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A Statistical Inference Framework for
Understanding Music-Related Brain Activity

Stavros Ntalampiras and Ilyas Potamitis

Abstract—Following the success in Music Information Retrieval
(MIR), research is now steering towards understanding the
relationship existing between brain activity and the music stimuli
causing it. To this end, a new MIR topic has emerged, namely
Music Imagery Information Retrieval, with its main scope being
to bridge the gap existing between music stimuli and its respective
brain activity. In this paper, the encephalographic modality was
chosen to capture brain activity as it is more widely available
since of-the-shelf devices recording such responses are already
affordable unlike more expensive brain imaging techniques. After
defining three tasks assessing different aspects of the specific
problem (stimuli identification, group and meter classification),
we present a common method to address them, which explores
the temporal evolution of the acquired signals. In more detail, we
rely on the parameters of linear time-invariant models extracted
out of electroencephalographic responses to heterogeneous music
stimuli. Subsequently, the probability density function of such
parameters is estimated by hidden Markov models taking into
account their succession in time. We report encouraging classifica-
tion rates in the above-mentioned tasks suggesting the existence
of an underlying relationship between music stimuli and their
electroencephalographic responses.

Keywords—Music information retrieval; music imagery informa-
tion retrieval; electroencephalography; music signal processing

I. INTRODUCTION

Even though the field of Music Information Retrieval (MIR)
is relatively new, it has attracted the interest of a plethora
of researchers occupied in heterogeneous disciplines ranging
from musicology to computer science and signal processing.
MIR research addresses various applications based on process-
ing musical information, such as music genre recognition [[1]],
[2], music emotion prediction [3], [4], automatic transcription
and instrument analysis [5]], etc. Interestingly, music emotion
recognition is gaining high popularity as shown by a recent
article in BBC news advertising the potential discovery of the
so-called ‘saddest’ song ever [0].

Since the literature already includes mature solutions to
the above-mentioned tasks, MIR is expanding towards the ex-
ploitation of signals representing brain activity while listening
or imagining music pieces. This sub-area of MIR is called
Music Imagery Information Retrieval (MIIR) and has only
recently emerged [[7]. It aims to support existing MIR solutions
in applications such as query by singing, humming, tapping,
or beat-boxing, to name but a few, with the ultimate goal
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being complete reconstruction of the music stimuli based on
its respective brain activity, similarly to what has been recently
proposed in the visual stimuli case [S], [9].

This work investigates classification of musical content via
the respective EEG responses. During the last decades, such a
line of research has gained popularity giving birth to a series of
interesting approaches used to study brain responses to music
[10]-[12]]. However, there is still a great need for collaboration
between MIR and neuroscience researchers towards construct-
ing a systematic framework able to bridge the gap existing
between musical signals and the way these are encoded and
finally understood by the human brain.

In this context, Brain-Computer Interfaces (BCls) could
benefit from MIIR as they could incorporate capabilities that
go well beyond music composing and playlist creation (and
sometimes automatics adaptation based on the user prefer-
ences) offered by existing BCIs [[13]—[16]. MIIR is based on
the assumption that different music stimuli activate the brain
in a different way, while the recording equipment is capable
of capturing such differences. Then, in principle, one could
use the obtained recordings to derive a data-driven transfer
function transforming the brain activity to music stimuli and
vice-versa. However, this process has to face several obstacles,
such as the limitations of the recording equipment, interference
of unrelated processes carried out by the brain, etc. Overall,
MIIR research paves the way for observing, capturing, and
potentially understanding and modeling the way the human
brain responds, analyzes, and encodes music stimuli.

A fundamental step of MIIR research is reported in [17],
where an open-access dataset in support of MIIR research was
developed. In brief, the collected data are Electroencephalog-
raphy (EEG) recordings taken during music perception (more
details are given in Section [V-A). The follow-up work [7]
describes a systematic approach including a classification
scheme for 3 vital MIIR tasks. It is based on a linear support
vector machine classifier fed on the output of the pre-trained
encoder pipeline. This article builds on these findings and
investigates the inclusion of the temporal dimension in the
modeling algorithm. Motivated by the possibilities offered by
neuroimaging methods for MIR purposes [[10], we aim at a
framework able to make inferences regarding the structure
and content of a musical signal via processing the respective
EEG responses. More in detail, we exploit the parameters of
linear time-invariant (LTI) models capturing the evolution of
recorded EEG responses. Building on the multivariate Gaus-
sian distribution of such parameters [|18]], we propose to model
the LTI parameters based on hidden Markov models (HMMs)
with each state being characterized by Gaussian mixtures. We
demonstrate how such a framework can be used to model
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music-related brain activity and address three classification
tasks as defined in [7]] able to assess thoroughly the relationship
existing between heterogeneous music stimuli and their EEG
responses. Lastly, we report encouraging classification rates
highlighting the relevance of the temporal dimension.

