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Abstract—In several multirobot applications in which com-
munication is limited, the mission could require the robots to
iteratively take coordinated joint decisions on how to spread
in the environment and on how to reconnect with each other
to share data and compute plans. Exploration and surveillance
are examples of these applications. In this paper, we consider
the problem of computing robots’ paths on a graph-represented
environment for restoring connections at minimum traveling cost.
We call it the Multirobot Reconnection Problem (MRP), we
show its NP-hardness and hardness of approximation on some
important classes of graphs, and we provide optimal and heuristic
algorithms to solve it in practical settings. The techniques we
propose are then exploited to derive a new efficient planning
algorithm for a relevant connectivity-constrained multirobot
planning problem addressed in the literature, the Multirobot
Informative Path Planning with Periodic Connectivity problem
(MIPP-PC).

Index Terms—Path planning for multiple mobile robot systems,
networked robots, multirobot reconnection.

I. INTRODUCTION

Communication is a central requirement for teams of au-
tonomous mobile robots operating in the real world. In many
real situations, the availability of global communication be-
tween the robots could be a far too optimistic assumption. As a
consequence, robots build a multi-hop communication network
in order to share information. This task is central in a number
of multirobot missions like, for example, information gath-
ering, search, exploration, and surveillance. Such missions,
regardless of the primary objective to achieve, can be thought
as iteratively evolving as follows: (a) all the robots establish
communication between each other (possibly in a multi-hop
fashion), (b) they agree on how to spread out in order to visit
some locations, (c) they follow the planned paths, and (d)
they reconnect to share the collected data (possibly with a base
station) and start again from (b). In the literature, it is common
to find ad hoc solutions trying to reconcile the primary mission
objectives with a particular connectivity constraint [1]-[14],
like requiring continuous or periodic connectivity throughout
the mission. However, an alternative approach, generally valid,
could prescribe to periodically perform planning according to
the following two-phase scheme. First, good paths optimizing
the primary objective are computed. Then, such paths are
augmented in order to efficiently restore global multi-hop
connectivity at the robots’ final positions (see Fig. 1).
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Fig. 1. The two-phase planning scheme considered in this work. First, the
robots focus on the optimization of a primary mission objective (blue paths).
Then, they augment the paths to re-establish global connectivity to share data
and compute new plans (orange paths). Our work aims at providing effective
algorithms for this latter multirobot reconnection phase. (TurtleBot 2 images
are taken from http://www.turtlebot.com/turtlebot2/.)
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In this paper, we propose techniques for handling the
second phase of the above planning scheme. In particular,
we aim at answering the following question: given a non-
connected deployment of robots in a known graph-represented
environment, which are the optimal robots’ paths in order to
reach global multi-hop connectivity? We deal with optimality
in terms of the minimization of the traveling cost for robots.
Specifically, the main contributions of this work are:

o a formulation of the Multirobot Reconnection Problem
(Section III) and a series of complexity results proving its
NP-hardness and hardness of approximation for important
classes of graphs (Section IV);

e a resolution approach for the general case with an
(generally inefficient) exact method and two efficient
sub-optimal algorithms, as well as an exact polynomial
algorithm for a particular, yet significant, class of envi-
ronments (Section V);

e an evaluation campaign composed of two parts: an ex-
perimental analysis of the performance of our algorithms
(Section VII) and an applicability assessment and com-
parison to a relevant use case previously studied in the
literature [14] (Section VIII).

With this work, we shed light on the importance and
challenges of optimal reconnection in multirobot scenarios. In
particular, we show the advantages of achieving cost-effective
reconnections in some specific problem settings. At the same
time, we discuss the limits of our approach in terms of
general intractability of the problem and of the consequent
suboptimality of some of the proposed efficient algorithms.

II. RELATED WORK

Reconnection constraints for teams of mobile robots re-
ceived a significant attention in the recent multirobot systems



literature. The various contributions developed around this
issue can be classified according to two different families
of approaches. The first one assumes a planning formulation
where mission objectives are jointly sought under compliance
of reconnection constraints. For example, in multirobot ex-
ploration, several works concentrate on defining robots’ local
behaviors achieving reconnection at times dictated more or less
strictly [1], [2], [4]-[7]. See [15] for a detailed survey. Other
examples can be found in surveillance and search applications
where team connectivity maintenance is considered as an
additional mission objective. For instance, in [8], authors
propose a reactive controller seeking link maintenance while
considering transmission quality. In [9], the same objective is
met for graph-represented environments also characterized by
limited transmission ranges and interferences. Authors of [10]
focus on a surveillance scenario in which a team of Unmanned
Ground Vehicles (UGVs) is required to recurrently connect
(under a limited-distance line-of-sight communication model)
at the positions selected to sense the environment, with the aim
to complete the task in the shortest possible time. Interestingly,
in [11], discrete and continuous environment representations
are combined and a problem decomposition is investigated.
Here, team connectivity is assumed to be the primary goal
and a distributed control strategy deals with the optimization
of secondary mission-related objectives.

The approaches outlined above, in which mission objectives
are jointly optimized with reconnection requirements, might,
in some cases, over-constrain robots’ movements [1], [2],
[4], [5], [7], [9]-[11] potentially resulting in reductions of
performance. Even relaxing the communication constraints,
effective trade-offs between the satisfaction of reconnection
constraints and other mission objectives might be hard to
obtain [6], [8].

These drawbacks motivate the second family of approaches,
where primary mission objectives are not subordinated to
connectivity constraints and reconnection can be dealt with
in a separated planning phase. In other words, robots first
compute a plan for the primary mission objective without con-
sidering any connectivity requirement. Second, a reconnection
strategy is exploited to regain connectivity if needed. These
approaches are less popular and formally established, although
the literature includes some solutions of this kind. In [16],
robots are divided between those pursuing a mission and those
serving as communication relays. Robots belonging to the first
group plan without considering connectivity, which is handled
by the second group of robots. These robots move to form a
connected topology with robots from the first group. In [17]
and [18], robots disconnect while exploring the environment
and subsequently reconnect by undertaking a rendezvous.
In [12], [13], a flexible method based on intermittent com-
munication is proposed. This solution allows disconnections
when the primary mission objectives are sought and guarantees
that robots will reconnect infinitely often at some points in
time. Plans satisfying this kind of intermittent connectivity
are obtained by adopting a formalization based on Linear
Temporal Logic. Robots can reconnect in subgroups, without
the need to form a fully connected network. Differently from
our work, robots are assumed to be able to communicate only

when simultaneously present at the same physical location.
Specifically-tailored solutions aside, this second family of
approaches currently lacks a general characterization of the
multirobot reconnection problem. Our work contributes to this
end by formalizing it, studying its resolution to optimality, and
devising an application-independent resolution methodology
that can be employed in realistic scenarios. We also deploy
our methods into the multirobot setting proposed in [14]. This
problem is called Multirobot Informative Path Planning with
Periodic Connectivity (MIPP-PC) and is both highly relevant
to our work, being appropriate for resolution with our methods,
and well-representative of the literature background, since
it can be tackled with both the two families of approaches
presented above. In MIPP-PC, robots plan joint paths trying
to maximize some reward function over a given discrete time
horizon T' and being subject to the requirement of regaining
global connectivity each 77 time steps (see Section VIII
for a detailed description). We show that, for large values
of T7, solutions belonging to the second family can be
conveniently applied and we exploit our methods to obtain
good mission performance. In doing this, we also relax the
common assumption of error-free communication links (see,
for example, [4], [5], [14]), providing reconnection strategies
capable of handling communication errors and uncertainties.

III. PROBLEM FORMULATION

We start by providing the formal specification of the mul-
tirobot setting we consider in this work. The environment
is modeled with a multigraph G = (V, E,C) describing its
physical and communication features. Locations are modeled
by a set of vertices 1/ that can be obtained with discretization
techniques (as, for example, those in [16], [19]). The first edge
set, F, encodes the physical topology which is assumed to be
undirected and connected. Each physical edge is associated
with a positive rational number denoting the corresponding
traveling cost, and we denote with d(u,v) € QF the minimum
cost for traveling between any two vertices u,v € V (staying
still at the same vertex has null cost). Since we assume that
our multigraph represents a physical environment, we impose
that the generalized triangle inequality holds, namely that the
cost d(u,v) associated with a physical edge (u,v) € F is
not greater than that of any other (u,v)-path computed on
E. The second set of edges, C, encodes the communication
topology, namely, the availability of a communication link
between a pair of locations. Communication links in C' can
be pre-computed by means of a link-detection mechanism
which, given u,v € V, determines whether (u,v) € C. Link-
detection mechanisms can range from conservative visibility-
based criteria [16] to more sophisticated approaches where
estimates of the signal strengths can be considered in building
a connectivity graph [20]. For now, we make the assumption
(as done in [14] and [16]) that C' is static (not changing over
time) and not affected by false positives (in Section VI we
relax this assumption). We also assume that no bandwidth
constraint is imposed on any link (u,v) € C. Throughout the
paper, we will use the following additional notation to ease
presentation: Gg = (V, F) and G¢ = (V,C).



