and the variables that generate them, be taken into account. The theory does not

require that our specific formalization of these strata be used in a matching method, only

that the information is controlled for in some way. This can be done by directly matching

on A, using some function of A in covariates to control for, or some type of weighting

that takes account of A. An example is given in Section 5.

We now introduce the second assumption, which ensures that the pre-treatment co-

variates defining the strata are sufficient to adjust for any biases. (This assumption serves

the same purpose as the “no omitted variable bias” assumption in classical econometrics,

but without having to assume a particular functional form.) Thus, by conditioning on the

values of X encoded in the strata A, we define:

Assumption A2 [Set-wide Weak Unconfoundedness]: T⊥Y (t)|A, for all t ∈ T and each

A ∈ Π(X ).

For example, under A2, the distribution of potential outcomes under control Y (0) is the

same for the unobserved treated units and as the observed control units; below, this will

enable us to estimate the causal effect by using the observed outcome variable in the

control group.

Apart from the sampling framework, Assumption A2 can be thought of as a degenerate

version of the Conditioning At Random (CAR) assumption in Heitjan and Rubin, (1991)

with conditioning fixed. CAR was designed to draw inferences from coarsened data,

when the original uncoarsened data are not observed. In the present framework, Π(X )

represents only a stratification of the reference population and each stratum A in that

definition is fixed in repeated sampling. A special case of Assumption A2, with sets A

fixed to singletons (i.e. taking A = {X = x}), is known as “weak unconfoundedness”

used under exact matching theory (Imai and Dyk, 2004; Imbens, 2000; Lechner, 2001)

and first articulated in Rosenbaum and Rubin, (1983).

Finally, any matching theory requires a version of the “common support” assumption,

i.e. for any unit with observed treatment condition Ti = t1 and covariates Xi ∈ A, it is

also possible to observe a unit with the counterfactual treatment, Ti = t2, and the covariate
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values in the same set A. This is the assumption that rules out, for example, being able to

estimate the causal effect of United Nations interventions in civil wars on peace building

success when the UN intervenes only when they are likely to succeed (King and Zeng,

2006). In less extreme cases, it is possible to narrow the quantity of interest to a portion

of the sample space (an thus the data) where common support does exist. More formally,

we introduce this version that works under the stratified random sampling Axiom A0:

Assumption A3 [Set-wide Common Support]: For all measurable sets B ∈ T and all

sets A ∈ Π(X ) we have p(T ∈ B|X ∈ A) > 0.

Assumptions A2 and A3 make the search for counterfactuals easier since all observations

in the vicinity of (i.e., in the same strata as) a unit, rather than only those with exactly the

same covariate values, are now acceptable matches. (The combination of the pointwise

versions of both A2 and A3 is often referred as “strong ignorability” (Abadie and Imbens,

2002; Rosenbaum and Rubin, 1983).) Assumption A3 also requires that at least one

treated and one control unit (or one in each treatment regime) appear within every stratum,

and so A3 imposes constraints on the weights.

2.5 Identification of the Treatment Effect

We show here that Assumptions A1-A3 enable point identification of the causal effect

in the presence of approximate matching. Identification for the expected value of this

quantity can be established under the new assumptions by noting, for each A ∈ Π(X ),

that

E{Y (t)|A} A2
= E{Y (t)|T = t, A} = E{Y |T = t, A},

which means that within set Ak, we can average over the observed Y corresponding to the

observed values of the treatment T rather than unobserved potential outcomes for which

the treatment was not assigned. The result is that the average causal effect within the set

A, which we denote by τA, can be written as the difference in two means of observed

variables, and so is easy to estimate:

τA = E{Y (t1)− Y (t2)|A} = E{Y |T = t1, A} − E{Y |T = t2, A}, (1)
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for any t1 6= t2 ∈ T . That is, (1) simplifies the task of estimating the causal effect

in approximate matching in that it allows one to consider the means of the treated and

control groups separately, within each set A, and to take the weighted average over all

strata A ∈ Π(X ) afterwards. To take this weighted average, we use Assumption A3:

E(Y (t))
A3
= E(E{Y (t)|A}) (2)

which is exactly what we need to calculate the average causal effect τ = E(Y (t1)) −

E(Y (t2)). Assumption A3 is required because otherwise E{Y (t)|A} may not exist for

one of the two values of t = t1 or t = t2 for some stratum A, in which case E(Y (t)),

would not exist and the overall causal effect would not be identified.

3 Properties of Estimators After Matching

Current estimation practice after one-to-one matching involves using estimators for the

difference in means or with regression adjustment that follows matching. In j-to-k match-

ing for j > 0 and k > 1 varying over units, the same procedures are used after averaging

within strata for treatment and control groups or, equivalently, without strata but with

unit-level weights. Either way, the same estimation procedures that might have been used

without matching can now be used as is, along with familiar uncertainty estimates and

diagnostic techniques. We now give some details of how our theory of inference justifies

these simple procedures.

3.1 Difference in Means Estimator

To describe the property of the estimators, we adapt the notation of Abadie and Imbens,

(2011) (which operates under axiom A0’) and rewrite the causal quantity of interest as the

weighted sum computed within each stratum A from (1):

τ =
1

m1

∑
i∈M1

E{TEi} =
1

m1

∑
A∈Π(X )

∑
i∈MA

1

E{Yi(t1)− Yi(t2)|Xi ∈ A}

=
1

m1

∑
A∈Π(X )

∑
i∈MA

1

(µA1 − µA2 ) =
1

m1

∑
A∈Π(X )

(µA1 − µA2 )mA
1 =

∑
A∈Π(X )

τAWA
1 ,

(3)
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where µAk = E{Y (tk)|X ∈ A} (k = 1, 2) and τA is the treatment effect within set A as

in (1). Consider now an estimator τ̂ for τ based on this weighted average:

τ̂ =
∑

A∈Π(X )

τ̂AWA
1 =

1

m1

∑
i∈MA

1

(Yi(t1)− Ŷi(t2)) (4)

where τ̂A is the simple difference in means within the set A, i.e.:

τ̂A =
1

mA
1

∑
i∈MA

1

(
Yi − Ŷi(t2)

)
=

1

mA
1

∑
i∈MA

1

Yi − 1

mA
2

∑
j∈MA

2

Yj


=

1

mA
1

∑
i∈MA

1

Yi −
1

mA
2

∑
j∈MA

2

Yj.

