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Abstract

Surface infiltration ponds (SIPs) are a popular approach to managed aquifer recharge
in arid and semi-arid regions. We adopt a probabilistic approach to design the opti-
mal schedule for maintenance of SIPs. It can be used to determine whether preven-
tive measures aimed at maintaining the infiltration capacity constant are preferable
to de-clogging, and to decide how often and to what extent the system must be
regenerated (de-clogged). The latter decision involves tradeoffs between perform-
ing deeper (and more expensive) maintenance with low frequency and performing
lighter (and cheaper) maintenance with higher frequency. Such decisions are site-
specific and must be made under uncertainty inherent in siting, construction, and
operation of SIPs.

Key words: managed artificial recharge, clogging, probabilistic risk analysis,
infiltration rate

Email addresses: daniele.pedretti@upc.edu (Daniele Pedretti),
dmt@ucsd.edu (Daniel M. Tartakovsky).

Preprint submitted to Advances in Water Resources 16 February 2011



1 Introduction

Surface infiltration ponds (SIPs) are a popular approach to managed aquifer
recharge (MAR) in arid and semi-arid regions [36,42]. Their effectiveness is
determined in large part by infiltration capacity, I[LT '], of the topsoil in
which an SIP is to be constructed. It affects both the total volume of water that
can infiltrate into the subsurface from the pond and the residence time of water
within the pond, which control important chemical and biological reactions.
The infiltration capacity at any given site is notoriously uncertain due to
both soil heterogeneity and pore clogging. To complicate matters further, I
is often estimated either directly (e.g., with infiltrometers [37]) or indirectly
(e.g., from pore-or grain-size distributions [11,43]), introducing measurement
and interpretive errors as well as the multiplicity of support volumes that can
range from a few centimeters to several meters.

Inherent uncertainty in estimates of SIP’s infiltration capacity and predic-
tions of its temporal evolution introduces significant uncertainty into decisions
about SIP’s management, which can lead to economical and environmental
losses. Management under uncertainty is properly formulated within a proba-
bilistic framework context [23,32,45,48]. While risk analysis is a relatively new
discipline in hydrogeology [4,8,38,39,20,46], it has become a standard practice
in other engineering and environmental disciplines [31].

Although the infiltration capacity I(x,t) generally varies in space x and time
t, the variable of interest in managing operations is its the spatially-averaged
counterpart I(t). At a given time, it can be estimated either statistically from
small-scale local measurements if sufficient amounts of spatially-distributed
data are available, or experimentally with large-scale infiltration tests [1,3].
The temporal evolution of I(t)—typically, its reduction—is caused by a com-
bination of physical processes, which modify the properties of both the water
and the soil. At a typical SIP site, one observes a significant reduction in
porosity ¢ and permeability x within the first few centimeters of the soil due
to clogging [9,35]. Water temperature can be an important factor in biological
clogging taking place over short time intervals [16]. Seasonal variations in the
density and viscosity of water might contribute to the temporal variability of
1, but these effects are expected to be secondary and act on much larger time
scales (months versus days associated with clogging).

Depending on the overall intensity of the clogging mechanisms, SIPs suffer
from “aging” [30], i.e., from an appreciable reduction in the infiltration capac-
ity I, in the first few days after flooding. To meet the projected infiltration
volumes, the system must be periodically maintained by adopting either pre-
ventive or corrective measures at different stages [2,13]. The speed with which
I(t) approaches or drops below some critical threshold value I, is the pri-



mary variable indicating when and what type of corrective measures should
be taken.

In this paper, we adopt a probabilistic approach to design of the optimal
schedule for maintenance of SIPs. Since the cost of maintenance depends on
the frequency and type of maintenance, the proposed approach should include
a cost-benefit analysis, which lies outside the scope of the present investiga-
tion. We use this methodology to evaluate if (and suggest which) preventive
measures are preferable to corrective applications. It can also be used to de-
cide how often and to what extent the system must be regenerated. Taking
decisions about performing deeper (and more expensive) maintenance with
low frequency or performing lighter (and cheaper) maintenance with higher
frequency is strictly site-specific and must be made under uncertainty inherent
in siting, construction, and operation of SIPs.

2 Operation of SIPs under Uncertainty

The complexity of modeling soil clogging and corresponding reduction in in-
filtration capacity, coupled with ubiquitously insufficient site characterization
and soil heterogeneity, renders predictions of a pond’s performance funda-
mentally uncertain. This challenge is partially alleviated by the fact that this

performance is determined by the overall infiltration capacity I(t) rather than
its point values I(x,t). The former is related to the latter by

1(t) = /Q I(x, t)dx, (1)

where € is the area occupied by the infiltration pond. The empirical evidence
from several operating SIPs [34] suggests an exponential decay in the overall
infiltration capacity,

I(t) = Ty ert (2)

where the initial capacity I, and the effective decay (clogging) rate Aeg [T~]
are highly uncertain fitting parameters. One of the main goals of our study is
to relate these parameters to soil properties and to physical, biological, and
chemical mechanisms of clogging.