A team of m mobile robots R = {1,...,m} moves on G
by traversing its physical edges. For the sake of simplicity,
we assume that the robots have homogeneous locomotion
capabilities, allowing us to work with a unique set of traveling
costs (generalizations can be easily defined). This means that
the traveling costs d(-,-) introduced above can be interpreted
either as distances or times under the assumption of an ideal
plan execution phase. In Section VI we will discuss situations
where, due to errors, this assumption does not hold and we will
propose a method to handle them. A configuration specifying
the location of each robot is denoted as p = (p1,pa, ..., Pm)
with p; € V. A configuration is said to be connected iff the
subgraph of G¢ induced by the occupied vertices is connected.
The rationale is that we consider the team to be connected
when any two robots can exchange data via multi-hop relays
operated by teammates over the communication links in C.
Note that, according to this definition, two or more robots are
assumed to be able to simultaneously occupy the same vertex.
Collisions are managed by exploiting a low-level collision
avoidance mechanism (as done in [14]).

Against this background, we consider a data-gathering mul-
tirobot mission that unfolds as a repeated sequence of steps
where reconnection of robots is achieved as an independent
problem solved in a dedicated planning stage. In particular,
we assume that the mission evolves as follows:

(a) robots start the mission from a connected configuration;
(b) from the current (connected) configuration robots jointly
compute:

(bl) informative paths along which data are gathered, ter-
minating in a configuration s within a pre-established
deadline;

(b2) a connected configuration p to reach starting from s
after the above deadline has expired;

(c) robots follow their path and reach s (potentially losing
connection);

(d) robots reach p, establish connection, then continue from
(b).

The above scheme may apply to a range of applications

broader than data-gathering ones. In fact, the only binding

choice we make is to separate reconnection from mission

primary objectives with Steps (bl) and (b2).

Step (d) entails a connection establishment protocol, allow-
ing each robot to be aware that the whole-team reconnection
took place successfully. Many different types of protocols can
be executed at the connected configuration p, like distributed
robot discovery or methods based on leader election as pro-
posed in [21]. The details of this protocol deeply depend on
the particular application and, as such, lie outside the scope
of this work. What is important for our purposes is that, using
these protocols, robots can detect that they are connected.

We focus on the problem entailed by Step (b2) under
the basic assumption that al/l the robots must reconnect and
that any connected configuration is a feasible solution. Both
our model and our resolution techniques can be extended to
capture additional constraints posed by particular applications.
For instance, a reconnection task (instance of Step (b2)) can
be performed for a subset of robots, while candidate vertices

or configurations where to reconnect can be filtered with more
specific feasibility rules. Nevertheless, all of these or similar
variants require to compute an optimal connected configuration
for some robots. In this work, we tackle the basic core
version of this problem, also showing, in Section VIII, its
significance in a use case. We leave for future works the study
of refinements for cases where additional specific constraints
are added.

Computing the optimal connected configuration p given that
robots are in configuration s poses the need of selecting an
optimality criterion. We decide to focus on the simple, yet
relevant for mobile robots, minimization of the traveling cost.
This is an optimality criterion widely used in applications like,
notably, exploration [22]. Formally, when jointly moving from
a configuration s to another configuration p, a robot r spends
the traveling cost d(s,., p,-). To minimize the reconnection time
and seek, at the same time, small waiting times for robots, we
adopt as objective function the maximum traveled cost defined
as B(s,p) = max,cg d(s,,p,). We also call bottleneck robot
the robot inducing this maximum value.

Now, let C be the set of all joint connected configurations
for a graph G¢. The Multirobot Reconnection Problem (MRP)
can be stated as follows: given G and a non-connected starting
configuration s ¢ C, compute p* = argmin,cc B(s, p). That
is, assign each robot to a new vertex such that reconnection
between robots is established at the minimum traveling cost.

IV. PROBLEM ANALYSIS

In this section, we formally analyze the complexity of
the MRP by providing results that will be functional in
designing exact and approximate solving methods. As it might
be expected, solving the MRP is hard both when searching
for an optimal solution or when seeking for provably bounded
approximations. However, besides its general intractability, the
problem exhibits significant special cases for which optimal
efficient algorithms can be given.

To prove the NP-hardness results, it is useful to consider
the decision version of the MRP, called MRP-k. Here, we are
given a multigraph G = (V, E, C), a distance function d(-, -)
defined on E, a starting configuration s, and a value k € Q™.
The objective is to decide whether a connected configuration
p such that B(s,p) < k exists. The NP-hardness of the MRP
(which is an optimization problem) directly follows from the
NP-completeness of its decision counterpart [23].

We start by considering environments whose physical rep-
resentation G is a tree, which interestingly exhibit different
complexities depending on the topology of G¢.

Theorem 1. The MRP is NP-hard even when Gg is a tree
and C D E.

Proof. 1t is easy to see that NP membership of the MRP-£
holds: given a candidate solution stated in terms of robot-
vertices occupations, one can easily verify in polynomial time
that such configuration induces a connected subgraph on G¢
and that the bottleneck robot does not travel a distance larger
than k. NP-hardness can instead be shown by constructing a
particular instance of the MRP-k from a generic instance of the



Fig. 2. Reduction from the Connected Coverage Problem: E is given by solid
lines, C by solid and dashed lines.

Connected Coverage Problem (CCP) [24] which is defined as
follows. Given a graph GE°? = (V¢°? E€?) and a partition
of V¢ denoted as (Vi,...,V},) where (v,q) € EC°Y only
it v eV,qe Vi # j, determine if there exist h vertices
{p1,...,pn),pi € Vi, inducing a connected subgraph in G€°V.
From any instance of CCP, we show how to build a corre-
sponding instance of the MRP-£ by setting £ = 1 and giving
a current configuration for & robots s = (s1, $2,...,5,) on a
multigraph G, where (see Fig. 2) V = V" U{p, s1,...,51},
E ={(p, i), (s;,v)} for all V; and v € V;, traveling costs are
unitary except for d(p,s;) = L =2, and C = E U E€°,

Basically, the upper part of our particular construction (the
one included in the V; sets) replicates the original CCP
instance. The idea of the proof is to enforce the robots starting
from s; vertices, one for each V; set, to reconnect in a single
step by moving in a vertex belonging to the corresponding V;
if and only if the CCP instance admits a yes answer. More
formally, if the CCP instance has a yes answer, then there
always exists a connected configuration p = (p1,...,pn)
where p; € V; such that, by construction, B(s,p) = 1.
Conversely, if the MRP-£ instance has a yes answer, then the
corresponding connected configuration has a vertex in each
V;: indeed, any other connected configuration violating this
structure would necessarily require a bottleneck robot to travel
at least a distance of 2 to reconnect in p. (]

The above result can be easily extended to the more specific
case of trees with unitary costs. However, when considering
the complementary inclusion condition on C we obtain a
different result.

Theorem 2. The MRP-k is in P when G is a tree and C C E.

We will prove this in Section V-C by providing an optimal
polynomial-time algorithm for an important class of multi-
graphs in which Gg is a tree and having C = FE as a
particular case. The algorithm can be easily extended to obtain
an optimal algorithm for trees with C' C E.

When removing the assumption that the physical topology
is a tree, an additional more specific hardness result can be
derived. Notice that the subset of instances defined in the
following result does not contain those defined in Theorem 1
nor is strictly contained in them.

Theorem 3. The MRP is NP-hard even on multigraphs where
costs are unitary, both Gg and G¢ have vertices with degree
<4 and C=FE, CCEFE, or C DF.
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Fig. 3. Reduction from 3-SAT: gadgets on the z = 0 plane. Black vertices
represent robots’ starting positions. Blue items (vertices and dashed line)
represent the contradictory argument used in the proof.

Proof. 3-SAT can be reduced to the MRP-k with vertex degree
< 4, unitary costs, and C' = E. An instance of 3-SAT is speci-
fied by M variables and N clauses. A clause is the disjunction
of 3 literals, where, if v is a Boolean variable, then v and ©
are positive and negative (negated) literals, respectively. The
instance has a yes answer iff there exists a truth assignment
for the M variables which satisfies all clauses. We construct
an MRP-£ instance on a three-dimensional xyz layout where,
to ease visualization, we assume without loss of generality
that each vertex lies at integer non-negative coordinates. More
precisely, we combine three planar graphs, each lying on an
xy plane for z = 0, 1, 2, respectively.