(5)

Finally, we have the main result (see the appendix for a proof):

Theorem 1. The estimator τ̂ is unbiased for τ .

Given that the sets of the partition Π(X ) are disjoint, it is straightforward to obtain

the variance σ2
τ̂ = Var(τ̂) of the causal effect. If we denote by σ2

τ̂A the variance of the

stratum-level estimates τ̂A in (5), we have σ2
τ̂ =

∑
A∈Π(X )

(
στ̂AW

A
1

)2.

3.2 Simplified Inference Through Weighted Least Squares

The direct approach to estimating the treatment effect by strata and then aggregating is

useful to define the matching estimator, but it is more convenient to rewrite the estima-

tion problem in an equivalent way as a weighted least squares problem. This approach

provides a easy procedure for computing standard errors, even for multi-level treatment

(see Section 3.3) or when one or more strata contain only one treated unit and one control

unit (see Section 4. In this latter case, one cannot directly estimate the variance within

the strata σ2
τ̂A but we can still obtain an estimate of it by applying whatever estimator one

would have applied to the data set without matching.

We now introduce the weights we use to simplify the estimator in (4) and re-express

it as the difference in weighted means. For all observations, define the weights wi as

wi =


1, if Ti = t1,

0, if Ti = t2 and i 6∈MA
2 for all A,

mA
1

mA
2

m2

m1
, if Ti = t2 and i ∈MA

2 for one A.
(6)
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Then, the estimator τ̂ in (4) can be rewritten as

τ̂ =
1

m1

∑
i∈M1

Yiwi −
1

m2

∑
j∈M2

Yjwj,

where the variance is the sum of the variances of the two quantities. Therefore, the stan-

dard error of τ̂ is the usual standard error of estimates for regression analysis with weights.

For example, consider the linear regression model:

Yi = β0 + β1Ti + εi, εi ∼ N(0, 1) and i.i.d

where τ̂ ≡ β̂1 if weights wi are used in estimation. So the standard error of β̂1 can be

obtained as the output of this weighted least squares (WLS) model, and is the correct

estimate of σ2
τ̂ . Other models, such as GLM with weights, can also be estimated in a

similar fashion. The only change that needs to be made to the estimator without matching

is to include these weights.

3.3 Estimation with Multi-level Treatments

For more than two treatments we define the multi-treatment weights as

wi(k) =


1, if Ti = t1,

0, if Ti = tk and i 6∈MA
k for all A,

mA

mA
k

mk

m1
, if Ti = tk and i ∈MA

k for one A.

Then, for each k = 2, 3, . . ., the treatment effect τ(k) can be estimated as β̂1(k) in

Yi = β0 + β1(k)Ti + · · ·+ εi

with weights wi(k) and, again, the usual standard errors are correct as is.

3.4 Additional Regression Adjustment for Further Covariates

If Assumption A2 holds, then adjusting for covariates is unnecessary to ensure unbiased-

ness. If Assumption A2 holds but the analyst is unsure if it does, and so adjusts for pre-

treatment covariates (with interactions), then the downside is trivial (Lin, 2013; Miratrix,

Sekhon, and Yu, 2013). But sometimes, the researcher may need to adjust for covariates

via a model, even if they were not used during matching. In this situation, it sufficient
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to proceed as one would without the matching step by including all the variables in the

regression model

Yi = β0 + β1Ti + γ1Xi1 + · · · γdXid + εi.

and using the weights in (6) to run the WLS regression. The estimated coefficient β̂1 is

then the estimator of the treatment effect τ̂ and its standard error is an unbiased estimator

of its standard deviation, under the model.

3.5 Defining Strata in Observational Data

One question that may arise in this framework, as in any stratified sampling, is how to

choose the strata A ∈ Π(X ) in a given problem? The answer is by definition application-

specific, which can be an advantage in that it relies on variables in the original investigator-

defined units of measurement, reflecting knowledge the investigator must have.

To show the applicability of our approach in observational studies, we take advantage

of the fact that in many data sets variables referred to as “continuous” in fact often have

natural breakpoints that may be as or more important than the continuous values. These

may include grade school, high school, and college degrees for the variable “years of edu-

cation”; the official poverty level for the variable “income”; or puberty, official retirement

age, etc., for the variable “age”. This understanding of measurement recognizes that, for

another example, 33◦ Fahrenheit may be closer to 200◦ than to 31◦, at least for certain

purposes. Most data analysts not only know this distinction well but use it routinely to

collapse variables in their ordinary data analyses. Indeed, in analyses of sample surveys,

continuous variables with no natural breakpoints, or where authors never use breakpoints

to collapse variables or categories, are uncommon.

For another example, consider estimating the causal effect of the treatment variable

“taking one introductory statistics course” on the outcome variable “income after college”,

and where we also observe one pre-treatment covariate “years of education”, along with

its natural breakpoints at high school and college degrees. Assumption A2 says that it is

sufficient to control for the coarsened three-category education variable (no high school

degree, high school degree and possibly some college courses but no college degree, and
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college degree) rather than the full “years of education” variable. In this application,

A2 is plausible if, as seems common, employers at least at first primarily value degree

completion in setting salaries. Then, post-stratification and matching within the strata is

appropriate. If, instead, a major difference in expected income exists between those who

have, for example, one versus three years of college, then there can be some degree of

bias induced.

4 How to Avoid Violating Assumptions A2 and A3

When a data set has at least one stratum A that does not contain all levels of the treatment,

the now prevalent view in the literature is that the best approach is to change the quantity

of interest and switching from SATT to FSATT, where we use only strata where A3 is

satisfied (Crump, Hotz, Imbens, and Mitnik, 2009; S. M. Iacus, King, and Porro, 2011;

Rubin, 2010). Yet, this absence of evidence for A3 does not necessarily imply that the

assumption itself is false; it could instead have been the case that we happen not to have

sufficient samples from those strata.

In the situation when switching to FSATT is not an option, because only an inference

about the original quantity of interest will do, bias may arise if, for example, we merge

two or more strata into a new larger strata, match within this larger strata, and violate A2,

and possibly also A3. This same issue arises under stratified sampling A0 as under simple

random sampling A0’, but we discuss how to think about it under stratified sampling in

this section.

