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ABSTRACT  

Introduction: Millions of people worldwide suffer from depression, but despite advances in pharmacological 

therapies, many patients do not experience symptomatic remission or treatment response, even after treatments 

with several medications. As such, there is an urgent need to identify biomarkers that can not only predict the 

treatment response, but also allow a rational selection of optimal therapy for each patient leading to a precision 

medicine. 

Areas covered: This review examines the recent findings, coming from different “omic sciences”, in human 

blood-based biomarkers associated with antidepressant treatment response with particular attention on 

genetic/epigenetic and biochemical biomarkers. Specific emphasis will be placed on key molecules related to 

neuroplasticity and inflammation because of their involvement in the pathophysiology of depression and 

antidepressant treatment response.  

Expert commentary: Biomarkers identification is still an ongoing work. Indeed, to date, no biomarkers have 

sufficiently proven specificity, sensitivity and reproducibility to be used in the clinical setting. However, 

“omic” approaches hold great promise in identifying multiple features for predicting antidepressant response, 

making possible a personalized treatment strategy for each patient, and thereby assist with quick and 

efficacious responsiveness. But for this to be possible, it is necessary that future studies take an integrative 

approach that include clinical assessment, environment influences and molecular and biological biomarkers. 

 

KEYWORDS: Antidepressants, Biomarkers, Cytochrome, Cytokines, Epigenomics, Gene expression 

profile, Major depressive disorder, Metabolomics, Neurotrophic Factors, Pharmacogenomics, Proteomics. 
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1. BACKGROUND 

According to the latest available estimates of the prevalence of depression (2015), globally, 322 million people 

suffer from this disorder (equivalent to 4.4% of the world’s population), with a higher prevalence among 

females than males (5.1% and 3.6% respectively) (Depression and Other Common Mental Disorders: Global 

Health Estimates. Geneva: World Health Organization; 2017. Licence: CC BY-NC-SA 3.0 IGO). Moreover, 

from a global perspective, depressive disorder is predicted to be the leading cause of disease burden worldwide, 

measured in disability adjusted life years, by the year 2030 (WHO, The global burden of disease: 2004 update., 

2004, World Health Organization). 

Depressive disorders include a heterogeneous spectrum of clinical conditions which are characterized by 

several common features such as the presence of sad, empty, or irritable mood, accompanied by somatic and 

cognitive changes that significantly affect the individual’s capacity to function [1]. Especially when depressive 

episodes are long-lasting and with moderate or severe intensity, the disorder becomes a serious health 

condition, that can possibly lead to suicide. Indeed, according to an estimation by the World Health 

Organization that about 788.000 people died due to suicide, denoting the need of urgent actions (Depression 

and Other Common Mental Disorders: Global Health Estimates. Geneva: World Health Organization; 2017. 

Licence: CC BY-NC-SA 3.0 IGO).  

Meta-analysis of family-related studies indicated an estimated odds ratio for increased risk for MDD in first-

degree relatives of MDD probands of 2.84, and an estimated heritability for MDD of about the 30% [2]. 

However, there is a general consensus about the great complexity of the aetiopathogenesis, where it is now 

clear that MDD is the result of a combined contribution of several vulnerability genes, of the environment and 

in particular of adverse events and also of Gene-Environment interactions (G X E). Indeed, adverse life events, 

especially early in life, have been consistently shown to strongly increase not only the risk for mood and 

anxiety disorders in large epidemiological studies but also influence the treatment outcome [3,4,5,6,7]. 

Although different pharmacological therapies are available, there is still significant variability in the response 

to antidepressant treatment response: almost 60% of patients do not recover following a single antidepressant 

trial, and 20% of these patients fail to respond to any interventions [8]. Indeed, the most effective 

antidepressant medication for each patient can presently only be identified through a trial and error strategy 

[9]: this imply the lengthening of remission, patient’s suffering, poor compliance, appearance of treatment 

adverse effects, worsening of suicidal ideation and high costs for society [10,11].  

According to this, there is an urgent need to identify biomarkers that may be able to predict the future treatment 

response, and ideally biomarkers that can detect the best antidepressant drug for each individual patient, which 

will eventually lead to a personalized medicine. Among all the possible biomarkers, peripheral blood 

biomarkers represent the most accessible ones, given their suitability and ease of collection in clinical practice. 

The discovery of such biomarkers will help: i) the development of a precision medicine in psychiatry; ii) the 

improvement of the effectiveness of treatment and ultimately the remission and iii) the discovery of new targets 

for the development of novel antidepressant drugs.  
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Based on this background information, here we will review the literature on blood-based biomarkers that have 

been, up to date, associated with treatment response in depressed patients. 

In particular, we will primarily focus on genetic/epigenetic (polymorphisms, micro-RNA, mRNA, DNA 

methylation, histones) and biochemical biomarkers, mentioning also more recent findings from proteomic and 

metabolomic approaches. Particular emphasis will be placed on two candidate biological systems, namely the 

immune/inflammatory and neuroendocrine systems, because of large amount of data supporting their 

involvement in the pathophysiology of depression and, most importantly, in treatment response [12,13,14,15]. 

This review focuses on recent findings (over the past 15 years approximately). We used Pubmed database to 

conduct a careful literature review, with the following key-words combinations: “depression”,“antidepressant 

response, “blood”, “biomarkers”,“gene expression,“mRNA, “miRNA, epigenetic,“DNA methylation,“histone 

modification, “cytokines”, “cytochrome”, “pharmacogenetic”, “inflammation”, “metabolomic” and 

“proteomic”. We used PubMed automatic filters to select human studies in the English language published 

since 2000. We then selected most relevant articles/review with a manual screening of the abstracts. 

 

1.1 Available antidepressant strategies and current biomarkers of treatment response  

The Guidelines for the management of patients with MDD indicate the use of second-generation antidepressant 

drugs as first-line treatments for patients with an episode of moderate or greater severity (as determined by 

symptom scales and/or functional impairment) [16]. The selective serotonin reuptake inhibitors (SSRIs), 

serotonin noradrenaline reuptake inhibitors (SNRIs), and other antidepressant drugs including agomelatine, 

bupropion, mirtazapine and vortioxetine remain first-line recommendations for pharmacotherapy for MDD. 

Recommended second-line agents include TCAs, trazodone, levomilnacipran and vilazodone, despite their 

side effects. Third-line recommendations include MAO inhibitors and reboxetine. Furthermore, in order to 

achieve clinical improvement, particularly in the context of treatment-resistant depression, the NMDA 

antagonist Ketamine, used at sub-anaesthetic dose, has emerged as a potential new option, which may produce 

a rapid antidepressant response [17].  

Many clinical factors and dimensions (including cognitive dysfunction, sleep disturbance, and somatic 

symptoms) as well as medication features (efficacy, tolerability, drug-drug interactions) can influence the 

choice of a first-line antidepressants. Thus, the selection of a specific antidepressant drug should involve a 

personalized assessment for each patient.  

However, despite this high number of antidepressant drugs available, two thirds of MDD patients fail to 

achieve remission after an initial treatment, and almost one third fail to achieve remission even after four 

consecutive treatment trials [18]. 

