Nonequilibrium free energy of colloidal glasses under shear
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The free energy of hard-sphere systems provides a direct link between the particle-scale struc-
ture and macroscopic thermodynamic properties. Here we employ this framework to investigate the
shear-induced structure of a colloidal glass, and link it to its macroscopic mechanical and thermody-
namic state. We measure the nonequilibrium free energy under shear from the free volumes of the
particles, and monitor its evolution with the applied strain. Unlike crystals, for which the elastic
energy increases quadratically with strain due to affine particle displacements, for glasses the free
energy decreases due to non-affine displacements and dissipation, reflecting the ability of the glass
to reach deeper free-energy minima. We model this decrease using the nonaffine shear modulus and
a standard viscous dissipative term. Our model and measurements allow us to disentangle the com-
plex contributions of affine and nonaffine particle displacements in the transient shear deformation

of glasses.

I. INTRODUCTION

Unlike crystals that deform reversibly under small ap-
plied strain, amorphous materials such as glasses deform
irreversibly even at vanishingly small deformations. This
relaxation is a generic property of glasses and central
to their mechanical properties, such as elasticity, time-
dependent anelasticity, and plastic flow, and its under-
standing remains a major challenge. This property of
glasses is fundamentally connected to the lack of inver-
sion symmetry: in most crystals, the lattice point sym-
metry guarantees local balance of forces by affine dis-
placements, while in glasses, the amorphous short-range
order precludes force balance by affine displacements
alone, leading to additional non-affine motions to restore
force balance locally under applied shear [1]. The usual
description of glasses is also very different from crystals,
involving a free-energy landscape picture in which the
glasses seek to find ever lower free-energy minima by ther-
mally activated hops over energy barriers. Such hops may
also be shear-induced, causing accelerated aging due to
the system being driven into deeper free-energy minima.
These concepts have remained, however, rather abstract,
because a direct connection between the shear-induced
(non-affine) atomic displacements and the free energy is
lacking for the simple reason that both are almost im-
possible to measure. Disentangling the complex contri-
butions of affine and non-affine displacements and con-
necting them to the free-energy landscape of amorphous
materials therefore remains a crucial challenge.

Colloidal glasses, on the other hand, do allow for a
direct observation of single-particle dynamics, and con-
sequently they have become much-studied model sys-
tems for the microscopic degrees of freedom of amorphous
solids. Hard-sphere particles are known to undergo a col-
loidal glass transition at volume fraction ¢, ~ 58% [2];
since there are no interactions between the particles other
than collisions, the free energy is uniquely defined by the
entropy of the particles. Theory [3-6] and recent experi-
ments [7, 8] have shown that the particle configurations

then provide a direct route to the free energy of the sys-
tem that is determined by geometry only. This opens
up new opportunities to elucidate, experimentally, the
relation between microscopic degrees of freedom and im-
portant bulk thermodynamic quantities of deformation.

In this paper, we experimentally study the shear defor-
mation of glasses and connect the shear-induced micro-
scopic structure to the macroscopic free energy of defor-
mation. The main finding is that the free energy of the
glass decreases with increasing deformation, whereas that
of the crystal increases. To provide a quantitative analy-
sis we then use a recent theoretical framework that gener-
alizes Born’s stability criterion for crystals to amorphous
solids. In the model, strain-induced forces that balance
by symmetry in centrosymmetric crystals, require addi-
tional non-affine displacements in amorphous solids to
be relaxed. The framework we develop relates affine and
non-affine displacements in amorphous solids, allowing
us to link them to the elastic moduli, stress and free en-
ergy of the glass. The conclusion is that the free energy
decrease is due to the non-affine displacements that al-
low the glass to find deeper free energy minima. This
leads to a simple particle-scale picture of the transient
deformation that is typical to glasses: the loss of inter-
particle contacts in the extensional sectors of the shear
plane leads to loss of connectivity between the particles
entailing a proliferation of non-affine displacements that
enables the flow under the applied shear.

