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We describe an experiment performed at the LULI laser facility using an advanced radiographic

technique that allowed obtaining 2D, spatially resolved images of a shocked buried-code-target.

The technique is suitable for applications on Fast Ignition as well as Warm Dense Matter research.

In our experiment, it allowed to show cone survival up to Mbar pressures and to measure the shock

front velocity and the fluid velocity associated to the laser-generated shock. This allowed obtaining

one point on the shock polar of porous carbon. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4900867]

I. INTRODUCTION

High Energy Density Physics (HED) is a very active

research field, which developed in recent years.1 By defini-

tion, HED states correspond to an energy density �1011 J/m3

or correspondingly pressures exceeding 1 MBar. The study

of such physical systems is of great interest for many

branches of Physics, including Astrophysics, Material

Science, and Inertial Confinement Fusion (ICF) research.2–4

Densities and temperatures characteristic of HED states are

typical of many astrophysical objects including the cores of

giant planets, supernova explosions, and stellar astrophysics.

Many striking phenomena appear in this regime, including

interesting phase transitions with important consequences.

For instance, in planetary physics, carbon subject to very

high pressures in the mantle of giant planets can metallize,

leading to high electric conductivity, which, via dynamo

effect, could explain the origin of the large observed mag-

netic fields in planets like Uranus and Neptune.5

Nowadays, it is relatively easy to produce HED states

by focusing high power lasers on matter, driving multi-

megabar shocks and being able to compress the matter (in

implosions) up to almost 1000 times solid density.6 These

extreme states of matter are also very important for the study

of strongly coupled, partially or fully degenerate plasmas

with applications to ICF and its alternative approaches such

as Fast Ignition (FI)7 or shock ignition.8

In FI, HED states are produced both as a consequence of

the “normal” compression phase and as a result heating

induced in matter by the propagation of an intense beam of

fast (relativistic) electrons in the final “ignition” phase. One

promising approach to FI is the use of the cone-in-shell tar-

get geometry.9 Indeed the cone keeps a clear access for the

ultra-intense beam from the ablation plasma produced during

implosion, which allows generating the fast electron beam

very close to the compressed fuel core. Of course the cone

material (usually gold and more recently diamond10) will

undergo a transition to HED states when crossed by the fast

electron beam. In turn, the electric conductivity and colli-

sionality of the heated cone material will influence the prop-

agation of fast electrons.11 An additional, still open issue is

represented by cone survival during shell implosion, which

may be compromised by the huge pressures, driving strong

shocks and plasma jets through the cone walls and the cone

tip.12

Diagnosing these new HED physical regimes represents

a very challenging task. In particular, it is important being

able to diagnose the density and temperature profiles in rap-

idly transient phenomena such as shock propagation in mat-

ter, providing information on the target conditions at

different times, allowing to study the dynamics of such com-

plex physical phenomena.

In this work, we describe the optimization of x-ray point

projection radiography, a technique allowing to obtain 2D-

spatially and time-resolved images with applications ranging

from FI research to the determination of equations of state

(EOS). In particular, such diagnostics can be of interest in

Shock Ignition experiment where one of the most used diag-

nostics (VISAR13) is often “blinded” by the preheating

caused by the laser pulse.14 Of course, in literature is possi-

ble to find several works related different methods and appli-

cations of x-ray radiography techniques to HED plasmas.

Early applications of x-ray radiography, dating before the

advent of Chirped Pulse Amplification (CPA) laser systems

and still widely used now, make use of extended x-ray sour-

ces coupled to imaging optics and x-ray streak cameras, pro-

viding temporally resolved x-ray radiographies.15 Of course,

the main limitation of this technique is the intrinsic 1-

dimensional spatial resolution recorded by streak cameras.