Let us first describe the graph lying on the zy plane with
z = 0 whose top view is reported in Fig. 3. Black vertices
denote the presence of a robot, thus partially defining the set
R and the starting configuration s. Since C' = E, each edge
represents both a physical connection and a communication
link. By inspecting the figure, we identify subgraphs that we
call gadgets. A variable gadget v has 3 columns and N rows,
one for each clause. Each row c is composed of three vertices,
where the middle one is occupied by a robot and the left and
right ones are empty and denoted as L., and R.,, respectively.
Subscript ¢ indicates the row (clause) index while v refers to
the variable associated with the gadget. The connection gadget
lies above the variable gadgets at y = 0,1 and is connected
to the first row of L and R vertices. It is composed of a row
of 3M terminal occupied vertices (at y = 0) and is connected
to another row of 3M empty vertices (at y = 1) as shown in
the figure.

The construction of the planar graphs at z = 1 and z = 2
makes use of clause gadgets. Consider a generic zz slice
where y > 2 (each slice is constructed independently) and
refer to Fig. 4 for visualization. We place a line of vertices
entirely occupied by robots at z = 2; this line must be the
shortest one having, for every variable v appearing in clause
¢, a one-hop path to the c-th row of the underlying variable
gadget v. Such paths are composed of three intermediate
vertices lying at z = 1 dubbed clause connection vertices: we
denote them as Cf, C’f, and C%, where h, k, and w are the
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Fig. 4. Reduction from 3-SAT: slice of the xz plane with a clause gadget.
Black vertices represent robots’ starting positions.

variables appearing in clause c. Vertex C? is connected to L,
if the corresponding literal in clause c is negative (i.e., v) and
to R., if it is positive (i.e., v). Fig. 4 shows this construction
for a clause c = h V k V 1.

In the above construction, each clause gadget requires at
most 3M + 3 vertices and 30 robots, while the planar graph
at z = 0 requires exactly 3SM N + 6M vertices and M N +
3M robots: therefore, this construction can be completed in
polynomial time w.r.t. M and N.

We now show that the 3-SAT instance has answer yes
iff the particular MRP-k instance admits a yes answer for
k = 1. The idea underlying the above construction is to
build a “mechanism” of moving robots such that all the 3-
SAT clauses can be simultaneously satisfied by a truth value
variable assignment iff all the robots belonging to the same
variable gadget can align on the same side to replicate such a
assignment (while being connected to all the other robots).

From 3-SAT to MRP-%. If the 3-SAT instance has answer
yes, robots can reconnect by traversing each a single edge as
follows (recall that C' = E). Robots belonging to the connec-
tion gadget move down to occupy the line of vertices at y = 1,
while in every variable gadget v either all robots move to the
left (occupying vertices L1, ... Ly, ) or all robots move to the
right (occupying Ry, ... Ry,) according to the corresponding
literal value in the satisfied 3-SAT instance. For robots on a
clause gadget, notice that the robot placed in a neighbor of any
clause connection vertex C'Y whose corresponding variable v
is associated with the satisfaction of the clause can “trickle”
one step down to z = 1, connecting with all the robots of the
variable gadget v at z = 0. The remaining robots of the clause
gadget can rearrange themselves to connect with such a robot
by traversing at most a single edge.

From MRP-% to 3-SAT. Now we show that if the MRP-k
instance has a yes answer for some configuration p then the
3-SAT instance can be satisfied. It is easy to notice that, in
such p, robots on the connection gadget must necessarily move
down to y = 1. The key point of the proof is to show that
all the robots belonging to the same variable gadget v must
necessarily align on the same side, thus producing a coherent
assignment for v. By contradiction, suppose that in p at least
two robots occupy different sides of the same variable gadget
v. Consider now the first “portion” of robots not connected to
the robots of the connection gadget (which have moved down)
through robots belonging to the same variable gadget v with
a lower y coordinate. The blue vertices of Fig. 3 show such a

possible scenario for variable gadget 1: the second robot goes
to Rs1, and is not connected to the robots of the connection
gadget since the first robot is in Lj;. To form a globally
connected configuration, there must necessarily exist, in such a
portion of robots, a robot 7 connected to a robot 7’ belonging
to another variable gadget v’ with the same y coordinate ¢
through the corresponding clause gadget. In the example of
Fig. 3, this happens for the third robots of variable gadgets
1 and M (which are at vertices R3; and R3)s, respectively).
In order for r and 7’ to be connected, it must be the case
that the clause gadget lying at y = ¢ contains a chain of
connected robots in which two of them have trickled one
step down to reach their clause connection vertices. (In our
example, this is represented by the dotted blue line.) However,
our construction ensures that, whenever two (or three) robots
belonging to the same clause gadget trickle one step down,
the chain of robots at the top of the clause gadget (which
are initially connected in the starting configuration s) must
necessarily break into two (or three) parts, thus implying that
r and r’ (and hence p) can never be connected. Therefore,
all the robots belonging to the same variable gadget must
align on the same side in order to have connectivity, allowing
as a consequence to retrieve a coherent truth value variable
assignment. Moreover, since p is connected, all the robots
belonging to clause gadgets are also connected to the robots
at z = 0 thanks to robots that have trickled one step down to
occupy clause connection vertices, implying that all the 3-SAT
clauses can be simultaneously satisfied. (If all the robots at
z = 0 are connected when not considering the z = 1, 2 planes,
it is perfectly fine for the original connected chains of robots
of the clause gadgets to break in two or three parts, provided
that the same clause is satisfied by more than one variable.)
The proofs for cases C' C E and C' O E immediately follow
from the deletion/addition of a communication edge from an
arbitrary vertex lying at y = 0 in the communication gadget
(while respecting the grid layout). |
Note that, in fact, the above reduction proves also the NP-
hardness of the MRP instances in which Gg and/or G¢ are
restricted to be 3D-grid graphs with some “holes”, a class of
graphs often used as a convenient environment representation
for multirobot systems operating in three-dimensional settings
(see, for example, techniques used for path planning for
autonomous UAVs over cubic grids discretizations [25]).
Finally, we show that an efficient algorithm for the MRP
providing a good approximation factor is unlikely to exist.

Theorem 4. Let n = (|V|,|E|,|C|,m) € N%. For any
polynomial-time computable function «(n), there does not
exist an a(n)-approximation algorithm' for the MRP, unless
P=NP, even when:

(a) Ggis atree and C D E, or
(b) Gg is an arbitrary graph and C C E or C = E.

Proof. Consider case (a) and suppose we have an «(n)-
approximation algorithm for such MRP instances. Then, it
would be possible to solve any instance of CCP in polynomial

'An a(n)-approximation algorithm guarantees in polynomial time a solu-
tion within a factor of a(n) of the optimal value [23].



time by using the reduction of the proof of Theorem 1 (as in
Fig. 2) with L = 1+a(n). A yes answer for the CCP instance
implies a reconnection minimum cost of 1, while a no answer
holds iff such minimum cost is 1+ «(n). Therefore, the a(n)-
approximation applied to the MRP instance obtained from a
yes instance of CCP would return a solution with cost at most
a(n), while when having a no instance would return a cost of
at least 1+ a(n). For case (b), we can use the same argument
and construction of case (a) where E is augmented with all the
communication links between any two vertices in V; and V,
all with distance L — 1. In particular, this construction proves
the case C' = E, while C C E follows from the removal of a
single communication edge between p and any s;. (]

A direct consequence of Theorem 4 is that the MRP does
not belong to the APX complexity class (the class of problems
admitting a constant-factor approximation algorithm), even in
the special cases (a) and (b).

V. ALGORITHMS

In this section we tackle the resolution of the MRP. Specif-
ically, in Section V-A we present an exact (but inefficient
on large instances) method suitable for the general case, in
Section V-B we devise efficient suboptimal approaches, and
in Section V-C we provide an exact and efficient algorithm
for a specific yet significant case.

A. Exact method

As the results of the previous section establish, efficient
exact algorithms for the general case are out of reach. Nev-
ertheless, the Mixed Integer Linear Programming (MILP)-
based approach we propose in this section shows relatively
good performance with problem instances of moderate size
by building around the concept of node separators.

Definition 1. Given a multigraph G, for any two vertices
u,v € V, a subset of vertices N C V \ {u,v} is called a
(u,v) separator if and only if after removing N from V (and
all the incident edges from C) no path connects u and v in
Ge.

Let A (u,v) denote the set of all the (u,v) separators for
a generic multigraph G, and let NV, = Uy2,N (u,v) be the
set of all separators with respect to v. Finally, for any vertex
v € V and separator N € N,, let Wy, be the set of
vertices reachable from v in Go — N. We encode the optimal
configuration p* with a set of binary variables z,.,, taking value
1 iff robot r is in vertex v. The occupied vertices in p* induce
a connected subgraph of G- where we flag one vertex as
“root”. We model this with additional binary variables: v,
taking value 1 iff vertex v is occupied, and z,, taking value 1
iff vertex v is the root. A continuous variable w denotes the
solution cost. The formulation reads as follows:

minw  S.t. (D
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Constraints (2) ensure that each robot is placed in one vertex.