Different maintenance activities with different scheduling plans can be applied
to a SIP to control the reduction of T with time [9,35]. These can be subdivided
into preventive or corrective measures [7]. Preventive or maintenance activities
are performed during the operation period in order to extend the system’s life
(time between two consecutive corrective measures). Corrective measures must
be taken if and when I(t) reaches its minimally acceptable level I, and the STP



operation must be stopped. Examples of the former include pre-filtering input
water to eliminate particles, using disinfectants to control algae growing, and
controlling entry water temperature to avoid gas bubbling. Examples of the
former include scraping the bottom when the basins are dried out after specific
recharge cycles, supplying additional disinfectants or chemicals to the water,
and using underwater robots to scrape the soil surface during infiltration.

Regardless of the maintenance strategy under consideration, the system life
is highly uncertain so that maintenance decisions have to be made under un-
certainty, calling for a probabilistic approach. Instead, the current practice
is to schedule reset operations (corrective measures) based on experience and
monitoring [13]. An optimal scheduling and selection of maintenance measures
affects the costs of operating SIPs. Forecasting these costs is subject to un-
certainty and depends on many factors, such as the quality of the chemical
products or the performance of the scraping machines.

3 Processes Contributing to SIP failure

Let I. denote the smallest acceptable infiltration capacity of a SIP. We define
“system failure” at time t as the event I(t) < I.. Among a large number of
events that can lead to system failure [21] are interruptions in water supply
to the pond deposition of extraneous impermeable materials at the pond’s
bottom, bad design and/or improper use of the pond, and its complete break-
down due to embankment slides, earthquakes, acts of vandalism, etc. These
and other similar events should be included into a complete probabilistic risk
assessment of SIPs, but lie outside the scope of the present analysis. Instead,
we focus on the system failure due to reduction in the soil’s infiltration capac-
ity caused by clogging.

Clogging alters the hydraulic properties of a soil, leading to reductions in a
SIP’s infiltration capacity over time. A mathematical model capturing this
phenomenon is presented in section 3.1. Alternative descriptions of various
clogging mechanisms are discussed in section 3.2.

3.1 Infiltration € hydraulic parameters

In a well-designed SIP site, the top soil layer can be assumed to control infil-
tration. (A low-permeable layer, e.g., a clay layer with horizontal continuity,
invalidates this assumption. The presence of such layers constitutes a design
failure, and, hence, is not considered here.) Under this assumption, the top
soil layer is (nearly) fully saturated and infiltration can be described by the



one-dimensional Darcy law,

Ix0) = K (x, ) 2D, )
0z
where x = (z,y)T is the horizontal coordinate vector, z is the vertical coordi-
nate, h is the hydraulic head, and K is the saturated hydraulic conductivity.
The latter is defined as K = kpyg/ e, where k is the soil permeability, p,, and
I are the density and dynamic viscosity of water, respectively; and ¢ is the
gravity acceleration constant. To account for changes in hydraulic conductiv-
ity due to pore clogging, we adopt the Kozeny-Carman law [29,12] according
to which permeability s varies with porosity ¢ as

¢ dm ¢
- kTS? 180 (1 — ¢)? )

K

where k, is a geometrical factor, T' is the tortuosity, S is the specific surface
of the pores and d,, is the median percentile diameter.

Assuming that the water properties and the hydraulic gradient do not change
with time, it follows from (3) that any reduction in infiltration capacity is
linearly related to the reduction in K, i.e.,

I(x,t)  K(x,t)
L) Kox)’ (5)

where Iy(x) = I(x,t = 0) and Ky(x) = K(x,t = 0) are the initial values of
the infiltration capacity and the hydraulic conductivity, respectively. Combin-
ing (4) and (5), we obtain an equation relating the reduction in the infiltration
capacity to the reduction in porosity,

I(x1) _ ¢°01) (1= o(x)* _ ¢°(x1)
I(x)  #ix) (1-o(x))?  f(x)
where ¢3(x) = ¢3(x,t = 0) is the initial value of porosity before clogging

started to occur. The zeroth order approximation in eq. 6 is valid whenever
variations in ¢ are not very large.

(6)

3.2 Mathematical models of clogging

A number of physical [47], biological [6,19] and chemical [26] processes can
contribute to clogging at a given site. Their complex interplay stymies the
efforts to develop a comprehensive mathematical model of clogging even if an
individual mechanism is well-understood [14,17,18,41]. Representative models
of the three classes of clogging are discussed below.



3.2.1 Physical clogging

Physical clogging typically refers to filtration processes [28,47] that reduce
porosity ¢ through sedimentation and dragging of suspended particles. Fol-
lowing [28], we employ a first-order mass transfer model,

9C(x, z)

— = _)\z C y <) 7

Iy ()0 2) @

to describe the vertical (in z direction) profile of the volumetric concentration
of particles, C' [M L~3], that are removed from the suspension and get trapped
within the soil. The filtration coefficient A, [L™'] represents volumetric and
surface forces [34]. An exhaustive review of various forms of the filtration
coefficient can be found in [47].

In a typical formulation, e.g., [10], A, is calculated as a combination of the fol-
lowing mechanisms. For filtration induced by inertial forces, A, o< di® where
ds is the mean diameter of suspended particles in the water during the flooding
stage. For filtration due to interception mechanisms, A,y = (ds/d,)"/d, where
d, is a characteristic grain size of the soil, and the exponent n typically varies
between 0.5 and 2.0. For filtration caused by molecular (van der Waals) forces,
Amot o d2. For filtration due to diffusion, Agir = [¢o KT/ (pwdsd,lq|)]®%/d,
where K, [L2MT~'°K 1] is the Boltzmann constant, T is the water tempera-
ture, and ¢ [LT7'] is the flow velocity of water. For filtration due to sedimen-
tation, Aseq = gdo(pr — pw)d2/(181d,y|g|) where py is the bulk density of the
soil.