a)Present address: Dipartimento di Fisica E. Fermi, Universit�a di Pisa, Largo

Bruno Pontecorvo 3, 56127 Pisa, Italy.
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The imaging system may be simple pin-hole cameras or

more complex Kirkpatrick Baez microscopes or similar type

of x-ray optics (see Ref. 16 for instance). A more recent

technique employing long pulse laser systems and large foil

backlighters is characterized by the implementation of multi-

ple pin-hole array coupled with x-ray framing camera. This

technique allows obtaining 2D spatially and temporally

resolved x-ray radiographies, with temporal resolution �50

ps.17 Although this is quite powerful, the use of pin-holes

sensibly reduces the x-ray flux available for radiography and

requires therefore a large laser energy to create an intense

backlighter, as well as a very accurate design of the x-ray ray

shielding to reduce the background level in harsh x-ray and

c-ray environment. Radiographies have also been obtained

by imaging the target with x-ray optics such as a spherically

bent Bragg crystals, allowing in this case also a precise

selection of the x-ray wavelength.18 The use of crystals for

imaging can provide highly spatially resolved (�15–20 lm)

monochromatic images, but, again, at the same time strongly

reduces the x-ray flux on the detector, due to the low reflec-

tivity of Bragg crystals (�10�4).

After the advent of CPA, short pulse (�ps) lasers have

been used to generate x-rays short pulses, as used in our

work, allow to drastically reduce the temporal resolution,

since the x-ray source duration is directly correlated to the

laser pulse duration (or just a few ps longer due to the time

needed by fast electrons to cool down in the foil). Dynamic

evolution can be then obtained in multiple shots by varying

the delay between the ps and the ns pulses.

Another powerful technique to diagnose HED plasmas

is Compton point-projection radiography, which provides

high resolution (close to the diameter of the backlighter

wire) for very high-density plasmas.19 However, the back-

lighter x-ray energy range from 60 to 200 keV requires very

high plasma areal densities to be efficiently applied, densities

obtainable at the moment only at very large facilities such as

Omega laser at the Laboratory of Laser Energetics in

Rochester and at the Lawrence Livermore National Ignition

Facility.

In the present work, applications of x-ray point projec-

tion radiography technique, providing at the same time high

spatial resolution to high x-ray flux are discussed. The work

presented here was a preparatory stage of an experiment

addressed to study fast electron generation and transport in

shock driven buried cone targets.20 It was aimed at character-

izing the propagation of the shock into a buried cone target,

and at evaluating cone survival in presence of a strong shock.

This kind of target represents a perfect sample for x-ray radi-

ography optimization, since many details, as well as the

shock front itself, can be imaged allowing evaluating resolu-

tion, intensity and contrast of the radiographies.

As said before, we used buried cone targets in order to

test the hydrodynamics and cone survival in FI. Of course, in

a realistic FI scenario the conditions are quite different since

the capsule is subject to implosion, resulting in high pres-

sures on the cone wall and driving a plasma jet through the

cone tip. In our case instead, a strong planar shock counter-

propagates with respect to the cone axis. Despite the differ-

ences from a realistic FI scenario, it is still possible to

evaluate the cone survival undergoing a strong shock and

study the fast electron generation in modified laser-plasma

interaction (LPI) conditions, in event of shock breakout, or

the fast electron transport through a shocked material,

depending on the delay between the ps and the ns pulses.

II. EXPERIMENTAL SETUP

The experiment was performed at LULI2000 laser facil-

ity of the Laboratoire pour l’Utilisation des Lasers Intenses

(LULI). For the experiment, we have used two laser beams:

a long pulse one and a short pulse one. The first one is able

to deliver up to 1 kJ of laser energy in 5 ns at 1053 nm (1x
frequency), and the second one, thanks to the CPA tech-

nique, can be compressed to 1 ps pulse duration, �70 J pulse

energy at 1x. In the present experiment, the ns and the com-

pressed pulse were frequency doubled, delivering respec-

tively �500 J in 5 ns square temporal profile on a 500 lm

spot size, optically smoothed by means of a random phase

plate, and �15 J in 1 ps on a 10 lm spot size.

The targets used during the experiment are relatively

complex: they were constituted by copper-coated carbon

buried cone in a multilayer target (see Fig. 1). The cone had

a depth of 400 lm, a 17� half angle aperture, and 50 lm cone

tip size and it was coated with 10 lm Cu. The carbon layer,

with density of 2 g/cm3, extended 100 lm beyond the cone

tip, followed by 10 lm silver (Ag) layer and finally by

6.5 lm CH plastic as ablator. The ns pulse was focused on

the CH plastic ablator with an incidence of 22.5� to drive a

strong shock in the target material. General Atomics, San

Diego, produced the targets.

