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Abstract
Biological networks are currently being studied with approaches derived from the mathematical and physical sci-
ences. Their structural analysis enables to highlight nodes with special properties that have sometimes been corre-
lated with the biological importance of a gene or a protein. However, biological networks are dynamic both on
the evolutionary time-scale, and on the much shorter time-scale of physiological processes. There is therefore no
unique network for a given cellular process, but potentially many realizations, each with different properties as a
consequence of regulatory mechanisms. Such realizations provide snapshots of a same network in different condi-
tions, enabling the study of condition-dependent structural properties. True dynamical analysis can be obtained
through detailed mathematical modeling techniques that are not easily scalable to full network models.
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INTRODUCTION
High-throughput technologies have recently led to a

new perspective in biology, where the cell is inter-

preted as a large and complex system composed of

highly integrated subsystems. Interpretation of these

systems as networks of interactions has spurred the

application of analytical tools developed since long

by mathematicians and physicists to analyze biolo-

gical networks.

Different biological networks can be defined; de-

tailed descriptions in addition to the approaches to

their reconstruction are treated exhaustively in sev-

eral publications (Supplementary Material File 1). In

this review, we focus on gene regulatory, metabolic

and protein–protein interaction networks (PPINs),

which are at the basis of all cellular processes, sparsely

citing other kinds of networks when interesting for

the discussion. A few technical definitions are pro-

vided in the Supplementary Material File 2 for the

terms underlined in the text.

A PPIN (Figure 1A) has nodes corresponding to

proteins and edges indicating their physical inter-

action. When a protein has more than one partner,

the network is not able to tell if the different inter-

actions take place together (as in a protein complex),

or if they correspond to interactions taking place at

different times.

An MN may be interpreted and built in various

ways (Figure 1B): nodes can be metabolites or reac-

tions (respectively giving rise to the compound and
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the reaction graphs), and arcs (i.e. directed edges) can

be reactions or shared metabolites. In both cases, the

reconstruction may lead to a loss of fundamental in-

formation (Figure 1B). These limitations ask for a full

treatment of complex reactions in an MN (discussed

in detail e.g. in [1,2]): bipartite graphs and hyper-

graphs help to overcome these problems at the

price of a higher algorithmic complexity.

Hypergraphs are indeed generalizations of graphs

and thus problems may become harder to solve

(see [3] for some examples of hypergraphs applied

to biological questions and the associated computa-

tional problems).

In a gene regulatory network (GRN; Figure 1C),

nodes representing transcriptional regulators are con-

nected to the nodes corresponding to their targets by

signed arcs. The sign or weight of such arcs indicates

the effect of the control. Because of combinatorial

regulation whose output depends on the architecture

of promoters which is not encoded in a basic GRN,

an hypergraph representation could also represent a

better choice for these networks [4–6].

With a biological network in hand, we can in-

spect many properties of the nodes or the edges/arcs

searching for interesting features. Network metrics

were mainly developed for nonbiological purposes,

but in some cases they provided meaningful bio-

logical information (see sections below and

Supplementary Material File 1). A more thorough

description of the use of network metrics in biology

is given in the following sections. Different measures

focus on distinct properties of nodes or edges/arcs;

hence, the choice of a meaningful metric depends on

the type of network and on the question(s) asked.

This task requires some knowledge on the biological

processes modeled by the network because they

strongly affect the interpretation or even the useful-

ness of a measure.

MNs can also be studied using quantitative

constraint-based models that are able to identify

the optimal distribution of fluxes in the network

in a defined growth condition, at the expense of

neglecting the dynamics to reach steady state [7].

The accessible structure of the network can there-

fore be proficiently used to obtain quantitative and

testable information on the physiological state of a

bacterium.