Soil’s characteristic grain size d, affects its permeability . We choose d;, the
grain size that corresponds to the tenth percentile on the cumulative distri-
bution of grain sizes in a given soil, to play the role of d, and relate it to x by
employing the Hazen formula [27],

K= Ad%o, (8)

where A =~ 100 is a geometrical coefficient that is typically related to the
geometry of the sand. It should be noted that Hazen’s formula (8) is strictly
valid for clean sands and that its validity has been the subject of much debate.
We employ it here to simplify the presentation, and other textural relations
can be used instead. Finally, we assume that in SIP applications d;q doesn’t
change in time, i.e. that the clogging material doesn’t affect the grain size
distribution over time. Clogging materials are of order of magnitude smaller
(in the case of suspended particle) or with less density (in the case of biomass)
than the original material.

Let v, denote an average particle’s attachment velocity to the soil matrix.
Typical values of v, can be obtained from literature or from laboratory exper-
iments. The experiments reported in [34] yield v, &~ 107° m/day, a value that



is in agreement with the reference values suggested in [40]. Setting ¢t = z /v,
in (7) and integrating in time yields

O(x,t) = Co(x)e W0, A =%, (9)

where Cj is the initial concentration of particles in the soil column.

Changes in the concentration of particles 6C' cause changes in the porosity d¢.
We postulate a linear relation between the two, d¢/¢ = m,0C/C, where m,,
is the coefficient of proportionality. It then follows from (9) that

o(x,t) = ¢0(x)e”\p(x)t, Ap = MpA;. (10)

Substituting (10) into the approximation of (6) yields a model describing the
exponential reduction in the infiltration capacity due to physical clogging,

I(x,t) = Iy(x)e 3w, (11)

3.2.2  Biological clogging

Biological activity, such as biomass growth and biogas generation, obstructs
the pores and reduces both porosity and pore connectivity [6]. Biological
clogging is typically described with one of the three approaches: macroscopic
model, micro-colonies-based models, and biofilm-based models. Macroscopic
transport equations resulting from all three frameworks are identical if biofilms
and micro-colonies are fully penetrating [5]. Furthermore, the three approaches
yield acceptable predictions for coarse-textured materials (which are typically
involved in SIP practices), while poor predictions are obtained for fine-textured
materials [44].

Bio-clogging manifests itself through a formation of a thin impermeable layer
at the soil surface, biofilm formation on the soil grains, and precipitation
of biomass that occludes the pores in a whole. We will focus on the last
two phenomena that act to reduce the porosity ¢. Specifically, we adopt a
macroscopic approach and assume that all biomass growth leads to a direct
reduction of porosity, ¢(x,t) = ¢o(x) — ¢dp(X,t), where ¢,(x,t) accounts for
the fraction of the pore volume that is occupied by the biological mass. This
can be rewritten as

_ 1 &lxD (12)

do(x) do(x)

Following [19], we express ¢, in terms of M, [L?L~3], the relative biomass



attached to the soil, via

oo, 1) = "’;f? Mi(x. 1), (13)

where py, is the biomass density.

In general, biomass growth occurs in four stages: time-lag (adaptation), ex-
ponential growth (microbes have acclimated), stationary (limiting substrate),
and decay (substrate exhausted) [49]. While assessing the performance of SIPs,
one is concerned with the initial stages of bio-clogging in which biomass grows
exponentially,

My(x) = M (x)[eMC — 1], (14)
where \s(x) is the growth parameter and A; M} (x) is the initial rate of growth
of biomass. Combining (12)—(14) yields

00 t) _y _ peCIMEC e ), (15)

Po(x) Podo(X)

which, for small ¢ associated with the exponential biomass growth, can be
approximated by

(X, 8) o PeMyAs
~ehbor o PR A 16
P0() b= oo (16)

It is worthwhile emphasizing that the approximation (16) is valid for small ¢,
i.e., it implicitly assumes the variation in porosity due to biofilm growth to be
small relative to the initial biomass. This assumption is adequate for risk as-
sessment purposes, since a large reduction in porosity and permeability would
make the SIP operation not viable. In other words, standard SIP operations
would not allow clogging to develop beyond the exponential growth phase.

Substituting (16) into (6) yields a model describing the exponential reduction
in the infiltration capacity due to biological clogging,

I(x,t) = Ip(x)e 32, (17)

3.2.8  Gas clogging

During the pond filling, gas in pores can be generated by a number of chemical
processes, including microorganisms activity, temperature effects, and release
of trapped bubbles [15,24]. As the air replaces water in some pores (mainly
large ones), water saturation and consequently hydraulic conductivity and
infiltration rates decrease. On the other hand, in SIP degassing can be rapidly
reversed if the proper water temperature conditions are met [34]. Since the
relationship between moisture content and conductivity is characteristic of the



type of soil (i.e., of the grain size), gas clogging also show spatial variability
in heterogeneous media. Direct measurements of the characteristic curves are
challenging and costly.

Clogging due to gas formation takes place at a time scale that is much smaller
than those associated with physical and biological clogging. Taking advantage
of this fact, we employ an instantaneous reduction model of gas clogging,

I(x,1) = R(x)Io(x), (18)

where the reduction factor R(x) € (0, 1] is treated as an uncertain (random)
fitting parameter.