II. EXPERIMENTS

We use a colloidal glass consisting of sterically stabi-
lized fluorescent polymethylmethacrylate (PMMA) par-
ticles with a diameter of d = 1.5 pm and a polydisper-
ity of 7%, suspended in a density and refractive index-
matching mixture of cycloheptyl bromide and cis-decalin.
A dense glassy suspension with particle volume fraction
¢ ~ 59%, above the colloidal glass transition ¢, is pre-
pared by diluting suspensions centrifuged to a sediment.
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FIG. 1. (Color online) Changes in free energy and volume fraction upon deformation of crystals and glasses. Sketches of
a sheared crystal (a) and glass (b) at strain v ~ 0.18. (c) Free energy per particle as a function of strain in two types of
systems: a constructed fcc cystal displaying purely affine deformation (stars and up-curved blue parabolic fit) and experimental
deformation of a colloidal glass at different shear rates (filled symbols and down-curved fit according to our model). Also
indicated are the predicted affine (solid and dashed red upward curves) and non-affine components (light gray shaded area),
and dissipation (dark gray shaded area). The affine component is given by Af(vy)/ksT = 18¢%°74? according to the first two
terms of eq. (1). Symbols indicate shear rates of ¥ = 1.5 x 107 °s™" (black squares), 3 x 10™°s~" (red circles), 6 x 107°s~" (olive
triangles), 10~*s™! (blue triangles), 2.8 x 10™*s™! (orange diamonds). Enlarged section of the free energy data in the inset
(highest shear rates only) clearly shows the initial parabolic increase of the free energy at small strain, well fitted by the affine
component only. A relaxation event leads to sudden free energy drop at a strain of ~ 0.05. The shear modulus corresponding to
the parabolic increase is ~ 34kgT'/ d?, roughly an order of magnitude smaller than shear moduli determineed by step-stress [17]
or oscillatory measurements [18], possibly reflecting its frequency dependence. (d) Particle volume fraction change A¢ versus
strain at shear rate 10”%s~! for the glass with initial volume fraction ¢ = 0.59. The inset shows the predicted volume fraction

change versus strain in a simple expansion for marginal solids (see text).

At this high volume fraction, structural relaxations occur
very slowly; at rest, we measure a glass relaxation time
of 7 = 2 x 10*s by confocal microscopy as the time in
which the particles’ mean-square displacement becomes
equal to their radius [9]. The suspension is loaded in a
cell between two horizontal, parallel plates 65 pym apart.
A piezoelectric translation stage moves the top plate, ap-
plying shear at very slow rates between 4 = 1.5x107%s71
and 2.8 x 107%s™ !, of the order of the inverse relaxation
time; these shear rates are significantly smaller than in
other studies on colloidal flows [10-13]. The plates are
immersed in a colloidal reservoir; hence the sheared sus-
pension can dilate under constant osmotic pressure. We
image the individual particles using confocal microscopy,
and determine their positions in three dimensions with
an accuracy of 0.03 pm in the horizontal, and 0.05 pym
in the vertical direction [9]. This way, we follow the
particle-scale structure of the glass under applied shear,
from the undeformed state at strain v =0 to v ~ 0.15.

To link the structure to the thermodynamic properties
of the sheared glass, we determine the free energy from
the particle configurations obtained with confocal mi-
croscopy [7]. The central quantity of interest is then the
free energy of deformation defined as AF = F(vy) — F(0),
i.e. the difference between the free energy F'(y) of the
deformed state under a strain -y, and the free energy

F(0) of the unstrained glass at rest [14]. This quan-
tity encodes the local affine and nonaffine distortions of
the glass structure together with irreversible rearrange-
ments due to relaxation. To determine it, we generate a
Voronoi tessellation that divides the space into distinct,
non-overlapping convex polyhedra. The free volume vy;
associated with a Voronoi cell ¢ is then defined as the vol-
ume accessible to the center of mass of the particle, and is
generated from the Voronoi cell by moving the faces nor-
mally inside over a distance of half the particle diameter.
Note that this method is applicable to high densities [3],
especially for glassy system [7] where the particles are
densely packed. The total free energy of the hard-sphere
system can then be expressed directly in terms of only
the free volume as F ~ —kpT Y2 In(vsi /%), where
A = (h?/2rmkpT)"/? is the thermal wavelength [3, 7].
This allows us to track both reversible (equilibrium) [14]
and irreversible (nonequilibrium) [15] contributions to
the free energy of deformation.