Although informative, the analysis of a static

structure has its drawbacks. The first one is that we

completely neglect any additional property the nodes

(genes and proteins) may have, asking for an

integration of those features into meaningful net-

work metrics inspired by biology. The second draw-

back concerns the highly dynamic nature of

biological networks: regulatory mechanisms active

in different physiological states change the connect-

ivity of the network, so that structural properties may

be condition dependent. Another problem arises be-

cause a structural analysis is not always able to take

into account regulatory mechanisms: the activity of

enzymes is often regulated by one or more effector

metabolites but since the latter are not consumed,

the MN neglects such regulations (Figure 1B).

This can have profound consequences because

these regulations have important roles in stabilizing

the metabolic states and in generating complex and

biologically important dynamic behaviors [8–10].

These effectors are moreover able to cross the

boundaries between different biological levels, such

as metabolism and gene regulation. Building inte-

grated models taking these cross-talks into account

therefore represents a major challenge in systems

biology. Previous modeling efforts have demon-

strated that none of the different biological layers

is truly isolated [11–13] and that enzymes also

have regulatory functions, exerted through their

control over the concentration of particular

metabolites.

These considerations lead to a view of the cell as a

network of networks, whose understanding requires

considering regulatory interactions not only within,

but also between biological networks.

STRUCTURALANALYSIS
In this section, we explore some topological metrics

often used to analyze biological networks. In particu-

lar, we focus on centrality measures to predict essen-

tial genes, average distance (AD) and diameter to

inspect the compactness of the network, assortativity

and dyadicity to study the modularity of a network

and any correlations between the properties of the

nodes.

Before discussing these measures, let us stress that

biases in the network reconstructions or manipula-

tion can strongly affect the results of the analysis,

confounding (if any exist) the observed correlations

of biological and topological properties [14].

Consequently, we need to carefully interpret the

topological measures obtained given that we only

have a partial reconstruction in hand, and that
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Figure 1: (A) An example of different kinds of interactions that build up a PPIN. A signal (asterisk) activates a re-
ceptor, which auto-phosphorylates and then passes the phosphate group to another protein (in Bacteria usually a
Response Regulator), which is then able to regulate the activity of other proteins, or activate and repress gene ex-
pression. Interactions during this process are transient (T), therefore they are more difficult to detect using
high-throughput technologies. Consequently, the PPIN is enriched in stable (S) interactions. (B) Graph models to
represent an MN. Given three biochemical reactions (R1, R2, R3), metabolic graphs are built with metabolites as
round nodes and reactions as square nodes.The enzyme catalyzing reaction R1has a metabolic regulatory feedback
from compound C. The same system can be represented using different kinds of networks. Compound graph,
where nodes are metabolites and there is an arc between a substrate and a product of a reaction; reaction graph,
where nodes correspond to reactions and are connected when a product of one reaction is a substrate of the
next one; bipartite graph: nodes are either compounds or reactions in which there is an arc between the sub-
strate/reaction and reaction/product; hypergraph: nodes are compounds and a hyperarc links the substrate(s) to
the product(s) of a reaction.The feedback from C to the enzyme catalyzing reaction R1 is lost in all of these repre-
sentations. Also, the compound and reaction graphs account for loss of information, e.g. reaction R1 has two sub-
strates (A and B) and two products (C and D), however, by looking at the corresponding compound graph one
could imagine that the production of C only requires A, and by looking at the corresponding reaction graph we
notice that the arc between R1 and R2 exists only because of the compound D regardless of the presence of E.
(C) A genetic circuit is a visual representation of a biological system and we provide three of its possible mathemat-
ical translations. The bipartite graph has nodes for proteins (circles) and different logical gates for combinatorial
regulation: AND (triangle) requires the presence of both regulators to have transcription, while OR (diamond) can
be activated by one of the regulators alone.The information on the promoter logics is lost in the Simple representa-
tion, while it is encoded in the hypergraph. The difference between these representations is evident if we suppose
to remove regulator Z. By analyzing the Simple network, one may infer that the autoregulation of W continues to
take place, which is not true, as correctly predicted by the bipartite graph and the hypergraph.
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some of the measures described below are strongly

affected by the sampling [15,16].