3.2.4  Effective model of clogging

Assuming that the clogging mechanisms described above have a cumulative
effect, the overall reduction in the infiltration capacity is obtained by combin-
ing (11), (17), (18),

I(x,t) = R(x)Iy(x)e 3P+t (19)

4 Quantitative Assessment of SIP Performance

We adopt a probabilistic framework to predict the effects of clogging on a SIP’s
infiltration capacity, which is the most critical cause of operational failure.
Section 4.1 contains a sensitivity analysis of the SIP infiltration capacity to
various clogging mechanisms. In section 4.2, we use stochastic averaging to
relate the point-wise uncertain infiltration capacity I(x,t) given by (19) to its
effective counterpart I(t) in (2).

4.1  Sensitivity analysis

In section 3 we demonstrated how the reduction in the infiltration capacity
I(x,t) in (19) can be related to the soil texture, to the soil particle size d,.
Here we explore further the question of how this soil parameter affects vari-
ous clogging mechanisms and, via (19), the SIP infiltration capacity. In these
simulations, we set d, = 2-107° m, n = 2, p, = 1.5 g/em?® T = 298 °K,
pw =1 g/ecm® p, =1.002-1073 N sec/m?, K, = 1.38- 1072, \, =2.5-1073
1/day, and p, = 1.8 g/cm? for coarse soils, 1.5 g/cm? for mid-grained soils,
and 1.2 g/cm? for fine soils. Finally, we fix ¢y = 0.3 and ¢ = 0.1 m/day even
though these parameters are expected to vary with d,. This is done to isolate



the relative importance of the physical and biological clogging that depend
exclusively on the grain size d,.
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Fig. 1. Sensitivity on d4 of the temporal evolution of the infiltration capacity (nor-
malized)

Figure 1 exhibits the temporal evolution of the infiltration capacity, normal-
ized with its initial value R, for d, = a, b, c representing coarse sand,
sand[?], and fine sand, respectively. For coarser soils, biological processes play
the dominant role in soil clogging (A, + A), while physical clogging plays a

major role in fine-grained soils. For mid grain-sized soils, both mechanisms
have similar intensities.

4.2 Probabilistic analysis

For heterogeneous soils, parameters R, Iy, A;, and )\, can vary is space. As
shown in section 3, all these parameters can be related to d,. Let us assume

that d,(x) incapsulates the spatial variability of these four parameters, so that
(19) can be recast as

I(x,t) = Ip(d,) R(d,)e ()%t = G4 (x), 1. (20)

We treat d,(x) as a random field whose ensemble statistics can be inferred
from measurements taken throughout the SIP’s footprint €.

To relate the point-wise infiltration capacity I(x,?) in (20) to the total infil-
tration capacity I(t) in (2), we invoke the ergodicity hypothesis that postulate
the equivalency between the spatial averaging, I(t), and ensemble averaging,

(1) = [ Gls.pa,(5)ds (21)

where py,(s) is the probability density function of d, defined over the event
space V. The effective clogging parameters in (2) can now be defined as

1 I, —
Ao = - In <<I(t)>> . Tp = (RI). (22)

10



5 Applications

We demonstrate the salient features of the proposed approach on two exam-
ples. The first deals with field data collected at a pilot SIP site (section 5.1).
The second considers several synthetic examples that enable one to analyze
the approach’s accuracy and robustness (section 5.2).

5.1 Pilot SIP in Sant Viceng dels Horts, Spain

We use the mathematical framework developed in sections 3 and 4 to predict
soil clogging and the corresponding reduction in the pond’s infiltration capac-
ity at a SIP site located in Sant Viceng¢ del Horts near the city of Barcelona,
Spain. The site lies in the prodelta region of the Llobregat river, whose geol-
ogy is a sequence of fine- and coarse-grained facies of silico-clastic materials,
deposited according to the evolution of the paleoriver. The hydrogeological
setting consists of sandy-gravel or gravelly-sand (depending on the proportion
of the average grain sizes), separated by non-continuous fine-grained horizons.
The SIP size is 45 m x 100 m, with excavation depth ranging from 4 m to 6
m below the ground surface.

Figure 2 presents an aerial photograph of the site. Heterogeneity (spatial vari-
ability) of the pond’s surface material is clearly visible, and a series of double
ring experiments [33] show that infiltration rates at different locations through-
out the pond vary by orders of magnitude. Since the ground color depends on
the soil texture, which in turn is correlated with the infiltration capacity, the
ground color in Fig. 2 was used [33] to infer the point-wise infiltration capacity
Iy(x) throughout the pond (Fig. 3A). The authors found the local measured
infiltration rates to be linearly correlated with the logarithm of the pixel in-
tensity of the satellite image in Fig. 2 (which happened to have approximately
the same measurement support).

Figure 3B exhibits the characteristic grain size distribution d,(x) inferred from
the distribution of /y(x) in Fig. 3A by means of the Hazen formula (8). The
logarithmic color scales in Fig. 3 highlight the high degree of spatial variability
present in the SIP. The parameters are inferred, and assumed to be constant,
on a pixel basis (the size of the image is 286 x 694 pixels).