4.1 How Bias Arises?

To understand where bias may arise under Axiom A0 when some strata A need to be

enlarged or changed, we study the following bias decomposition, by adapting ideas de-

signed to work under Axiom A0’ from Abadie and Imbens, (2006, 2011, 2012). Let

µt(x) = E{Y (t)|X = x} and µ(tk, x) = E{Y |X = x, T = tk}. Under Assumption A2

we know that µtk(x)
A2
= µ(tk, x) ≡ µAk for all {X = x} ⊆ A. Then the bias is written as:

τ̂A − τA =
∑

A∈Π(X )

{
(τ̄A − τA) + EA +BA

}
WA

1 ,
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where

τ̄A =
1

mA
1

∑
i∈MA

1

(µt1(Xi)− µt2(Xi))

EA =
1

mA
1

∑
i∈MA

1

(Yi − µt1(Xi))−
1

mA
1

∑
i∈MA

1

1

mA
2

∑
j∈MA

2

(Yj − µt2(Xj))


and

BA =
1

mA
1

∑
i∈MA

1

1

mA
2

∑
j∈MA

2

(µt2(Xi)− µt2(Xj))

where µtk(X) = µAk for X ∈ A. Therefore, both (τ̄A− τA) and EA have zero expectation

inside each set A and BA = 0. But if some of the sets A′ are different from the original

partition A, or combined or enlarged, then assumption A2 may not apply any longer, in

general, µtk(X) 6= µAk for X ∈ A′ 6= A.

4.2 Nonparametric Regression Adjustment

One way to proceed is with the following regression adjustment, as in Abadie and Imbens,

(2011), that compensates for the bias due to the difference betweenA andA′. Let µ̂t2|A(x)

be a (local) consistent estimator of µt2(x) for x ∈ A. In this case, one possible estimator

is the following

τ̂A =
1

mA
1

∑
i∈MA

1

(Yi − µ̂t2|A(Xi))−
1

mA
2

∑
j∈MA

2

(Yj − µ̂t2|A(Xj)). (7)

This estimator is asymptotically unbiased if the number of control units in each stra-

tum grows at the usual rate. If instead of using a local estimator µ̂t2|A(x) we use a

global estimator µ̂t2(x), i.e. using all control units in the sample as in Abadie and Im-

bens, (2011), then the calculation of the variance of the estimator is no longer obtained

by simple weighting and the validity of the approach requires a treatment similar to the

asymptotic theory of exact matching. More technical assumptions and regularity on the

unknown functions µt(x) are needed to prove that the regression type estimator in (7) can

compensate for the bias asymptotically but, essentially, it is required that, for some r ≥ 1,

we impose mr
1/m2 → κ, with 0 < κ <∞. A simplified statement is that m1/m

4/k
2 → 0,
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where k is the number of continuous covariates in the data and this condition is equiva-

lent to mk/4
1 /m2 = mr

1/m2 → κ. The proof of these results can be found in Abadie and

Imbens, (2011).

4.3 Asymptotic Filling of the Strata

If Assumption A3 is apparently violated because there are not enough observations in one

or more strata, but we still believe A1–A3 to be true and we happen to be able to continue

to collect data, then it is worth knowing that it is theoretically possible to fill all the strata in

Π(X ) and obtain unbiased estimates of the treatment effect. This is theoretically possible

under the additional assumption that mr
1/m2 ≤ κ, with 0 < κ < ∞, r > k, and k the

number of continuous covariates. By Proposition 1 in Abadie and Imbens, (2012), all the

strata A will be filled with probability one. This result is enough to obtain asymptotically

unbiased estimates of the causal effect under the original assumptions A2–A3, without

changing the initial partition Π(X ) or other technical smoothness assumptions on the

functions µt(x) and µ̂t|A(x). As such, one could use an asymptotic approximation to

obtain estimates and standard errors, but it is considerably safer to use these results as a

guide to future data collection.

5 Approximate Matching in Practice

In this section, we apply commonly used matching methods to the same real data set in

order to highlight five important points3. First, we emphasize how the application of all

matching methods, in almost all real data sets, require approximations that may violate

the corresponding theory of inference. Second, the assumptions do not fail gracefully:

Even small deviations from the requirements of any theory of inference can yield large

biases or misinterpretations. Third, there is reason to believe that our alternative (strati-

fied random sampling) theory will often be more robust to incorrect approximations than

existing (simple random sampling) theories. And finally, common usage of some exist-

ing theories of inference typically ignore the essential approximations, making it difficult

3Replication code can be found here S. Iacus, King, and Porro, 2018.
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or impossible for applied researchers in most situations to apply the theory with fidelity.

Applied researchers typically march forward anyway, inappropriately burying the approx-

imations, and the assumptions necessary to make the theories valid, usually without com-

ment as part of commonly used data analysis practices. In contrast, under our alternative

stratified-based theory of inference, all necessary assumptions are stated explicitly, up

front, and before any data analysis. These assumptions, and any deviations from them,

are also considerably easier to understand and use under our alternative than under exist-

ing theories. Finally, as emphasized in previous sections, the choice of stratified sampling

in Axiom A0 vs simple random sampling in Axiom A0’ is a statement about a hypo-

thetical sampling process, rather than a claim that can be proven right or wrong. In this

situation, the critical task for the analyst is to completely understand how the theory of

inference is applied in the context of their data, and to interpret it correctly, rather than to

justify whether it is correct, “plausible,” or appropriate for an application. As such, the

far greater simplicity of the stratified over simple random sampling theory can be a major

advantage.

Data For data, we consider the National Supported Work (NSW) training program used

in the seminal paper by Lalonde, (1986). In these data, the outcome variable is the real

earnings of workers in 1978 (re78) and the treatment is the participation in the program.

Pre-treatment control variables include age; years of education; indicators for black

and hispanic; an indicator for marital status, married; an indicator for not possessing a

high school degree (nodegree); earnings in 1975, re75, and 1974, re74; and unemploy-

ment status in both years, u74 and u75. The data set contains 297 individuals exposed to

treatment and 425 control units. This is in fact an experimental sample, although Lalonde,

(1986) analyzed it as an observational study to provide insights about matching methods.

The quantity of interest is the sample average treatment effect on the treated (ATT), the

increase in earnings in 1978 due to treatment.