The rest of this work is organized as follows: Section
formulates the problems designed to evaluate various aspects
of the relationship between the music stimuli and the corre-
sponding EEG responses. Section describes the proposed
framework including the feature extraction and pattern recog-
nition modules. Moving on, section [V] provides a thorough
analysis of the dataset, the parameterization of the proposed
method, the obtained results and how they compare to the state
of the art. Finally, in section we draw our conclusions and
outline our future research goals.

II. PROBLEM FORMULATION

Let us denote the music signal as m? and the associated

encephalographic response as e! . where ¢ is the time in-
stant, i the subject exhibiting the specific response, and c¢
the encephalographic channel. In this context, there are three
problems of interest, each one designed to reveal different
aspects of the underlying relationship between m’ and e’ in a
user-independent setting [7]. These are the following:

o stimuli-specific classification,

e group classification, i.e. songs recorded with lyrics, songs
recorded without lyrics, and instrumental pieces, and

e meter classification, i.e. 3/4 vs. 4/4 meter.

Towards assessing the relationship between musical patterns
and their encephalographic responses, this work approaches
the three above-mentioned classification problems. The overall
aim is to provide a common solution with the lowest possible
amount of misclassifications.

III. THE PROPOSED SOLUTION FOR MUSIC-RELATED
BRAIN ACTIVITY ANALYSIS

This section analyses the proposed framework able to pro-
cess the EEG responses and address the classification tasks
described in section The block diagram of the propose
solution is shown in Fig. [T} Initially, the EEG responses
associated with each music signal are captured. Subsequently,
the mean of the acquired EEG responses is modeled through
an autoregressive (AR) process. The selection of the mean
statistical moment was motivated by the literature, e.g. [[19],
[20]; however other types of channel integration could be
explored. The parameters of the AR model are modeled by
hidden Markov models (HMM) addressing the characteristics
of each classification problem. Finally, class prediction is
achieved based on the maximum log-likelihood criterion. The
following subsections describe the components of the proposed
framework.

A. Autoregressive feature extraction

This section explains the method used for modeling the elec-
troenchephalographic responses to the available music signals

coming from every different class. The method is inspired by
[21] and its output forms the feature vector feeding the HMM.

Let us denote by X; : N — R the stream of data acquired
by the c-th channel of the i-th user, i.e. ! . In the following
we assume that the temporal evolution of such datastream can
be characterized by a process P which is time-invariant or
that every class of interest can be approximated by a sequence
of models even if it is time-variant (e.g. through a Markov
process operating in the parameter space).

Therefore, to construct a temporal evolution model, we
consider the general discrete-time linear Single Input Single
Output (SISO) structure:

A(2)Xi(t) = ZEX(1) + S5 (1),

where d(t) is an independent and identically distributed ran-
dom variable accounting for the noise, z is the time-shift
operator while A(z), B(z),C(z), D(z) and F(z) represent z-
transfer functions, whose parameter vectors are 6 4,05, 0¢c,0p
and Op respectively. Consequently, an element fy in the
approximating model family M (6) is fully described with
a # € RP which comprises the above parameter vectors.
Following the logic of [22], we create an ensemble of dynamic
models with various orders and select the one which best
fits the datastreams (i.e. lowest reconstruction error) while
low-order models are preferred. The model search algorithm
minimizes a robustified quadratic prediction error criterion.
The utilization of linear models ensures that the regularity
assumptions imposed by [18]], [23] are satisfied. Thus, our
framework is placed on a solid mathematical background
despite the introduced model bias ||fs — P|| suggesting that
the underlying distribution of the parameters is a multivariate
Gaussian (the bias here is seen as a time-invariant “difference”
between the predicted and the true process). However various
models are needed to describe a specific source of data, the
number and the connections of which is not known a priori. A
hidden Markov model is appropriate for dealing with this type
of bias since it can break the problem into a specific number
of states which are connected in a probabilistic way (see Fig.

)}

It should be stressed out that in the proposed brain activity
understanding framework, LTI models are employed only as
a tool explaining the temporal evolution of EEG signals. At
this stage we emphasize on avoiding high complexity even
if this process does not offer the highest possible prediction
accuracy. The parameter vectors # are modeled via HMMs
in correspondence to a specific class of music signals. The
probability density functions of their EEG responses are as-
sociated with the various classes and thus an analysis in the
parameter space can be used for music understanding via the
related classification problems (see Section [II).