Centrality analysis
Given a network, it is natural to wonder how im-

portant each node is to its functionality. A number of

graph measures have been developed for evaluating

node centrality [17–21] and several tools allow to

compute diverse network metrics, like CentiBiN

[17], VisANT [22], Visone [23], Pajek [23],

CentiScaPe [21] and CentiLib [24].

Centrality measures can be local (or neighbor-

hood based) or global (distance or feedback based).

Local measures
With neighborhood-based measures, such as degree,

the importance of the nodes is inferred from their

local connectivity: the more connections a node has,

the more central it is. Highly connected nodes (hubs)

were found to possess special properties in the yeast

PPIN: they are more often essential than non-hub

proteins [25,26]), they tend to play a central role in

the modular organization of a PPIN [27,28] and they

seem to be evolutionarily more conserved [29].

Nevertheless, since then, several works have raised

doubts on some of these associations [30,31].

There is no consensus in the literature on how to

define a hub, and different criteria have been used: a

given fraction of the highest degree nodes [32];

nodes with a given fraction of the total connectivity

[33]; and a degree greater than an arbitrary threshold

[28,34,35]. Recently, Vallabhajosyula et al. [36] pro-

posed three objective functions allowing to define

hubs in a PPIN in a rigorous way; unfortunately

these are based on previous results on the properties

of hubs in PPINs, limiting their applicability to other

types of networks.

In order to have an indication about the homo-

geneity of the nodes of a network, it could be inter-

esting to study the degree distribution that for most

biological networks is well fitted by a power-law

(P(k)� k-�) with ��2, where k is the degree. In

these networks, a few hubs play a fundamental role

for the integrity and navigability of the network [27],

whereas a vast majority of the nodes has only a few

connections. This degree distribution has been asso-

ciated with robustness against random node removal.

Robustness to the loss of a node in an MN indicates

the presence of alternative pathways bypassing the

missing reaction; in GRNs it may correspond to

the presence of alternative ways of transmitting and

controlling information. On the contrary, these net-

works are highly sensitive to attacks directed on

hubs, because their removal deeply affects network

functionality [37]. Even though much research has

been done on the power-law distribution and its

universality in biological networks, criticisms have

been raised [38]. Power-law degree distributions

indeed can be obtained through random sampling

of networks with different topologies, indicating

that it might not be possible to infer the true

degree distribution from biological networks, for

which complete reconstructions are usually not

available [39].

The local connectivity of nodes can be studied in

further detail by using either assortativity or dyadi-

city. The first measure represents the correlation be-

tween the degree of adjacent nodes [40]. Maslov and

Sneppen [41] found that hubs in the yeast PPIN are

mostly connected to non-hubs, and are therefore

well separated from each other. Dyadicity [42] meas-

ures the degree to which the nodes of a network are

connected to other nodes that share some character-

istic (functional classification, essentiality, involve-

ment in a disease and so on) and is therefore able

to characterize the modular structure of a network

by considering the distribution of the functions over

the nodes and their connectivity [43]. A network is

called heterophilic (heterophobic) when different

categories are connected more (less) often than ex-

pected under a random model. It was recently used

to study the potential coupling between structure

and functionality in transcriptional and noncoding

(nc) RNA–protein interaction networks [44]. The

results showed that most transcriptional regulators

and ncRNAs tend to connect to genes/proteins of

other functional classes, suggesting that regulators do

not really belong to a functional class but tend in-

stead to coordinate several of them [44]. On the

converse, in PPINs and MNs, the connections

more often involve proteins of a same functional

category.