Applying Simple Random Sampling-Based Theory We now show how three ways of

satisfying the existing simple random sampling-based theory of inference all fail in these
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data. We begin with the simple random sampling Axiom A0’, and assume SUTVA, along

with pointwise unconfoundedness and common support.

First, we apply exact matching theory, the hardest to satisfy but best case scenario,

requiring exact matching on X . In most applications with rich sets of covariates, few

matches are available. In our application, we do happen to have 55 treated units that

exactly match 74 control observations (this occurs because the otherwise continuous vari-

ables, re74 and re75, have a point mass at zero, and other variables are discrete). Unfor-

tunately, this small sample would leave confidence intervals on the ATT too wide to make

useful inferences.

More generally, this exact matching approach may work for very large samples, when

there is high probability that match occurs without replacement for one-to-one nearest

neighbors matching, and imbalance is zero (or very small according to some distance).

In this situation, a simple regression model, with pre-treatment covariates and a treatment

indicator, will normally be able to take into account the remaining bias in either simple or

stratified random sampling.

Second, we consider exact matching on the propensity score. If successful, this ap-

proach would yield less efficient estimates than exact matching onX , and would introduce

a variety of other serious problems, but causal estimates would at least be ex ante unbi-

ased (King and Nielsen, 2017). To try this, we use the propensity score specification in

Dehejia and Wahba, (1999), a logistic model for all the indicator variables, as well as age,

education, re74, and re75 and their squares. Unfortunately, as is typical in data sets

with continuous covariates, lowering the bar for what constitutes a match in this way buys

us zero additional matched observations. This is not a surprise, since propensity score

matching requires exact matching on the propensity score, which does not happen with

any higher probability than exact matching on X as long as we have some continuous

variables.

A final option to follow existing theory would be to have a very large data set. Al-

though we do not have a large data set, in observational data analysis, the data set is

whatever one chooses to include. In this case, we could add new data by gathering con-
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temporaneous surveys on the same subject, of similar people, and treat them as part of the

pool of potential control units (see Dehejia and Wahba, 1999). In fact, adding external

data has been tried in this application but turns out not to help because it greatly increases

heterogeneity, does not markedly increase the information in the data as n increases about

the ATT, and so does not satisfy the conditions for the theory of inference to apply (see

King, Lucas, and Nielsen, 2017; Smith and Todd, 2005).

Applying Approximate Simple Random Sampling-Based Theory At this point, we

can see that applying an existing theory of inference based on simple random sampling, to

generate valid causal inferences in these data without approximations, is not possible. Re-

searchers in this situation typically try to come up with an approximate matching solution,

but this leads to two problems.

First, approximate matching is not justified by the simple random sampling-based the-

ory of inference, as the formal properties of the resulting statistical estimators do not hold.

Second, one might think that small deviations from the theoretical requirement would be

approximately unbiased, but this is untrue. No known theorem supports this claim and,

since even exactly matched propensity scores implies only approximate matching on X ,

which can greatly increase the variance across samples and drive any one sample farther

from the truth.

By looking at how imbalanced a dataset is, we can get a feel for at least the potential

bias due to failing to exactly matching on X or on the propensity score. To illustrate, we

use one-to-one nearest neighbor propensity score matching (NN-PSM) with a caliper of

0.001. This results in 100 treated units and 100 control units. The closest (inexact) match

allowed by this procedure has a difference in propensity scores of only 0.000003, but yet

still has substantial imbalance:

treated age education black hispanic married nodegree u74 u75 re74 re75

1 20 9 0 1 0 1 0 0 8740.939 8015.442
0 23 8 1 0 0 1 1 1 0.000 0.000

As can be seen, education (at 9 years for treated and 8 for control) is not far off, at least

for a job training program. Also apparently close is age but, at 20 and 23, the impact

could be determinative if the legal age of adulthood (21) impacts prospective employers
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hiring decisions. More serious is that the treated person in this pair is hispanic and em-

ployed in both 1974 and 1975, whereas the control person is black and unemployed in the

same years. In this typical example, a practitioner would have to implicitly admit to not

controlling for several of the variables they designated as pre-treatment confounders, thus

violating ignorability or to hope that the biases of one confounder miraculously cancels

out the biases for another.

We also repeat here the same analysis for a larger caliper to further increase the number

of matched units, and show its cost in terms of increasing imbalance further. Here we

choose a larger caliper of 0.01, and find 219 treated units matched with 219 control units.

The next best pair of matched units this brings in has a “small” propensity score difference

of 0.000622, but with an obviously large imbalance on X:

treated age education black hispanic married nodegree u74 u75 re74 re75

1 27 8 1 0 0 1 1 1 0.00 0.00
0 27 12 0 1 0 0 0 0 27913.66 24276.97

The differences between the treated and control groups on X here are even more substan-

tial, even with an only slightly larger caliper. Here we match a treated African American

who dropped out of junior high school with no income, to a control group Hispanic who

graduated from high school with more than $27,000 of income.

The two matched pairs of units we describe here are each intuitive and the degree of

approximation is easy to understand. However, to understand the full degree of approxi-

mation for the entire matching solution requires performing this identical comparison on

every pair of matched observations (100, 219, or 274, depending on the choice of caliper).

Although we do not offer an example until later, we also note that running NN-PSM

with a caliper of 0.1 matches 274 treated units to 274 control units (i.e. 548 units).

As is clear from this discussion, the size of the propensity score caliper alone provides

little intuition about the quality of the match, the degree of approximation to the require-

ments of the theory of inference, the resulting level of imbalance on X , or the degree of

statistical bias in the ATT. Since the required Axiom A0’ is an axiom, being able to clearly

convey what it means is the only real requirement in applications.
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Applying Stratified Random Sampling-Based Theory We now illustrate three advan-

tages of replacing Axiom A0’ with Axiom A0, and thus thinking of the data in terms of

stratification rather than simple random sampling.

The first advantage of stratification-based matching is ease of interpretation, which is

essential in matching. Understanding assumptions — which by definition are unverifiable

— is important in any empirical analysis. However, the sampling axiom in matching

defines the inferences being made and thus also the meaning of the sampling distribution

and standard errors. As such, without some clear understanding of the sampling process,

making any inferences at all makes little sense.