Feature values extracted out of the encephalographic re-
sponses of user no. 10 are depicted in Fig. 3] We can see
that the model search process minimizing the prediction error
reveals different optimal points w.r.t the responses to the avail-
able music signals. Higher feature dimensionality demonstrates
greater model order, thus increased complexity in modeling
existing temporal dependencies.



JOURNAL OF KTgX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

HMM for
music class

Associated EEG responses 1

P

Probability [P(f/HMM})

Computation

Music signal

Y

el

HMM for

Maximum

Autoregressive

modeling

Probability

music class
n

.
o

Class=argmax[P(f[HMM)})]
Jj=1...n

Probability
Computation

P(f|HMM,)

Fig. 1. The pipeline of the proposed method. The encephalographic responses of music signals are modeled by means of HMMs able to address the classication

problems explained in Section EI
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Fig. 2. The process leading to HMM learning. The EEG responses are
windowized and modeled by autoregressive processes whose parameters 6 are
input to the Baum-Welch algorithm outputting the HMM.

B. Hidden Markov Models

Hidden Markov models constitute an extension of the dis-
crete Markov processes while the main focus is placed on real-
world problems. HMMs have been proposed in [24]], where
the observation is a probabilistic function of the state. The
resulting model includes two stochastic processes, one of
which is not observable (hidden) and can only be observed
through another set of stochastic processes which produce the
sequence of observations. In an HMM, the states are referred
to as hidden because the system we wish to model may have
underlying causes that cannot be observed.

An HMM is characterized by the following components:

e the number of states N,
e the probability density function associated with each
state modelled as a mixture of Gaussians (GMM),

P(z]f) =

K
> pip(z|0(k)), where pps are the mix-
=1

ture weights, x is a continuous-valued data vector (e.g.

measurements or features), 6 represents the k — th
component of the vector, = [>,u] ., p(z[0u)) =

- e aamm) T )
CakEN

e the state transition probability matrix A = {a;;} where
entry a;; represents the probability of moving from state j
at time ¢ to state i at time 7+ /. For example, the transition
probability of moving from state 1 to state 2 is represented
by a1s. For the case where the system may transit to any
state at a given time instant, we have a;; > 0,V%,j. In
case some transitions are not allowed, the respective a;;s
should be set to zero.

e the initial state distribution m = {7;}, where 7; corre-
sponds to the probability that the HMM starts in state i,
i.e. v :P[Sl],l < 1 < N.

C. HMM Training

Model parameters, that is, the transition probabilities, emis-
sion probabilities and the initial state probability need to be
adjusted so as to maximize the probability of the observed
sequence and adequately represent the training set. The Baum-
Welch algorithm [25] is a method that uses an iterative
approach and provides a solution to this problem. It starts with
preassigned probabilities and tries to adjust them based on the
observed sequences in the training dataset.

The HMM parameters can be initialized to predetermined
values or to a constant before applying the Baum-Welch
algorithm. As the path taken is not known, the algorithm
counts the number of times each component is used when
the observed set of elements in the training sequence is
given to the present HMM. Each iteration of the algorithm
includes two steps, the Expectation step (E Step) and the
Maximization step (M Step). The Maximization step uses the
counts of the number of times an element is seen at a state
and the number of times a transition occurs between two
states which were obtained from the Expectation step to update
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Values of the proposed features describing the enchephalographic signals. During feature extraction the LTI model search process minimizes the

prediction error which may lead to different model orders depending on the complexity of the available EEG responses. Higher dimensionality demonstrates

need for increased model order.

the transition and emission probabilities in order to maximize
the performance. The algorithm stops when the convergence
criterion is satisfied (the log-likelihood between subsequent
iterations is under a threshold) or when the maximum number
of permitted iterations is reached.

D. Log-likelihood Computation of Unknown Data

The Viterbi algorithm is used to find the most probable path
taken across the states in the HMM. The algorithm checks all
possible paths leading to a state and gives the most probable
based on dynamic programming. It keeps track of the best state
during a transition using pointers. The most probable path is
found by moving through the pointers backwards starting from
the end state to the start state. In case there are more than one
paths exhibiting the highest probability, a random selection is
made. The Viterbi Algorithm is analytically explained in [26]).

