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To the Editor:

Isocitrate dehydrogenase (IDH1/2) genes encode for ubi-
quitinously expressed enzymes that catalyze a redox reaction
that converts isocitrate to α-ketoglutarate while reducing
NADP to NADPH and liberating CO2 [1]. IDH1 exerts his
function in the cytoplasm and peroxisomes whilst IDH2 is
localized in the mitochondrial matrix [1]. When mutated, the
IDH1 and IDH2 enzymes acquire a neomorphic activity
leading to the conversion of α-ketoglutarate to D-2-
hydroxyglutarate [2–4]. The latter compound acts as an
oncometabolite by inhibiting the α-ketoglutarate-dependent
enzymes that regulates epigenetic modeling, collagen
synthesis and cell signaling [1]. IDH1 and IDH2 mutations
are mutually exclusive with TET2 mutations that are known
to promote leukemia with a similar mechanism [5].

IDH1 gene mutations have been detected in 6.6–7.6% [6, 7]
of AML patients, most frequently carrying a normal karyotype,
and their presence has not been associated with prognostic
relevance. They are heterozygous missense mutations confined
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to a single arginine residue, R132, in the enzyme active site
[1]. Five R132 mutations leading to different amino acid
exchanges have been described [6, 7]: p.R132H, p.R132C, p.
R132G, p.R132S, and p.R132L, with R132H being the most
frequent [7]. As a whole group, the IDH1-R132 mutations are
more frequent in cases carrying NPM1mutations [6, 7] but it is
yet unknown how the amino acid substitution of arginine at
position 132 correlates with the mutational status of NPM1 and
other mutations in AML. Here, combining molecular analyses
and immunohistochemistry we demonstrate that the R132H
and R132C substitutions show a different distribution pattern
among AML genotypes.

We first investigated 140 AML patients with normal cyto-
genetics enrolled in Northern Italy Leukemia Group (NILG)
multicenter clinical trial (NCT00495287), for which both
molecular and immunohistochemical data were available
(Supplementary Information). In all 140 patients, the results of
next generation sequencing (NGS) for IDH1 and NPM1
mutations were blindly compared with those of immunohis-
tochemistry on bone marrow (BM) biopsies using monoclonal
antibodies against IDH1-R132H and NPM1, respectively. The
antibody against the IDH1-R132H mutant was previously
produced by Capper et al. [8] and extensively investigated in
various kind of tumors. The antibody directed against the
nucleophosmin (NPM1) [9] was generated in BF laboratory.
Cytoplasmic nucleophosmin-1 expression was regarded as
predictive of NPM1 mutations [9, 10] (Supplementary Infor-
mation). For all studies described below, written informed
consent to examine leukemic samples was obtained in accor-
dance with the Declaration of Helsinki and approval was
obtained from Local Ethic Committee.

Molecular analyses revealed NPM1 mutations in 71/140
(51%) cases. These findings were fully confirmed by immu-
nohistochemistry that showed cytoplasmic NPM1 (predictive
of NPM1mutations) (Fig. 1a, c, e) in the same 71 cases. In the
remaining 69 cases, NPM1 expression was nucleus-restricted,
as expected in cases with NPM1 wild-type status [9].

Molecular analyses revealed IDH1-R132H mutations in 10/
140 (7%) cases. Notably, these 10 cases were all NPM1-
mutated and showed cytoplasmic NPM1 at immunohis-
tochemistry (10/71:14%). The same 10 cases, revealed R132H
mutant expression at cytoplasmic level (Fig. 1b, d, f), as
expected for the cytosolic function of the enzyme [1]. At
diagnosis, the percentage of IDH1-R132H-positive leukemic
cells and with aberrant cytoplasmic NPM1 were comparable in
6/10 cases (representative examples are shown in Fig. 1a, b),
whilst in 4/10 cases the IDH1-R132H-positive leukemic cells
accounted for only a fraction of them, ranging between 3% and
70%, strongly suggesting that they represented a subclone. A
representative example showing about 5–10% of IDH1-132H-
positive leukemic cells in shown in Fig. 1d.

Extended molecular analysis of the 140 cases also detec-
ted IDH1 mutations other than p.R132H in 8/140 (6%) cases.

In particular: p.R132C in 3/140 cases (2%; 2 NPM1-mutated,
1 NPM1-wt), p.R132G in 2/140 cases (1%; both NPM1-
mutated), and p.R132S in 3/140 cases (2%;
all NPM1-mutated). Notably, all these eight cases were
negative with the mAb specific for IDH1-R132H (Fig. 1g, h).

To further validate the above findings and extend the
correlation of IDH1-R132 changes to other mutations, we
analyzed at Munich Leukemia Laboratory another inde-
pendent cohort of IDH1-mutated AML by comprehensive
gene sequencing. Our previously described AML cohort
[11] comprised 106 IDH1-mutated de novo AML patients,
most often showing IDH1-R132H (n= 44/106; 41%) and
R132C (39/106; 37%). In this study, we investigated all
cases by NGS and gene scan targeting IDH1 and NPM1
beside 25 other genes (Supplemental Information). 62%
(66/106) cases of IDH1-mutated patients showed also a
NPM1 mutation, 48% a DNMT3A mutation, 23% a FLT3-
ITD, 16% a NRAS mutation, and 12% a SRSF2 mutation
(Fig. 2a; Supplementary Table 1). All other mutations
occurred in <10% of cases. Therefore, we could confirm the
high association of IDH1-R132H with NPM1 mutations in
this cohort. In fact, 39/44 (89%) IDH1-R132H patients
showed a NPM1 mutation, while in only 44% (27/62) of the
other IDH1-R132 mutated patients a NPM1 mutation
occurred (p < 0.001) (Fig. 2a; Supplementary Table 1).