Global measures
Closeness [45] and shortest path-based betweenness

[46] reflect global properties of a network and use a

distance measure between nodes, often the shortest

path. The closeness of a node depends on its AD

from the others and is of particular interest for infor-

mation networks (such as signaling network and

GRNs) as it measures how fast information flows

from a node of interest to all the reachable nodes
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[47]. It has been recently integrated with biological

information in a parameter-free gene prioritization

approach that computes the interconnectedness

(ICN) between genes in a network [48]. ICN meas-

ures closeness of each candidate gene to genes pos-

sessing an interesting property by considering

alternative paths in addition to the direct link and

shortest one.

Shortest path-based betweenness depends on the

number of shortest paths crossing a node. In PPINs,

betweenness can be interpreted as the relevance of a

protein to be intermediary in the interaction be-

tween other proteins, assuming that this interaction

passes through shortest paths [21]. Bottlenecks are

nodes with high betweenness centrality and were

found to be key connectors with surprising func-

tional and dynamical properties, often essential

[49]. Bottleneck and hub genes were identified in

coexpression networks inferred from experimental

data, and found to be often essential for virulence

in Salmonella typhimurium with the role of mediators

of transitions between different cellular states or of

sentinels that reflect the dynamics of these transitions

[50]. Cell cycle checkpoints were found to be bottle-

necks in a gene coexpression network of cell cycle

regulated genes in the fission yeast [51].

Network metrics in general [52–54], and

betweenness centrality in particular are also used

for the rational prediction of drug targets [55].

Essential genes are preferred targets for drug design

and central genes are more likely to be essential.

Another constraint was imposed in this particular

case: the gene must be essential for the pathogen

but not for the host to reduce any side effects of

the drug.

One problem with shortest path-based measures is

that communication between biological entities is

assumed to pass along those paths, which is often

not plausible: from the point of view of MNs, the

shortest path might be defined on the basis of the

energy/cofactor requirements instead of the number

of steps, whereas in GRNs and PPINs all active con-

nections will take place, not only the shortest ones.

In the case of GRNs, the targets with different short-

est paths to a common regulator may exhibit hier-

archical gene expression patterns as is the case for

flagellar genes [56].

To overcome the limitation of shortest paths, a

node can be considered central when it is crossed by

many random walks: this is the case of the random

walk-based betweenness centrality [57]. Some

feedback-based measures implicitly rely on random

walks, like eigenvector [58] and spectral centrality

[59]. Eigenvector centrality has been applied to sev-

eral MNs [60] and was shown to outperform other

metrics for the identification of essential proteins in

the PPIN of yeast [61], together with subgraph cen-

trality [62].

Distance analysis
The diameter of a network is an overall indication of

its compactness. Despite the fact that real networks

sometimes exhibit the small-world property and that

shorter diameters may be beneficial to some net-

works (e.g. for rapid information flow), it was

shown that several biological networks have larger

diameters than their randomizations. One possible

reason for this is their modular nature [63] leading

to the suggestion that modularity may be a universal

characteristic of real networks, due to the advantages

it brings to multi-functionality, robustness and evol-

vability. On one hand, high modularity reduces

pleiotropic effects improving the evolvability of

the system. On the other, numerical experiments

also demonstrated that modularization provides ro-

bustness against random perturbations in network

structure, i.e. evolutionary change [64].

The distribution of distances and the AD may be

more informative than the diameter about the global

properties of a network [63]. The small AD com-

monly observed in biological networks pertains to

the so-called small-world effect [65]. The AD

ranged between 3 and 5 in 43 MNs of 200–800

nodes [66], showing that all nodes are quite close

to each other. Although several groups confirmed

the small-world property of the MN of different

organisms [67–71], Arita [72] heavily criticized the

way the pathways are computed in those works since

they do not conserve their structural moieties. When

this problem is accounted for correctly, the analysis

revealed that the average path length of the

Escherichia coli metabolism is much longer than previ-

ously thought [72,73].

Quantitative structural analysis
Flux Balance Analysis (FBA; Figure 2) is a quantita-

tive modeling technique that relies on a validated

reconstruction of an MN, the steady-state assump-

tion and additional constraints [74–76].

