
A branch-price-and-cut algorithm
for the commodity constrained

split delivery vehicle routing problem

Claudia Archetti, Nicola Bianchessi, M. Grazia Speranza
Department of Economics and Management,

University of Brescia, Brescia, Italy
Email: {claudia.archetti,nicola.bianchessi,grazia.speranza}@unibs.it

May 5, 2015

Abstract

We consider the Commodity constrained Split Delivery Vehicle Rout-
ing Problem (C-SDVRP), a routing problem where customers may request
multiple commodities. The vehicles can deliver any set of commodities, and
multiple visits to a customer are allowed only if the customer requests mul-
tiple commodities. If the customer is visited more than once, the different
vehicles will deliver different sets of commodities. Allowing the splitting
of the demand of a customer only for different commodities may be more
costly than allowing also the splitting of each individual commodity, but at
the same time it is easier to organize and more acceptable to customers.
We model the C-SDVRP by means of a set partitioning formulation and
present a branch-price-and-cut algorithm. In the pricing phase, the ng-path
relaxation of a constrained elementary shortest path problem is solved with
a label setting dynamic programming algorithm. Capacity cuts are added
in order to strengthen the lower bound. We solve to optimality within 2
hours instances with up to 40 customers and 3 commodities per customer.

1 Introduction

The class of vehicle routing problems (VRPs) is one of the largest and most studied
classes of combinatorial optimization problems. It is also one of the most compu-
tationally challenging classes. In VRPs capacitated vehicles are used to distribute
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products and satisfy the demand of a set of customers. With very few exceptions,
vehicle routing problems model the distribution of a single product. The underly-
ing assumption is that only the volume or the weight of products matters. Thus,
even if several products are demanded by customers, the demand of a customer is
expressed with a single number, the total weight or volume of the demanded prod-
ucts. Accordingly, the capacity of the vehicles is expressed in weight or volume,
depending on which constraint is more binding. We refer to Toth and Vigo (2014)
for a recent collection of chapters on different VRPs.

There exist distribution problems where different commodities, or groups of
commodities, have to be treated individually. When different commodities require
different temperatures, such as in the case of frozen, fresh and dry food, vehicles
with compartments may be used. In waste management different kinds of waste
cannot be mixed up and must be kept separated at any stage of the collection
problem. If a single vehicle is dedicated to the collection, then the vehicle con-
tainer must be divided in compartments, one for each kind of waste. We refer to
Derigs et al. (2011) for a recent work on a multi-compartment routing problem,
with fixed size of the compartments, and to references therein. Also for organi-
zational purposes, different commodities may be handled by means of dedicated
vehicles. Having an individual product loaded on a vehicle makes the loading and
the unloading of a vehicle much simpler and avoids the need for any reshuffling of
the load during the distribution process.

In this paper we consider the Commodity constrained Split Delivery Vehicle
Routing Problem (C-SDVRP) introduced in Archetti et al. (2014), where different
commodities are distributed to customers with capacitated vehicles. The vehicles
are flexible and can deliver any set of commodities. A customer may be served by
more than one vehicle but a single commodity can be delivered to each customer
by one vehicle only. Each vehicle starts from a depot, visits a set of customers
and returns to the depot at the end of the tour. Any customer may request any
set of commodities. A vehicle that carries multiple commodities is totally flexible,
that is it can carry any amount of any commodity, provided the constraint on
the vehicle capacity is satisfied. We assume that the demand of a commodity
of each customer does not exceed the capacity of a vehicle. The problem is a
relaxation of the classical Capacitated Vehicle Routing Problem, as multiple visits
to customers are allowed. On the other hand, it is more constrained than the Split
Delivery Vehicle Routing Problem as the entire demand of a commodity must be
delivered by the same vehicle. The concept is that, while allowing split deliveries
may be unacceptable to customers, allowing different commodities to be delivered
by different vehicles may be more acceptable. In addition to the applications
mentioned above, the C-SDVRP models the situation where different companies
share a warehouse and a fleet of vehicles for the distribution of their products.
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One commodity is associated with one company. A vehicle may deliver products
of different companies to different customers or to the same customers. Different
vehicles may serve the same customer only if they deliver products of different
companies.