Analysis of further gene mutations and their associations
showed that IDH1-R132H was mutually exclusive for
RUNX1 (0/44; 0%; p= 0.001), SRSF2 (3/44; 7%; p= 0.104)
and ASXL1 (1/44; 2%; p= 0.02 3) and were less frequently
mutated compared to IDH1-R132C mutated patients (23%,
21%, and 18%, respectively) (Fig. 2a, supplementary
Table 1). These data resulted, therefore, in two different
mutation patterns, differentiating IDH1-R132H and R132C
mutated AML (Fig. 2b). While R132C shows a more s-AML
like genetic, R132H shows a typical de novo AML pattern
[12]. The third group of IDH1-mutated patients (other than
R132H/C) seemed to be a mixture of both patterns (Fig. 2b).
Addressing the prognostic impact of these IDH1-R132 var-
iants showed a slightly worse prognostic impact of IDH1-
R132C compared to IDH1-R132H-mutated patients (overall
survival: 19.9 versus 24.9 months; Supplementary Figure 1).

Different co-mutation patterns for hotspots within genes
has been previously described under various circumstances
[13]. As an example, the NPM1 mutation preferentially
associates with NRAS-G12/13 but not with NRAS-Q61 [13].
These findings strongly suggest that the functional con-
sequences of hotspot mutations within genes may not be
equivalent. At present, no compound NPM1-mutated/IDH1-
mutated mouse model has been described.

Is there any utility to have an anti-IDH1-R132-specific
antibody in the NGS era? Although, molecular analyses
remain the gold standard for the identification of IDH1
mutations, immunohistochemistry may be a useful adjunct
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Fig. 1 a Massive infiltration of BM by NPM1-mutated AML cells
showing the expected nuclear plus aberrant cytoplasmic positivity for
nucleophosmin-1 (×400). b The same case as (a), showing a com-
parable number of leukemic cells expressing the IDH1-R132H mutant;
positivity is mostly restricted to the cytoplasm of blast cells (×400). c
Marked infiltration of BM by NPM1-mutated AML cells showing the
expected nuclear plus aberrant cytoplasmic positivity for
nucleophosmin-1. The rare elements with nucleus-restricted positivity
for NPM1 represent residual normal hematopoietic cells (×400). d The
same case as (c), showing that leukemic cells expressing the IDH1-
R132H mutant represent only a small subclone of the total population
of NPM1-mutated cells (×400). eMarked infiltration of BM by NPM1-
mutated AML cells showing the expected nuclear plus aberrant
cytoplasmic positivity for nucleophosmin-1 (×400). The arrow points

to a positive megakaryocyte. Elements with nucleus-restricted posi-
tivity for NPM1 represent normal residual hematopoietic cells (×400).
f The same case as (c), showing that the percentage of leukemic cells
expressing the IDH1-R132H is slightly inferior to that of NPM1
cytoplasmic-positive cells. As in (e), the IDH1-R132H mutant is
present both in mononuclear blast cells and in a megakaryocyte
(arrow). The IDH1-R132H negative cells represent normal residual
hematopoietic cells (×400). g Massive bone marrow infiltration by
leukemic cells with nucleus-restricted positivity for nucleophosmin-1
(predictive of absence of NPM1 mutations, confirmed molecularly)
(×400). h Specificity of the antibody against IDH1-R132H is
demonstrated by the negativity of leukemic cells molecularly carrying
the IDH1-R132C mutation (×400). (a–h) Dako REAL Detection
System Alkaline Phosphatase/RED rabbit/mouse
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to the above techniques, particularly in hematological cen-
ters that still use BM biopsies. Under these circumstances,
the antibody could be used both at diagnosis and for
monitoring of AML after chemotherapy or targeted therapy
with IDH1 inhibitors [14]. The antibody would also allow
to analyze the genetic lesion at protein level in the tissues
and provide information related to the topographical dis-
tribution (nearby trabeculae or vessels) of leukemic cells.
Moreover, the use of the antibody may be particularly
important in cases of “punctio sicca” or myeloid sarcoma,
especially when scarce material is available for molecular
analyses (e.g. punch biopsies of the skin).
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Fig. 2 a Molecular and cytogenetic characterization of IDH1-mutated
patients. Illustration of all 106 samples, each column represents one
patient. All 25 additionally analyzed genes as well as karyotype
information are given for each patient. Patients are grouped by IDH1
R132C, R132H, and R132 other. Light gray: wild type, red: mutated,
orange: variant of uncertain significance, dark blue: aberrant

karyotype, light blue: normal karyotype, white: no data available. The
number of additional mutations per patient is illustrated as bar chart
above the graph. The mutation frequencies of single genes are given as
bar chart at the right. b Spider plot illustrating the mutation frequencies
(in %) of ASXL1, NPM1, RUNX1, and SRSF2 mutations for the single
groups of IDH1 R132C, R132H, and R132 other
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To the Editor:

Diffuse large B-cell lymphoma (DLBCL) is a hetero-
geneous disease. Patients carrying the double expression of
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