The target of the method is obtaining the flux

distribution within the MN under specified growth

conditions (Figure 2).
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The stoichiometry of the reactions encode the

mass conservation rules, and a modeling of the

environment through transport reactions impose

constraints on the possible flux distributions satisfying

the steady-state condition; additional constraints may

also be added such as reaction reversibility and max-

imum velocity of enzymes. Since the solution space

for such models is very large even under the con-

straints used, FBA seeks an optimal flux distribution

with respect to a carefully chosen objective function

using optimization techniques. The assumption

behind FBA is that metabolism maximizes some ob-

jective, but there may exist many suboptimal flux

distributions that help the organism during adapta-

tion to specific environmental conditions. This led to

elementary mode analysis [77], which seeks for the

solutions satisfying the above constraints regardless of

the objective function. Elementary modes can be

loosely defined as the smallest subnetworks allowing

an MN to function in steady state [78,79]. According

to Stelling et al. [79], they can be used to understand

cellular objectives for an overall MN.

The objective function plays a fundamental role

in FBA as it provides a way to choose one optimal

solution: assuming that the objective of E. coli in rich

medium is to grow at maximum speed, we may for-

mulate an objective function that combines fluxes

exiting the MN to produce biomass. Optimization

through integer linear programming [7,80] then

allows to identify one optimal solution which is a

physiological steady state of the MN of an organism

in that condition. When the target is maximization

of the production of some compound, the com-

pound is usually included in the objective function

to enforce solutions where its production is active.

Other formulations for the objective function may

be designed to mimic disparate growth conditions,

not necessarily focusing on fast growth [81–91].

Biologically speaking, solutions obtained through

FBA describe a partition of the input fluxes into the

different branches of the network to produce the

compounds required by growth (through the object-

ive function).

One of the most appealing properties of con-

straint-based models is that they provide a way to

explore the consequences of genetic manipulations

on the whole MN: one or more reactions can be

eliminated (simulating knock-out mutants) [92–95]

Figure 2: FBA is a constraint-based model based on the stoichiometric modeling of an MN, a (quasi) steady-state
condition and an objective function.The constraints are the reaction set of the network encoded in the stoichiomet-
ric matrix N and additional thermodynamic and environmental constraints.The steady-state condition for MNs cor-
responds to a regime where the intracellular fluxes and metabolite concentrations are constant in time (Nv¼ 0),
where v is a vector representing a flux distribution for the reactions. There are many flux distributions satisfying
the steady-state condition and the other constraints. In FBA experiments, the interest is the identification of the
flux distribution that maximizes/minimizes a given objective function.
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or otherwise manipulated, and simulations can be

run to see if and how the objective function can

be improved with respect to the wild-type model

[96]. By coupling two levels of optimization, it is

possible to predict the best engineering strategy to

have mutants that maximize some by-product of

interest, such as ethanol [96] or lactate [97], while

growing. A recent survey on FBA and its applications

can be found in [98].

Dynamic analysis
Dynamic analysis of structural properties
In general, we look at biological networks as static

entities, but it should be stressed that they are instead

very dynamic at widely different time-scales. They

are dynamic in evolutionary time like any other bio-

logical structure, and even more on short time-scales,

since regulatory connections and feedbacks change

the connectivity of the network depending on the

physiological state (Figure 3). Consequently, we

should interpret most of the currently available

biological network reconstructions as potential net-

works, where all the possible connections are indi-

cated. By the term potential, we highlight the fact

that edges/arcs and nodes in this network will be

hardly present all together in vivo. If we consider

for instance a PPIN, not all interaction partners

of a protein will be expressed in a given condition,

reducing the number of actual partners. Conversely,

we may speak of network realizations when focusing

on the active subgraph of a potential network,

defined on the basis of experimental data [28,99–

101]. The dynamic nature of biological networks is

also at the basis of differential network analysis [102],

which aims at capturing the subgraphs specific of a

given network realization.