This is in part associated to the fact that the diagnostic criteria for MDD is based on symptomatology 

assessment that may be present in other conditions thus leading to potential misdiagnoses: indeed, in only 

about 40-50% of patients the first diagnosis is then confirmed by further assessments [19], and, this may lead 

to inadequate pharmacological treatments.   
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Furthermore, we need to consider that the individual variability to antidepressant response is also the 

consequence of an interplay between clinical factors and biological pathways, as well as with the environment 

[20]. For example, it has been clearly demonstrated that patients with a history of childhood trauma and other 

adversities, especially early in life, are also those with a low probability to respond to the first trials of 

antidepressant drugs or not respond at all to any kind of antidepressant therapy [5,6,7]. As such, there is an 

increasing interest in the identification of objective and reproducible criteria for the correct diagnosis of 

depression. Traditional assessment tools are based on clinician- or patient self-administered interview that 

have reasonable clinical accuracy depending on assessments scores, but they may lead to a wrong diagnosis, 

which may lead to wrong pharmacological treatment also due to the presence of overlapping symptoms across 

diagnosis  [1]. 

Laboratory methods have been also settled to better improve the diagnosis procedure of depression and of its 

endophenotypes. They are based on the assumption that a number of biological pathways are altered in 

depressed patients (such as the inflammatory, neurotrophic, metabolic and hypothalamic-pituitary-adrenal -

HPA axis), thus diagnostic tests could be represented by the measurement of biomarkers reflecting the key 

biological pathways altered in depression, for example, the dexamethasone suppression test (DST), serum 

levels of BDNF and blood levels of cytokines. However, each test individually could explain a very modest 

proportion of the variance in depression risk.  

New laboratory methods based on genomics, transcriptomics, proteomics and metabolomics may allow 

analysis hypothesis-free to identify new biomarker panels also for biologically defined MDD subtypes.  

To date, we are aware of the presence of one test for depression that however is not yet used in the clinical 

setting: it is a multi-assay serum-based test that measures a panel of nine serum markers, derived from an 

earlier evaluation of 100 markers. Biomarker data were used to develop a logistic regression model that 

included gender and BMI in a manner that allowed for their interaction with the biochemical analytes 

(MDDScore) that distinguished MDD patients versus healthy controls [21]. However, in its present form, the 

test has some limitations including the inability to dissect unipolar versus bipolar depression [22]. The 

development of tests able to improve a correct diagnosis from the beginning will also improve the clinical 

outcome as pharmacological treatments will be better administered from the beginning. 

The identification of biomarkers for treatment response is another a prerequisite for improving the efficacy of 

pharmacological treatment in patients with MDD and it will require identification of biomarkers of treatment 

response. A biomarker is defined as a characteristic that can be objectively measured and evaluated as an 

indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic 

intervention [23].  

Unfortunately, since we cannot yet predict the likelihood of response of an individual patient to a specific drug, 

there is an urgent need to identify biomarkers that, when assessed at baseline, may change future response to 

treatment (predictors), as well as biomarkers that are targeted by antidepressant, and change longitudinally 

during antidepressant treatment (mediators) [18,20,24,25,26,]. Among these, predictors of response are more 

clinically relevant as they can help in improving patient’s care.   
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The first challenge for the identification of biomarkers associated with treatment response is the selection of 

the tissue/specimen in which the biomarkers can be measured. Biological fluids are the most practical tissues 

for patient sampling, particularly peripheral blood samples, as they are easy and quick to retrieve, although 

some limitations exist [27]. Moreover, blood samples allow simultaneously investigation of several different 

biomarkers, provide high concentrations and quality of DNA and RNA, and cellular components of peripheral 

blood (such as lymphocytes, monocytes and leukocytes) are suitable for functional studies [20]. 

In this article, we will provide an overview on the most promising biomarkers for antidepressant treatment 

response that could be used in the clinical practice. We provide evidence from different biological parameters, 

including polymorphisms, gene expression (mRNA levels), epigenetics, protein levels and metabolomic 

markers (Figure 1). 
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Figure 1. A global approach to discover biomarkers for predicting variation in a subject’s response to 

treatment.   

 

 

2. HOW GENETIC VARIANTS WITHIN CYTOCHROME GENES CAN INFLUENCE THE 

ANTIDEPRESSANT TREATMENT RESPONSE  

 

It is well known that drug blood concentration depends on intrinsic feature of the compound as well as the 

functional activity of the enzymes involved in its metabolism. These enzymes belong to the cytochrome P450 

(CYP) superfamily, the major class implicated in drugs metabolism, accounting for about 50 different 

isoforms. Enzymes belonging to the CYP450 family oxidize and reduce several molecules, turning them into 

inactive or active compound. In this context, recent studies have tried to use the CYP variants to establish a 

personalized antidepressant prescription, and correspondent optimal dose. It is important to remember that the 

successful outcome of a therapy is not only influenced by CYP genetic variants, but also by others factors, 

such as food and concomitant drug administration, which have the potential to affect CYP enzymatic activity.  

It is noteworthy that antidepressant drugs are metabolised by different cytochrome isoforms and thus, the 

existence of SNPs can of course influence the correct pharmacological action only of the drug which is 

metabolised by that specific cytochrome isoforms; for this reason, the knowledge of cytochromes and SNPs is 

a key issue for personalization of therapy.  

The main cytochromes involved into the metabolic pathways of antidepressant drugs are the isoforms CYP2D6 

and CYP2C19. The importance of these isoforms has been recently demonstrated as they have been implied 

in clinical applications [28], moreover CYP2D6 and CYP2C19 genotyping test has been recently approved by 

the Food Drug Administration (FDA). Beyond CYP2D6 and CYP2C19, other CYP isoforms, namely 

CYP2C9, CYP2B6 and CYP1A2 are relevant in the metabolism of antidepressants, although they affect only 

few antidepressant drugs.  

The antidepressant drugs currently used in the clinical setting and the CYPs isoforms that are involved in their 

metabolism are reported in table 1.  

The introduction of pharmacogenomic tests (such as amplichiptm cyp450 and infiniti cyp450), aiming at 

identify cytochromes’ polymorphisms, has been an important step towards personalized medicine. The 

underlying rationale is the identification of the patient-specific metabolic profile, in order to design the best 

therapeutic approach according to the metabolic rate of a specific compounds. The desired end point would be 

the reduction of side effects and the adjustment of plasma drug concentration. The studies in this area have 

shown differences in the side-effect profile and drug concentration. However, during the last years, a few 

clinical trials have taken into account the general treatment efficacy, by assessing patients’ improvements 

comparing different time points of the hdrs-17 scores between tau (treatment-as-usual) patients and those who 

were treated with a pharmacogenomic-guided treatment (as reviewed in the following articles: [29,30,31]. The 

results of guided treatments show promising results as well as the tested patients show better clinical outcomes 
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compared to tau subjects. Although guided prescription might help improve both efficacy and tolerability, the 

available clinical trials have some limitations and should be replicated in a more comprehensive way, in order 

to understand different source of variabilities such age, sex and ethnicity. 

The advantages of this pharmacogenomic analysis are the personalization of psychiatric treatments which can 

identify in advance the more effective medications and the needed dose adjustments, or it might drastically 

reduce the meaningful adverse reactions. On the other hand, the drawbacks principally lie in the higher costs 

of such pharmacogenomic tools, even though they have been reduced in the last years and are hopefully going 

to be downsized even within the years to come. Moreover, some clinicians are still reluctant to follow the 

pharmacogenomic test results, still prescribing medications with a high rate of contraindications for the 

patients (an example can be seen in the work [31]). 