IV. THE MUSIC-RELATED BRAIN ACTIVITY PATTERN
CLASSIFICATION ALGORITHM

Towards addressing the three problems mentioned in Section
[ the training phase of the proposed methodology creates one
HMM per class while the testing one examines the probability
that the novel data sequence was produced by the created
HMMs. Finally, the system assigns the class associated with
the HMM producing the highest log-likelihood to the unknown
data. Based on the specific logic we essentially try to quantify
the statistical similarity between the unknown data and the
one available during training. The higher the similarity with
an HMM, the more probable that this data sequence belongs
to the class represented by the specific HMM.

The music-related brain activity pattern classification algo-
rithm is summarized in Algorithm [[] We assume a training
set corresponding to O; 7y 1<i<n associated with each music
class. We compute the d model coefficients over a predefined
window of the encephalographic responses of size M. They
are used to train the HMM which is to characterize the specific
class (line 1, Alg. [I). In order to identify the HMMs with the
best classification capabilities, we build a variety of HMMs
with different parameters (number of states and Gaussian
components) and we select the HMM based on the highest
recognition rate criterion. The set of the constructed HMM
represents the set of classes in a 1-1 sense.

When unknown data is processed, it is first windowized
(line 2, Alg. [T) and the model coefficients with respect to
each window are computed (line 4, Alg. [I) and inserted into
the trained HMM. The log-likelihood vector is then calculated
for window W; (line 5, Alg. [[) and its maximum element
is discovered (line 6, Alg. [T) revealing the HMM which best
“explains” W;. Finally the class represented by this HMM is
assigned to W;. The classification process is also demonstrated
in the latter part of Fig. [I]

V. EXPERIMENTAL DESIGN AND
ANALYSIS OF THE RESULTS

This section describes the dataset used to assess the pro-
posed methodology, the experimental protocol, and the ob-
tained results.

A. The dataset

A systematic attempt towards a corpus satisfying the specifi-
cations required by the current study is the OpenMIIR dataset
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1. Build one HMM per music class,
Hyp—pn = {Sh—tx> Pri—gns Afi—py» T — px } from
the vectors of parameters 6;...6; each of which
associated with a linear dynamic model applied to the
training data O; 1, i—1,...,¢ Windowized using length
M overlapping by M — 1;

2. Windowize the incoming novel data as above, which
results in windows W = W;..W;

repeat

3. j=1;

4. Compute the parameter vectors of the j — th
dynamic model 6; with respect to Wj;

5. Compute the vector of log-likelihoods
LWl...j = P(gl s 0j|Hfl---fN);

6. Compute argmax(Lyw, ) and assign the class
with the highest log-likelihood to window W;

T7.5=7+1

until (1);

Algorithm 1: The general-purpose user-independent
music-related brain activity pattern classification algorithm.

[17]. Tt includes Electroencephalography (EEG) recordings
taken during music perception and imaginatiorj| Following
the findings of the work reported in [7], where the poor
relationship between the music and EEG signals recorded in
the imagination setting, this work employs only the music
perception part. The OpenMIIR dataset was employed as
provided by [17] without any modification.

The OpenMIIR dataset includes response data of 10 subjects
who listened to 12 music fragments with duration ranging
from 7s to 16s coming from popular musical pieces. EEG
modality was deemed effective as well as useful for scientists
working in MIR since there exist of-the-shelf electronics able
to record such responses. On top of that, acquiring functional
Magnetic Resonance Imaging data is still characterized by
high cost. Interestingly, EEG responses provide high temporal
resolution, while they 1) reflect the way music is perceived
by the subjects, and 2) enable finding and revealing potential
temporal correlations existing between music signals and their
EEG responses including rhythmic characteristics.

The music stimuli come from various genres while care was
taken so that important music aspects (i.e. meter, tempo, pres-
ence/absence of lyrics) were covered allowing representation
of heterogeneous music retrieval and classification problems.

The characteristics of the OpenMIIR dataset contents are
tabulated in Table There exist three main groups, i.e.
Songs recorded with lyrics, Songs recorded without lyrics,
and Instrumental pieces, each one composed of 4 tracks. The
average length and tempo are 10.4s and 176BPM respectively.
Interestingly, the meter values are perfectly balanced across
the entire dataset, which is useful while setting up a classifier
addressing the specific task.

In more detail, the dataset includes:

e Music stimuli with lyrics, i.e. a singing voice,

IThe dataset is publicly available at https://openmiir.github.io

e Music stimuli including only melody, i.e. without the
singing voice. These are different recordings of the songs
used in the previous point without a singing voice, and

e Music stimuli of instrumental pieces, i.e. no lyrics are
present nor the possibility of singing along.