Constraints (3) and the objective function (1) set w as the
maximum distance traveled by any robot. Constraints (4) and
(5) ensure that y, = 1 iff at least one robot occupies v.
Constraint (6) chooses exactly one root and Constraints (7)
enforce it to be occupied. Constraints (8) enforce the sub-
graph induced by the occupied vertices to be connected. To
understand these last constraints, consider any vertex v that is
part of the solution, i.e., with y,, = 1. If the solution encodes
a connected configuration, then v must be connected to the
root. Any separator N € N, disconnects v from one or more
vertices while leaving it connected to those in Wy ,,. Thus,
either the root is in Wy, or it must be reachable through a
vertex in V. So, in this last case, N must include at least one
occupied vertex of the solution. (For y,, = 0 the constraints are
ineffective.) Note that Constraints (8) are exponentially many.
A typical strategy to handle them prescribes to initially feed
the MILP solver without such constraints, and to gradually
introduce them into the model after having detected their
violation. In our case, violations of Constraints (8) can be
checked by means of the polynomial-time procedure shown
in [26]. Finally, define an ordering on the vertices in V/, and
let M"~! be the set of vertices that are within m — 1 hops
from v in G¢ (recall that m is the number of robots). To
speed-up the model resolution, we can further impose that:

Ty + Yy <1 Yo,ueV:iv<u (&)
Y oz YwevV  (10)
weMP 1

Constraints (9) break symmetries between equivalent solu-
tions with different roots, while Constraints (10) enforce any
vertex part of the solution to induce the choice of the root
within the (m — 1)-hops neighbors. Notice that, if any feasible
solution p is available, the number of variables can be signifi-
cantly reduced by instantiating z,.,, only if d(s,,v) < B(s,p)
(in this case, if the resulting model is unfeasible, then p = p*)
or only if d(s,,v) < B(s,p) (in this case, the solver can be
provided with an initial feasible solution).

Such a MILP-based resolution approach could be the pre-
ferred choice for those settings where the MRP can be solved



only once and offline, like in periodic information gathering
missions. Nevertheless, the unavoidable scaling limits pose the
need for heuristic efficient methods to tackle the MRP in the
general case.

B. Heuristic methods

Let us consider a subset P C V with |P| < m. If the sub-
graph of G induced by the vertices in P is connected, then
we say, for short, that P is connected. Given any connected P
and m robots in configuration s, the configuration p occupying
vertices P and minimizing B(s, p) can be efficiently computed
by formulating and solving a Linear Bottleneck Assignment
Problem (LBAP). In general, this problem seeks the best
agent-task assignment minimizing the maximum assignment
cost. Customarily, situations with more agents than tasks are
dealt with by adding dummy null-cost tasks. Clearly, in our
case, agents correspond to robots, tasks to vertices of P,
and the assignment costs are given by the shortest traveling
distances from s. To date, the best known algorithm for this
problem runs in O(m??® /1/logm) [27]. We now propose three
suboptimal methods leveraging LBAPs and restricting our
attention to subsets where |P| = m. Such a restriction is safe
under the mild assumptions we summarize in the following
proposition (the proof is trivial).

Proposition 1. Given an MRP instance, if:
(A1) s, # s,¥r # 1’ € R, i.e., no vertex is occupied by
more than one robot in the starting configuration;
(A2) for any u,v € V, there exists one shortest path between
them on Gg such that if the physical edge (i,j) € E is
traversed along the path then (i,j) € C' too.

then, for any solution p occupying less than m vertices there
exists another one p' occupying exactly m vertices and such
that B(s,p") < B(s,p).

These two assumptions are often satisfied in reality. In-
deed, different robots can be always assumed to occupy
different locations for suitable environment discretizations as
required in (Al), while (A2) should hold in any reasonable
communication-aware environment discretization.

The first algorithm we present, which will serve mainly as
a baseline against which comparing the other two algorithms,
is based on the following simple observation: if we are able to
correctly “guess” the right connected P, then solving a LBAP
to assign the m robots to the vertices in P will give us the
optimal solution. The random-reconnection heuristic tries to
build a good solution by randomly choosing a connected P
(with |P| = m in virtue of Proposition 1) starting from each
possible initial vertex 0 € V, upon which solving a LBAP
for the m robots. For a given P, we define its connection
neighborhood as N(P) = {v € V\ P | Ju € P, (u,v) € C}.
Algorithm 1 shows the pseudo-code for computing a solution
starting from a given initial vertex 0.

The final output of random-reconnection is the connected
configuration with minimum cost among all the ones con-
structed starting from each v € V. The running time of this
heuristic is O(|V|(mTNEIGH —|—TLBAp)), where Tngigu denotes
the cost of updating the neighborhood N (P) — this can be done

Algorithm 1 Random-reconnection from fixed o
1. P={0}
2: repeat
3: v = random (N (P))
4: P=PrPuU{t}
5
6

cuntil |P|=m
: return p = LBAP(R, P)

in just O(|V|) — and Ty pap denotes the cost of the selected
algorithm for solving a LBAP on m robots.

Clearly, the random-reconnection heuristic could benefit
from trying to randomly build multiple connected configura-
tions for each possible starting vertex ¢ (by setting a number
of restarts). However, this would come at the expense of an
increased running time, which could not be affordable in some
real-time settings. Moreover, since the number of connected
configurations of size m containing a given vertex v increases
exponentially with m, being able to randomly find the best
connected configuration would still be highly unlikely. This
poses the need of more informed reconnection heuristics. To
this aim, we now present two complementary algorithms.

We denote the first informed reconnection algorithm as
forward-reconnection. From the scheme introduced above, the
algorithm inherits the restriction to subsets of vertices P such
that |P| = m (by Proposition 1), as well as the attempt to
construct a good connected configuration for each possible
starting vertex ¥ € V. However, differently from random-
reconnection, forward-reconnection does not necessarily need,
in principle, the final computation of a LBAP, since the alloca-
tion of robots to vertices can be saved along the construction
of P. In practice, however, the final computation of a LBAP on
the vertices underlying the resulting connected configuration
(which is not computationally expensive for typical team
sizes) guarantees to return the best robot-vertices allocation
for such vertices. The formal steps of forward-reconnection are
reported in Algorithm 2, where U denotes the set of currently
unassigned robots. Steps 3—4 select the next vertex to include
as the one closest to an unassigned robot, while Step 6 assures
the minimization of B() on the constructed P.

Algorithm 2 Forward-reconnection from fixed v
I: U= R\ {argmin,cy d(s,,0)}, P = {0}
2: repeat
3: (7,7) = arg min,ey,ven(p)
4: P=PU{s},U=U\{7}
5
6

d(sr,v)

:until |P|=m
: return p = LBAP(R, P)

Algorithm 2 is run for each possible starting vertex ¥, and
we then select the configuration with minimum cost. The run-
ning time of this heuristic can be expressed as O (|V|(m?|V |+
mINeiGH + TLBAP)) = O(\V\(m2|V| + TLBAP))-

The second informed heuristic we propose is called
backward-reconnection and operates under a dual scheme w.r.t.
forward-reconnection. For each possible starting vertex o, we
construct an initial configuration p where each robot occupies
0. The idea is to obtain a connected P of at most m vertices by
iteratively relocating robots from the current configuration p to



a new configuration p’ in such a way that B(s,p) — B(s,p’) is
maximized. Algorithm 3 formalizes the m steps (initialization
plus m — 1 iterations) required to build P. At any iteration,
R(v) is equal to the empty set if, in the current configuration
p, v s occupied by one or no robots, otherwise it includes the
(two or more) robots occupying v. Then, let R = U, pR(v)
be the robots temporarily sharing their vertices with at least
another robot.