 

 

Table 1. Current antidepressant drug used in therapy. 

 

The following paragraphs illustrates the implications of CYP2D6, CYP2C19, CYP2A1 and ABCB1 

polymorphism on drugs bioavailability and on clinical antidepressant outcome. 

 

2.1 CYP2D6 

CYP2D6 accounts for the 25% of all the drugs metabolized by the CYP family [32] and it is mainly involved 

in IMAOs’ and TCAs’ metabolism. The most common allele variant in Caucasian people is the CYP2D6*4 

(allele frequency 20%) and it has been associated with a poor metabolizer phenotype [33]. This means that the 

antidepressant blood concentration of individuals carrying this variant is overall higher than subjects carrying 

the wild-type variant (CYP2D6*1).  

Another variant widely investigated in relation to paroxetine and venlafaxine treatment is CYP2D6*10B. It 

has been shown that in an Asian cohort of patients the high blood levels of paroxetine were associated to the 

*10B variant [34,35]. It is important to notice that this variant does not affect drug concentration at the steady 

state, although the amount of paroxetine in blood after a single dose is increased in subjects with the *10B 

variant [34, 36]. Moreover, the blood concentration had a more significant increment at higher dosages and 

this was linked to the inhibitory effect of paroxetine on CYP2D6 enzymatic activity. These findings are 

supported by other studies showing increased levels of venlafaxine in the blood of subjects carrying one of 

two copies of the *10 allele [37].  

It has been also reported that pregnancy, and in particular hormones during pregnancy, can influence the 

metabolic activity of the cytochrome CYP2D6: indeed, several studies showed lower concentration levels of 

antidepressant drugs in the blood of pregnant women, suggesting that pregnancy related hormones might have 

a possible direct role in enhancing CYP2D6 metabolic enzymatic activity [38]. This effect has to be taken into 

consideration for the proper prescription of antidepressant drugs during pregnancy: clinicians should firstly 
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consider to administrate antidepressant compounds that are not metabolised by CYP2D6 in high risk expectant 

mothers, and eventually adjust the drug dose.  

On the clinical side, it is not clearly established the potential beneficial effects displayed by carriers of the 

different CYP2D6 polymorphisms in term of treatment response. The only study conducted to evaluate 

possible effect of CYP2D6 polymorphisms in influencing treatment response was a 8-weeks study which failed 

to identify any differences in the reduction of Hamilton Scale of Depression (HDRS) between CYP2D6 

poor/intermediate metabolizer and CYP2D6 extensive/ultra-rapid metabolizer after administration of 

escitalopram and venlafaxine [39], suggesting that CYP2D6 variants cannot influence the antidepressant 

efficacy.  Regarding side effects, in the escitalopram group, UMs and EMs had increased autonomic side 

effects (for example, sweating and gastrointestinal pain) than PMs and IMs; no differences were reported in 

the venlafaxine group [39]. 

 

2.2 CYP2C19 

Cytochrome P2C19 is also involved in the antidepressant drugs metabolism after CYP2D6 and it is involved 

in the metabolism of several antidepressant agents, including sertraline, citalopram, escitalopram and 

venlafaxine. The wild-type variant is the allele *1, whereas the most common recessive ones are the *2 and 

*17 variants. In Europeans and Asians, the CYP2C19*2 variant is responsible for the poor-metabolizer 

phenotype [40] and it has assumed a significant clinical importance due to the fact that it may be associated 

with a greater reduction of depressive symptoms when compared to extensive-metabolizer related variant. The 

association between CYP2C19*2 and depressive symptoms is not clear, but it has been suggested that this 

variant can also be involved directly also in the regulation of the biotransformation of 5-HT [41].  

CYP2C19*17 variant is correlated with a rapid metabolism of antidepressants as demonstrated by its increased 

activity both in vitro and in vivo. As a consequence, the reduced blood concentration of antidepressants 

metabolized by CYP2C19*17 can probably be associated with the lack of efficacy of antidepressant treatment 

[42]. Some studies investigated the differences among the allele *1 and the allele *17: De Vos and colleges 

shown that the *17 variant was associated with a reduction in the metabolic ratio for amitriptyline and 

citalopram compared to *1 genotype; as a consequence, they suggested an association between the 

CYP2C1917 allele and the sub-therapeutic levels of those drugs metabolised by CYP2C1917, like citalopram 

and amitriptyline [43]. However, the study focused on sertraline metabolism in relation to CYP2C19, failed to 

identify any significant changes [44]. Furthermore, the same 8 weeks’ study previously described for CYP2D6, 

found contrasting differences between CYP2C19 poor/intermediate and CYP2C19 extensive/ultra-rapid 

metabolizer after administration of escitalopram and venlafaxine [39]. 

 

2.3 CYP2A1 

Although no relevant allelic variants within the CYP2A1 have been discovered, CYP2A1 has been investigated 

for several years because of inter-individual variability in its activity which is mainly due to environmental 

factors, such as smoke [28,45]. More in details, it was showed that smoke increased CYP2A1 enzymatic 
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activity. A study on the antidepressant trazodone showed increased stready-state blood levels of 

antidepressants in depressed non-smokers subjects, and the differences from smoker patients did not depend 

on the genetic variant [46]. In another study, the genetic variant *1F was associated with increased CYP1A2 

activity in smokers [47]. On these bases, smoke might induce cytochrome 2A1 enzymatic activity thus 

resulting in lower drug plasma levels, higher clearance and decreased pharmacological activity of 

antidepressants metabolized by CYP1A2, including imipramine, amitriptyline, clomipramine, duloxetine, 

fluvoxamine and mirtazapine [45].  

Taking into account the effect of smoking on CYP2A1 and considering the high rates of smokers in patients 

with psychiatric illnesses, it seems important to consider the possibility of monitoring cigarette consumption 

in depressed patients treated with drugs metabolized by CYP2A1, in order to prevent a possible lack of efficacy 

and the subsequent worsening of the depressive symptoms in these patients. 

 

2.4 ABCB1  

The pharmacological effect of the antidepressant drugs does not depend exclusively on blood concentration at 

the steady state, but also on brain concentration which is influenced by their ability to permeate the blood-

brain barrier (BBB). The permeability through the BBB is primarily regulated by the efflux pump P-

glycoprotein (P-gp), which is actively involved in transporting the substrates against a concentration gradient 

out of the brain cell into the blood and increase the drug clearance from blood. The G-gp is a 170 kDa 

glycoprotein encoded on chromosome 7 by the ABCB1 gene, also known as multidrug resistance 1 gene 

(MDR1); different pharmacogenomics studies have investigated the ABCB1 SNPs in order to correlate genetic 

variants, possibly associated with drug resistance, with clinical outcome. In case the antidepressant drug is 

also a substrate of the glycoprotein, ABCB1 SNPs can be relevant in the clinical practice if the antidepressant 

drug is a substrate of the glycoprotein. Indeed, studies conducted on ABCB1 gene in knock-out mice (i.e., 

abcb1b knock out mice) have discovered which drugs undergo the G-pg activity and Table 2 shows the most 

relevant substrates used in therapy. 