It is important to note that all recordings are of similar length
(see Table [[) and include complete musical phrases starting
from the beginning of the piece, while they are normalized in
volume. Moreover, recordings coming from the same music
stimuli with and without lyrics are matched in the tempo
dimension.

The OpenMIIR dataset includes EEG recordings from 10
participants (3 male, 7 female), i.e. ¢ € {1,10} (see Section
). Their ages range from 19 to 36 years without any history of
hearing impairment and/or brain injury. The recordings were
taken by means of a BioSemi Active-Two system with 64
EEG channels sampled at 512Hz, i.e. ¢ € {1,64} (see Section
M). Eye movements are captured via Horizontal and vertical
Electrooculography (EOG).

The raw EEG and EOG recordings were preprocessed as per
[17] using the MNE-python toolbox [27] eliminating potential
inaccurate measurements. Further anomalies were removed
by manual visual inspection [[7]. Subsequently, the recordings
were passed through a bandpass filter keeping the frequencies
between 0.5 and 30Hz and canceling slowly occurring drifts
exhibited by the EEG response. On top of that, independent
component analysis [28] achieved the removal of artifacts
caused by eye blinks. Having the artifacts removed, all 64
EEG channels were reconstructed to the same dimensionality.
The last preprocessing stage includes signal normalization to
zero mean and [-1, 1] range.

For more information on the dataset, the interested reader
is referred to [17].

B. Parameterization of the proposed solution

The HMMs have been configured in a fully connected
topology (ergodic HMM), which means that the algorithm
permits every possible transition across states. This approach
was followed since EEG data do not always follow a consistent
pattern which may indicate a specific state ordering, e.g. a left-
right topology (where cyclic transitions in the automaton are
not allowed). Lastly, the distribution of each state is modeled
by a GMM with a diagonal covariance matrix.

We employed the Torch machine learning framework [29]
during both learning and validation phases. The maximum
number of k-means iterations for cluster initialization was
set to 50 while the Baum-Welch algorithm used to estimate
the transition matrix was bounded to 100 iterations with a
threshold of 0.001 between subsequent iterations. The number
of explored states ranges from 3 to 7 while the number of
Gaussian components used to build each GMM comes from
the {2, 4, 8, 16, 32, 64, 128, 256 and 512} set. Parameter
optimization is performed on a validation set which is part of
the training one. Standard normalization techniques, i.e. mean
removal and variance scaling were applied. Finally, the win-
dow length M was 100, a value which provided satisfactory
reconstruction error during the preliminary experimental phase.
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TABLE 1. CHARACTERISTICS OF THE CONTENTS OF THE OPENMIIR DATASET. THE AVERAGE LENGTH AND TEMPO ARE 10.4S AND 176 BPM
RESPECTIVELY. FOR MORE INFORMATION ON THE DATASET AND THE COMPLETE TABLE, THE INTERESTED READER IS REFERRED TO [17].
[ Group [ Piece (id) [ Meter [ Length [ Temp (BPM) |

Chim Chim Cheree (1) 3/4 13.3s 212

Songs recorded with Tyrics Take Me Out to the Ballgame (2) 3/4 7.7s 189
” ) Jingle Bells, lyrics (3) 4/4 9.7s 200
Mary Had a Little Lamb (4) 4/4 11.6s 160

Chim Chim Cheree (11) 3/4 13.5s 212

. . . Take Me Out to the Ballgame (12) 3/4 7.7s 189
Songs recorded without lyrics Tingle Bells (13) v 95 200
Mary Had a Little Lamb (14) 4/4 12.2s 160

Emperor Waltz (21) 3/4 8.3s 178

Instrumental pieces Hedwigs Theme, Harry Potter (22) 3/4 16s 166

: i Imperial March, Star Wars Theme (23) 474 9.2s 104

Eine Kleine Nachtmusik (24) 4/4 6.9s 140

g 1Music stimulus 12 - Take Me Out To The Ballgame - no lyrics
2 ‘ ‘ ‘ ‘ ‘ ‘
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Fig. 4. An illustrative example of the operation of the proposed method on the
12-class stimuli identification problem. Starting from the audio waveform, the
respective EEG responses are obtained. The AR model providing the lowest
reconstruction error is identified and its parameters are modeled by means of
an HMM. Finally, the class of the novel EEG responses is discovered based
on the maximum log-likelihood criterion (in this example, the winning class
with ID 1 is depicted in red).

Moving to autoregressive modeling, their orders are selected
by exhaustive search based on the lowest mean squared error
criterion. Early experimentations showed that search space
[1,10] is sufficient to identify clear minima in the MSE.