III. RESULTS AND DISCUSSION

For a uniformly sheared, purely elastic crystal, the
free energy should increase quadratically with applied
strain, similar to the elastic deformation of a spring.
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FIG. 2. (Color online) Shear-induced loss of structural connectivity. (a) Particle pair correlation function g(r) in the shear
plane. Color indicates the difference of g(r) of the sheared glass (¥ = 10™*s™') with respect to the undeformed state. (b)
Schematic of the corresponding nearest-neighbor configuration under applied shear. The number of particles moving out of the
cage in the extension direction is larger than that moving in along the compression direction, leading to net loss of connectivity.
(c) Measured maximum of g(r) in the compression (black squares) and extension (red circles) axis (plotted in logarithmic scale)
as a function of strain (linear scale). Black fitting line has slope —0.9.

This is indeed what we find when we construct an affine
shear deformation on a computer-generated hard-sphere
face-centered cubic (fec) crystal, and use our method
to compute the free energy (Fig. 1(c), open stars and
blue fitting curve). Here, the particle volume fraction
¢ = 54.5% was preserved using periodic boundary condi-
tions. The curvature of the parabola indicates the elastic
modulus, which we determine to be p ~ 34.2kpT/d?,
in good agreement with p ~ 32.4kpT/d® determined for
¢ ~ 54.3% in simulations [16]. In contrast, in the ex-
periments, when we shear a colloidal glass, we measure a
surprising decrease of the free energy (Fig. 1(c), colored
closed symbols and black down-curved fit). This mono-
tonic decrease indicates that microscopic degrees of free-
dom other than affine motions dominate the deformation
with increasing strain.

Looking more closely, the data points suggest that the
glass free energy in fact follows an upwards parabolic
curvature initially (red solid curve). After this ini-
tial increase, at 7 ~ 0.05, the free energy decreases
abruptly, followed by another parabolic increase (red
dashed curve), followed by another abrupt decrease, etc.
These sudden drops suggest occurrence of significant re-
laxation events after some elastic loading. Such intermit-
tency has been observed as important hallmark in the re-
laxation of stressed glasses, and we see it here even in the
bulk free energy. This intermittency leads to an overall
decreasing trend in the free energy, signaling significant
relaxation of the glass under shear.

A possible mechanism decreasing the free energy is di-
lation; glasses can dilate under shear, increasing the free
volume, and hence decreasing the free energy. Therefore
we monitored, by particle counting, the volume fraction
change upon deformation. However, we find that the
changes are small; initially, the volume fraction even in-
creases, indicating some compaction of the material, be-
fore it saturates at a constant value in the strain window
where the free energy decreases, see Fig. 1(d). Clearly,

dilation cannot account for the decrease in free energy.
The small amount of compaction observed (Fig. 1(d)) can
result from the osmotic pressure of the colloidal reservoir
that is in direct particle exchange with the sheared col-
loidal layer. This compaction is in contrast to what is
expected for sheared marginal elastic solids. We com-
pute the dilation and resulting volume fraction change
for sheared marginal elastic solids following [19], see Ap-
pendix. The resulting strain-dependent volume fraction
@(7) decreases considerably with deformation (Fig. 1d,
inset) to as much as 40% in the relevant range of strain
values, in stark contrast to what we observe in our ex-
periments on colloidal glasses (Fig. 1d).