To convey how one would interpret an application under this stratification-based the-

ory of inference, and why matching is easier to understand than under simple random

sampling-based approaches, we now give an example involving analysis choices in a real

data set. For stratification-based inference, the key choice is the partition of X , which we

have been referring to as A. In principle, this choice must be made prior to examining the

data, or else the weights will not be fixed in repeated samples. We discuss different ways

of interpreting this requirement so that it may be used in practice when not generating the

data oneself.

A reasonable way to define A, before seeing the data, is to define it based on infor-

mation in the data set’s codebook. In the case of these data, a natural choice is to match

all binary variables exactly, age according to the official U.S. Bureau of Labor Statistics

stratification (i.e., 16–24, 25–54, 55 and over), and for the variable education to coarsen

by formal degrees — elementary [0,6], high school [7–12], undergraduate [13–16], grad-

uate [17,). The covariate u74 (and u75) is an indicator variable which is nonzero when

re74 (and re75) is nonzero. As a result, this continuous counterpart of the unemploy-

ment status (re74 and re75) can be in principle dropped from the matching stage and

eventually included in the model specification for the ATT estimation.

If we use this definition of A, which we could plausibly have arrived at before ex-

amining the data, then we can think of the data generation process as stratified random

sampling within this given partition. Then all hypothetical repeated samples, the resulting
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sampling distribution, and associated standard errors, confidence intervals, and hypothe-

sis tests, is defined as a consequence. As it happens, when we can try this stratification

with our one observed data set, we find that we have 221 treated units matched with 313

control units.

Now suppose we examine the data and prefer to drop re74 and re75 from the partition

in order to prune fewer observations. To make this decision statistically justifiable, two

conditions must hold. The first condition is that we must ensure we do not violate set-

wide ignorability (i.e., Assumptions A2 and A3), which will be satisfied in one or more of

three situations: the two variables are unrelated to the treatment variable, unrelated to the

outcome given the treatment, or included in an appropriate model during the estimation

stage. The second condition involves conceptualizing the resulting strata A. If the choice

of A is determined from the data (not merely the codebook), then the weights are random

and, as a result, more complicated methods must be used for uncertainty estimates (point

estimates remain unchanged). However, we may still be able to conceptualize A as fixed

ex ante if we can argue that we would have interpreted the partitions the same way if

we had thought of the same reasoning before seeing the data. That is, sometimes seeing

the data causes one to surface ideas that could easily have been specified ex ante. Of

course, we should try to avoid the lure of post hoc, just-so stories, but if we do, we would

be justified in interpreting A as fixed, and then all the familiar methods are available for

computing uncertainty estimates, such as standard errors and confidence intervals. Either

way, the advantage of stratification is that understanding the sampling axiom, and how to

think about the resulting data generation process, is straightforward. In this case, dropping

re74 and re75 result in matching 278 treated units matched to 394 control units.

Now suppose we go another step and try to interpret our analyses without much prior

knowledge of A. Here, we first generate a large set of matching solutions. This need not

be done in practice, but we find it useful here for illustrative purposes. To do this, we

create 500 random stratifications of the covariate space by dividing the support of each

pre-treatment covariate into a random number of subintervals (chosen uniformly on the in-

tegers 1,. . . ,15). For comparison, we also generate 500 matching solutions from NN-PSM
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Figure 1: Randomly created matching solutions: imbalance (vertically) by matched sam-
ple size (horizontally). Each dot represents a matching solution, including the original
unmatched data (Raw); three solutions with lower imbalance and more matched treated
units than any other (best random stratifications, at the lower left); NN-PSM solutions
with calipers of 0.1, 0.01, and 0.001; 500 solutions based on random stratifications of the
covariate space (dots); 500 random NN-PSM solutions (stars), and 500 random NN-MDM
solutions (squares). The plot represents solutions with at least 200 matched units.

(nearest neighbor, propensity score matching) models, by randomly selecting propensity

score models and its caliper, and 500 NN-MDM (nearest neighbor, Mahalanobis distance

matching) solutions, by randomly selecting input variables and its caliper (both selecting

from the set of all main, polynomial, and interaction terms up to the second degree, with

a logistic specification as usual for the propensity score model). In real applications, im-

balance is best measured on the scale of the original variables but, to save space for our

methodological purposes, we use the average of the standardized difference in means ap-

plied to each matching variable. (Other measures of imbalance do not materially change

our conclusions.) Then, in Figure 1, the vertical axis is this measure of imbalance and the

horizontal axis is the number of matched units (scaled according to 1/n). Each point in

the plot corresponds to one randomly selected matching solution (with stratification solu-

tions in blue, NN-PSM in green, and NN-MDM in red). Stratification solutions here are

all based on coarsened exact matching (CEM), but our stratified theory of inference ap-

plies to any member of the class of “monotonic imbalance bounding” matching methods

(S. M. Iacus, King, and Porro, 2011).
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The raw dot (at the middle left) corresponds to the original, unmatched data. In the

same figure, we also include and label the three different NN-PSM matching solutions

discussed above with calipers set to 0.1, 0.01 and 0.001 ( across the middle of the graph

from left to right). The dots marked with “best stratifications” (at the bottom left) represent

matching solutions based on stratifications with the lowest imbalance for a given number

of matched units or the largest number of matched units for any given imbalance. These

solutions do not necessarily represent the theoretical frontier of imbalance and matched

sample size, since they were generated randomly, but they are the best solutions among

those in this graph (King, Lucas, and Nielsen, 2017), but are still the best among those

randomly generated.

Then, to convey how easy it is to understand a stratified matching solution, consider

only the central dot of this sequence of “best stratifications”. This matching solution was

constructed (by chance, i.e. randomly) using the cross products of following strata:

variable class cut-points
age (min=17, 29.67, 42.33, max=55), i.e. three classes

education (min=3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, max=16)
re74 (min=0, 19785.34, max=39570.68), i.e. two classes
re75 (min=0, max=37431.66), i.e. one large class
black all in the same class, i.e. no matching

hispanic classes 0 and 1, i.e. exact matching
married classes 0 and 1, i.e. exact matching
nodegree classes 0 and 1, i.e. exact matching

u74 classes 0 and 1, i.e. exact matching
u75 classes 0 and 1, i.e. exact matching

The advantage of presenting these strata is that they convey all information necessary

about the entire matching solution in an easy-to-understand and compact display. To use

our stratified theory of inference, we need to imagine that our data, and all the repeated hy-

pothetical samples, were generated by a stratified sampling design, based on these strata.