The inferred values of characteristic grain sizes d,(x) are next used to esti-
mate the physical clogging rate A, by following the procedure described in
section 3.2.1. Figure 4A presents the spatial distribution of the physical clog-
ging rate A\, resulting from this procedure. Note that the A\, values span four
orders of magnitude.

11
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Fig. 3. (A) Infiltration capacity distribution after initial flooding (modified
from [33]), and (B) corresponding relative grain-size distribution predicted with
the Hazen formula (8).

Next, we use the inferred values of characteristic grain sizes dy(x) to estimate
the biological clogging rate A\, by following the procedure described in sec-
tion 3.2.2. In doing so, we set A\, = 2.4067-107° and p, = 2.5- 1073 g/cm?. To
compute values of py(x), which depends on d,(x), we use a discrete subdivision

12
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of the map in Fig. 3B,

1.8 d,>15
pr=1415 15.102<d, <15 (23)
1.2 d,<15-1072

Here the units of d, and pj are cm and g/cm?, respectively. The spatial dis-
tribution of the biological clogging rate A\, computed with this procedure is

shown in Fig. 4B. One can see that )\, is nearly constant of the surface of this
SIP.

Assuming that the reduction factor R due to chemical clogging is spatially
homogeneous and equal to R = 0.9 and substituting the distributions of A,
and A, from Fig. 4 into (19), we compute the infiltration capacity I(x,t) in
each pixel. Temporal snapshots of the resulting I(x,t) after 7, 14 and 42
days of infiltration are shown in Fig. 5. Comparing these snapshots with the
initial infiltration capacity in Fig. 3A reveals the signification deterioration
in the SIP performance. After 7 days many of the high capacity infiltration
regions persist, while after 42 days the amount of high infiltration regions is
significantly reduced.

A histogram (probability density function or pdf) and the corresponding cu-
mulative distribution function (cdf) of the infiltration capacity after 7, 14 and
42 days are shown in Figs. 6. At early times there is a broad distribution of in-
filtration capacities. As time increases the PDFs shift to the left reflecting the
decrease in infiltration rates and become narrow indicating smaller variability
(uncertainty). They do so while maintaining tails at relatively high values of

13
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Fig. 5. Infiltration capacity of the soil at different flooding stages at the Sant Viceng
dels Horts site obtained from 19 from the initial infiltration value (fig. 3A) and the
map of A values (fig. 4), and assuming a constant reduction factor

infiltration (this is particularly evident in the cumulative densities). If there
were some manner of optimally maintaining higher infiltration rates such that
these tails were larger one could maintain larger mean infiltration capacity
over longer periods of time, thus increasing the SIP’s useful operational time.
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Fig. 6. (A) Histogram and (B) cumulative distribution function of the pixel-wise
infiltration capacities I(x,t) estimated at 7,14 and 42 days after operation at the
Sant Viceng del Horts site.

While the spatial variability of the infiltration rate may be interesting, from
a purely practical perspective the quantity that matters most is the average
(total) infiltration rate I as it quantifies the actual total amount of recharge
taking place. It is obtained by averaging (19) over all the pixels. The resulting
I(t), normalized with initial infiltration capacity I,, is shown by the solid
lines in Fig. 7. Recall that both (17) and (19) ignore the existence of the
maximum threshold of biological growth, i.e., assume that the exponential
growth /bio-clogging continues indefinitely. The dashed lines in Fig. 7 represent
1(t) that accounts for biolimiting effects by impose a threshold for maximum
biological growth in accordance with [19]. The relative difference between the
two models may be considered significant at later times, with the biolimiting

model predicting the infiltration capacity twice as large as the non-limiting

14



case after 35-40 days. However, the SIP’s operation would cease much earlier,
since the reduction of the infiltration capacity to 10% of its initial value is
clearly unacceptable.
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Fig. 7. Predicted reduction in the overall infiltration capacity I of the SIP at the Sant
Viceng del Horts site. Curves in Fig. 7B are a magnification of their counterparts
in Fig. 7A over a shorter time interval. The dotted lines incorporate the biolimited
process.

Finally, we investigate the applicability of the concept of M., the effective
clogging rate that quantifies the rate of clogging over the whole domain and
incorporates the variability of clogging mechanisms. As defined by (22), Aeg
can vary in time, reflecting the fact that the ensemble (or spatial) averaging
does not automatically eliminate time dependence. However, numerical eval-
uation of (22) with the I(¢) shown in Fig. 7 results in Ag ~ 0.139 that is
practically constant in time. The best fit of the data averaged on a pixel per
pixel basis (e.g., the data in Fig. 7) results in an exponential curve and an
estimated clogging rate of A\og = 0.143 with a relative error three orders of
magnitude smaller than the predicted value (see Fig. 8). The close agreement
between the best fit and the theoretical model (22) is encouraging since it helps
to explain why the reported mean infiltration rates in real artificial recharge

ponds have been observed to follow a “homogeneous” exponential decay (e.g.,
[22]).

While the total infiltration capacity I(t) is the most important characteristic
of a SIP site, information about the point-wise infiltration capacity I(x,t)
might be used to maintain higher levels of infiltration over longer periods of
time by effectively treating or maintaining the SIP to mitigate the clogging
effects. In what follows, we demonstrate how efforts related at reducing specific
clogging mechanisms can help to increase mean infiltration. We focus on four
types of maintenance:

No maintenance activity is performed,

All biological clogging mechanisms are remediated (Type A),

All physical clogging mechanisms are remediated (Type B),

Physical clogging mechanisms are remediated in a part of the SIP footprint
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Fig. 8. Exponential decay in the overall infiltration capacity predicted with the three
alternative models of clogging.