The study conducted by Uhr and collaborators is one of the first study associating several SNPs within ABCB1 

gene with different clinical outcomes after antidepressant treatment. They demonstrated the influence of the 

SNP rs2232583 on response to 4-weeks treatment with a G-pg substrate: subjects carrying the C genotype had 

a higher probability to be remitters as compared to those with the TT genotype [48]. On the other hand, no 

influence of the same SNP on treatment response has been detected in patients treated with mirtazapine, which 

is not subjected to the action of the glycoprotein [48]. Similar results were also reported by Sarginson and co-

workers in a study on geriatric depression [49]. The authors focused their attention on several SNPs within the 

genes, finding that rs10245483 contributed to the prediction of the clinical outcome to three different 

antidepressants: homozygotes of common allele responded significantly better to escitalopram and sertraline, 

whereas minor allele homozygotes, benefitted from venlafaxine treatment, that is not a G-pg substrate [50].  
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Table 2. Antidepressant drug divided into substrates and not substrates of the efflux pump P-

glycoprotein 

 

 

3. EPIGENOME AS INTERFACE BETWEEN ENVIRONMENT AND GENOME: THE 

SIGNATURE THAT MAKE US UNIQUE ALSO IN TERM OF PERSONALIZED THERAPY  

 

Epigenetics refers to heritable phenotypic traits which occur without any alterations in DNA sequence and 

includes DNA methylation, post translational modification of histones and microRNAs [51].  

Epigenetic mechanisms, in the context of antidepressant treatment response, are involved in two different 

aspects: the first one is the interplay between the environmental stimuli and our genome, mediated by 

epigenetic mechanisms; importantly, modifications induced by environment and involving epigenetic 

processes can induce long-term alterations of the expression of the methylated/un-methylated gene. The 

second one is the direct or indirect effect of the drugs in current therapeutic practice on epigenomic status, that 

in turn can influence the treatment response: as an example, several antidepressant drugs and mood stabilizers 

(i.e., valproate, imipramine, amitriptyline, clomipramine, fluoxetine, escitalopram, phenelzine,and 

tranylcypromine) were shown to exert part of their therapeutic action by targeting DNA methyltransferase I 

(DNMT1), histone deacetylase or altering methylation levels, which in turn can affect gene expression 

[52,53,54]. Hence, targeting selective epigenetic mechanisms with DNMT modulators or HDAC inhibitors is 

being considered as a possible new avenue for the development of novel antidepressant drugs [54,55,56,57]. 

On these bases, we will next discuss if and how epigenetic processes, and in particular DNA methylation, 

histone modifications and microRNAs (miRNAs), can be used as biomarkers for treatment response. 

 

3.1 DNA methylation 

DNA Methylation, which represents the most investigated epigenetic mechanism, refers to the addition of 

methyl groups in the 5th position of a Cytosine to form 5-methylcytosine (5mC), a reaction that is catalyzed by 

members of the DNA methyltransferase (DNMT) family [58]. From a clinical perspective, biomarkers 

associated with DNA methylation have been implicated in several mental disorders, and recently, a number of 

studies has focused the attention on the possible role of DNA methylation in the mechanisms associated with 

the development of stress related psychiatric disorders.  

However, only few studies have used epigenetic markers as predictors of treatment response, and they are 

mainly based on targeted approaches examining few epigenetic sites within specific gene loci (for recent 

literature review see [54]). Among the most studied genes are the Serotonin Transporter (SLC6A4), Brain 

derived neurotrophic factor (BDNF), Interleukin-11 (IL-11), and Monoamine Oxidase A (MAOA), which have 

all been shown to interact with environmental risk factors, such as stressful experiences, in increasing the 
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vulnerability for depression [56]. In addition to increase disease risk, these genes may also moderate or even 

mediate therapeutic effects of antidepressant drugs.  

Here below we discuss how methylation changes in the candidate genes above reported have been found able 

to predict antidepressant response.  

The SLC6A4 gene has been associated with the vulnerability for depression, and it may also represent a key 

gene for treatment response, perhaps through epigenetic modifications [59,60,61]. As an example, Kang and 

colleagues investigated DNA methylation status of several CpG sites within the SLC6A4 gene by examining 

association between methylation changes in the promoter region with childhood adversities, pre-treatment 

clinical features and treatment outcomes in 108 MDD patients. However, they did not find any reliable 

correlation between SLC6A4 methylation and antidepressant response, probably because different kinds of 

antidepressant drugs with different mechanisms of action were used [62]. Of note, a higher DNA methylation 

status was found in those subjects with a history of childhood adversities.  

A subsequent study conducted by Domschke and collaborators examined the DNA methylation status at nine 

CpG sites within the transcriptional control region exon 1A of the SLC6A4 gene in patients suffering from 

MDD and treated with escitalopram for 6 weeks. They found that the average gene methylation showed a 

significant association with antidepressant treatment response after 6 weeks: more specifically, DNA 

hypomethylation determined impaired response to SSRI treatment, whereas higher methylation was associated 

with a better treatment response [63]. Okada and colleagues examined 81 CpG sites within the SLC6A4 gene 

and reported that the level of DNA methylation correlated negatively with the severity of illness, and also with 

treatment response; indeed, the methylation levels of several CpG sites within the promoter region of SLC6A4 

gene changed significantly following pharmacological treatment with different antidepressant drugs 

(paroxetine, fluvoxamine, or milnacipran). Notably, the methylation rate of CpG 3 in patients with better 

therapeutic responses was significantly higher than in patients with poorer responses [64].   

Also the gene encoding for the neurotrophin BDNF has been considered as potential predictor of antidepressant 

efficacy. Indeed, consistent clinical findings indicated that depressed patients have reduced levels (protein or 

mRNA) of BDNF in the blood, which are increased after antidepressant treatment; importantly several data 

reported also a positive correlation between changes in BDNF levels and an amelioration of clinical symptoms, 

suggesting that BDNF may predict antidepressant efficacy [15,25,65,66].  

In line with this, several researchers investigated DNA methylation changes in BDNF gene in order to establish 

whether they may also predict treatment response. For example, Tadic and collaborators examined the possible 

correlation between antidepressant response and DNA methylation levels at 12 CpG sites in the promoter 

region of BDNF exon IV in leukocytes from 39 MDD patients. Interestingly, patients showing a 

hypomethylation of this region were also those that did not benefit from antidepressant therapy [67]. Gassen 

and colleagues treated isolated peripheral blood cells from depressed patients with the antidepressant 

paroxetine and they found that the treatment increased BDNF expression, an effect that was due to reduced 

activity of DNMT1 and DNA methylation [68]. Moreover, the abundance of BDNF positively correlated with 

treatment response in patients. 
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When considering the gene encoding for the cytokine IL-11, it was shown that its levels were able to predict 

treatment response in a cohort of MDD patients, and this may be related to epigenetic modifications. Indeed, 

Powell and colleagues investigated IL-11 DNA methylation in 113 MDD patients randomly selected from the 

GENDEP sample, treated with escitalopram or nortriptyline for 12 weeks, and found that lower levels of IL-

11 DNA methylation were associated with better treatment response. However, hypermethylation of CpG site 

5 was specifically associated with the response to escitalopram, whereas hypomethylation of CpG site 4 was 

specifically associated with the response to nortriptyline [69].  