Since dilation cannot explain the decrease in the free
energy, we looked at other structural changes. We com-
puted the pair correlation function g(r) that indicates the
probability of finding a particle at a distance r with re-
spect to the ideal gas distribution. Resolving ¢(r) in the
shear plane, we observe a significant distortion of the av-
erage nearest-neighbor structure under deformation, as
shown in Fig. 2a, where we plot the difference of g(r)
between the deformed and undeformed states. Clearly,
nearest neighbour distances become extended in the dila-
tion direction and reduced in the compression direction,
as expected for the shear geometry and consistent with
earlier work [11, 20, 21]. At the same time, the angle-
averaged nearest neighbor distance remains essentially
unchanged as shown in the appendix (Fig. 6), confirming
the overall constant density of the glass in agreement with
Fig. 1d. As aresult of the anisotropic distortion, particles
become crowded along the compression direction, and
less dense along the dilation direction, as schematically
shown in Fig. 2b. This is reflected in the height of g(r),
which is a measure of the number of nearest neighbors.
As shown in Fig. 2c, this height decreases significantly
in the dilation direction, indicating neighbor loss, while
it becomes only slightly larger along the compression di-
rection, indicating only some neighbor gain. This imbal-



ance results from the asymmetry of the hard-core repul-
sion rendering further approach of nearest neighbors pro-
hibitively difficult. As the neighbor loss is not balanced
by neighbor gain, this leads to an overall loss of neigh-
bours and to destabilization. The resulting imbalance of
forces causes the particles to move non-affinely to restore
the local force balance [1, 22]. Because these nonaffine
displacements perform internal work against the poten-
tial of mean force (the potential-field of our ”lattice”),
this process results in an overall negative contribution to
the free energy [23-25]. We note that by looking in the
shear plane, we have focused here on the most obvious
nonaffine contributions; non-affine rearrangements may
exist in other planes as well (see e.g. recent work on
a sheared emulsion in [26]), but are typically less domi-
nant, as shown by the three-dimensional nature of shear
rearrangements in colloidal glasses [27].

To obtain a quantitative description of the free en-
ergy of deformation, we first consider the affine part,
Fy = %GA'y?, where the shear modulus G4 = %%nb
in the linear regime, according to the Born-Huang the-
ory of lattice dynamics [28]. Here, np is the number
of nearest neighbors and x the spring constant associ-
ated with a nearest-neighbor bond. In our hard-sphere
glass, the "bonds” between neighbors arise from the en-
tropic attraction (akin to depletion attraction) [29] that
relates the first peak of the radial distribution function
g(r) to an attractive minimum in the pair potential of
mean force Vog/kT = —Ing(r). This also defines the
effective elastic spring constant as k = [d?Veg/dr?],—,
between two bonded neighbors. The number of bonded
neighbors is given by the integral of the first peak of
g(r), which yields n) ~ 12 for the static hard-sphere
glass [30]. Under applied shear, this value decreases
as the loss of neighbors in the dilation direction is not
balanced by the particle gain in the compression direc-
tion [20, 32]. We model this loss of neighbors by assuming
that the local cage dynamics is governed by the Smolu-
chowski equation with shear [33]. The general spheri-
cally averaged solution is g(r,y) = exp[—Veg /KT +h(r)7]
with h(r) < 0, which after integration translates to
np(7) = nY exp[—A~], corresponding to a decrease of the
height ge(rmaz) o exp(—A7y) of the first peak of g(r)
in the extension direction. This estimate is in excel-
lent agreement with the exponential dependence shown
in Fig. 2c¢; the numerical factor A follows from a fit to
the data, and we obtain A = 0.9 [34].

The reduced connectivity leads to growing non-affine
contributions decreasing the shear modulus. Assuming
that the rigidity of the material breaks down at the
isostatic limit np, = 6 [23], the total shear modulus
(Ga — Gna) x (np — 6), meaning that Gya = %%ﬁ 6

The total reversible free energy then follows from inte-
gration: Fy(y) = %%‘b[nbh) — 6]y2. This total elastic
part of the free energy, with fitting parameters specified
below, indeed fits the initial parabolic increase of the free

energy as shown by the red curve in Fig. 1c.
To account for the relaxation-related decrease of the
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FIG. 3. (Color online) Comparison of model prediction (blue
line) and experimental data (black squares) of stress o as a
function of strain v (log-log scale). To measure the stress
reliably at these small shear rates, we used smaller particles
with diameter di = 50nm, resulting in shear stresses larger
by a factor (d/d1)® ~ 3 x 10*. All data were measured at the
same volume fraction ¢ = 59% and similar Peclet number.
The black line has slope 1 to guide the eye. Inset: theoretical
prediction of the average number of nearest neighbors (log
scale) as a function of strain (linear scale).