C. Contrasted approach
To the best of our knowledge, there is only one work

addressing the present problem as MIIR is a relatively new
scientific field. In [7], the author describes a classification

scheme based on a linear support vector machine classifier
fed on the output of the pre-trained encoder pipeline.

The present work employs a 10-fold cross-validation scheme
across subjects, i.e. training on 9 and testing on the 10th
subject. Care was taken so that each one of the 600 trials is
included in the testing set, while obtaining subject-independent
classification results.

D. Results

This subsection includes a characteristic example of the
operation of the proposed methodology, the results achieved
in the classification tasks explained in section |lI, as well as
their analysis.

Before presenting and analyzing the recognition rates
achieved by the proposed scheme, Fig. [] provides an illus-
trative example of its operation regarding the 12-class classi-
fication problem. On the top row, we can see both channels
of the acoustic signal belonging to the music stimuli no. 12
entitled Take Me Out To The Ballgame without lyrics. In
the following, we observe the mean of the respective EEG
responses. The subsequent subplots demonstrate the evolution
of AR model parameters {6i,...,0,}. Finally, during the
classification stage each class-specific HMM outputs a log-
likelihood each one demonstrating the probability that the
specific series of parameters was produced by each HMM.
Classification is achieved via the maximum log-likelihood
criterion [30], [31]]. The specific example was categorized to
class ID 1 as the corresponding HMM emitted the highest log-
likelihood.

a) Task 1: Music Stimulus Identification: Task 1 is con-
cerned with identification of each stimulus used in the current
study, i.e. it comprises a 12-class problem. Despite the limited
dataset, such a task is able to provide an indication of the
efficacy of the proposed classification methodology as well
as insights on the connection existing between each acoustic
stimuli and the respective EEG response.

The results are tabulated in two tables, i.e. Table @ includes
the average classification rates for all test folds, i.e. for data
coming from each subject and Table demonstrates the
confusion matrix averaged across all test folds/subjects.

In Table[[] we can see that the best rate (50.8%) is achieved
for subject 2 and the worst (38.3%) for subject 4, while the
overall average rate is 42.7%. This table essentially shows how
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TABLE II. THE CLASSIFICATION RATE (IN %) FOR EACH FOLD, WHILE DATA COMING FROM EACH USER COMPRISE PART OF THE TESTING SET.
[ Problem | Subject 1 [ Subject 2 [ Subject 3 | Subject 4 | Subject 5 | Subject 6 | Subject 7 [ Subject 8 [ Subject 9 | Subject 10 [ Average £o) |
Task 1 45.8 50.8 40.3 38.3 40.2 40.8 394 41.9 44.7 45.2 42.7+3.8
Task 2 49 48.7 49.6 49 49 50.2 49.3 50.8 50.2 50.2 49.6+0.7
Task 3 62.4 71.5 66.7 69.2 69.5 68.8 72.8 68.7 70 67.4 68.742.8
TABLE III. THE CONFUSION MATRIX OF TASK 1. THE HIGHEST CLASSIFICATION RATES PER CLASS ARE EMBOLDENED. THE AVERAGE
CLASSIFICATION RATE IS 42.7%. HMMS COMPOSED OF 5 STATES AND 64 GAUSSIAN FUNCTIONS PROVIDED THE HIGHEST RECOGNITION RATES.
Responded | ;| 5 | 3 4 | 5] 6 7 8| 9| 10| ] 2

Presented

Chim Chim Cheree (lyrics) 1 341 | 39 6.2 1.8 2 6 4 6.1 5.9 18.3 2 9.7

Take Me Out to the Ball game (lyrics) 2 2 44 2 1.5 2.5 6.1 3.9 2 10.3 5.7 6.2 13.8