All these studies suggest the potential clinical use of DNA methylation-based biomarkers as predictors of 

antidepressant response. Moreover, epigenetic modifications could also be key modulators of individual 

response to antidepressant treatment: in particular, changes in epigenetic modifications during lifespan, 

provides an attractive model to explain why many pharmacological interventions for depression are not 

working in some patients [8,54]. 

 

3.2 Histone modifications 

Histones are proteins that package and order the DNA into structural units called nucleosomes. They are the 

principal protein components of chromatin, acting as spools around which DNA is coiled up, thus playing a 

role in gene regulation. Histones undergo a number of different post-translational modifications that alter their 

interaction with DNA and nuclear proteins. The most common chemical modification is acetylation, which is 

catalyzed by histone acetyl-tranferase (HATs); other modifications include methylation, phosphorylation, 

ubiquitination, SUMOylation, citrullination and ADP-ribosylation [70].  

Several studies, using animal models or human post-mortem samples, have implicated histone modifications 

in the mechanisms underlying stress responses and the development of depressive phenotypes with the 

possibility that such changes can be normalized following antidepressant treatment (for a review see [20]) 

although, only few studies have been conducted in peripheral blood samples. 

In one of these studies, peripheral blood histone H3 lysine 27 trimethylation (H3K27me3) levels were 

measured in 25 treatment-naïve depressed patients before and after treatment with citalopram. Patients who 

responded to the 8-weeks treatment were found to have a significant decrease in H3K27me3 levels at the 

promoter IV of the BDNF gene after treatment, an effect that was paralleled by an elevation of BDNF mRNA 

expression. Interestingly, these changes were not found in the non-responder group, indicating that effective 

antidepressant treatment modifies the chromatin state of the BDNF gene at peripheral level [71]. 

In a different study, the authors compared gene expression levels of histone deacetylase 5 (HDAC5) in 

leukocytes obtained from control subjects and depressed patients who were also assessed before and after 8 

weeks of paroxetine treatment. They showed that baseline levels of HDAC5 were significantly higher in drug-

free depressed patients, an effect that was normalized by the pharmacological treatment [20,72].  

Although not many data are available in the literature, these findings suggest that histone modifications may 

also represent potential biomarkers useful in the discovery of predictive biomarkers of antidepressant response.  
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3.3 microRNAs (miRNAs) 

Another alternative epigenetic mechanism that appears to be involved in the pathogenesis of psychiatric 

disorders and in treatment responses is represented by MicroRNAs (miRNAs). MiRNAs are single-stranded, 

non-coding RNA molecules that belong to a family of 18-25 nucleotides-long small non-coding RNAs. Their 

biogenesis in mammals is a step process that involves multiple enzyme (for a detailed review [73]) and they 

have two key roles in the regulation of messenger RNA (mRNA): they act by inducing either degradation or 

translational silencing of the mRNA they target, but in certain instances, miRNAs may activate translation or 

even act at the level of transcription by binding to specific gene promoters [74,75]. 

MiRNAs play an important role  in numerous brain mechanisms There is increasing evidence suggesting a key 

role for miRNAs in neurogenesis [76], neural plasticity and higher brain functioning [77] and they have been 

associated with neurodegenerative disorders [78,79] as well as psychiatric illnesses [80].  

Interestingly recent studies suggested that the action and efficacy of antidepressant drugs treatment may be 

associated with changes in miRNA expression and function [75]. As an example, Lopez and colleagues 

measured the blood levels of miR-1202 in healthy controls and also in different independent cohorts of 

depressed patients, classified into remitters and non-responders, at baseline and after 8 weeks of antidepressant 

treatment. Responders displayed lower baseline miR-1202 levels as compared with non-responders, and 

miRNA levels increased following treatment, suggesting that miR-1202 may represent a peripheral biomarker 

able to predict the treatment response. Noteworthy, this study has also shown a consistent dysregulation of 

miR-1202 in human postmortem brain tissue, in a well-characterized animal model of depression, in an in vitro 

model of neural precursor cells and in blood samples from MDD individuals, supporting the role of this 

miRNA in the pathogenesis of depression [81].  

Interestingly, this finding was replicated by the same group in another study that enrolled 2 cohorts of 

depressed patients treated for 8 weeks with antidepressants (escitalopram or desvenlafaxine or duloxetine). 

While beyond miR-1202, other miRNAs were found to predict treatment response, the results on miR-16 and 

miR-135a displayed variability across the cohorts, suggesting that the effects of these two miRNAs may be 

influenced by other clinical variables. It is worth mentioning that miR-16 and miR-135a have previously been 

shown to mediate antidepressant actions in humans and animal models of depression [82,83,84,85]. 

By using a candidate miRNA approach, He and colleagues investigated the expression levels of miRNA-124 

in PBMC of 32 depressed patients at baseline and after 8 weeks of treatment with several antidepressants 

drugs. They observed that the baseline expression levels of miR-124 from PBMCs in depressed patients were 

significantly higher as compared to controls. In addition, they also found that the expression levels of miR-

124 were significantly down-regulated after eight weeks of treatment and its levels correlated with treatment 

response [86]. 

Enatescu and colleagues performed a pilot study (5 patients) using a whole genome approach to investigate 

circulating plasma miRNA profiles as potential markers for depression and treatment response. Blood samples 

were collected at baseline and after 12 weeks of escitalopram treatment and, among the 222 miRNAs detected 

in blood, the authors identified 40 potentially dysregulated miRNAs, which were modulated by antidepressant 
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treatment. Interestingly, these miRNAs were involved in the regulation of pathways such as Wnt signaling, 

Axon guidance and MAPK signaling that have been suggested to contribute to the mechanism of action of 

antidepressant drugs [87]. 

Lopez and colleagues used a sequencing approach to investigated miRNAs as biomarkers of antidepressant 

response in paired samples from MDD patients enrolled in a large randomized placebo-controlled trial of 

duloxetine collected before and 8 weeks after treatment. They showed that miR-146a-5p, miR-146b-5p, miR-

425-3p and miR-24-3p were all down-regulated after antidepressant treatment and that some of their target 

genes, which were involved in mitogen-activated protein kinase (MAPK) and Wnt signaling pathways were 

also dysregulated [88].  

In summary, while a limited number of studies on miRNAs are currently available (for a review see [89]) , 

they provide preliminary evidence that specific miRNAs may represent useful biomarkers of treatment 

response, although they must be replicated in larger cohorts. Moreover, these miRNA, and their gene targets, 

could lead to a better understanding of the mechanisms of antidepressant response. In future perspective 

miRNAs could also represent a new target of therapeutic intervention.  

 

4. GENE EXPRESSION AND PROTEIN BLOOD MARKERS AS PREDICTORS OF 

TREATMENT RESPONSE”: FROM CANDIDATE GENE TO HYPOTHESIS FREE 

APPROACHES”   

 

4.1 Transcriptomics and Proteomics  

While for decades, the most accepted hypothesis was based on alterations of monoaminergic systems, this 

hypothesis fails to explain the latency or lack of response to antidepressant drugs. Emerging theories focus on 

the dysregulation of inflammatory pathways and neuroplasticity-related processes, and because of this, here 

we decided to focus on gene expression and protein levels of molecules mainly related to cytokines signalling 

and neurogenesis/neuroplasticity as possible biomarkers for improving the current strategies of 

pharmacological intervention. 