These considerations are important since they

affect the analysis of biological networks. As there

are many condition-specific realizations of a biolo-

gical network, they plausibly have different structural

properties. It was indeed shown that random sub-

graphs of a network do not necessarily maintain

the same-degree distribution as the entire network

[103], suggesting that other structural properties may

also change (Figure 4).

Therefore, it is not clear if we can look for ‘uni-

versal’ properties of biological networks by analyzing

potential networks, or whether we should instead

define as ‘universal’ those properties that characterize

most realizations.

Han etal. [28] estimated the temporal connectivity

of hubs in the yeast PPIN by using gene expression

data: the correlation in gene expression between two

connected nodes in the potential network allowed to

define two types of hubs: party hubs, interacting

with their partners simultaneously; and date hubs,

which bind their different partners at different

times or locations. It is then plausible to do the

same for other measures: genes may be central in

the potential network and frequently or not in the

realizations (party and date centers); party and date

bottlenecks may be defined in the same way, and so

on. This additional level of complexity may allow a

deeper understanding of how physiological transi-

tions are driven by topological changes.

Gene expression was integrated in a centrality

measure called Pec [104], which was used to identify

essential genes in yeast. This measure exploits the

strength of the connectivity between two adjacent

nodes based on an Edge Clustering Coefficient

[105], weighted by the co-expression between

genes in experimental data.

Figure 3: Illustrative example on the potential and
realization concept concerning the anabolic and cata-
bolic pathways of a same compound (4). (A) The poten-
tial network. (B) The realizations are shown for
different physiological states: R1, biosynthetic state for
compound o. R2 compound o is available and its biosyn-
thetic route is off. R3 catabolic state: a degradation
pathway is activated to reduce the intracellular concen-
tration of the compound.
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This reasoning also affects the evolutionary inter-

pretation of network properties, for instance when

concluding that evolution promoted the fixation of a

given structural feature of the potential network.

Luscombe etal. [99] analyzed the structural properties

of the yeast GRN in different conditions. Starting

from a validated GRN, they used gene expression

data to extract the subnetworks supposed to be ac-

tive during environmental stress or the cell cycle,

highlighting important differences: the cell cycle

subnetwork has long shortest paths and combinator-

ial regulation is common, whereas short paths and

mainly single-input regulations characterize the stress

condition. The length of a path may be relevant in

the context of a GRN because it can be interpreted

as a measure of the delay to have a response once the

top regulator is activated (Figure 1B). The short

paths for the stress conditions suggest evolution of

a fast response to stressors, whereas cell cycle evolved

under the necessity for fine regulations giving

the correct temporal ordering of events, which

explains the combinatorial regulation (information

integration) and the longer paths (check points).

Performing the analysis on the potential network,

these differences would not have been noticed.

The previous work has however been heavily criti-

cized [99], but both studies conclude that realization

networks can be largely different in their structural

properties (see also [28,101]).

The use of realization networks is currently

limited by the need for high-quality and high-

throughput experimental data, today available only

for a few organisms. Nevertheless, large-scale experi-

mental data will be more easily obtained in the

future, giving the occasion to develop the algorithms

required for a similar approach.

Kinetic modeling of full-scale networks
In the previous section, we discussed how to explore

the structural properties of a biological network

using experimental data to define the active sub-

graphs in a potential network. However, the analysis

is not really dynamic, but gives instead only a snap-

shot of the steady states of a network in different

conditions. To move forward with the dynamic ana-

lysis of networks, we discuss the mathematical mod-

eling of biochemical reaction networks from the

perspective of building large, network-scale models

able to predict the dynamics between different states.