Two main diagnostics have been implemented during

the experiment. A streaked optical pyrometer (SOP), looking

at the cone, was used to characterize the shock and in partic-

ular to determine the shock breakout time from the cone tip.

The second diagnostic was an instantaneous X-ray radi-

ography. The ps laser beam was focused on a 10 lm Cu wire

to perform x-ray point projection radiography to characterize

the shock propagation at different time delay (see Fig. 2) by

varying the delay between the ns and the ps beams. The laser

beam was tightly focused onto the wire to produce an intense

x-ray source at 8 keV dominated by Ka emission produced

by the interaction between Cu atoms and the fast electrons

generated by the short-pulse high-intensity laser.

FIG. 1. Scheme of the target used in the experiment. The Cu layer thickness

at cone tip was 23 lm.
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III. POINT PROJECTION X-RAY RADIOGRAPHY SETUP

The x-ray point projection radiography setup is repre-

sented in Fig. 2.

The 10 lm Cu wire was aligned normally to the cone

axis at a distance of 5 mm correspondingly to the cone tip

position. The x-rays were collected by a Fujifilm BAS-MS

imaging plate (IP) placed at 20 cm from the target providing

a magnification of �40�.

The x-ray source was characterized by disposing Al foils

with different thicknesses on the detector. The single Al

layer thickness was 15.6 lm and the stack thickness was

sequentially increased from 2� to 10� as shown in Fig. 3.

The Al stacks were aligned along the vertical direction,

following the backlighter orientation. The experimental

results (see Fig. 3 down) are perfectly interpolated assuming

a spectrum given by the Cu Ka emission line (i.e., photon

energy of 8 keV) and a hard x-ray contribution coming from

Bremsstrahlung emission. The red line in Fig. 3 corresponds

to such spectrum, while the dashed blue line shows what

would be obtained with Ka emission only (i.e., using the

mass absorption coefficient for Al at 8 keV of 50.33 cm2/g as

provided by NIST21). The two differ only by a constant, rep-

resenting the contribution of the Bremsstrahlung x-ray emis-

sion, whose value is 0.0056 6 0.0006 PSL. We performed

also some numerical simulations with the code with

FLYCHK22 to obtain a synthetic x-ray spectrum composed

of two peaks (Ka1 and Ka2 emission) and a Bremsstrahlung

term. In all cases, data for mass attenuation coefficients were

obtained from Refs. 16 and 23 while the sensitivity of the IP

was taken from Ref. 24.

For the experiment, we used a Cu wire target because

8 keV photons can penetrate through the thick C target

(about 1 mm thick) while still provide sufficient contrast to

detect a shocked region which, a-priori, is �500 lm wide

and corresponds to a density jump of �2�.

We also experimentally measured the spatial resolution

of the x-ray radiography imaging system. Fig. 4 shows static

radiography images of a Au grid and a standard buried cone

target identical to those used in the experiment. The Au grid

is 20 lm thick with 60 lm spacing, the spatial resolution

obtained from the grid calibration radiography is �11 lm

using a 10 lm Cu wire. This value is estimated as the 10% to

90% distance in the intensity lineout in Figure 4(b).

IV. APPLICATION OF X-RAY POINT PROJECTION
RADIOGRAPHY TO FAST IGNITION

As already mentioned above, in fast electron FI, the sur-

vival of the cone structure undergoing the extreme pressures

generated during the capsule implosion is of vital importance

for the success of this scheme. X-ray point projection

FIG. 3. (a) Al steps for x-ray source calibration (1�¼ 15.6 lm); (b)

Measured intensity on IP and fit (solid line) obtained using a spectrum com-

posed by the Ka line plus a bremsstrahlung component (red line). Also

shown the Ka contribution alone (blue line). In this case, the slope corre-

sponds to the mass absorption coefficient using the absorption coefficient

given by NIST for a pure Cu-Ka emission at 8 keV.

FIG. 4. X-ray point projection radiography calibration images: (left) Au grid

20 lm thick with 60 lm spacing; (right) buried cone target. The black area

in (c) corresponds to a tungsten shield, which was set up to avoid direct x-

ray irradiation produced by the ns beam. The shadow of the Cu layer is

larger than 10 lm due to the relative angle with the wire backlighter, aligned

to the cone tip.