 

4.2 Inflammatory related biomarkers  

A growing body of evidence suggests that pro-inflammatory cytokines like interleukins, chemokines and the 

Interferon’s family molecules have a leading role in the pathophysiology of depression, but also and most 

importantly, inflammatory markers have been shown to have the potential to predict the outcomes of 

antidepressants treatments [25,90,91,92].  

With this respect, researchers have focused their attention on SNPs for inflammatory genes as well as on the 

analysis of mRNAs and protein levels in order to identify biomarkers possibly associated with the efficacy of 

antidepressant drugs (see Table 3).  
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4.2.1 Genetic variants within inflammatory genes 

Recent studies demonstrated that several SNPs within interleukins genes, such as the pro-inflammatory 

cytokines IL-1beta, IL-6 and IL-11, can influence the antidepressant drugs’ response. The IL-1beta 

polymorphisms have been found to influence the response to antidepressant drugs, where variants within the 

2q14 T-511C locus have been associated, for example, with the response to fluoxetine: in particular, -511C/C 

homozygotes subjects showed reduced response to fluoxetine as compared to the -511 (C/T) carriers or (T/T) 

homozygotes [93]. The same variants have been implicated in the response to other antidepressant drugs: 

subjects with the -511T/T genotype showed a faster response to paroxetine as compared to -511C/C subjects, 

whereas there was no evidence of an association between these variants and the antidepressant mirtazapine 

[94]. Also SNPs within other loci (rs114643 and rs16944 SNPs) in IL-1beta have been related with 

antidepressant response, demonstrating that the G/G genotype of both rs114643 and rs16944 SNPs influence 

the response of a 6-week treatment with different classes of antidepressants [95]. Furthermore, also the 

rs7801617 in IL-6 gene has been found associated with response to escitalopram [96]; in addition, IL-11 SNP 

rs1126757 showed a better outcome than G carriers after 12 weeks of escitalopram therapy [96].  

Recent studies demonstrated that several SNPs within interleukins genes, such as the pro-inflammatory 

cytokines IL-1beta, IL-6 and IL-11, can influence the antidepressant drugs’ response. The IL-1beta 

polymorphisms have been found to modulate the response to different antidepressant drugs, such as fluoxetine, 

paroxetine and mirtazapine [93,94,95]. In addition, similar findings were reported also with regard to several 

SNPs on IL-6 gene and IL-11 [96]. These studies commonly showed how different genetic variants can be 

correlated with a positive or negative response to the pharmacological therapy. For more detailed information, 

see Table 3.  

 

4.2.2 mRNA levels and treatment response 

Several studies have consistently shown an association between higher mRNA levels of inflammatory genes 

and poor antidepressant response.   Our group has shown that high blood mRNA levels of IL-1beta, MIF and 

TNF-alpha can predict the lack of responsiveness to different drugs, such as escitalopram and nortriptyline 

[25]. Moreover, a reduction in the levels of the pro-inflammatory cytokines IL-6 and of the GR-associated 

gene FKBP5 were observed in patients who gain successful benefits from therapy [25]. In line with this, Powell 

and colleagues, confirmed the presence of high level of TNF-alpha in association with a failure in treatment 

response, and they also showed that reduced IL-11 mRNA levels were associated with a successful response 

to escitalopram [97].  

Another emerging candidate is the ATP-binding Cassete sub-family F member (ABCF1), a regulator of the 

inflammatory pathways and of cytokines functions. Powell and colleagues reported increased mRNA levels of 

this protein in the blood of patients treated with escitalopram and they also showed increased levels of ABCF1 

in responder patients after 8 weeks of treatments [98].  
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4.2.3 Protein levels and treatment response 

A number of meta-analyses reported increased protein levels of several pro-inflammatory cytokines in 

peripheral blood of depressed patients as compared to controls [99,100] and that changes in cytokines levels 

during antidepressant treatment correlate with treatment response [101,102,103,104]. For example, increased 

baseline levels of TNF-alpha correlated with a poor response to amitriptyline [105] and SSRI [106,107] and, 

in the study of Laquillon and collaborators, baseline level of IL-6 predicted a lack of efficacy of amitriptyline 

[105]. However, some studies showed inconsistent results regarding the potential role of IL-6 in discriminating 

between responders and non-responders [108,109]. For instance, higher baseline IL-6 levels were found in 

patients who responded to SSRI (paroxetine or sertraline) as compared non-responders [110]. 

Another relevant inflammatory related biomarker for antidepressant response is the C reactive protein (CRP), 

whose levels have been found associated with response to different antidepressant drugs by several studies 

[111,112], suggesting that peripheral blood concentration of CRP might be useful to predict the future 

therapeutic response. Indeed, it was shown that the SSRI escitalopram is less effective in subjects with high 

baseline CRP levels, whereas nortriptyline exerted at baseline a higher effect at moderate to high inflammatory 

conditions [113]. With this respect, it has been assumed that SSRIs may be the most appropriate medication 

choice for depressed patients with low CRP levels (< 1mg/L), whereas subjects with higher levels (≥ 1 mg/L) 

may show better clinical outcomes after treatment with dopamine targeting drugs [114]. By contrary, Harley 

and colleagues showed a positive correlation between a good response to amitriptyline and elevated pre-

treatment CRP levels [115].  

Over the last few years, treatment-resistant patients have also been treated with NMDA receptor antagonist 

Ketamine. A few studies have been conducted in order to identify possible biomarkers for predicting the 

response to this new compound. Yang and colleagues has addressed IL-6 as a potential biomarker for 

Ketamine’s antidepressant effect, since baseline levels of this cytokine in responder patients are significantly 

higher than those in the non-responders group [116]. In addition, Ortiz identified a post-synaptic density 

protein involved in NMDA receptor functioning, SHANK3, as a potential biomarker, as higher levels of this 

protein predict an antidepressant response at different time points after Ketamine infusion [117].  

In conclusion, the investigation of a panel of inflammatory-related genes, both in term of protein or mRNA 

levels, holds the potential to represent predictive biomarkers for the clinical response to pharmacological 

intervention. However, although the role of inflammation in the pathogenesis of depression is well established, 

the use of inflammatory biomarkers in the clinical setting requires further validation in larger samples.  

 

 

Table 3. Genetic, mRNA and proteomic biomarker in blood for predicting antidepressant treatment 

outcomes.  
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5. NEUROPLASTICITY RELATED GENES AND ANTIDEPRESSANT TREATMENT 

RESPONSE  

Among the molecules with a neurotrophic support and with a potential role in antidepressant efficacy, the 

neurotrophin Brain Derived Neurotrophic Factor (BDNF) is the one most investigated. BDNF is implicated in 

the development and maintenance of neural interconnections, in synaptic and dendritic growth, in 

differentiation of new neurons and synapses and in several brain functions, for example in memory 

[118,119,120]. Several studies pointed out the involvement of BDNF in psychiatric diseases, including 

depression [121], where it has been widely demonstrated that BDNF mRNA levels are decreased both in the 

blood and in the brain of depressed patients compared to control subjects [65,122]. Given its multiple roles, 

BDNF has been suggested as a potential candidate to evaluate the response to antidepressant treatments. Here 

we will provide a general overview of the main findings on changes on BDNF genetic variants, mRNA levels 

and also protein levels [123,124,125].  