Algorithm 3 Backward-reconnection from fixed ©

1. P={d}, p=(0,...,0)
2 PP=P,p"=0p

3:fori=1,...,m—1do

4: 7 = argmax,cr d(sr,pr), U < Dr

5 W = arg min,c pun(p) d(w, sr)

6: P=PU{w}, prw

7: if ¥ is not occupied then

8: ' =argmin, g 1y d(87,0), prv < 0
9:  for each v € P\ {w} do

10: Q = R(v)

11: for each r € Q do

12: if d(s,, w) < d(sy,v) then

13: pr W

14: if v is not occupied then

15: r’ = argmin,eq d(sr,v), P < v
16: if B(s,p) < B(s,p") then

17: P* =P, p"=p

18: return p = LBAP(R, P*)

After the initialization, the algorithm computes in Step 4 the
bottleneck robot 7 for p and its current location v. In Steps 5
and 6 this robot is relocated to the vertex w which is the closest
to s7 (that robot’s starting vertex) among those in P U N (P),
that is the vertices currently offering a communication link
to the team. (Contrarily to forward-reconnection, we consider
also the vertices in P since they could actually include the
starting position of the bottleneck robot.) Steps 7 and 8
handle the fact that the previous relocation could have left
¥ unoccupied. In such a case, a robot r' € R is assigned
to ¥; again 7’ is chosen as the one whose starting vertex s,
is closest to v. The same criterion is adopted in Steps 9-
15 to evaluate if the newly included vertex w enables a
convenient relocation of any robot in R. Precisely, in Step 12
the algorithm checks if any robot r (sharing its vertex with
at least another one) can strictly reduce its traveling distance
if relocated to w; if so, it is relocated in Step 13. Steps 14
and 15 undo one of such operations if it has left a vertex of
p unoccupied. Since the relocation of a non-bottleneck robot
could also worsen the current bottleneck value, Steps 16—17
are required to keep track of the best configuration p* and
corresponding set of vertices P* found so far. Finally, Step 18
is the analogous of that of Algorithm 2, but operates on the
vertices of the best configuration p* found throughout the
m — 1 iterations. Note that this algorithm could, in principle,
output a connected configuration with |P| < m (this follows
from the selection of @ from P U N(P) instead of N(P) in
Step 4). However, Proposition 1 does not exclude the existence
of an optimal configuration occupying less than m vertices,
even when assumptions (A1) and (A2) hold.

As before, we run Algorithm 3 for all starting vertices
v and we select the minimum cost configuration overall.
The running time of this heuristic can be expressed as
O(\V\(m\V\ + mINEIGH +TLBAP)) = O(|V|(m|V| +TLBAP))-

Both the above algorithms have been designed so that they
could be easily parallelized among robots by equally partition-
ing the vertices © € V from which constructing and evaluating
connected configurations. This introduces a potential speedup
of ~ m, thus reducing the running time of the algorithms of
almost one order of magnitude for sufficiently large teams.

We conclude this section with a simple example showing
the different behaviors of forward-reconnection and backward-
reconnection on the small problem instance depicted in
Figs. 5(a)-(b). Here, we have three robots whose initial config-
uration is specified by the vertices marked with s;,7 = 1,2, 3.
The edges of the graph denote both the sets C' and E, and we
assume unitary lengths on E. In both cases, we analyze the
behavior of the algorithm during the construction of a solution
from the same vertex ¥ shown in the figure.

(b) backward-reconnection

(a) forward-reconnection

Fig. 5. An example showing the behavior of forward- and backward-
reconnection algorithms on a small problem instance with Gg = G¢ and
three robots.

Let us first focus on forward-reconnection (Fig. 5(a)). At
the beginning (iteration 0), robot 73 is assigned to vertex v, so
that P = {0} and U = {ry,72} (Step 1). Then, in iteration 1,
the unassigned robot closest to N(P) is ry at distance 3 from
a (Step 3), so we have P = {0,a} and U = {r;} (Step 4).
Finally, in iteration 2, b is the vertex in N(P) closest to s1
(Step 3), so that P = {0,a,b} (Step 4). In this case, the final
computation of the LBAP (Step 6) confirms the robots on the
positions initially found by the heuristic.

Focusing now on backward-reconnection (Fig. 5(b)), we
initially construct (iteration 0) a feasible configuration with
P = {o} where all robots occupy ¢ (Step 1). In iteration 1,
the bottleneck robot  is r; at distance 4 from s; (Step 4).
Therefore, r; is relocated in w = a, i.e., its closest vertex in
P U N(P) (Steps 5-6). In this iteration, also 75 is relocated
in a (Step 12-13), leaving only r3 in © (which would worsen
its travel cost by moving to a). In iteration 2, the bottleneck
robot is again r; at distance 3 from s; (Step 4). Now, r;
is relocated in w = b (Steps 5-6), and ro and r3 are left
in their current vertices, since their relocation would leave
them unoccupied (in Step 10, ) is now always empty). Note
that, in both iterations, P* is always updated (Steps 16-17).
The obtained robots-vertices assignment is equal to the one
obtained in the previous case, and does not change after the
resolution of the corresponding LBAP (Step 18).



C. Special graphs

As anticipated in Section IV, there exist special envi-
ronments in which the MRP can be efficiently solved to
optimality. We identify such cases in a class of instances we
call bridge-connected trees and we prove the existence of an
exact polynomial-time algorithm for them. Besides providing
a tractability result for fairly significant scenarios, this result
also proves Theorem 2.

We call line-connected component a multigraph G; =
(Vi, E;, C;) with the following properties: |V;| > 1, Gg, is a
linear graph, and G, is complete (that is, for any u,v € V; it
holds that (u,v) € C;). Given two line-connected components
G; and G, we call any v € V; NV} a bridge vertex and we
define the following class of multigraphs.

Definition 2. G = (V, E,C) is a bridge-connected tree if it
is obtained by the union of k > 1 line-connected components
Gi,...,Gy, Gg is a tree, and for any G;,G;,|V; NV;| < 1.

Fig. 6. A bridge-connected tree in a portion of an office floor: blue vertices
form the minimal set of bridges to connect the red ones in line-of-sight.

Bridge-connected trees represent possible discretizations
of different real-world scenarios. Indeed, tree graphs may
represent the preferred choice for the discretization of in-
door environments with a tree topology, like floors of office
buildings or schools (this can also be done automatically;
see [28]). From the communication point of view, examples
relate to settings where one wants to secure a safe line-of-sight
transmission, or where the environment is covered by bridged
network infrastructures (such as wireless networks). Fig. 6
depicts a bridge-connected tree where dashed lines group the
line-connected components.

It is easy to prove that the following lemma holds for bridge-
connected trees.

Lemma 5. Given a bridge-connected tree G, for any u,v €
V, there exists a unique minimal set of bridges Bin(u,v)
(possibly empty, and computable in O(|V|)) such that u and
v are in communication if and only if Byin(u,v) is occupied
by some robots. Moreover, if two robots placed in u and v are
in communication, so is any other robot lying on the (u,v)-
path on Gg.

Following the intuition provided by the lemma, the opti-
mal algorithm we provide constructs and evaluates connected
configurations under a given bottleneck requirement. That is,
given a non-connected starting configuration s, we fix a pair
(7,0) where 7 € R and © € V and search for a connected
configuration p;_,; where robot 7 goes to vertex ¢ and

B(s,pi—5) = d(ss, 0). Due to this requirement, robots cannot
travel a distance larger than d(sz, 0). Clearly, if for each (7, 0)
we compute p;_,; or prove that it does not exist (formally as-
signing B(s, pi—s) = 00), then p* = argmin; 3) B(S, prss)
is an optimal solution for our problem. The key idea is to
show that p;_,; (or the unfeasibility result) can be computed
in polynomial time on bridge-connected trees. This intuition
is embedded in an algorithm which we call BCT-Opt.

To simplify notation let us call B;; the bottleneck require-
ment equal to d(sz, 0). The steps of BCT-Opt for a fixed (7, 0)
pair are reported in Algorithm 4.

Algorithm 4 BCT-Opt for fixed pair (7, 0)

1: # Compress phase
2: L=10
3: for each ' € R\ {f} do

4:  let u be the closest vertex to ¥ on Gg s.t. d(s,7,u) < By
5: if u # © then

6: L=LU{u}

7: for each [ € £ do

8 L'=L\{l}

9:  if Ju € L s.t. ] € (u,d)-path on G then

10: L£=L\A{l}

11: B=U,cp Bmin(0,1)
122 P=LUBU{0}
13: if |P| > m then return unfeasible

14: # Assign phase

15: ps—o = LBAP_VARIANT(R \ {7}, P\ {0}) U (#,0)
16: if B(s,pr—o) > Brs then return unfeasible

17: return ps_,4

BCT-Opt works in two phases: compress and assign. In the
compress phase, the algorithm tries to build a “skeleton” of the
solution in terms of vertices to be occupied. In particular, the
algorithm starts by constructing a set £ containing, for each
robot r’ € R\ {7}, the vertex u closest to ¥ on G (excluding
the same ) reachable by r’ without violating the bottleneck
requirement B;; (Steps 2-6). In Steps 7-10, we delete from £
any vertex lying on a path on G between ¢ and any other
u € L. Then, in Step 11, we compute B = J;c » Binin(0,1),
and use it to derive the tentative skeleton of our configuration
as P = LUBU{0} in Step 12. Note that, by construction, P
induces a connected subgraph on G where the vertices in £
are the outermost vertices of P on Gg w.r.t. 0.