FIG. 2. Layout of the experimental setup (in reality the ns beam was inci-

dent at 22.5�).
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radiography can provide information on the cone structure

condition at different time delays. The observations are sup-

ported by SOP data providing the shock breakout time from

the cone tip.

The SOP measurements were performed using an

Hamamatsu C 7700 streak camera, synchronized with the ar-

rival time of the ns pulse. Figs. 5 and 6 represent respectively

the SOP calibration data obtained on a 40 lm Al target and a

SOP acquisition from a buried cone target. The temporal

window is respectively 20 and 50 ns for the two acquisitions,

resulting in a temporal resolution, using a 300 lm slit, of

respectively 250 and 600 ps.

The shock breakout times, measured from the arrival of

laser pulse on target, are 1.6 ns for the Al 40 lm target (574 J

in 4.7 ns) and 8.2 ns for the cone target (521 J in 4.2 ns). The

average shock velocity resulting from shock breakout times

from buried cone targets was D¼ 17 6 1.8 lm/ns. The flat

target was used as reference to validate the ns pulse energy

used in the hydrodynamic simulations.

Of course this is just a value averaged over the different

layers of the target (polystyrene 6.5 lm, Silver 9.8 lm, po-

rous carbon 100 lm, and copper 23 lm).

The x-ray radiography images of shock propagation

show that the cone structure seems to survive the shock so-

licitation. Fig. 7 shows a series of x-ray radiography images

of shock propagation at different time delays. Unfortunately

in many of these acquisitions, the Cu wire had to be replaced

by a 10 lm thick Cu foil, disposed normally to the cone tar-

get axis. This choice was made due to the shot-to-shot point-

ing fluctuation of the LULI2000 ps pulse, larger than 10 lm,

which made the backlighter performances very unstable.

Note that, the 10 lm Cu foil guarantees the same resolution

along the cone axis than the Cu wire while the resolution

along the axis normal is reduced (�50 lm). Indeed the

source size instead of being related to the wire diameter is

now related to the Cu-Ka spot size, which always appears

much larger than the laser spot.25 Nevertheless, this still

allows to clearly identify the cone features as shown in Fig.

7. Here, for delays larger than 8.2 ns, consistently with shock

breakout measurements from SOP, we see that the shock is

propagating in the cone region but that the overall structure

of the cone is still visible implying cone survival. This result

is in line with the cone-shell implosion radiography results

recently described in Ref. 17, showing substantial survival of

the cone at implosion bang time.

V. APPLICATION OF X-RAY POINT PROJECTION
RADIOGRAPHY TO STUDY EOS (OF CARBON)

The x-ray point projection radiography allows not only

to measure the position of the shock but also, simultaneously

that of the Ag/C interface. The data points for shock front

position and Ag layer position as function of time are dis-

played in Fig. 8 together with the results from hydrodynamic

simulations performed with the 1D code MULTI26 using

opacity tables calculated using the atomic physics code

SNOP.27 The SOP measurement on the 40 lm Al layer was

used as a reference to calibrate the laser intensity corre-

sponding to a specific laser energy used in the hydrodynamic

simulations, In this figure, the points represent the experi-

mental data while the colored areas represent the MULTI

simulations. The areas reflect the shot-to-shot laser energy

fluctuation. In general, the Ag/C interface is clearly visible

in all images (due to the high opacity of the Ag layer) while

the position of the shock front, corresponding to a smaller

density jump, is identified with more difficulties. The shock

breakout timing obtained from the hydrodynamic simula-

tions is in very good agreement with the experimental data.

We see that, despite experimental uncertainties, the

hydrodynamic simulations can well reproduce the experi-

mental values for shock front and Ag layer position, which is

also a good validation for code behavior in such complex sit-

uation. We also see that, after an initial phase, characterized

by almost constant velocities, the shock front decelerates and

also the fluid velocity decreases with time.

If we consider only the initial phase (t< 15 ns, since the

Ag/C interface velocity slows down for longer delays), we

can interpolate the experimental points giving the shock

FIG. 5. Shot on a 40 lm Al target (energy: 574 J). Breakout time: 1.6 ns.