With respect to genetic variants, the most investigated polymorphism is the functional SNP Val66Met 

(rs6265), which has been associated with alterations in brain morphological features, impaired memories and 

antidepressant drug response [126,127]. Several studies tried to correlate different genotypes with clinical 

outcomes and the effects appear to be dependent on the class of antidepressant used. For example, a better 

clinical improvement after SSRIs treatment was found in Val/Val patients, whereas SNRI/TCAs were more 

effective in Met carriers [127]. While similar results were found with the SSRI paroxetine [128], opposite 

findings have been reported by other authors who showed that SSRIs were associated with antidepressant 

improvement in patients carrying the Met variant after a 6-week treatment [129]. In contrast to the 

aforementioned studies, other works found inconsistent differences within baseline and after administration of 

paroxetine (SSRI) and venlafaxine (SNRI) in patients carrying the Val/Val and the Met genotypes [130].  

Several studies have also measured BDNF levels in the blood to evaluate whether its levels may be able to 

predict or mediate the efficacy of antidepressant therapies, although the results are contradictory [131]. Indeed, 

although several studies showed changes in BDNF levels during antidepressant treatment, with an effect that 

correlated with clinical response, other studies failed to identify any significant differences in the neurtrophin’s 

levels after antidepressant therapies [108,132]. Most of the studies focused the attention on serum or plasma 

BDNF levels and only few findings are on mRNA BDNF levels measured in peripheral blood cells [65].  

Data on protein levels in the blood are more abundant and they extensively demonstrate the presence of 

reduced BDNF levels in depressed subjects before treatment, as compared to controls. Importantly, although 

baseline BDNF levels do not seem to predict the clinical outcome, BDNF changes during treatment are 

associated with clinical improvement, supporting the notion that drug responsiveness is associated with 

neuroplastic changes, which are needed to ameliorate clinical symptomatology [65,133].  Polyakova and 

colleagues in 2014 published a meta-analysis on peripheral BDNF levels in depressed patients treated with 

antidepressant drug with the median length of treatment was of 6 weeks. The authors, observed reduced BDNF 

levels in depressed patients at baseline, and showed that circulating BDNF levels were increased in remitters 
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and responder patients, but not in non-responder subjects [131]. Another study published consistent findings 

in elderly patients with pre-treatment depression associated with reduced BDNF levels, which increased upon 

successful treatment with escitalopram treatment. Interestingly the increase of BDNF levels correlated with 

symptomatology improvement, supporting the notion that BDNF may indeed be required for antidepressant 

efficacy [134]. 

On the other hand, other authors failed to show significant changes of blood BDNF levels in depressed subjects 

treated with sertraline [132], despite their clinical improvement, suggesting that drug responsiveness may not 

be unequivocally be associated with an elevation of peripheral BDNF levels [133,135,136]. 

In summary, based on the available data, it is not so clear whether BDNF could represent a biomarker for 

depression and treatment response and other factors, such as the Val66Met SNP as well as the presence of 

epigenetic changes in BDNF, can influence BDNF levels. These variants should be taken into account in larger 

studies to prove the role of BDNF as biomarker for treatment response. Moreover, a number of technical issues 

can also influence the results, including the choice of specimen (PBMCs, total blood or leukocytes) for mRNA 

or protein analysis as well as the time at which blood is collected during or after antidepressant therapy. 

 

6. METABOLOMICS: A NOVEL GLOBAL APPROACH FOR DRUG RESPONSE 

PHENOTYPING? 

Metabolomics or metabonomics is the study of the metabolome, the repertoire of biochemical molecules (or 

small molecules) present in cells, tissues and body fluids [137] that can give information on changes in 

biochemical and metabolic pathways,and may also providing insights into the complex mechanisms associated 

with disease and with drug efficacy or side effects [138,139].  Metabolites are the final products of interactions 

between gene expression, protein function and cellular environment. Thus, a specific metabolic phenotype is 

influenced not only by genotype, but also by environmental factors such as stress, nutrition status, age, gender, 

disease and co- or pre-administration of other drugs [22]. All these factors contribute to the complexity of the 

metabolomic analysis.  

Metabolites can be assayed through various detection methods, including complex technologies (e.g. nuclear 

magnetic resonance spectroscopy (NMR), gas chromatography with mass spectroscopy (GC–MS), liquid 

chromatography with mass spectroscopy LC–MS, and liquid chromatography electrochemical array detection 

(LCECA) [140].  

In the past few years, metabolomic studies have investigated a wide array of metabolites such as lipids, 

carbohydrates, hormones, aminoacids and even neurotransmitters, with the aim to differentiate depressed from 

non-depressed patients. 

In this regard, a recent review conducted by Hashimoto and colleagues [141] suggested the use of 

metabolomics to enable the analysis of several small-molecules in different biological fluids, and highlighted 

the importance of developing specific biomarkers for mood disorders to establish the correct diagnosis and 

treatment. Studies reviewed in this paper suggest several potential metabolites able to discriminate depressed 
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patients from healthy controls, and even also to discriminate sub-symptoms of depression and estimate a degree 

of suicidal ideation [142]. However further studies are needed to confirm these findings.  

At present, metabolomics appear to possess unique and proven advantages for developing biomarkers, and 

hold great promise for the prediction of patient’s response to drug treatment [18,139,143,144].  

Here we summarize some of the main findings on metabolome in the context of predictors of antidepressant 

treatment response. 

One of the first metabolomic study in the field of depression and treatment response was carried out by 

Kaddurah-Daouk and co-workers [139,144] who interrogated baseline metabolite profiles as possible markers 

associated with a future response to sertraline, or placebo and biomarkers associated to both (placebo and 

sertraline). The authors used a liquid chromatography electrochemical array (LCEA) platform and found a 

panel of metabolites specifically in responders as compared to non-responder. As an example, they found that 

a decrease of 5-methoxytryptamine and an increase in arachidonic acid and α-ketoglutarate levels after 1 week 

of sertraline treatment, were associated with a reduction in symptoms. Four weeks of treatment with sertraline 

were also associated with decreased levels of lactic acid, BCAAs, valine, leucine and isoleucine. 

In another work, they showed that metabolic profiles measured in depressed patients prior to treatment could 

stratify responders from non-responders to sertraline or placebo [144]. Then they provide detailed mapping of 

effects of sertraline and placebo on key neurotransmitter pathways after one week and four weeks of treatment; 

moreover, they correlated biochemical changes with treatment outcomes.  Furthermore, they focused on the 

tryptophan pathway and correlated signalling and they identified early biochemical changes correlated with 

treatment outcome, providing detailed mapping of the effects produced by sertraline or placebo on key 

neurotransmitter pathways after one week and four weeks of treatment, correlating biochemical changes with 

treatment outcomes [145]. 

By using a pharmacometabolomics approach, Rotroff and collaborators mapped the global metabolic effects 

of ketamine or its S-enantiomer, esketamine in treatment-refractory MDD patients, and the effects of 

esketamine on metabolism were tested in the same subjects also following a second exposure administered 4 

days later. Both drugs altered metabolites related to tryptophan metabolism (such as indole-3-acetate and 

methionine) and/or the urea cycle (for example, citrulline, arginine and ornithine) at 2 h post infusion. In 

addition, they observed changes in glutamate and circulating phospholipids that significantly correlated with 

clinical improvement [146].  