In fact, the data are observational, and the hypothetical distributions do not and will not

exist. However, we can still conceptualize what this distribution means as if these strata

are fixed. The argument should be recognized as more of a stretch, since we did arrive at

this stratification directly from the data, but stating this axiom about hypothetical (strati-

fied) sampling replications cannot be proven wrong and so it is reasonable to use it as a

way to interpret a matching-based estimator. Our main point here is that axiom itself is

easy to understand: all we need to do is to understand the strata defined above.

In contrast, to convey all information in a NN-PSM matching solution, we would need
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to understand every individual matched set in a matching solution, as we did above, but

for 100, 219, or 274 individual matched sets (corresponding to calipers of 0.001, 0.01, and

0.1). This of course would be infeasible to comprehend all at once. With stratification, a

researcher can more easily, quickly, and concisely understand the approximation and what

assumptions are necessary to believe that bias is being constrained, without hundreds of

separate evaluations. These stratifications might still be implausible as ex ante definitions

for A, but researchers will be able to understand, if appropriate justify, the assumptions

more easily. In this example, we can see that this particular matching solution does not

control for black or re75, as was the case for particular pair of NN-PSM matched sets

above, but this time we can see all the compromises from the entire data set at once, so

that one can judge whether this approximation is justifiable. The problem of course is that

even if one can understand a hundred or more stratifications, the axiom of simple random

sampling requires exact matching on X or the propensity score, not a nearest neighbor

solution, or one within some caliper.

A second advantage of stratification-based matching is that imbalance tends to be

lower than under other matching methods for any given number of matched observations.

This is not a general claim, but it is a typical pattern in many applications (King, Lucas,

and Nielsen, 2017). This can be seen in Figure 1 by the blue stratification-based matching

points appearing to the lower left — indicating lower imbalance given higher numbers

of observations — whereas the green NN-PSM and red NN-MDM matching solutions,

appearing above and to the right — indicating more imbalance or fewer matched obser-

vations.

A final advantage of stratification-based matching is that estimated treatment effects

are often less variable, and thus somewhat more robust, than under other matching meth-

ods. To see this common, but also not universal, pattern we compute, for each of the

matching solutions in Figure 1, an estimate of the ATT and standard error (by regressing

the outcome variable on the treatment indicator and all pretreatment variables included in

the matching solution). We then present, in Figure 2, all the ATT estimates (vertically)

by the matched sample size (horizontally). Because of the enormous variability of NN-
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Mahalanobis, the plot is zoomed in, excluding points outside of the range of the visible

axes.

This figure shows that for any given matched sample size (i.e., any point on the hor-

izontal axis), the vertical variability of the ATT estimates are much larger for NN-PSM

and NN-MDM than for stratification. Because Figure 2 does not reveal all the data, we

present Table 1, which summarizes aspects of these same estimates. Table 1 demon-

strates that stratification, in addition to having lower overall imbalance (i.e., finding better

matched subgroups of treated and control units), is also the method that on average pro-

duces more matched units, a less variable and more robust ATT estimate, with a smaller

standard error. In addition, the one-sigma Monte Carlo confidence interval for average

treatment effect contains zero for both PSM and MDM, but not under stratification.

As we exemplify with this analysis, the choice of a theory of inference defines the

nature of the hypothetical repeated samples used for statistical inference. Whether these

samples are based on simple or stratified random sampling is not an assumption vulnera-

ble to being proven wrong, but rather than axiom that defines how we interpret standard

errors and confidence intervals. As such, the critical question is not which is more appro-

priate but whether we are able to clarify the meaning of one’s uncertainty calculations. As
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Method min ATT average ATT median ATT max ATT
MDM -108673.5 819.1 886.0 31915.9
PSM -1693.3 681.3 710.7 5586.3

Stratification 287.4 1031.1 999.7 1931.0

Method min Std. Error average Std.Error median Std. Error Max Std.error
MDM 510.2 2031.6 740.9 296298.1
PSM 194.3 870.2 696.0 4056.7

Stratification 461.6 529.6 524.2 681.3

Method min n average n median n max n
MDM 4 288 279 594
PSM 4 302 307 592

Stratification 360 550 553 713

Table 1: Distribution of estimated ATTs, their standard error and number of matched units for the data in Figure 2.

we show here, under stratified random sampling, the assumptions and inferences are con-

siderably clearer and easier to understand, and do not require asymptotic results, which is

quite unlike the situation with most methods for simple random sampling-based inference.

6 Concluding Remarks

In this paper, we highlight the assumptions and estimators necessary for identification and

unbiased causal estimation when, as is usually the case in practice, matches are approx-

imate rather than exact, and treatment variables are assumed known and applied without

error. The theory of statistical inference we develop here justifies the common practice

among applied researchers of using matching as preprocessing and then applying the same

convenient and familiar methods of estimation and inference. Only with formally stated

assumptions like those presented here can applied researchers begin to assess whether they

are meeting the requirements necessary for valid causal inference in real applications. By

moving the nearly universal stratification assumption made ex post into an explicit ex

ante assumption, the assumptions that must be met are taken out of the shadows and made

explicit. Researchers are still responsible for meeting these assumptions, and in observa-

tional data causal inference is always hazardous, but researchers should now be able to

see more clearly the conditions necessary for generating valid inferences.
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Appendix A Proofs

Proof of Theorem 1. This is true because, for each A, τ̂A is an unbiased estimator of τA.

In fact,

E{τ̂A} =
1

mA
1

∑
i∈MA

1

E(Yi)−
1

mA
2

∑
j∈MA

2

E{Yj} =
1

mA
1

∑
i∈MA

1

µA1 −
1

mA
2

∑
j∈MA

2

µA2 = µA1 − µA2

now
E{τ̂} =

∑
A∈Π(X )

E{τ̂A}WA
1 =

∑
A∈Π(X )

(µA1 − µA2 )WA
1 = τ.

Proof of Theorem 2. Recall that T ∗ = T −u. If Y (t) is a generalized additive function of

T linearly and X , then it has a form like a+ bt+ c · h(X), for any deterministic function

h(·) independent of t. Hence E{Y (T )} − E{Y (T ∗)} = a + bE{T} + c · h(X) − a −

bE{T} − c · h(X) + bE(u) = bE(u) = 0.