(Type C).

The Type C maintenance might employ different criteria to identify the parts
of the SIP footprint where the remediation is to take place. One could clean
an area selected purely on geometrical criteria (e.g., target a half of the area of
the pond at a time). We pursue a different Type C maintenance strategy that
is based on soil heterogeneity and hydraulic criteria to select clean-up areas.
Specifically, we aim to target areas in which A, (Fig. 4A) fall below a certain
threshold value, e.g., 50% or 80% percentiles of the A, probability distribution
(Fig. 9). Since )\, o< I;', such maintenance strategies focus on the areas with
the highest initial infiltration capacity Iy, aiming to sustain higher infiltration
rates for longer and thus increasing the mean infiltration capacity over longer
times. Unfortunately, complex geometries over which such a maintenance is
to be performed suggest practical difficulties with its implementation.

Figure 10 displays the average infiltration capacity I(t) achieved with the four
maintenance strategies identified above. Not surprisingly, all the strategies in-
crease I(t) relative to its counterpart without any maintenance. If one defines
37% of the initial infiltration rate (which approximately equals the characteris-
tic time 1/Aeq) as the minimum acceptable infiltration capacity, then the SIP’s
operational time without maintenance is about 7 days. Treating bio-clogging
extends the operational time to about 9.5 days, and the full treatment of phys-
ical clogging increase the operational time to about 28 days. This highlights
that physical clogging is the primary inhibiter for maintaining effective mean
infiltration rates.

If only partial maintenance of physical clogging is performed, a treatment of
50% of the domain extends the operational time to 18-20 days. A more ex-
tensive treatment, 80% of the domain, delivers a substantial gain over the
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Fig. 10. The overall infiltration capacity I(t) of the Sant Viceng del Horts SIP
corresponding to different types of maintenance.

untreated case of about 25-27 days. Thus, if feasible, partial targeted mainte-
nance offers significant gains in operational time.
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5.2 Synthetic heterogeneous soils

To explore the effects of spatial variability in the parameters r, Iy, R, A, and
Ap, we supplement our analysis of the Sant Viceng del Horts SIP with similar
analyses on other possible geometrical distributions of hydraulic parameters.
We build several synthetic multigaussian fields of heterogeneous distribution of
the natural logarithm of the hydraulic conductivity (Y (x,t) =In(K(x,t))).
Y has units of meters per day. Analogously to the Sant Viceng del Horts, ¢
is the time when the maintenance is performed. We maintain the size of the
computational domain as that of real case analysis (284 x 692 pixels). The
random fields were generated using a sequential simulation algorithm [25],
and are unconditioned to hard data. All fields have been built assuming an
exponential variogram, mean zeros (Y (ty) = 0), different variances oy, and
correlation lengths, Ig.

We start by analyzing a single realization and then evaluating several realiza-
tions as an ensemble within a Monte Carlo (MT) framework. In the first case,
the focus is to make a direct comparison between the real case of Sant Viceng
del Horts and another possible soil configuration where the spatial distribution
of Y(x,tp) is fully known (for instance, in the case of availability of reliable
secondary information). On the other hand, the MT analysis generalizes the
results accounting for a completely random generation of Y'(x,ty) in order
to evaluate the spatial uncertainty due to the non-ergodocity of certain field
geometry.

5.2.1 Results of single realization analysis

For illustrative purposes, we generated four unconditional fields of four selected
types of spatial organization of Y (x,%y). Such fields are shown in Fig. 11.
Field 1 has 0=4 m?/day? and I,=66 pixels, Field 2 has o0=4 m?/day® and
I,=6.6 pixels, Field 3 has o=1 m?/day? and I,=66 pixels, and Field 4 has
o=1 m?/day? and I,=6.6 pixels.

Figure 12 shows how different maintenance strategies affect the decay in the
infiltration capacity of the four fields. The Type C maintenance is based on
the 50% of the distribution of A, (the value differs from field to field). Results
are normalized in the same manner as for the previous case. Many features are
similar to those observed in the previous case. Biological clogging always plays
a secondary role compared to physical clogging. When physical clogging is
removed, the four mean infiltration curves are virtually identical. This suggests
that the impact of soil heterogeneity on the biological processes is very weak,
while its influence on physical clogging is significant.

Spatial correlation of the infiltration capacity, I, is an important parameter
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Fig. 11. Synthetic distributions of the initial infiltration capacity Ip(x) correspond-
ing to different variances oy and correlation scale I.

affecting the SIP’s performance. For the large correlation length (7, =66 pixels,
right figure), increasing oy four-fold does not change the overall results sig-
nificantly. Type A and B maintenance curves almost overlap, as do the curves
corresponding to no maintenance cases. Only the targeted physical clogging
activity (Type C) is different. For the short correlation length (I, =6.6 pixels,
left figure), the maintenance effectiveness is much more sensitive to oy. The
targeted (Type C) maintenance offers the biggest gains when the variance is
large (reflecting the nonlinear scaling of physical clogging mechanisms). While
the relative gain is smaller, treating bio-clogging by the Type B activity also
offers a gain in performance for the larger variance field.