Jingle Bells (lyrics) 3 2 10 40.2 1.8 2 9.5 2 6 6.5 7.7 - 12.3

Mary Had a Little Lamb (lyrics) 4 - 2 2 43.7 6.4 6.1 1.5 2 6 124 - 17.6

Chim Chim Cheree 5 2 12 4 2 24 10 2.5 7.5 4.1 14 1.9 16

Take Me Out to the Ball game 6 4 2 4 - 2 52.5 55 4.9 4 9.1 - 12

Jingle Bells 7 - - 6 - - 17.2 | 49.5 4 3.7 4 2 13.6

Mary Had a Little Lamb 8 - 8 2 4 2 8 2 46 2.1 11.9 2.9 11.1

Emperor Waltz 9 2 5.9 2.1 - - 8.6 10 54 | 50.8 7.4 5.6 2

Hedwigs Theme (Harry Potter) 10 2 9.4 2.6 4 - 10.1 2 9.9 6 42 2.5 9.5

Imperial March (Star Wars Theme) 11 - 1.1 - 2 4.4 21.6 6 8.1 3.9 2 36 14

Eine Kleine Nachtmusik 12 4.1 5.9 4 4.1 39 4 7.7 8.3 2.5 35 2 49.2

well data concerning the responses of different subjects match
those of another and that is the source of variance among
the subjects. Subject-depended rates are kept in relatively high
values considering the task difficulty (limited dataset, 12-class
problem and inference on a different modality), while they
are significantly above chance. This fact is encouraging and
shows that there are common patterns in the way that music
is perceived by different subjects. The specific experiment
highlighted the importance of the temporal dimension as the
achieved classification rate is higher than the state of the art
(27.6%) where a solution which does explicitly look for

temporal patterns is employed.

Moving to the confusion matrix (Table [I), we see that
the best rate (52.5%) is achieved for Take Me Out to the
Ball game (song recorded without lyrics) and the worst one
(24%) for Chim Chim Cheree (song recorded without lyrics).
Furthermore, the main diagonal includes the highest rates for
all classes. Unlike the results reported in [7]], stimuli 1-4
are not misclassified with their corresponding tempo-matched
versions without lyrics (stimuli 11-14). This may be due to
the consideration of temporal patterns which are very evident
in these signals, especially when speech is included in the



JOURNAL OF KTgX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

TABLE IV. CLASSIFICATION RESULTS OF THE APPROACH EMPLOYING

SOLELY THE MUSIC SIGNALS.

[ Task - ID [ Classification rate (%) |
Music stimuli identification - 1 99.8+0.1
Group classification - 2 99.740.07
Meter classification - 3 99.840.04

stimuli [32]]. Moreover, it suggests that the EEG signals exhibit
differences based on the music stimuli, and more importantly,
these are captured by the proposed classification scheme indi-
cating insignificant chances of horse classifier behavior [33],
where classification might use signal characteristics unrelated
to music information. More in detail, the classification rates
demonstrate that there is indeed a consistent pattern charac-
terizing the underlying relationship between the audio stimuli
and the associated response.

In Table the average classification rates according to
group, i.e. music stimuli 1-4, 5-8 and 9-12, are 40.5%, 43%,
and 44.5% respectively. Interestingly, instrumental pieces are
generally recognized with higher accuracy than the rest show-
ing that their temporal patterns are captured by HMMs trained
on the parameters of linear time-invariant models are quite
distinctive.

An interesting complementary experiment was conducted in
[7] where 8 subjects required on average 1-3s to recognize the
individual music stimuli. Following the same line of thought, in
this work we construct automatic classification systems using
the music signals for addressing all three tasks described in
Section [[I} This series of experiments assesses the level up to
which the music signals are distinguishable by an approach
following the same line of thought w.r.t the one elaborating
on the EEG responses. In brief, the classifier is based on the
Mel-frequency cepstral coefficients along with their dynamics
(velocity and acceleration), while each probability density
function is estimated by HMMs [30]. The first half of each
song was used for training, while testing was conducted on
the remaining part of the song. Table shows the respective
classification rates. As we can see, in all tasks there are
clearly recognizable patterns as excellent recognition rates
were achieved. Ultimately, the aim of MIIR would be to
achieve similar rates while based on EEG responses to musical
stimuli. Nonetheless, towards understanding the feasibility of
such a logic, it is crucial to augment the current dataset.
Music-only classification is successful as it is applied directly
on the signal of interest. However, when trying to perform
the same classification task via data coming from a different
modality, larger data quantity is needed to capture and reveal
the relationships existing between the two different modalities.
The specific task could benefit from the transfer learning
technology [34]], a direction we aim to follow in our future
work.

b) Task 2: Group classification: The second classifica-
tion task concerns the following 3 classes: a) music stimuli
including lyrics, b) music stimuli excluding lyrics, and ¢) in-
strumental pieces.

Tables [ and [V] include the classification rates achieved
w.r.t each subject and the confusion matrix respectively. As we

TABLE V. CONFUSION MATRIX ACHIEVED BY THE PROPOSED
APPROACH AS REGARDS TO THE GROUP CLASSIFICATION TASK. THE
HIGHEST RATES ARE EMBOLDENED. THE AVERAGE CLASSIFICATION RATE
1S 49.6%. HMMS COMPOSED OF 7 STATES AND 16 GAUSSIAN FUNCTIONS
PROVIDED THE HIGHEST RECOGNITION RATES.