In Archetti et al. (2014) the C-SDVRP is introduced and compared with alter-
native ways of distributing multiple commodities, such as by allowing the splitting
of individual commodities or by using vehicles dedicated to individual commodi-
ties. The tests were performed on 64 small instances, with 15 customers and up
to 3 commodities, 80 mid-size instances with 20, 40, 60, 80 customers and up to 3
commodities, and large instances with 100 customers. A branch-and-cut algorithm
was able to solve 25 out of 64 small instances to optimality within 30 minutes. All
the remaining instances were heuristically solved by creating multiple copies of
each customer, one for each commodity required, and using a heuristic for the
Capacitated Vehicle Routing Problem.

In this paper we focus on the exact solution of the C-SDVRP. We formulate the
problem through a set partitioning formulation and adopt a branch-price-and-cut
approach. In the pricing phase, the ng-path relaxation of a constrained elementary
shortest path problem is solved by means of a label setting dynamic programming
algorithm. Capacity cuts are added in order to strengthen the lower bound. We
tested the algorithm on the small and mid-size instances tested in Archetti et al.
(2014), with a time limit of 2 hours. We solved to optimality all small instances
within a few seconds, except for three instances for which the computing time is
larger than 100 seconds. For the mid-size instances, we could solve to optimality 19
out of 20 instances with 20 customers and 5 out of 20 instances with 40 customers.
For all instances with up to 60 customers, except one, we found a lower and an
upper bound. The average and maximum optimality gap are 0.63% and 2.41%,
respectively. Over all the mid-size instances, we improved 20 out of 80 best known
solutions.

In Section 2 the C-SDVRP is described and in Section 3 the set partitioning
formulation is presented. The structure of the branch-price-and-cut algorithm is
described in Section 4, together with the formulation and solution of the pricing
problem, and the branching scheme. The computational results are presented in
Section 5.

2 Problem definition

The Commodity constrained Split Delivery Vehicle Routing Problem (C-SDVRP)
can be defined on a directed graph G = (V,A) with vertex set V = {0, . . . , n}
and arc set A = {(i, j) : i 6= j; i, j ∈ V }. The vertex set V contains vertex 0,
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representing the depot, and the set N = {1, . . . , n}, representing the n customers.
A cost cij is associated with each arc (i, j) ∈ A and represents the non-negative
cost of traversing arc (i, j). Travel costs satisfy the triangle inequality. Let K =
{1, . . . ,m} be the set of commodities that have to be distributed from the depot
to the customers. The demand of commodity k ∈ K to be delivered to customer
i ∈ N is denoted by dik. The set Ki = {k ∈ K | dik > 0} contains the commodities
to be delivered to customer i ∈ N . We define as F the fleet of identical vehicles
that is available to serve the customers and as Q the vehicle capacity. Vehicles are
flexible and can deliver any subset of commodities. Each customer may be visited
more than once. When a commodity is delivered by a vehicle to a customer, the
entire amount requested by the customer is provided. Thus, multiple visits to a
customer are allowed only if the customer requests multiple commodities. If a
customer receives multiple visits, it means that the different vehicles will deliver
different commodities. The objective is to find a set of routes serving all the
customers in such a way that the total traveling cost is minimized.

3 Formulation

We model the problem by means of a set partitioning formulation making use of
an exponential number of variables, each associated with a different feasible route.
We adopt the following notation. We define as R the set of all feasible routes. A
route corresponds to a non empty cycle in graph G starting from and ending at
the depot. For each route r ∈ R, let cr =

∑
(i,j)∈r cij be the cost associated with

the route. Then, let arik, e
r
i and brij be binary coefficients equal to 1 if commodity

k is delivered to customer i ∈ N , customer i ∈ N is visited, and arc (i, j) ∈ A
is traversed in route r, respectively, and 0 otherwise. The C-SDVRP can be
formulated as follows:
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min
∑
r∈R

crλr (1)

s.t.:
∑
r∈R

arikλ
r ≥ 1 i ∈ N, k ∈ Ki (2)∑

r∈R

λr = φ (3)∑
r∈R

eriλ
r = zi i ∈ N (4)∑

r∈R

brijλ
r = xij (i, j) ∈ A (5)

1 ≤ zi ≤ max{|Ki|, |F |} and integer i ∈ N (6)⌈∑
i∈N
∑

k∈Ki
dik

Q

⌉
≤ φ ≤ |F | and integer (7)

0 ≤ xij ≤ |F | and integer (i, j) ∈ A (8)