Many different modeling strategies were devised and

Figure 4: Centrality measures change in GRN realizations. Nodes have a size proportional to the betweenness
centrality measure and the color of a node changes according to the outdegree. The pairs of regulators A and B as
well as E and F are both required for the activation of the target gene(s). (A) The potential network, where regula-
tors A and D are central following betweenness centrality, and E with respect to outdegree centrality. Now let us
suppose to use experimental data to obtain two realizations of this potential network. In (B) regulator F is not ex-
pressed, and regulator E has consequently a low outdegree. In (C) regulator B is inactive, imposing a remarkable
change in the betweenness centrality value of regulator C.
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described elsewhere [4,8,106–119]; here we briefly

discuss the modeling of biochemical networks (MN

and GRN) and its application to cellular scale sys-

tems. Some of the discussions also apply to signaling

systems, which combine different types of regulation

(protein–protein interaction, phosphorylation and

transcriptional regulation).

Kinetic metabolic models are traditionally based

on systems of ordinary differential equations where

the rates modeling the activity of an enzyme are

mechanistic, nonlinear and more or less precisely

describe the catalytic mechanism of an enzyme.

The activity of promoters in gene regulation is usu-

ally modeled using sigmoid functions as suggested

by experimental data [120,121], and combination

thereof in the presence of combinatorial regulation

[4]. The parameters of these models are usually

derived from in vitro (rarely in vivo) experiments

but the large differences between in vivo and

in vitro conditions have called into question this ap-

proach [122–125], and in vivo experiments should

be preferred [126]. The main drawback of building

such detailed models is therefore that it is very

time-consuming for the amount of good quality

and informative experimental data required to per-

form parameter identification. Mechanistic models

have been consequently applied mainly to well-stu-

died systems, and only recently models for less

studied ones have started being implemented

[127–131].

All these limitations make it impossible at the

moment to build mechanistic models at a full net-

work scale. The only exception for MNs is a work

by Jamshidi and Palsson [132], who use mass action

kinetics to build a model of the MN of red blood

cells with 100 chemical reactions (catalytic or regu-

latory), and 95 variables. To overcome the limits

imposed by mechanistic models, approximative

nonmechanistic rate equations have been developed

for both metabolic (e.g. [113–115]) and gene regu-

lation systems [4]. The main advantage of approxi-

mated formalisms is that they require less

parameters, reducing as well the experimental

effort for parameter identification. One of these ap-

proximations is called linlog, and was recently used

to model a network-scale MN of yeast [133]. The

parameters were obtained from a model repository

(see Figure 5 for more details on this

Figure 5: (A) A metabolic system. (B).The corresponding stoichiometry matrix N.The evolution in time of the six
metabolite concentrations is given by: dx/dt¼Nv(e,f(x,p)), where x is the vector of metabolite concentrations and
v(e,f(x,p)) is a vector of rates, functions depending on enzyme levels e and on metabolites in x, including the ef-
fectors. The latter dependencies are not encoded in the stoichiometry matrix. f(x,p) can take many different
forms, e.g. mass action, Michaelis^Menten or linlog. (C) The parameter matrix of the linlog approximation of the
entire system; all the rate functions have the same standard format, a linear combination of logarithmic metabolite
concentrations i.e. v¼diag(e) (AþB log X), with A and B a vector and a matrix of parameters, respectively. (D)
Comparison of the irreversible Michaelis^Menten (Vmax [S]/(Kmþ[S])) and corresponding linlog: linlog is not satur-
able for large substrate concentrations, and gives minus infinite fluxes when one of the metabolites in a given reac-
tion goes to zero.
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approximation). The resulting model contains 956

metabolic reactions and 820 metabolites; the key

steps were identified using metabolic control

analysis. This modeling framework may be con-

sidered a stepping-stone towards the long-term

goal of a fully parameterized model of

genome-scale metabolism even if its performance

needs to be improved.

GRNs also cannot be modeled at a full scale, since

much of the information required is not available,

and approximated formalisms were proposed [4].

We stress that obtaining a GRN is much more dif-

ficult than obtaining an MN; the methods give

moreover very partial reconstructions that strongly

affect the structural analysis [16].