Proof of Theorem 3. Recall that Y (t) = a0 +
∑p

k=1 akt
k with coefficients a0, a1, . . . , ak.

Using independence of T and u and the fact that T ∗ = T − u, we write

E{Y (T ∗)} = a0 +

p∑
k=1

akE{(T − u)k} = a0 +

p∑
k=1

ak

k∑
i=0

(
k

i

)
E{T i}E{(−u)k−i}

= a0 +

p∑
k=1

ak

(
E{T k}+

k−1∑
i=0

(
k

i

)
E{T i}E{(−u)k−i}

)
and the result follows.

Lemma 1. [Mean Value Theorem (De Crescenzo, 1999)] Let X and Y be nonnegative

random variables, with X stochastically smaller than Y . Let g be some measurable and

differentiable function such thatE[g(X)] andE[g(Y )] are finite; let g′ be measurable and

Riemann-integrable on [x, y] for all y ≥ x ≥ 0. Then

E{g(Y )} − E{g(X)} = E{g′(Z)} (E{Y } − E{X})

with Z a non-negative random variable with distribution function

FZ(z) =
FX(z)− FY (z)

E{Y } − E{X}
, z ≥ 0,

and FX , FY and FZ the distribution functions of X , Y and Z respectively.
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Proof of Theorem 4. A direct application of Lemma 1, with Y = T = T ∗ + u, X = T ∗

and g = Y .

Appendix B Allowing True and Observed Treatment Sta-
tus to Diverge

We show here how the stratified sampling-based theory of statistical inference is easy to

extend in several ways. In particular, thus far, the observed treatment variable T has been

assumed (here and the matching literature generally) to equal the true treatment actually

applied, T ∗, so that T ∗ = T . In most applications, this assumption is implausible and so

we now let these two variables diverge. To do this, we offer definitions, assumptions for

identification, and, when T is continuous, assumptions for estimation.

B.1 Definitions

Consider the following three cases:

i) Versions of treatments: Observing treatment variable T = tj implies that the unob-

served true treatment T ∗ = t∗ belongs to a known set Uj . For example, if treatment

group members are assigned to receive a medicine, say T ∗ = t∗1, we know they take

the medicine but, unbeknownst to the researcher, they take the medicine at different

times of day, or with different foods, or in slightly different amounts, etc., within

the constraints defined by set U1. That is, we assume that all possible variations of

the treatment belong to a set U1. In this case, if the prescribed assignment to the

treatment was T ∗ = t∗j but actually t∗ ∈ Uj was the true treatment received, then

T = tj is observed, T ∗ and its realization t∗ are unobserved, Y (T ) is a random

variable (with variation depending on T ∗), and its realization Y (t∗) is observed.

ii) Discretization: In this situation, T ∗ is an observed (continuous or discrete) treat-

ment, which the investigator chooses to discretize for matching as T . We set T = tj

if T ∗ ∈ Uj , with Uj a prescribed (nonrandom) set. In this framework, T = tj and

T ∗i = t∗ ∈ Uj are observed; Y (T ) is an observed random variable (with variation

depending on the known T ∗), and Y (t∗) is an observed point.
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iii) Discretization with error: Given the unobserved true treatment level T ∗, we observe

T̄ ∗ = T ∗+ ε, where ε is unobserved error. Then, for the purpose of matching (again

based on some substantive criteria so matches can be found), the observed value

of T = tj corresponds to a discretized version of T̄ ∗, i.e T = tj if T̄ ∗ belongs to

the interval Uj . As a result, T = tj is observed, T ∗ and ε are unobserved, Y (T )

is an observed random variable (with variation depending on the observed T̄ ∗) and

Y (T ∗) is an unobserved point.

The above cases correspond to an analysis based a discretized version of T ∗ which we de-

note by T . The distinguishing feature of these cases is that the discretization is controlled

by unobserved features of the data generation process in case i), the investigator in case

ii), and both in case iii). The discretization of T ∗ (in case ii) and T̄ ∗ (in case iii) may be

temporary for the purpose of matching and can be reversed when a modeling step follows

matching.

When T and T ∗ diverge, we redefine the treatment effect as averaging over the vari-

ation (observed for ii and unobserved for i and iii) in Y (T ∗) for each observed treatment

level so that analyzing a discretized version of the treatment variable rules out the prob-

lem of uncertainty about the true value of the treatment. That is, instead of comparing two

treatment levels t1 and t2, we compare the average effect between two sets of unobserved

true treatment sets U1 and U2. Thus, for two chosen observed levels, T = t1 and T = t2,

the corresponding true treatment levels are T ∗ = t∗ ∈ U1 and T ∗ = t∗ ∈ U2, respectively.

Then, the redefined treatment effect is

TEi = E[Yi(t
∗) | t∗ ∈ U1]− E[Yi(t

∗) | t∗ ∈ U2] = E[Yi(Ti = t1)]− E[Yi(Ti = t2)]

with the averages SATT, FSATT, and others defined as in Section 2.3.

B.2 Assumptions

We keep the usual SUTVA assumption A1 but extend the framework of the previous

sections to where the true treatment level T ∗ may diverge from the observed treatment

level T . In what follows, we denote this mechanism as a map ϕ of the form t = ϕ(t∗)

which includes case i), ii) and iii) above.
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We now introduce one additional assumption which ensures that different treatment

levels remain distinct:

Assumption A4 [Distinct Treatments]:: Partition T into disjoints sets, Uj , j = 1, . . ., and

define ϕ as a map from T ∗ to T be such that ϕ(t′) 6= ϕ(t′′) for t′ ∈ Uj and t′′ ∈ Uk, j 6= k.

Assumption A4 is enough to ensure the identifiability of the true treatment effect despite

the divergence of T and T ∗; it can usually be made more plausible in practice by choosing

treatment levels that define the causal effect farther apart. A4 also says that discretizing

the true treatment T ∗ into the observed value T does not affect the distribution of the

potential outcomes; that is, if T = 1 = ϕ(T ∗ = 2), the relevant potential outcome (which

is observed if T = 1) is based on the (true) treatment actually applied, Y (T ∗ = 2).