λr ∈ {0, 1} r ∈ R, (9)

where xij and zi are integer variables representing the number of times the vehicles
traverse arc (i, j) ∈ A and visit customer i ∈ N , respectively, φ is an integer
variable representing the number of vehicles used, and λr is a binary variable
equal to 1 if route r ∈ R is assigned to a vehicle. The objective function (1) aims
at minimizing the total traveling cost. Constraints (2) ensure that all commodities
requested by each customer will be delivered. Constraints (3) and (7) bound the
number of vehicles that can be used. (4) and (6) bound the number of times a
customer i ∈ N can be visited. (5) and (8) bound the number of times an arc
(i, j) ∈ A can be traversed. Finally, (9) state that λr are binary variables. Note
that xij can take any integer value between 0 and |F | contrary to what happens
in the Split Delivery Vehicle Routing Problem (SDVRP) where xij is a binary
variable for i, j ∈ N . In fact, in Archetti et al. (2014) the authors show that in
the C-SDVRP arcs joining two customers can be traversed more than once.

4 Branch-price-and-cut algorithm

In the following we describe the algorithm designed to solve the set partitioning
formulation (1)–(9) which will be referred to as the Master Problem (MP).

In order to solve the MP we design a branch-price-and-cut algorithm (Barnhart
et al. (1998); Desaulniers et al. (2005)), that is a branch-and-bound algorithm
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where, at each node of the branch-and-bound tree, λr variables are generated by
means of column generation while addressing the linear relaxation of the problem
associated with the node. We denote the linear relaxation of the MP, restricted to a
subset of columns, as Restricted Linear Master Problem (RLMP). At each column
generation iteration, a pricing problem is solved to generate negative reduced cost
variables to be added to the RLMP. When no negative reduced cost variable is
found it means that the Linear Master Problem (LMP), that is the linear relaxation
of the MP, has been solved to optimality and the column generation algorithm ends.
If the LMP solution is fractional, before applying branching rules, we possibly
insert violated valid inequalities in the current RLMP and iterate its solution
process in order to strengthen the bound.

In the following subsections the main components of the algorithm are de-
scribed in details. The term path is used as a synonymous for route.

4.1 Pricing problem formulation

Given the solution values of the dual variables µik, ρ, θi, σij associated with con-
straints (2), (3), (4), and (5) of the RLMP, respectively, the pricing problem can
be modeled as follows:

min
∑

(i,j)∈A

c̄ijXij −
∑
i∈N

∑
k∈Ki

µikYik (10)

s.t.:
∑
j∈N

X0j = 1 (11)∑
(i,j)∈δ+(i)

Xij =
∑

(j,i)∈δ−(i)

Xji = Zi i ∈ N (12)

∑
(i,j)∈δ+(S)

Xij ≥ Zs S ⊆ N, |S| ≥ 2, s ∈ S (13)

Yik ≤ Zi i ∈ N, k ∈ Ki (14)∑
k∈Ki

Yik ≥ Zi i ∈ N (15)∑
i∈N

∑
k∈Ki

dikYik ≤ Q (16)

Yik ∈ {0, 1} i ∈ N, k ∈ Ki (17)

Zi ∈ {0, 1} i ∈ N (18)

Xij ∈ {0, 1} (i, j) ∈ A, (19)
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where c̄ij is the reduced cost of arc (i, j) ∈ A (c̄ij = cij − σij − θj if j 6= 0,
c̄ij = cij − σij − ρ if j = 0), δ+(S) = {(i, j) ∈ A|i ∈ S, j /∈ S} and δ−(S) =
{(i, j) ∈ A|i /∈ S, j ∈ S}. For the ease of notation, we write δ+(i) and δ−(i)
when S = {i}. Binary variables Xij, Zi and Yik are equal to 1 if arc (i, j) ∈ A
is traversed, customer i ∈ N is visited, and commodity k ∈ Ki is delivered to
customer i ∈ N , respectively, and 0 otherwise.

The objective function (10) aims at minimizing the reduced cost of the route.
Constraints (11) and (12) are the degree constraints, whereas constraints (13) are
subtour elimination constraints. Consistency between the Yik and Zi variables is
imposed through constraints (14) and (15). In particular, constraints (15) ensure
that a delivery will take place at each customer visited. Finally, inequalities (16)
impose the capacity constraint for the route.