If it happens that |P| > m we conclude that no feasi-
ble solution exists. Otherwise, we perform the assign phase
composed of some additional steps. First, we solve a LBAP
between robots in R\ {7} and vertices in P\ {0}, setting the
cost of assigning a robot ' to w € P\ {0} equal to d(s,,w)
(Step 15). Note that, if |P| < m, we need to add m — |P|
dummy vertices with null cost for each robot. However,
contrarily to a classical LBAP algorithm, each robot assigned
to a dummy vertex is moved to its closest vertex in PUN (P).
Then, if the obtained bottleneck value is greater than B;;, the
algorithm concludes that no feasible solution exists for the
fixed pair (#,0) (Step 16). Otherwise, it returns the connected
configuration p;_,;. Now we prove the following lemma.

Lemma 6. Given an initial configuration s and bottleneck
requirement By, a connected configuration q with gz = 0



and B(s,q) = By exists if and only if the above algorithm
returns a solution.

Proof. Let us focus on the “only if” case (the “if”” case follows
from the algorithm construction). We denote with p;_,; the
solution our algorithm would build under the B;; bottleneck
requirement and with P = £ U B U {0} as its underlying
structure of vertices as discussed above. We say that a solution
q matches the structure P if and only if at least one robot is
placed in each of the vertices of P. We first show that any
solution ¢ with ¢z = ¢ and B(s,q) = Bj; with structure not
matching P can be transformed into a solution matching P
without violating By4. (Notice that, if £ = (), then P = {6}
and the structure is already matched.) Then, we show that
the existence of such a transformed ¢ implies the existence
of the solution computed by BCT-Opt under the bottleneck
requirement Bj;.

Consider all the vertices [ € £ not occupied by any robot
in g, and let r; be the robot having induced the presence of
vertex [ in Steps 3-6 of the algorithm (if there are multiple
robots arbitrarily choose one). First, notice that even in this
case Lemma 5 ensures that [ and ¥ are connected in g
through B, (0, 1), since [ lies on the path between g, and ©
(connected by hypothesis on ¢). Now, starting from ¢, move
robot r; to [ and move “upward” to [ (think of © as the root
of Gg) also any other robot in the subtree on G'g rooted
in [ and not including the branch leading to other vertices
in P. Call such tree 7. This guarantees that the robots we
moved are connected to © by the previous argument, since
no robot belonging to B, (0,1) has been moved. Moreover,
this modification does not violate the bottleneck requirement.
While this holds by definition for robot r;, for any other moved
robot 7’ there are two possibilities. If s,» belonged to 7T, then
r’ can move at least up to [ without violating B;; (this follows
from the construction of £). Otherwise, r’ could have stopped
at [, without going deeper in G, and hence traveling less than
Bﬁ{,.

Being the vertices in £ occupied by robots in the new g, it
follows from Lemma 5 that all the vertices in B must now be
occupied, and the structure P is now matched. At this point,
notice that it is easy to construct from the new ¢ a feasible
solution to the LBAP solved in the assign phase respecting
the bottleneck requirement Bj; (robots assigned to dummy
vertices can always be placed at least at their corresponding
vertices u obtained in Step 4 without violating B;; and the
connection requirement by construction), so that the obtained
assignment on P\ {0} will also respect the same bottleneck.

O

The following theorem straightly follows from the previous
lemma, since the algorithm tries any possible combination of
robot-vertex (7,9) bottleneck assignments:

Theorem 7. BCT-Opt produces in polynomial time an optimal
solution to the MRP on bridge-connected trees.

In particular, our current implementation of BCT-Opt
(which is based on off-the-shelf graph libraries) has a worst-
case running time of O (|V|* 4 |V |m(m?|V|+ Ty gap)). How-

ever, the |V|? term, which is due to the precomputation of
all the shortest paths with an algorithm for generic graphs,
could be reduced by writing an ad hoc procedure for trees.
The m?|V| term, due to Steps 7-10, could also be reduced by
resorting to a depth-first search. Note that this theorem implies
that, while the problem is NP-hard on graph topologies where
Gpg is a tree and C D E (Theorem 1), this is no longer true
when C' = FE. Indeed, in this last case, Theorem 7 holds
considering |V;| = 2 for each line-connected component Gj;.

VI. RECONNECTION FAULTS

In this section we discuss some simple techniques to handle
uncertainties that will be functional to our experimental eval-
uation. Indeed, in realistic settings, some of the assumptions
made in our resolution approach may not hold. In practice,
blind executions of reconnection strategies would be subject
to reconnection faults originating from two main issues: nav-
igation uncertainties and false positives in the communication
topology. The techniques we propose here are based on an
additional coordination level computed in Step (b) of the
general mission scheme outlined in Section III. Specifically,
after the computation of a set of informative paths (Step
(b1)) and of a connected configuration p to reach (Step (b2)),
the robots compute (think of it as an additional Step (b3))
also a backup configuration pyy, which will surely guarantee
reconnection on a restricted version of G composed by the
safest communication links (typically, links between locations
that are within a limited distance and in line of sight).

To understand when the robots should switch to the exe-
cution of such a backup plan, recall that, under ideal con-
ditions, reconnection in a configuration p from a starting
non-connected configuration s takes place as soon as the
bottleneck robot reaches its assigned location in p (as dis-
cussed in Section III, we assume that traveling costs can be
interpreted either as distances or times). In practice, due to
navigation errors, the travel times could be uncertain. This
could advance or delay the time at which a robot reaches
its destination. Let us momentarily set aside robot faults
(permanent functional failures) and assume that each robot
eventually reaches its location. Then, by waiting a sufficiently
long time 7 once reached their destinations, robots obtain
tolerance for navigation time uncertainties (note that waiting
is clearly preempted as soon as reconnection is established). If
uncertainty is modeled with a Markov Decision Process, then
7 can be defined as the minimum time horizon for which the
probability of having each robot at its destination is above a
chosen threshold.

If, after waiting 7 time units, the team is still not connected,
then the reconnection plan for p is erroneously relying on the
presence of some link which turned out to be unavailable or
absent. It is easy to see how this can only happen due to
false positives in C' (the set of communication links). This
could be due to the link-detection mechanism (if, for example,
the employed signal propagation model overestimates actual
signal strengths [29]) or simply due to the environment (if,
for example, some interference is temporarily present). In this
case, each robot switches to the backup plan previously agreed



upon. This plan specifies a new connected configuration pyy,
computed on a restricted version of G composed by the safest
communication links and it always exists (since eventually
robots can meet in the same location). In Section VIII-A we
will show how to employ waiting time and backup plans to
handle reconnection recoveries.

Finally, robot faults can also be handled by adding mul-
tiplicity requirements to the backup configuration ppi,. A
multiplicity requirement is defined by an integer k and imposes
that each vertex in pyr, must be assigned to at least k£ robots.
Under this requirement we can a priori guarantee that upon the
fault of any group of at most k— 1 robots, reconnection among
all the remaining robots can always be achieved. (Notice that,
called ¢ < m a positive integer, requiring multiplicity with
k> % forces pyiy to be composed of no more than 7 vertices.)

VII. EXPERIMENTAL EVALUATION: ALGORITHM
PERFORMANCE

We start our experimental evaluation with an application-
independent assessment of the resolution approach we pro-
posed in Section V for the MRP: the exact method
(Section V-A), the forward-reconnection and backward-
reconnection heuristics (Section V-B), BCT-Opt (Section V-C),
and the random-reconnection heuristic as baseline.

The MILP involved in the exact method is solved with
GUROBI (vers. 6.0.5) [30] as follows. The model initially
contains only Constraints (2)-(7) and (9)-(10). Violations of
Constraints (8) are checked for each LP relaxation solution by
means of the separation procedure described in [26], which
is related to the resolution of a max-flow problem on a
suitable graph derived from G¢. We use GUROBI’s default
parameters, with the only exception of giving higher branching
priority to the x, variables. The heuristics are implemented in
pure Python, except for the usage of the igraph library [31],
written in C, which is also used for the MILP separation
procedure. All the experiments are run on a Linux machine
equipped with a i5-4310M processor and 8 GB of RAM.

We generate a dataset of random instances with the follow-
ing method. Choose a random point on a plane, and add it
to the set of vertices. Add and connect a vertex at a random
distance in [%, D az]. Tterate this until G has the desired
number of vertices. Complete £ by randomly adding an edge
to each (u,v) if d(u,v) < Djas. Set Go = Gg and, for
any u,v where d(u,v) < 1.5D,4., add (u,v) in C with
probability p.. Finally, generate an initial configuration as
follows. First, place randomly a robot in a vertex of the graph.
Then, iteratively place other robots in vertices for which the
minimum hop distance in G¢ to any previously placed robot
is maximum. Our experiments show that this method with
Doz = % and p. = 0.3 is able to generate non-trivial
instances. For each (|V|,m) considered in our results we
generate 50 random instances.