FIG. 6. Shot on a cone target (energy: 521 J). Breakout time: 8.2 ns.

102712-4 Morace et al. Phys. Plasmas 21, 102712 (2014)



front and the interface position with straight lines. These

then provides the shock velocity D and the fluid velocity U

(equal to the velocity of interface) in carbon aftershock pas-

sage. For the data in Fig. 8, we get

U ¼ 8:7860:68lm=ns D ¼ 20:8062:50lm=ns:

Given the Hugoniot-Rankine equation set, the pressure and

density of the shocked material can be calculated as

q ¼ qoD=ðD� UÞ P ¼ qoDU;

where q0 is the unperturbed density and the unperturbed

pressure was set equal to zero.

The calculated shocked density and pressure are

q ¼ 3:4660:36 g=cm3 P ¼ 3:6560:52 MBar:

This method then allows obtaining a point on the Shock

Polar of Porous Carbon. This point is shown in Fig. 9, to-

gether with three curves, relative to three different equations

of state. The blue curve is obtained from the SESAME28 ta-

ble for Carbon 7833, preheated at 0.5 eV to account for the

initial density of 2 g/cm3 of porous carbon. The red curve is

calculated with MPQEOS29 for porous carbon, with an initial

density of 2 g/cc and an initial temperature of 0.025 eV. In

order to account for the reduced density of carbon, we have

changed its bulk modulus following what described in Ref.

30. Finally, for comparison, we have also drawn the green

curve (MPQEOS with initial conditions 2 g/cc and 0.5 eV) to

show the effect of preheating on the Hugoniot curve.

Fig. 10 shows the same curves and the same experimen-

tal point in the q-P plane. In this case, the agreement

FIG. 8. Experimental results and MULTI simulations for the shock propaga-

tion (in red) and the silver layer displacement (in blue), SOP breakout time

is displayed in black. The stripes represent the lower and upper simulated

value, accounting for the 20% shot-to-shot energy fluctuation in the

experiment.

FIG. 9. Comparison between the shock polar curves from different EoS and

the experimental point for Porous Carbon.

FIG. 7. X-ray radiography of the cone-

shaped target after interaction with the

long pulse laser coming from the left

in these pictures. The laser is coming

from the left. The two lines represent

the target surface and the position of

the Ag/C interface at various times.
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between the calculated value and the EOS curves is some-

what poorer (this is indeed expected and a common feature

of shock EOS experiment due to the non-linearity of

Hugoniot-Rankine relations).

The overall best agreement, considering the U-P and the

q-P planes, is found with the SESAME curve with 0.5 eV

initial temperature. However, we must be careful in the

conclusion because in reality, the velocities measured in

Figure 8 are mean velocities, which are affected by the shot-

to-shot laser energy fluctuation.

Since these measurements, as we mentioned before, rep-

resented the measurement of shock propagation in the target

in preparation of a following experiment, the ns laser energy

was kept constant, allowing for the determination of one

point only on the shock polar of Porous Carbon. However,

this method can in principle be used to complement those al-

ready described in literature, which have provided EOS data

for an element like carbon, which is very important for astro-

physical and planetological applications.25,31–33

Let us notice that x-ray radiography techniques have al-

ready been applied in the past to study the EOS of materials

in the Megabar pressure range, first for the study of EOS of

deuterium34 and then for low-Z materials as plastics and be-

ryllium.35 In this cases, a ns x-ray backlighter was associated

to a streak camera allowing following continuously the evo-

lution of shock and fluid velocity in time, in a single laser

shot. Of course such technique is less time-consuming (D

and U being determined in a single shot) and less prone to

laser energy fluctuations. On the other side, they do not allow

checking the planarity of the shock front in each laser shot

and are more sensitive to misalignment problems (in our

technique indeed it is always possible to select the central,

planar, part of the shock front and measure its position).

Also, we notice that progress in laser reliability in ns laser

systems (see for instance the performances of the National

ignition Facility) really allow to exactly get the same laser

pulse characteristics on different laser shots, while, on the

other side, fluctuations in the ps laser beam are not so impor-

tant since they will mainly affect the x-ray backlighter level.