Assumption A4 can also be replaced with instrumental variables and other assumptions

where the divergence between observed and true treatment levels is conceptualized as

noncompliance (e.g., Angrist, Imbens, and Rubin, 1996; Imai, King, and Nall, 2009), or

different types of constancy assumptions (VanderWeele and Hernan, 2012).

To complete the setup, we make Assumption A2 compliant with Assumption A4. Let

DU(z) be an indicator variable of the set U of T such that DU(z) = 1 if z ∈ U and

DU(z) = 0 otherwise. Then we replace Assumption A2 with A2’, which we refer to as

“double set-wide” because of the sets for the treatment and covariates:

Assumption A2’ [Double Set-wide Weak Unconfoundedness]: Assignment to the treat-

ment T ∗ is weakly unconfounded, given pre-treatment covariates in set A ∈ Π(X ), if

DU(t∗)⊥Y (t∗)|A, for all t∗ ∈ U and each U ⊂ T and A ∈ Π(X ).

A2’ is again an extension of the notion of weak unconfoundedness suggested by

Rosenbaum and Rubin, (1983).

B.3 Identification

Under coarsening of a continuous treatment, Assumptions A1, A2’, A3 and A4 allow for

identification and estimation of the treatment effect. For each A ∈ Π(X ) and t∗ ∈ Ui, we
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have

E{Y (T ∗)|A} A2′
= E{Y (T ∗)|DUi

(T ∗) = 1, A} = E{Y |DUi
(T ∗) = 1, A}

= E{Y |T ∗ ∈ Ui, A}
A4
= E{Y |T = ti, A} = E{Y (ti)|A}

Hence, the average casual effect for t∗ ∈ U1 versus t∗ ∈ U2, within set A, is

E{Y (t∗1)− Y (t∗2)|A} = E{Y (t1)|A} − E{Y (t2)|A}

Then, under Assumption A3, we average over all strata as in (2), which enables us to

compute the average treatment effect even when conditioning on an observed treatment

assignment that differs from the true treatment.

B.4 Assumptions for Estimation when T is Continuous

In case iii) where the observation is continuous, a meaningful quantity of interest is

E{Y (t∗1) − Y (t∗2)}, given the comparison of two chosen levels of the treatment t∗1 and

t∗2. After matching, E{Y (t)} is modeled and used to estimate E{Y (T ∗)}. Our goal here

is to evaluate the discrepancy E{Y (t1) − Y (t2)} − E{Y (t∗1) − Y (t∗2)}, which of course

we want to be zero. We begin with an assumption on the type of measurement error, u:

Assumption A5 [Berkson’s type measurement error]: Let T = T ∗ + u, with E(u) = 0

and u independent of the observed treatment status T and X .

(We name Assumption A5 in honor of Berkson, (1950), although we have added the con-

dition, for our more general context, of independence with respect to X ; see also Hyslop

and Imbens 2001.) We now offer three theorems that prove, under different conditions, the

validity of using T for estimation in place of T ∗. We begin with the simplest by assuming

that Y (t) is linear in t, although it may have any relationship with X .

Theorem 2. Under Assumptions A1, A2’, A3, A4, and A5, when Y (t) is linear in t, and

any function of X is independent of t, E{Y (T )} = E{Y (T ∗)}.

Theorem 2 enables us to work directly with the observed treatment T becauseE{Y (T )} =

E{Y (T ∗)}. With Assumption A5, we can write E{Y (T ∗)|A} = E{Y (T )|A} by a par-

allel argument. Therefore, Assumptions A1, A2’, A3, A4, and A5 allow for valid causal
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estimation even in the presence of approximate matching and a divergence between the

observed and true treatment. The average causal effect for t∗1 versus t∗2 when t1 ∈ U1 and

t2 ∈ U2 is then

E{Y (t∗1)− Y (t∗2)|A} = E{Y (t1)− Y (t2)|A}

Linearity in t, which is part of the basis of the assumption’s reliance on the difference

in means estimator, is not so restrictive because the Theorem 2 does not constrain the

functional relationship with X . Nevertheless, we can generalize this in two ways. First,

consider a polynomial relationship:

Theorem 3. Under Assumptions A1, A2’, A3, A4 and A5, when Y (t) is a polynomial

function of t of order p, it follows that

E{Y (T )} − E{Y (T ∗)} =

p∑
k=1

ak

k−1∑
i=0

(
k

i

)
E{T i}E{(−u)k−i}.

If, in addition, we assume a structure for the error u such that the moments of u are

known (e.g., u ∼ N(0, 1) or the truncated Gaussian law to satisfy Assumption A4), then

the moments of T can be estimated. With estimators of a0, a1, . . . , ap, we can estimate

and correct for the bias term. For example, if p = 2 and u ∼ N(0, 1) then the bias has the

simple form a2(2E{u2}+ 2E{T}E{u}) = 2a2. So one estimates a generalized additive

model for E{Y (T )} = a0 + a1T + a2T
2 + h(X) (with h(X) any function of X) and

adjust the result by −2â2. This makes valid estimation possible under this less restrictive

polynomial process, once one assumes Assumptions A1, A2’, A3, A4, and A5.

Our final generalization works under a special type of measurement error:

Assumption A6 [Stochastically ordered measurement error]: Let T = T ∗ + u, with T ∗ a

non-negative random variable and u a non-negative random variable independent of the

observed treatment status T and X .

Then, we have our final theorem justifying how estimation can proceed:

Theorem 4. Let Y be differentiable with respect to t. Then given Assumptions A1, A2’,

A3, A4 and A6,

E{Y (T )} − E{Y (T ∗)} =

∫ ∞
0

Y ′(z)(FT ∗(z)− FT (z))dz
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with and FT and FT ∗ the distribution functions of T and T ∗ respectively.

Theorem 4 allows one to estimates the bias due to the measurement error. If the

distribution functions of u (or T ) and T ∗ are known, this bias can be evaluated analytically

or via Monte Carlo simulation. In Assumption A6, the measurement error cannot be zero

mean and T ∗ is nonnegative. The measurement error u is still independent of T and,

even though T is systematically larger than T ∗, it is not deterministic. Note that if u

is a negative random variable, a similar result apply with a change of sign in the above

expression. Thus, Assumptions A1, A2’, A3, A4, A5, and A6 allow for valid causal

estimation if we can adjust for the bias, as in Theorem 3.
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