free energy, we also include a term related to irre-
versible rearrangements. We model these irreversible
changes here by a standard continuum dissipative term.
In standard dissipation, the dissipated energy associ-
ated with continuously ramping the strain at strain
rate 7 is Wyjss = f(f o(s)yds, where the stress o(t) =
ﬁfg G(s)ds [35] with G(t) the (strain dependent) relax-
ation modulus. Using a standard viscoelastic model,
the relaxation modulus has the general form G(t) =
G + Grexp|—t/7]?, where 7 = 1/GR is the global relax-
ation time, n the viscosity [36] and Gr = Gy — G, with
Gy the instantaneous (infinite-frequency) shear modulus.
For the standard linear viscoelastic solid [35], one has
B =1, while for many glassy materials the relaxation is
stretched-exponential with 8 < 1. Thus, inserting the
stretched-exponential expression for G(t) in the integral,
and using ¢t = /4, one obtains Wy;ss as a function of
4, v and Gg. Focusing on the limit of very low 4 as in
our experiment, the leading term in a Taylor expansion
around 4 = 0 is Wy;ss & 1Gg7y?, independent of j.

The total nonequilibrium free energy of deformation
then is F(v) = Fy 4+ Fu(y) — Waiss(y), where Fy is
the strain-independent, ”ground-state” energy of the
metastable minimum (inherent structure) of the glass,
F, = %G'y2, with G = G4 — G4 the elastic (reversible)
energy containing both affine and non-affine contribu-
tions, and Wy;ss(7y) the dissipated energy due to irre-
versible rearrangements. Using the terms derived above,
the final expression for the free energy of deformation is

F() = Fot o= Lnf exp(—Ay) — 6177 ~ 5Grr? (1)

5T o

To test our model quantitatively, we simultaneously fit
the free energy data in Fig. lc using Eq.(1) (black line)



and stress-strain curves of a colloidal glass measured in-
dependently with a rheometer [13], see Fig. 3. Here, the
stress is computed by adding the elastic and viscous con-
tributions: o = 0 + 0yis, where o = 0F¢; /07, and the
standard viscous expression 0,5 = ny(1 — 6_7/’;”—). We
obtain excellent simultaneous fits up to large strains, val-
idating our model for the nonequilibrium free energy with
elastic and viscous components. The calculated number
of nearest neighbors (Fig. 3, inset) decreases with strain,
reflecting the loss of connectivity and the propagation of
non-affine contributions. This decrease of nearest neigh-
bors saturates eventually as shown in the experimental
g(r) for strains 2 0.1, see Fig. 2c.

In summary, we connect the microscopic structure of
sheared glasses to their nonequilibrium free energy of
deformation by combining colloidal shear experiments
with generalized stability theory of amorphous materials.
Nonaffine contributions decrease the shear modulus and
thereby the initial elastic (parabolic) rise of the free en-
ergy, while dissipation - modeled here by a standard con-
tinuum dissipative term - explains the overall decrease of
the non-equilibrium free energy with strain. The applied
shear thus allows the glass to explore lower free energy
states by forcing structural rearrangements that would
otherwise be frozen or take much longer time by thermal
aging alone. The measured decrease of the free energy
under deformation is indeed of the order of, albeit a bit
smaller than the free energy decrease of 0.1-0.2 kgT ob-
tained upon aging the glass for a few days. This decrease
should saturate at larger strain (y > 0.1), when the glass
acquires a steady-state structure under the applied con-
stant shear rate. Our results thus provide insight into the
role of non-affine displacements and dissipation in the
transient deformation of glasses [14]. While our hard-
sphere colloidal glass allows direct measurement of the
free energy and underlying microscopic distortions, the
proposed mechanism should apply to molecular glasses
as well. For those molecular glasses, the strong hard-
core repulsion is replaced by a steep repulsive potential
(x r'2) leading to similar shear-induced loss of connec-
tivity and growth of non-affine dynamics.