On the other side, one should also notice that recently x-ray

Thomson scattering has provided useful information on EOS

of materials.36 This is certainly an important technique,

which however, in our opinion, cannot be separated by an in-

dependent and simultaneous determination of more classical

parameters like shock and fluid velocity.

Let us finally notice that the result shown in Figs. 9 and

10 would imply a compressibility of carbon, which is smaller

than what implied by the SESAME tables. This is in contrast,

for instance, with the results presented in Ref. 33. However,

again, we repeat that the goal of the present work was more

a “proof of principle” than a systematic study of EOS.

VI. CONCLUSION

In this work, we presented an advanced x-ray radiogra-

phy technique for HED research. The technique allows to

obtain 2D spatially resolved images of the plasma density

profiles at different time delays, providing information on

several aspects of the shock dynamics. A remarkable agree-

ment was obtained between experimental results and predic-

tions of hydro codes.

In particular, the radiographic technique allowed, at the

same time, to obtain information about the cone target sur-

vival under the action of a strong shock and to measure a

point in the equation of state of porous Carbon. Although

other radiographic techniques can provide similar informa-

tion, as described in the introduction, the one presented here

allows for applications in several small and medium size

laser facilities where smaller laser energies are available.

The possible applications range from time resolved imaging

of ultrafast physical phenomena to the determination of EoS

of materials at high pressures. The relatively simple setup

allows implementing this technique on a wide variety of ex-

perimental designs, therefore representing a valuable diag-

nostic for HEDP studies.

ACKNOWLEDGMENTS

The work presented here was performed under financial

support from both the French National Agency for Research

(ANR) and the competitiveness cluster Alpha - Route des

Lasers through project TERRE ANR-2011-BS04-014. This

study has been carried out in the frame of “the Investments

for the future” Programme IdEx Bordeaux—LAPHIA

(ANR-10-IDEX-03-02). The authors acknowledge LULI for

giving access to the LULI2000 facility in the context of the

preparatory phase of the HiPER project (Work Package 10:

experimental validation program), as well as the support of

the LULI2000 engineering staff in designing the setup

implementation and during the experimental run. This work

was also partially supported by the Italian MIUR project

PRIN 2009FCC9MS. This work has been carried out within

the framework of the EUROfusion Consortium and has

received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement

number 633053. The views and opinions expressed herein do

not necessarily reflect those of the European Commission.

1R. P. Drake, High-Energy-Density Physics: Fundamentals, Inertial
Fusion, and Experimental Astrophysics (Springer, 2006).

FIG. 10. Comparison between the Hugoniot curves traced with different

EoS and the experimental point for Porous Carbon.

102712-6 Morace et al. Phys. Plasmas 21, 102712 (2014)



2B. A. Remington, R. P. Drake, and D. D. Ryutov, Rev. Modern Phys.

78(3), 755 (2006).
3S. H. Glenzer and R. Redmer, Review of Modern Physics 81(4), 1625 (2009).
4J. Lindl, Phys. Plasmas 2, 3933–4024 (1995).
5W. B. Hubbard, W. J. Nellis, A. C. Mitchell, N. C. Holmes, S. S. Limaye,

and P. C. McCandless, Science 253, 648–651(1991).
6J. D. Lindl, R. L. McCrory, and E. M. Campbell, Phys. Today 45(9), 32

(1992).
7M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J.

Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, Phys.

Plasmas 1, 1626 (1994).
8R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A.

A. Solodov, Phys. Rev. Lett. 98(15), 155001 (2007).
9R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita,

Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S.

J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka,

Y. Toyama, Y. Yamanaka, and M. Zepf, Nature 412, 798 (2001).
10S. Fujioka, Z. Zhang, N. Yamamoto, S. Ohira, Y. Fujii, K. Ishihara, T.

Johzaki, A. Sunahara, Y. Arikawa, K. Shigemori, Y. Hironaka, Y.

Sakawa, Y. Nakata, J. Kawanaka, H. Nagatomo, H. Shiraga, N. Miyanaga,

T. Norimatsu, H. Nishimura, and H. Azechi, Plasma Phys. Controlled

Fusion 54, 124042 (2012).
11M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G. Evans,

R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King,

R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L.

Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama,

B. Zhang, M. Zepf, and P. A. Norreys, Phys. Plasmas 15, 022701 (2008).
12A. Debayle, J. J. Honrubia, E. D’Humières, V. T. Tikhonchuk, S.