Modeling network scale integrated systems
An important and ambitious challenge in systems

biology is building integrated models where the

interactions between different biological layers are

explicitly taken into account. We here consider the

case of integrated models where metabolism is

modeled together with the gene regulation

system, but it should be noticed that increasing ex-

perimental evidence suggests further integration of

signaling pathways and GRNs with regulation

mediated by ncRNAs [134–138]. On one hand,

integration of metabolism and gene regulation

might allow to study a much wider range of situ-

ations using a same model, and on the other, it

allows to study more in detail the importance of

the cross-talk between the two systems. A first

effort to measure the effect of regulation in FBA

predictions through the addition of Boolean logic

time-dependent constraints modeling transcriptional

regulatory events is regulatory FBA (rFBA; [139]).

rFBA changes the shape of the solution space con-

siderably with respect to FBA, finding physiologic-

ally relevant solutions [139]. These initial methods

were improved by several recent works such as

steady-state regulatory FBA (SR-FBA), which is

an integrated regulatory-metabolic model for pre-

dicting gene expression and metabolic fluxes [140],

integrated FBA (iFBA) that combines rFBA and

inferred ordinary differential equations [141],

OptFlux which is a software for strain prediction

through metabolic/regulatory integrated data [142],

and hybrid modeling [143]. For a more detailed

review on different coupled regulatory/metabolic

models, we refer to [144].

CONCLUSIONS
Structural analysis allows the identification of

important nodes within a network and for this

reason, has become very popular in many disciplines.

However, in the biological domain, the importance

of a node can be defined in many different ways

so that identifying the most appropriate network

measures is an important preliminary step that can

radically change the output of an analysis. It is then

essential to understand the meaning of a given meas-

ure with respect to the specific network at hand.

Besides discussing some of the most informative

metrics for biological networks analysis, we stress the

importance of a biologically meaningful interpret-

ation of any measure, which is not always intuitive

and can change for different networks.

The dynamical nature of biological networks

indicates that it may be better to perform structural

analysis on what we have defined as the realiza-

tions of a network. The risk when studying a po-

tential network is confounding the signals encoded

in the network by putting everything together.

Are we sure that a metabolic hub is a hub in

every realization of the network? What if it is

lowly connected with different nodes in every

realization? This approach is today limited by the

availability of experimental data, but databases are

growing fast and a similar analysis would be feas-

ible for several prokaryotes, as well as for a few

eukaryotes.

Concerning the more biologically oriented inter-

pretation of the metrics, it requires to move the col-

laboration between computational and experimental

biologists to a higher level. It would also contribute

to the integration of biological information in net-

work analysis, which is a topical challenge in the

field. Let us take the example of hubs in a GRN.

From the biological point of view, it is clearly dif-

ferent if the hub controls a single cellular function

or affects widely different processes. Since a GRN

transmits information, a similar approach would re-

quire being able to define the scope of a regulator by

also taking into account indirect targets (similarly to

[6]). This example illustrates the need for biologically

oriented network metrics that are able to take into

account the heterogeneous information associated

with biological entities. As pointed out by Keller

[145], Watts and Strogatz (65) have proficiently

used simple mathematical models to study social net-

works, but some of their most interesting results

emerged only after they took into account the
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property that sociologists consider as fundamental to

social dynamics: social identity. The challenge is to

do the same with biological networks, which re-

quires an effort to develop meaningful metrics

able to account for and integrate biological

properties.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bfg.oxfordjournals.org/.

Key Points

� Structural analysis of biologicalnetworks allows to identifygenes
and proteins playing important roles in cellular physiology.

� Biological networks are dynamic; the structural properties
of genes and proteins are consequently also dynamic, i.e. the
importance of a protein might change depending on the growth
condition.

� The dynamics of biological systems can be studiedusing detailed
mathematical modeling, but they are not easily scalable at the
network level and approximations have been provided that
might simplify the task.
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17. Junker BH, Koschützki D, Schreiber F. Exploration of
biological network centralities with CentiBiN. BMC
Bioinformatics 2006;7:219.
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