Using forward-reconnection and backward-reconnection for
pruning the number of variables as discussed in Section V-A
allows us to optimally solve a significant number of instances
and to achieve good scalability. In particular, we are able
to optimally solve slightly more instances by creating z,,
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Fig. 7. Number of random instances solved with the exact formulation (a).
Comparison between the heuristics (b), (c), (d) (optimality gap of random-
reconnection for m = 10, 15 is very high and is not reported for clarity).

variables only if they can offer a solution strictly better than
the one found by the heuristics — even at the price of not
being able to feed the model with an initial feasible solution
(we experimented both options with all the random instances
generated as described above). However, in that case, the
GUROBI solver is sometimes not able to produce any feasible
solution within the user-defined deadline (for instance, this
happens if the heuristic solution is already optimal). Therefore,
if some information about the gap from the optimum is
desired, feeding the model with a good initial feasible solution
could be the best choice.

Fig. 7(a) reports the percentage of instances optimally
solved by the MILP within 30 minutes. We get optimal
solutions with up to 200 vertices and 15 robots. Clearly, as
the instances increase in size, the percentage of terminations
decreases. While we always get optimal solutions with 5
robots, the ratio decreases for 10 and 15 robots, with only
a slight difference between the two ratios for a given number
of vertices.

Figs. 7(b), 7(c), and 7(d) summarize the performance of
the heuristics. We also consider the combined algorithm that
outputs the best solution obtained by forward-reconnection
and backward-reconnection. Each graph reports the aver-
age optimality gap of forward-reconnection and backward-
reconnection over the optimally-solved instances (the gap
is defined as w;”j’* where w* and w are the optimal and
heuristic costs, respectively). The average gap of the random-
reconnection baseline is reported only for 5 robots for reasons
of clarity since, with more robots, it lies most of the times
above 80% (and always above 40%). This result already
offers a key insight about the need of smarter reconnection
algorithms. Note that, for a fixed m, it may be the case that the
number of instances solved by the MILP is different for two
different values of |V|: however, the comparison is consistent
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Fig. 8. Number of times forward- (backward-) reconnection outperforms
backward- (forward-) reconnection on random instances.
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Fig. 9. Average computing times on random instances (in seconds).

for a fixed number of vertices. For 5 robots, backward-
reconnection turns out to outperform forward-reconnection in
almost every instance, with an average gap always below
2.5%. Instead, with more robots, forward-reconnection signifi-
cantly impacts on the gap achieved by the combined algorithm.
Forward-reconnection works under the rationale that good
solutions can be obtained with locally optimal choices from
the start configuration s. The optimality of this scheme is more
frequent on our random instances when the number of robots
is large and vertices are few, since the optimal configuration
is more likely to lie relatively nearby the starting one. When,
instead, robots are few and the number of vertices is large, the
optimal configuration p* has an higher probability of involving
vertices that are far away from s. This makes it more difficult
to find p* starting from s and a backward approach tends to
be more profitable.

Fig. 8 shows how no heuristic among forward-reconnection
and backward-reconnection fully dominates the other. The
histograms count, for each robots-vertices profile, how many
times one heuristic returns a solution strictly better than the
one found by the other (here we consider instances with up
to 20 robots and 1500 vertices). Forward-reconnection, despite
not being in general as good as backward-reconnection, is able
to outperform it in a significant number of instances. (The
percentage of ties among the 1400 instances considered is
roughly 44%.) This justifies, from an empirical point of view,
their combined employment. The random-reconnection base-
line, instead, is able to outperform only forward-reconnection
in a single instance with |V| = 50 and m = 5 (gap 10%).

Fig. 9 reports the average computing time required by
forward-reconnection and backward-reconnection. The final
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Fig. 10. How many times a heuristic outperforms the other with a fine-grained
discretization (b) on the real environment (a).

solution is obtained almost instantaneously for up to 500
vertices, and scales according to our complexity analysis for
larger instances. In general, up to 10s on average are required
for 20 robots and 1500 vertices. However, by resorting to a
parallelized implementation completely written in C, a solution
could potentially be obtained in fractions of a second. The
computing times of random-reconnection are not reported,
being almost comparable with those of backward-reconnection
(only slightly shorter).

Fig. 10(a) shows a top-view of a real outdoor environment
whose area is approx. 300 m x 225 m (free area is depicted in
white). We discretize the environment obtaining a uniform grid
graph G'g in which vertices correspond to centers of free cells
with edge equal to 15m (209 vertices). G¢ is obtained with
a link-detection mechanism using limited distance and line of
sight between locations (the distance range is set to 56 m).
We consider 5 robots starting from 50 random configurations
(drawn with the same method previously described). Results
show how the MILP always terminates within 30 minutes,
while the average gaps of forward-reconnection, backward-
reconnection, and their combined usage are very low and
equal to 3.6%, 0.7%, and 0.5%, respectively. The gap of
random-reconnection, instead, is much larger (24%). We re-
run the same set of experiments by switching to a more
fine-grained discretization with 7.5m for the cell edge (838
vertices). Surprisingly, in 90% of the instances the solutions
found by forward-reconnection or backward-reconnection on
the fine-grained grid outperform the optimal solution on the
coarse-grained one (average gap of 10%). This suggests how
the optimality loss from the heuristic can be mitigated by a
more accurate environment representation. For completeness,
we report in Fig. 10(b) the number of times a heuristic
outperforms the other in the fine-grained discretization for
different team sizes. The results confirm our previous findings:
when the optimal configuration tends to be far from the starting
one (instances with 5-10 robots), backward-reconnection can
work better. In the opposite case (instances with 15-20 robots),
since the bottleneck robot needs to travel only a few grid
cells to reconnect the team, forward-reconnection is better.
Even in this case, random-reconnection shows a very poor
performance, never being able to provide better solutions than
those found by the two informed heuristics.

Finally, we evaluate BCT-Opt (Section V-C) on a set of
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Fig. 11. Heuristics average optimality gap on bridge-connected trees.
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Fig. 12. Average computing times on bridge-connected trees (in seconds).

50 random bridge-connected trees (Definition 2). We start
from a comparison with forward-reconnection and backward-
reconnection, whose optimality gaps against BCT-Opt are
reported in Fig. 11. While forward-reconnection shows poor
performance, backward-reconnection obtains a very small av-
erage gap overall. The random-reconnection baseline behaves
extremely bad even on bridge-connected trees, as its average
optimality gaps (not shown in the figure) are always much
larger than those of forward-reconnection for all the considered
vertices-robots pairs. Comparing the computing time required
by BCT-Opt and backward-reconnection in Fig. 12, we can
see that backward-reconnection could be a better option for
large instances (at the expense of optimality guarantee). The
intuition behind this is that BCT-Opt tries to build a feasible
solution from all the possible vertex-robot pairs, while the
heuristics try to build feasible solutions just by enumerating
all the possible initial vertices.

VIII. EXPERIMENTAL EVALUATION: COMPARISON IN A
USE CASE

To show the relevance of our method, in this section we
apply it to a significant application setting for which resolution
techniques have been proposed in literature: the Multirobot
Informative Path Planning with Periodic Connectivity problem
(MIPP-PC) introduced in [14].

In the MIPP-PC, a team of m robots plans a set of joint
paths maximizing an arbitrary objective function F'(-) over a
time horizon 7" and under the constraint of reconnecting every
Tt time units. The environment is modeled, as we do in this
paper, as a physical graph G and a communication graph
Ge. Let us call A, and C(A,) a generic path of robot r and
the corresponding temporal cost, respectively. The MIPP-PC

seeks a collection of paths A;,..., A, such that: C'(A4,)
T for any robot r, the team is connected at 7717 for 7 €
{0,...,[T/Tr|}, and F(-) is maximized.

In [14], authors tackle the problem with a receding horizon
approach. For ¢ = 1,...,m, according to a lexicographic
order, they first optimize A; leaving A;_; fixed (robots with
j > 1 are initially assumed to remain at their starting position).
Optimization of A; is performed by sampling feasible paths
over the horizon {0,...,77}. Once the path of the last
robot m has been computed, optimization restarts from the
first robot (subsequent robots will now have paths moving
them around). Robots paths are cyclically generated in such
a way until a termination criterion is met (convergence or
a maximum number of iterations). Then, the robots follow
the planned paths and the above procedure is repeated. A
target search problem is then cast to the MIPP-PC and its
resolution is experimentally evaluated. In such a problem,
the objective function F'(-) is instantiated to the (discounted)
probability of finding the target within the time horizon and
the constraint of reconnecting every 5 time units is imposed to
the team. Due to the relatively tight reconnection period, the
search space for each robot’s path is limited and a complete
enumeration of all the feasible paths can be done in reasonable
time. However, with larger reconnection periods, a complete
enumeration would be too computationally expensive. Also,
the work leaves open the problem of recovery in presence of
errors. We show how our MRP resolution approach presented
in Section V, together with the basic recovery techniques
discussed in Section VI, can be effectively used for dealing
with these two issues.