Micheau, and M. Geissler, J. Phys.: Conf. Ser. 244(2), 022032 (2010).
13L. H. Barker and R. Hollenbach, J. Appl. Phys. 43, 4669 (1972).
14S. Laffite, S. D. Baton, P. Combis, J. Clerouin, M. Koenig, V. Recoules,

C. Rousseaux, and L. Videau, “Velocity Interferometer blanking due to

preheating in a double pulse planar experiment,” Physics of Plasmas 21,

082705 (2014).
15J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D.

Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P.

Verdon, Phys. Plasmas 1, 1379 (1994).
16F. J. Marshall and G. R. Bennett, Rev. Sci. Instrum. 70, 617 (1999).
17F. J. Marshall, P. W. McKenty, J. A. Delettrez, R. Epstein, J. P. Knauer,

V. A. Smalyuk, J. A. Frenje, C. K. Li, R. D. Petrasso, F. H. S�eguin, and R.

C. Mancini, Phys. Rev. Lett. 102, 185004 (2009).
18W. Theobald, A. A. Solodov, C. Stoeckl, V. Yu. Glebov, S. Ivancic, F. J.

Marshall, G. McKiernan, C. Mileham, T. C. Sangster, F. N. Beg, C. Jarrott,

E. Giraldez, R. B. Stephens, M. S. Wei, M. H. Key, H. McLean, and J.

Santos, in 54th Annual Meeting of the APS Division of Plasma Physics,
Providence, Rhode Island, 29 October-2 November 2012, Vol. 57, p. 12;

available at http://meetings.aps.org/link/BAPS.2012.DPP.GO5.4.

19R. Tommasini, S. P. Hatchett, D. S. Hey, C. Iglesias, N. Izumi, J. A. Koch,

O. L. Landen, A. J. MacKinnon, C. Sorce, J. A. Delettrez, V. Yu. Glebov,

T. C. Sangster, and C. Stoeckl, Phys. Plasmas 18, 056309 (2011).
20V. M. Ovchinnikov, D. W. Schumacher, M. McMahon, E. A. Chowdhury,

C. D. Chen, A. Morace, and R. R. Freeman, Phys. Rev. Lett. 110(6),

065007 (2013).
21. J. H. Hubbell and S. M. Seltzer, National Institute of Standards and

Technology (1989).
22H.-K. Chung, M. H. Chen, W. L. Morgan, Y. Ralchenko, and R. W. Lee,

High Energy Density Phys. 1, 3–12 (2005).
23B. L. Henke, E. M. Gullikson, and J. C. Davis. At. Data Nucl. Data Tables

54(2), 181–342 (1993).
24T. Doppner, E. L. Dewald, L. Divol, C. A. Thomas, S. Burns, P. M.

Celliers, N. Izumi, J. L. Kline, G. LaCaille, J. M. McNaney, R. R. Prasad,

H. F. Robey, S. H. Glenzer, and O. L. Landen, Rev. Sci. Instrum. 83(10),

10508 (2012).
25R. B. Stephens et al., Phys. Rev. E 69, 066414 (2004).
26R. Ramis, R. Schmalz, and J. Meyer-Ter-Vehn, Comput. Phys. Commun.

49, 475 (1988).
27K. Eidmann, “Radiation transport and atomic physics modeling in high

energy density laser-produced plasmas,” Laser Part. Beams 12, 223–244

(1994).
28Los Alamos National Laboratory EOS Database, edited by S. P. Lyon and

J. D. Johnson (1992) Report LA-UR-92-3407, Table Hydr5251.
29A. J. Kemp and J. Meyer-ter-Vehn, Nucl. Instrum. Methods Phys. Res.

Sec. A 415(3), 674–676 (1998).
30S. Paleari, D. Batani, T. Vinci, R. Benocci, K. Shigemori, Y. Hironaka, T.

Kadono, A. Shiroshita, P. Piseri, S. Bellucci, A. Mangione, and A.

Aliverdiev, Eur. J. Phys. 67, 136 (2013).
31K. Falk, E. J. Gamboa, G. Kagan, D. S. Montgomery, B. Srinivasan, and J.