5.2.2  Results of Monte Carlo analysis
In the optic of risk evaluation for soil engineering practices, quantifying the un-

certainty derived from the randomness of the spatial distribution of hydraulic
parameter is a necessary step. To do it, we performed a Monte Carlo analy-
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Fig. 12. The normalized overall infiltration capacity I(t) of the four synthetic SIP
sites corresponding to different types of maintenance.

sis on 1000 additional unconditioned realizations of the previously generated
fields (Section 5.2).

Fig. 13 and fig. 14 display some of the most significant results resulting from
the analysis. The first figure represent the change over time of the spatial-
averaged infiltration capacities (1(t)), in log scale. The thicker lines correspond
to the ensemble mean of the realizations, while the thinner lines are confidence
intervals, which are expressed as the 95% of the normalized errors. Within
fig. 13, the left plot refers to the fields with the highest Ig (66 pixels) and
highest oy (4 m?/day?); on the right side, the upper plot represents the case
of high variance but lower correlation scales. The left-mid and left-lower plot
correspond to the case with oy = 1 m?/day?, and respectively with longer
and shorter correlation of Y. The confidence bounds get narrower as Ig and
especially oy decrease. For this reason, we do not plot them for the case of
oy=1 m?/day?, as they practically match the ensemble mean.

We notice that, for high oy, maintenance of type A (biological treatment)
has in general long-term better benefits than the other maintenance systems,
even if it is very uncertain when Ig is larger (meaning that it can be either
extremely efficient or extremely poorly efficient). On the other hand, the un-
certainties reduce as Ig diminishes. As the soil gets more homogeneous (lower
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oy ), physical treatments (type B and C) give considerably more benefits than
biological treatment (type A). The selection of one specific method is discussed
in the following section.

The soil configuration and the spatial distribution of the initial local infiltra-
tion capacities (I(x,%)) also control the type and intensity of the mainte-
nance activity. This is reflected in the temporal change of the shape of the
frequency distribution of the infiltration values during the recharge process.
Fig. 14 report the experimental cumulative distribution frequency (CDF) of
1(t), normalized on I(ty)), calculate for each realization at five time stages ¢,
to t5, which correspond to 1 day, 7 days, 14 days, 21 days and 42 days after
the soil recovering (t=0). The normalization make the initial CDF being a
unit-step function at t=0. According to fig. 13, in most cases, the CDF's main-
tain a step-like shape throught the observed recharge time; nonetheless, it is
more sensitive to time changes when fields show higher oy-Ig (for which the
uncertainty, or the spreading around the temporally varying ensemble median
value, also increases quicker) than for the cases with lower oy-Is.

Important information can be also obtained by observing the shape that the
frequency distributions assume during the recharge time. From fig. 14 it seems
that the cdfs tend to change from symmetric to asymmetric distributions; this
behavior is especially pronounced in case of maintenance of Type A as well as
for higher Ig-0y combinations. We analyze the probabilistic density functions
(PDF) for these specific cases as a useful way to highlight such patterns. The
PDF are calculated as the best-fitted approximation to the discrete experi-
mental histograms of infiltration capacities distribution. In fig. 15 we plot the
PDF for different types and intensities of maintenance activities, considering
also the case of no maintenance, calculated for a selected soil configuration
(Is = 66 pixeles and oy = 4 m?/day?) at three different time stages (¢, t3
and t5). Fig. 16 shows, on the other hand, the PDFs relative to different soil
configurations assuming that only Type A of maintenance is applied. For ¢,
and t3 we fitted an equivalent normal distribution, while for t5; we fitted a
log-normal distribution. Notice that in most cases the discrete distributions
tend to a Dirac function; thus, it has not been calculated for these cases. In fig.
15, the fitting process is not applied for the Type C case as the shape of the
histograms is clearly different from both normal and log-normal distribution
(they are negatively skewed). This is due to the fact that the type C select
only certain portion of the domain, keeping higher frequency of higher values
of I(x,t) and thus maintaining higher statistical mean infiltration capacity.
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Fig. 13. Ensemble average (thicker marks) resulting from Monte Carlo analysis
and corresponding 95% interval confidences (finer marks) of the normalized overall
infiltration capacity I(¢) in time for each field geometry and variance, for different
types of maintenance. Notice that the vertical axis is set in logarithm scale. As the
confidence intervals become narrower (and irrelevant from a practical point of view)

for o0 = 1, the figure displays only the ensemble average for such variance.

6 Discussion

The analysis offer a wide range of possible options to perform soil maintenance
depending on the initial soil configuration, and to the degree of geological
characterization. The most important results is that the efficiency of a specific
method is related to the hydraulic heterogeneities, or better said to the degree
of homogenization and organization of a soil. It should be noticed that these
results are purely modelling-driven results. In the practice, selecting one of
the maintenance methods is strictly site-specific and should be based on a
local cost-benefit analysis. Such analysis accounts for the local availability of
specific tools for clogging removal, the technical support, the availability of
selected type of water, the extension of the recharge fields area, and many
other terms. For instance, one maintenance method can be extremely cheap
with regards to the others, and thus its applicability could be made with higher
frequency in order to prevent the soil for clogging. Our analysis indicate that,
from a technical point of view, the uncertainty of the de-clogging method is
extremely site-dependent. The results give raise to some considerations, that
are listed as follow.