To this end, we present a planning algorithm for the
MIPP-PC obtained by a refinement of the mission scheme
presented in Section III and based on the employment of our
resolution approach for the MRP. The algorithm, called UFSR,
develops according to three macro-phases: Unconstrained joint
planning, Feasibility pruning, and Solution Refinement. The
pseudo-code is shown in Algorithm 5.

IN

Algorithm 5 UFSR algorithm

: # Unconstrained joint planning
A = unconstrained_joint_planning (F,Ty)
if A is connected at 77 then
return A
. # Feasibility pruning
1=0
repeat
i=1+1
let A be the restriction of A to the first 77 — 40 steps
let s be the final joint position in A
A = AUMRP(s)
: until A is connected within 77
. # Solution refinement
st =171 — 10
: while t,. + 6’ < T; do
truncate A at ¢,
generate a set of feasible joint moves of length §’:
Jo = {Jl,...,J‘Jcl}
J* = argmax;—q .
A=AUJ"
tr =t + ¢
: return A
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Fig. 13. MIPP-PC simulation environments.

In the Unconstrained joint planning phase (Step 2), a set of
joint paths A maximizing F'(-) along {0, ..., T} is computed
by disregarding reconnection. To do this, we employ a relaxed
variant of the iterative scheme from [14]. If A is connected at
Ty, then the robots can execute the set of paths, otherwise we
proceed to the next phase.

In the Feasibility pruning phase (Steps 6-12), A is modified
to reconnect at 77 according to the following iterative proce-
dure. Given an integer 6 < 77, consider subpaths of A, A, of
length equal to 77 — 9, with ¢ being the current iteration of the
procedure. Then, build a new A by solving a MRP problem
where robots have to reconnect from their last positions in A
in at most ¢J steps. We repeat this procedure increasing ¢ until
a feasible A is obtained.

In the Solution Refinement phase (Steps 14-22), we try
to improve A (now ensured to be feasible) by considering
feasible joint moves of step size ¢’ (possibly different from
the previous §). More precisely, call ¢, the time step for which
the previous phase returned a valid reconnection path. Now,
fix the solution A until step ¢,, momentarily forgetting the
plan for the subsequent steps, and generate a set of candidate
feasible joint moves of length &', Jo = {J1, ..., J|j|}, Where
each J; has the form {{A%r = Alr ... AU+) 0 {At =
Al At-91Y e it represents a set of m paths of length
d’, one for each robot, starting from the corresponding robots’
positions in A at t.. For enforcing feasibility, we run an
algorithm for the MRP for each candidate J; and keep it only
if the former has returned a solution respecting a time budget
of T; — (t, + ¢’). We then choose among J¢ the best joint
move according to F'(-), consistently update ¢,, and iterate
until ¢, exceeds T;. Note that, if ¢, + & < Ty, we can always
construct a non-empty Jo by exploiting the previous MRP
solution.

A. MIPP-PC experiments

We develop a numerical multirobot target search simulator
in Python/NumPy, similar to that used in [14], and consider the
same environments (Fig. 13): the SDR building from Radish
dataset [32] (80mx 60 m) and McKenna MOUT site (400 m
x 300m), where communication range is set to one fourth of
the map diagonal. Differently from [14], we adopt a uniform
grid discretization to have a more precise timing in gaining
global reconnection. We set cell sizes of 1.5m x 1.5m and
8m x 8m for the SDR building and the McKenna MOUT
site, respectively (1037 and 1096 free cells, respectively). At
each time step, the target randomly moves to an adjacent

cell and robots can detect it from a distance of at most 2
cells. We assume the presence of a link-detection mechanism
which computes the signal strength S at a distance d,, as
S = Py, — 10N log,,(dy/do) where dy is the distance
reference value (set to one fourth of the map diagonal), Py,
is the signal strength at dy (set to the typical cutoff value of
—93dBm), and N is the path loss factor (set to 2) [29].

We consider two settings: with and without the presence
of errors. In the error-free setting, robots’ motion is perfect
and the link-detection mechanism correctly computes the
availability of communication links as pairs of cells whose
signal strength S is higher than —93 dB m. In the error-prone
setting, we assume that robots can be affected by motion
errors: any intended movement will not occur with probability
0.1. Moreover, if two vertices are in limited-distance line-
of-sight or S between them is above —83dBm, they are
connected by a true link in G¢. Otherwise, the link will be
a false positive with probability 0.25. Links that satisfy the
limited-distance line-of-sight condition are used to compute
backup plans. In both settings, we assume that each robot will
remain functional throughout the whole mission. We set 77 to
24 time units and compare the following three algorithms:

Implicit coordination with complete path enumeration, 4-
periodic (IC): the algorithm from [14] where path enumera-
tions are made along 4 time units. (With our discretization, an
enumeration along 5 or more time units would be computa-
tionally prohibitive.) In absence of errors, reconnecting every
4 steps implies reconnection every 24 steps.

UFSR, 24-periodic: the algorithm we described above. In
the unconstrained joint planning step, robots’ paths are chosen
greedily, in the feasibility pruning step, we set § = 1;
in the solution refinement step, we set &' = 1 and use a
simple greedy strategy to generate candidate joint moves.
All the MRPs are solved by running in parallel forward-
and backward-reconnection and choosing the best solution
(combined algorithm).

Greedy with full communication (GFC): this algorithm cor-
responds to the first phase of the UFSR algorithm and is run
assuming perfect global communication among all the graph
vertices. Greedy plans are recomputed each 4 time steps.

Finally, we adapted IC and UFSR to handle reconnection
faults as discussed in Section VI. We fix 7 values to 1 and
5 for IC and UFSR, respectively, and we derive worst-case
lower bounds on the probability of being reconnected after
4+ 1 and 24 + 5 steps as 0.991™ and 0.978™, respectively,
assuming that the final configuration will be connected in G¢.

In order to provide a fair and implementation-independent
comparison of the quality of the solutions returned by the al-
gorithms, we assume planning to be instantaneous. Figs. 14(a)
and 14(b) show the average detection times (plotted with the
95% confidence interval) obtained on 250 runs in the SDR
and MOUT environments. Focusing on the SDR environment
in the error-free setting, it is possible to see that UFSR
allows to obtain better performance than IC up to 4 robots;
then, performance is comparable with that of IC. This is
what we expected: for large teams, there are greater chances
that all the robots are able to spread across the environment
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Fig. 15. Computing times for planning of IC, UFSR, and GFC.

while maintaining global connectivity, even when they are
constrained to reconnect after few time units. In the same
environment, the introduction of errors significantly impacts
on the performance of IC for more than 3 robots, while,
for UFSR, performance is only slightly worse: this results
in generally better performance for UFSR. In the MOUT
environment we obtain significantly smaller gaps. Surprisingly,
GFC turns out to be substantially comparable to IC for all the
team sizes. This is mainly due to the openness of the MOUT
environment, combined with the relatively large extension of
the communication range. The results suggest that, in such
an open environment, it might be generally better to keep the
whole team under frequent communication, reoptimizing the
plan often. Few cases aside, IC provides lower detection times
than UFSR, both in the error-free and error-prone settings.

To conclude, Fig. 15 reports the planning times of our
current implementation, assuming that all the robots contribute
to the resolution of the MRPs in parallel. UFSR is always able
to obtain plans in less than 4s, hence being suitable for real-
time settings.

IX. CONCLUSIONS

Solving the Multirobot Reconnection Problem (MRP) is
a fundamental challenge for several multirobot systems op-
erating under communication constraints. In this paper, we
formalized the MRP within the scope of a generic multirobot
mission and we showed its hardness in the general case
and the existence of a polynomial-time exact algorithm for
special cases. We also proposed exact and heuristic methods,
supported by error-handling procedures, and assessed them
with extensive tests, also in a periodic reconnection use case.

A first promising avenue for future research is related
to the identification of more sophisticated methods to com-
pute the connectivity graph G, since current methods are
mainly suited for ensuring connectivity in a conservative
way. Recently, we have proposed online multirobot navigation
strategies for collecting samples to build a signal strength
map of the environment in terms of a Gaussian Process [33],
[34]. These strategies could be used to estimate G¢ in a less
conservative, yet still sound, way. We are currently working
on offline path planning algorithms to be used for building
G ¢ when the environment is fully known in advance [35].

Moreover, we envision future research focusing on the de-
velopment of sophisticated techniques for handling reconnec-
tion faults. Network reliability [36] is a topic deeply connected
to this task, since the problem of computing the reconnection
probability of a robot configuration under different sources
of uncertainties can be translated to such a #P-complete
problem?. How to exploit network reliability techniques in
our setting is an interesting and promising direction for future
work.

Finally, we believe that our hardness results can be further
specified by showing the NP-hardness of the MRP in cases
where G is a 2D grid graph coincident with G¢. To date, we
could not find any reduction to prove this conjecture, leaving
the problem open for further investigation.
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