IV. APPENDIX
A. Dilatancy of marginal solids

To estimate the dilatancy of a marginal solid, follow-
ing [19], we compute the dilatant strain in a quasistatic
response of an isotropic elastic solid according to

1
€= 5 P’Yza (2)

where R, is the Reynolds coefficient. This Reynolds
coefficient is defined as

aG. G d¢

- 5= Gonle

Ro= (500 NG

where E = 2G(1 + v) is the Young’s modulus, G the
shear modulus and v = % the Poisson ratio. Thus, the
free energy can be expressed as

F_F 1
°+G2

1
v % PiRp'72~ (4)

The volume fraction of the dilated system follows as
¢ = Py=o(l +¢)~°. (5)

For hard-sphere crystals, the equation of state is,
within the framework of cell theory [37, 38]

P 3
pkBT B 1- ¢/¢cp’ (6)

where ¢, = 0.74, p = ¢/Vp, and Vj is the particle vol-
ume. Thus,

dp  3kpT 1
9 Vo (1—0/pep)?

Values of the shear modulus as a function of volume
fraction can be obtained from Ref. [16]. G = 1.189 x
10691937 + 39.23(kpT/0?). By interpolating this data to
the volume fraction of our computer generated crystal,
¢ = 54.5%, we obtain G = 48.5 kgT/d® and E = 129
kpT/d3, where the hard-sphere diameter d = 1.5um. It
then follows that the Reynolds coefficient

Cph - 2= (Gh(Gh -5 =36 ®

(7)

R, =

The resulting change of volume fraction with respect
to this dilatancy R, is shown in Fig. 4a, and the
corresponding free energy change is shown in Fig. 4b.
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FIG. 4. Volume fraction and resulting free energy change
of sheared crystal as a function of shear strain in the linear
approximation.

For hard-sphere glasses, the equation of state is [39]

p= @(b 7(725 ((b’r;ax _ 1)3 (9)
= kT 2 Dmaz 10
0 ¢ ¢ (d)mou, _¢(¢%;;z)2/3)7 ( )



where ¢4, = 0.64.

Thus, we determine that
3<¢>rz)az )1/3 _9

$(2202)2/3 — 2 maq + Pmas (P2522)1/3

(11)
The shear modulus as a function of volume fraction of
our hard-sphere glass can be obtained from Ref. [38]. By
interpolation, we determine that for our volume fraction,
¢ =59%, G ~ 960 kpT/d> and E = 2.55 x 10® kgT/d>.
With these values, we obtain R, ~ 24. The result-
ing change of volume fraction is shown in Fig. 5a, and
the corresponding free energy change is shown in Fig. 5b.
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FIG. 5. Volume fraction and resulting free energy change as
a function of strain for a sheared glass with linear dilatancy.

B. Experimental evidence of negligible dilatancy in
the glass

In the main text, we investigate the dilatancy in the
sheared glass by monitoring the volume fraction by par-
ticle counting. Here, we present an alternative way to
check for dilation based on the angle-averaged pair cor-
relation function that indicates the probability of two
particles to be separated by a distance r. We estimate
the dilation in the deformed state from the minimum of

the mean-square difference A? between the g(r) curves
of the deformed and undeformed glass as a function of
a linear stretching « that transforms r to ' = ra. We
show A? as a function of a in Fig. 6, inset; its minima
are at a ~ 1, all very close to 1, indicating neither com-
pression nor dilation. Close evaluation of the minima
Qin for all deformed states in the interested strain win-
dow confirms this, indicating maybe a small compression
of less than one per mill in deformed states compared
to the quiescent state (Fig. 6, main panel). Similarly
to the manuscript, these closely constant values contrast
with the strong dilatancy predicted by the linear the-
ory, and indicate substantial nonlinear behavior, even at
small strain.

1.001

./_/./\_/\ ~
£ / 107
€ 1.000 |- g
3 A?
10"
o
0.99 1.00 1.01
0.999 L1 L L L
0.00 0.05 0.10 0.15 0.20
strain, y

FIG. 6. (Color online) Dilation parameter cum,i» versus shear
deformation determined from the minimum of the mean-
square difference of g(r) of the deformed and undeformed glass
(inset). Dash-dotted line is a guide to the eye.
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