1) In the real case analysis, the initial distribution of the local infiltration
capacity is quite symmetric even if not parametric (fig. 6. The synthetic fields
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Fig. 14. Cumulative distribution frequency (cdf) of the normalized overall infil-
tration capacity I(t) resulting from the Monte Carlo analysis.The selected times
consider t1=1, to=7, t3=14, t4=21 and t5=42 days after the maintenance opera-
tions. In each plot, the thicker line indicates t;. Notice that the rate at which time
evolution of the mean value (cdf = 0.5) changes depending on the soil configuration
and the type of maintainance. The shape of the curves also changes over time, and
is more sensible for fields with higher Ig and oy, and especially for applications on

bioclogging (Type A).

were generated, on the other hands, using a Gaussian simulator. In both cases,
the tendency is to achieve an asymmetric log-distribution as the recharge is
applied. This is especially visible observing the Monte Carlo outputs for Type
A of maintenance, or by assessing the case with high oy and Is.

2) Uncertainty is extremely related with the soil homogenization. In the multi-
gaussian fields of Y (the natural logarithm of K'), the equivalent distribution of
the grain size (calculated using the Hazen model) is also log-normal. Therefore,
the higher oy, the higher the probability to encounter fine materials. Type A
maintenance eliminate all biological clogging mechanisms, so that clogging de-
pend only on the physical mechanisms. Since the latter are more sensitive to
finer grain size (low d,) than for coarser grain size (high d,) (fig. 1), increasing
the probability to encounter low d, values arises the sensibility of the CDF
to change over time. For type of maintenance B and C, biological-treatment
benefits generally dominate, and since they are practically not sensible to d,
(with this initial configuration of distribution of V), the shape of the CDF do
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not change significantly in time.

3) The uncertainty is also related to the correlation scales, to the stationarity
of the process and to the ergodicity of the solution. The relationship between
the domain size and Ig diminishes as the latter term increases, meaning that
less heterogeneity is explored over the same number of realizations. The result
suggests that special care must be taken when upscaled groundwater models
are used as a support tool for taking decisions on the SIPs. If the selection
of an effective K to model a whole domain is obtained, for instance, relating
o and the correlation scales (which is a typical and well known approach
e.g. Sudicky 1986, Dagan 1989, Matheron, 1967, Rubin, 1993), one could in
principle hide the essential dependency of the type of maintenance upon one
of the two parameter.

4) Fig. 9 indicates the zone of the real case where maintenance should be
performed in order to recover the mean infiltration; being these zones quite
extended and recognizable, maintenance activity of type C can be easily per-
formed. Therefore, we suggest to include a geometrical factor (for instance,
the Ig) to properly formulate the risk, in order to account for uncertainty of
properly highlighting the zones where to perform the maintenance activity.
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5) Properly performed geological characterizations are fundamental for opti-
mum cost-benefit analysis and design of maintenance activities on SIP. This
especially true in the cases of great variability of soil parameters in small-
scale sites (like the typical infiltration ponds). In the single realization analysis
we analyzed two cases where the spatial distribution of hydraulic parameters
(in specific, I(x,t)) was supposed to be fully known at each portion of do-
main. Nonetheless, in many practices this is not always possible, especially
where geological characterization lacks and no exhaustive secondary informa-
tion exists. On the other hands, the Monte Carlo simulations are completely
unconditioned to any local measurements of I(x,t). In this sense, this is the
opposite case of the previous analysis (full spatial knowledge). In the practice,
a (typically, limited) number of field measurements is normally available, and
in principle could reduce the degree of uncertainty about the selection of a
specific clogging method.
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Conclusion

An effective use of Surface Infiltration Ponds (SIPs) requires maintaining the
soil to recover the infiltration capacity after certain type has elapsed after
the pond has been flooded. Recovering means maintaining specific amount of
the overall infiltration capacity at the facility scale. Of the many processes
that affect infiltration, clogging typically play the leading role. Soil hetero-
geneity at SIP sites induces spatial variability of both local infiltration rates
and local clogging parameters, which complicates the accurate predictions of
mean infiltration (averaged over the whole pond). In this work we developed
a probabilistic framework to evaluate the risk of taking decision about how to
manage a SIP under uncertainty. The framework focuses on physical, biolog-
ical and retardation-like clogging mechanisms, although additional processes
can easily be included. We demonstrate that physical clogging (strictly related
to some typical parameter of the soil like the grain size) is most sensitive to
soil heterogeneity rather than the biological treatment. We applied our general
methodology to two sets of single realization examples (a real SIP and four
synthetic ones), and within a Monte Carlo framework. The single realization
approach (where we considered the spatial distribution of the initial infiltra-
tion capacity to be fuilly known at any location of the pond) demonstrates how
a heterogeneous system, where local infiltration rates can range over several
orders of magnitude, can be described with an effective homogeneous decay
rate, a fact that has been observed at several field sites. The Monte Carlo
framework shows that the risk of taking optimum decisions depends on the
soil heterogeneity. Uncertainty mainly depends on the global variability of the
hydraulic property of the soil (risk increases as the variance of the hydraulic
conductivity increases). The geometrical distribution (evaluated by the corre-
lation scales) of such parameters plays a secondarily role. These results suggest
that the geological knowledge of the soil (thus, the geological characterization)
is determinant for the optimum decision of maintenance operation on the SIPs.
In any case, a cost/benefit analysis would have to be performed considering
the costs and feasibility of such activities.
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