F. Benage, Phys. Rev. Lett. 112, 155003 (2014).
32D. Batani, S. Paleari, T. Vinci, R. Benocci, K. Shigemori, Y. Hironaka, T.

Kadono, and A. Shiroshita, Laser Part. Beams 31, 457–464 (2013).
33D. Batani, H. Stabile, M. Tomasini, G. Lucchini, A. Ravasio, M. Koenig,

A. Benuzzi-Mounaix, H. Nishimura, Y. Ochi, J. Ullschmied, J. Skala, B.

Kralikova, M. Pfeifer, Ch. Kadlec, T. Mocek, A. Pr€ag, T. Hall, P. Milani,

E. Barborini, and P. Piseri, Phys. Rev. Lett. 92, 065503 (2004).
34L. B. Da Silva, P. Celliers, G. W. Collins, K. S. Budil, N. C. Holmes, T.

W. Barbee, Jr., B. A. Hammel, J. D. Kilkenny, R. J. Wallace, M. Ross, R.

Cauble, A. Ng, and G. Chiu, Phys. Rev. Lett. 78, 483 (1997).
35R. Cauble, T. S. Perry, D. R. Bach, K. S. Budil, B. A. Hammel, G. W.

Collins, D. M. Gold, J. Dunn, P. Celliers, L. B. Da Silva, M. E. Foord, R.

J. Wallace, R. E. Stewart, and N. C. Woolsey, Phys. Rev. Lett. 80, 1248

(1998).
36A. L. Kritcher, P. Neumayer, J. Castor, T. D€oppner, R. W. Falcone, O. L.

Landen, H. Ja Lee, R. W. Lee, E. C. Morse, A. Ng, S. Pollaine, D. Price,

and S. H. Glenzer, Science 322, 69 (2008).

102712-7 Morace et al. Phys. Plasmas 21, 102712 (2014)

http://dx.doi.org/10.1103/RevModPhys.78.755
http://dx.doi.org/10.1103/RevModPhys.81.1625
http://dx.doi.org/10.1063/1.871025
http://dx.doi.org/10.1126/science.253.5020.648
http://dx.doi.org/10.1063/1.881318
http://dx.doi.org/10.1063/1.870664
http://dx.doi.org/10.1063/1.870664
http://dx.doi.org/10.1103/PhysRevLett.98.155001
http://dx.doi.org/10.1038/35090525
http://dx.doi.org/10.1088/0741-3335/54/12/124042
http://dx.doi.org/10.1088/0741-3335/54/12/124042
http://dx.doi.org/10.1063/1.2834727
http://dx.doi.org/10.1063/1.1660986
http://dx.doi.org/10.1063/1.4892184
http://dx.doi.org/10.1063/1.870688
http://dx.doi.org/10.1063/1.1149312
http://dx.doi.org/10.1103/PhysRevLett.102.185004
http://meetings.aps.org/link/BAPS.2012.DPP.GO5.4
http://dx.doi.org/10.1063/1.3567499
http://dx.doi.org/10.1103/PhysRevLett.110.065007
http://dx.doi.org/10.1016/j.hedp.2005.07.001
http://dx.doi.org/10.1006/adnd.1993.1013
http://dx.doi.org/10.1063/1.4731742
http://dx.doi.org/10.1103/PhysRevE.69.066414
http://dx.doi.org/10.1016/0010-4655(88)90008-2
http://dx.doi.org/10.1017/S0263034600007709
http://dx.doi.org/10.1016/S0168-9002(98)00446-X
http://dx.doi.org/10.1016/S0168-9002(98)00446-X
http://dx.doi.org/10.1140/epjd/e2013-30630-8
http://dx.doi.org/10.1103/PhysRevLett.112.155003
http://dx.doi.org/10.1017/S026303461300030X
http://dx.doi.org/10.1103/PhysRevLett.92.065503
http://dx.doi.org/10.1103/PhysRevLett.78.483
http://dx.doi.org/10.1103/PhysRevLett.80.1248
http://dx.doi.org/10.1126/science.1161466

	s1
	l
	n1
	s2
	f1
	s3
	s4
	f3
	f4
	f2
	s5
	f5
	f6
	s5
	f8
	f9
	f7
	s6
	c1
	f10
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36