Responded

Presented ! 2 3

Songs recorded with lyrics 1 523 20.7 27
Songs recorded without lyrics 2 35 42.7 22.3
Instrumental pieces 3 22.8 232 54

can see the lowest rate is achieved in correspondence to data
coming from subject 2 (48.7%) and the highest one to data
coming from subject 8 (50.8%). The average rate is 49.6%
which is very close to the one achieved in [7], i.e. 48.9%, and
not the expected one after the rate achieved in the previous 12-
class problem. This may indicate that the parameters of LTI
models are relevant, but more data is needed to identify and
capture consistent temporal patterns in such a classification
task. Moreover, the problem is of increased complexity as
HMMs with more states (7 for Task 2 vs. 5 for Task 1) are
needed to model the respective probability density functions.
Nonetheless, the rate is again significantly above chance. The
highest one is achieved for the instrumental pieces (54%) and
lowest for the music stimuli without lyrics (43%).

Interestingly, the rates included in the confusion matrix
are in line with the ones presented in [7] suggesting that
the classifiers conducted similar errors. Even so, the two
approaches could be thought as complementary (a generative
and a discriminative classification scheme), thus in the future
it would be interesting to set-up a synergistic framework
benefiting from both solutions. Last but not least, the music-
only classifier performs similarly to the one described in the
first task.

c) Task 3: Meter Classification: The specific task is
concerned with classifying music stimuli in 3/4 meter v.s
those in 4/4 meter. The corresponding results are shown in
Tables [ and [VI The mean rate is 68.7% while stimuli in 4/4
is identified slightly better (0.9% difference). Similar results
are reported in [7] with the corresponding rate being 69.4%.
However, having to deal with a 2-class problem one would
expect a higher rate. This may suggest that the proposed
method alone is not adequate to identify distinctive patterns,
thus the above-mentioned synergistic framework could be a an
interesting path to follow. At the same time, augmenting the
current dataset could give useful insights towards modeling
and recognizing such classes effectively.

In this case, HMMs composed of 7 states and 16 Gaussian
functions provided the highest recognition rates. Lastly, the
classifier based on the acoustic modality reports excellent
recognition rates (see Table [TV]).

As a final remark, it is worth noting that the inferred
transition matrices w.r.t all tasks exhibit higher values across
their diagonal suggesting that such a connecting topology is
able to explain the features’ evolution. As an example, Fig.
[6] depicts the transition matrices associated with the group
classification task, where the diagonal behavior is evident.
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class 1 class 2 class 3

State
State

State State State

Fig. 6. The HMM transition matrices w.r.t the group classification task. We
see that high probabilities are associated with transitions corresponding to the
diagonal of each matrix. Such probabilities favor same-state transitions.

VI. CONCLUSIONS

This paper comprises one of the first attempts systematically
exploring the existence of connections between music stimuli
and their EEG responses, while considering the temporal
evolution of the latter. We showed that parameters of LTI
models can capture the dynamics of such signals, and when
HMMs learn their evolution in time, a successful inference
framework can be structured. Importantly, such a classifier
achieved state of the art results in three classification tasks
designed to investigate heterogeneous aspects of the underlying
relationship between music stimuli and their EEG responses.
Interestingly, the proposed solution is a comprehensible classi-
fication scheme, since its operation does not follow the black-
box logic, while one is able to ‘open’ the classifier, and
by inspecting the misclassifications, understand the reasons
leading to the specific errors. Overall, we observed that a
higher number of HMM states is needed for modeling tasks
associated with group and meter classification. This suggests
a higher complexity probably caused by organizing data based
on underlying cognitive characteristics which are harder to
capture and model. In the future, we intent to apply and
evaluate the proposed solution on the imagination part of the
dataset and compare the achieved results.

Progress in the new and exciting scientific field of MIIR is
heavily relying onto bringing together researchers from MIR
and music cognition areas. A close interdisciplinary synergy is
required to grasp and identify the relationship existing between
brain activity and the music stimuli causing it. This paper is
a primary step towards this direction and we hope that it will
encourage scientists working in the MIR domain to apply their
methods and explore the possibilities offered by this emerging
research field.
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TABLE VI. CONFUSION MATRIX ACHIEVED BY THE PROPOSED
APPROACH AS REGARDS TO THE METER CLASSIFICATION TASK. THE
HIGHEST RATES ARE EMBOLDENED. THE AVERAGE CLASSIFICATION RATE
1S 68.7%. HMMS COMPOSED OF 6 STATES AND 2 GAUSSIAN FUNCTIONS
PROVIDED THE HIGHEST RECOGNITION RATES.
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