In another study, among all the metabolites, glycine and glycine dehydrogenase were associated with treatment 

response to the SSRIs citalopram/escitalopram [147]. These results were confirmed by another study 

conducted on 529 depressed patients treated with the SSRIs citalopram/escitalopram for 8 weeks. The authors 

of this study also reported an association between the metabolomic findings with the genetic variations in 

genes encoding glycine synthesis and degradation enzymes [148]. 

In a recent study, Gupta and colleagues used a pharmacometabolomics-informed pharmacogenomics research 

strategy to identify genes associated to metabolites that were also relevant for SSRI response. This “combined” 

approach made possible to integrate both the role of environmental factors and genomic variability as factors 
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influencing the drug responses. They identified 31 metabolites, primarily related to monoamine 

neurotransmitters, and they also identified SNPs in genes not previously known to be involved in either SSRI 

response or the regulation of serotonin-related pathways [143]. 

In light of these data, metabolite profiling holds great promise for the identification of individual metabolites, 

but most importantly of metabolic pathways involved in antidepressant response. Today only a narrow range 

of chemical analyses has been performed, but they will be replaced in the future by a more comprehensive 

metabolic signature. Inclusion of metabolomics data in precision medicine will provide an invaluable layer of 

data that may allow the integration of the data obtained from other “omics” approach.  
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7.  CONCLUSION 

Although different classes of antidepressant drugs acting with different molecular mechanisms are currently 

available, only the 50% of patients respond to the first trial, and about the 30% is not responder to any drugs 

and become treatment resistance. Thus, there is an urgent need to identify biomarkers that can predict treatment 

outcome before the patient starts the treatment, in order to identify the best antidepressant for each individual 

patient and thus to avoid delays in reaching significant symptomatology improvement. 

The research of biomarkers in depression is still an ongoing work. Although some potential biomarkers have 

been identified, they still need to be validated in larger samples. Up to now, most of the studies focused the 

attention on candidate genes or candidate hypothesis looking at molecules related to inflammation and 

neuroplasticity, suggesting that cytokines and, more in general, inflammatory related molecules can represent 

useful predictors of treatment response, whereas neurotrophins like BDNF have been suggested to be more 

moderators. However, some of these data lead to contrasting results and the potential role of these biomarkers 

has to be replicated in larger samples before being introduced in the clinical settings. Moreover, the possibility 

to use high throughput technologies spanning through genome, epigenome, proteome, and metabolome that 

are now available, can allow the detection of multiple and combined features for predicting antidepressant 

response. We believe that a combined set of biomarkers including gene or protein expression, cytochrome and 

metabolites will hold a great potential for the future in predicting treatment response, which will represent a 

significant advancement for mental health...  

 

8. EXPERT COMMENTARY  

Major depression is a heterogeneous illness whose aetiology is influenced by a combined contribution of 

individual genetic variability as well as gene-environment interactions (G X E).  

A crucial challenge for the near future will be to define individual depressed patient on the basis of their 

symptomatology and severity, as well as the overlap of symptoms across different psychiatric conditions. This 

could be achieved, at least in part, through the identification of biomarkers associated with ‘true’ depression, 

i.e. chronic recurrent depression, and/or its subtypes, including the ones responsive to pharmacological 

treatment. This represents a critical first step for more effective treatments associated with higher rates of 

remission, which may ultimately reduce the suffering of patients as well as health care-related costs. 

Although different pharmacological therapies are currently available, there is still significant variability in 

antidepressant treatment response and about the 30% of patients do not respond to treatments.  

This observation highlights the need to identify objectively measurable biomarkers that are able to predict the 

outcome of antidepressant drugs. 

Despite recent findings that we have described in this review, much of the study pertaining to blood-based 

biomarkers of depression suffers from a number of common weaknesses. 

To date, no validated biomarkers have sufficiently proven specific, sensitive and reproducible for clinical 

application with the possible exception of kits that assess metabolizer status by genotyping cytochrome gene 

variants. This is due, at least in part, to the heterogeneity among studies (samples analysed – plasma or serum, 
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technologies and methods used, inclusion/exclusion criteria of cohort selection, sample size), the shortage of 

independent replication cohort in which to validate initial findings and the lack of standard operative 

procedures between researchers (i.e. methods of collecting, storing, processing and analyzing markers). All 

these elements can indeed impact the ability to draw generalizable conclusions across studies.  

Furthermore, up to now, none of the hypothesis-driven studies based on large GWAS or whole-transcriptomic 

analyses have identified robust biomarkers of antidepressant response, and their findings have been poorly 

replicated. On the other side, proteomic and metabolomic markers holds great promise for the identification 

of pathways involved in antidepressant response but they are still limited in number, due to the complex 

technologies, high costs and technical skills required. Studies focusing on epigenome, have been rarely 

analyzed, although recent findings suggest they are an interesting path to explore. Indeed, epigenetics may 

provide new insight into pathophysiology of major depression and may yield novel biomarkers for diagnosis 

and treatment response. Several different types of epigenetic mechanisms have been implicated to date: they 

include DNA methylation, post-translational modification of histone proteins and also the regulation of 

transcription and translation by non-coding RNAs. Some epigenetic modifications, especially DNA 

methylation, have been considered irreversible in the past. By now it has been shown that even stable chemical 

modifications, such as DNA methylation, underlie highly dynamic regulation. This potential reversibility 

makes these mechanisms suitable to be tested as potential biomarkers for treatment response, also because 

there are increasing evidences that drugs in current therapeutic practice directly or indirectly affect epigenomic 

status, and this in turn can influence the treatment response.  

Some promising results have emerged in the field of inflammation where protein or mRNA levels of pro-

inflammatory cytokines have been reported to predict treatment response, and, if validated by future 

independent studies in larger cohorts, these may hold promise as targets to be developed within clinical 

settings. Moreover, advancing technologies might allow to move towards a hypothesis-driven approach to a 

priori hypothesis that could provide understanding in the pathophysiology of depression and mechanisms of 

action of antidepressants. 

The ultimate goal is the development of a precision medicine in psychiatry that may guide in the identification 

of a personalized treatment strategy for each patient and in the discovery of new targets for the development 

of novel antidepressant drugs. 

To achieve this goal, it is necessary that future studies take an integrative approach that include clinical 

assessment, evaluation of environment components as well as a panel of molecular biomarkers. Single traits 

or feature have a low power and could show low or lack sensibility, sensitivity and reproducibility, however, 

if several features are taken together they could show a biosignature more sensitive and accurate in predicting 

response. 

 

9. FIVE YEARS VIEW 

Despite the fact that several positive findings are described in scientific literature, current biomarker research 

has some important limitations. Indeed, data are sometime contrasting and inconsistent, possibly due to: 
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i) confounding technical issues (i.e. the study design and methodology, quality of starting material); 

ii) type of tissue analysed (PBMC, whole blood, serum, plasma, post-mortem brain); 

iii) different psychopathological conditions  with heterogeneous phenotypes; 

iv) treatments and therapies administered (which treatment, dosage, duration of treatment); 

v) sample size of the cohorts (too small).  

Furthermore, up to now we still need to promote the research focused on the identification of biomarkers that 

may interact or synergize to determine specific depression phenotypes. Thus, future clinical studies on 

biomarkers should take an integrative approach in order to identify multiple features (biosignature), which 

may predict with high accuracy the response to antidepressant therapies. 
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