The pricing problem combines an Elementary Shortest Path Problem with a
0-1 Knapsack Problem augmented by additional constraints. Actually, for a given
path, determining the optimal values of the Yik variables corresponds to solving
the following problem:

max
∑
i∈N

∑
k∈Ki

µikYik (20)

s.t.:
∑
i∈N

∑
k∈Ki

dikYik ≤ Q (21)

∑
k∈Ki

Yik ≥ 1 i ∈ N (22)

Yik ∈ {0, 1} i ∈ N, k ∈ Ki (23)

where N is the set of customers visited along the path. While addressing the
SDVRP by means of column generation, the resulting pricing problem is such that
in each solution path at most one customer will receive a split delivery greater
than 1 and less than his demand (see Archetti et al. (2011)). Here, the structure
of (20)-(23) is such that any customer visited along the solution path of (10)-(19)
may receive any subset of the commodities requested.

In order to address the pricing problem (10)-(19), we formulate it as an Ele-
mentary Shortest Path Problem with Resource Constraints (ESPPRC) defined over
an expanded graph G = (V ,A).

We define as G(i) = (Vi,Ai) the subgraph induced by the vertices corresponding
to customer i. The set of vertices Vi is composed of vertices vis, v

i
t and vik for each

k ∈ Ki. The arc set Ai includes the following arcs:

• arcs (vis, v
i
k), k ∈ Ki, with an associated cost equal to −µik;
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• arcs (vir, v
i
q), r < q, r, q ∈ Ki, with an associated cost equal to −µiq;

• arcs (vik, v
i
t), k ∈ Ki, with an associated zero cost.

Moreover, a quantity equal to dik is associated with each arc entering in vik, i 6= 0
and k ∈ Ki, meaning that when vertex vik is visited, a quantity equal to dik is
delivered to i.

The vertex set V of the expanded graph includes two different vertices, s and
t, associated with the starting and ending depot, and the set Vi of |Ki|+2 vertices
associated with each customer i ∈ N . The arc set A includes the sets of arcs Ai,
i ∈ N , and an arc (vit, v

j
s) for each arc (i, j) ∈ A, with cost equal to c̄ij, v

0
t = s

and v0
s = t. Thus, each subgraph G(i) corresponds to an acyclic network (see

Figure 1), where vis is the only vertex with incoming arcs originating from vertices
not belonging to Vi and vit is the only vertex with outgoing arcs to vertices not
belonging to Vi.

Figure 1: Acyclic network G(i) for customer i ∈ N , with Ki = {1, 2, 4}.

The pricing problem consists in finding the least (reduced) cost elementary
path from s to t in G, such that the quantity delivered along the path is less than
or equal to Q. The ESPPRC defined over graph G is equivalent to (10)-(19).

The ESPPRC is NP-hard in the strong sense (see Dror (1994)). When the
number of vertices is relatively large, the pricing problem may be very difficult
to solve. We thus apply the ng-path relaxation of the problem that allows the
generation of paths that may contain cycles (see Baldacci et al. (2011)).

4.2 Pricing problem solution

We solve the pricing problem by means of a label setting dynamic programming
algorithm (see Irnich and Desaulniers (2005)). The main idea of this technique is
to build feasible paths, starting from the source vertex of the graph, and extending
them from vertex to vertex in all feasible directions. A label (R,C, i) is associated
with each partial path from the source of the graph to vertex i. Each component
of the vector R represents the consumption of a resource along the path until
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vertex i, whereas C is the cost of the path. When (R,C, i) is extended to another
label (R′, C ′, j) associated with vertex j, the components of R and the cost C
must be updated according to the resource consumption and the cost associated
with arc (i, j). Extensions must be feasible with respect to the consumptions of
all the resources. To the sake of efficiency, dominance rules are applied to discard
dominated paths reaching the same vertex. The solution is the path represented
by the minimum cost label associated with vertex t.

Let us first consider the non-elementary version of the pricing problem. We
solve it by using labels of the form (q, C, vib), where b ∈ {s, t} ∪ {k|k ∈ Ki} and q
is the quantity loaded on the vehicle when leaving vertex vib. The initial label at
vertex v0

t = s is (0, 0, v0
t ). At a given vertex vib, a partial path associated with label

(q, C, vib) is feasible if q ≤ Q. Let us define c̃ibjb′ as the cost of arc (vib, v
j
b′) ∈ A.

When arc (vib, v
j
b′) ∈ A is traversed, a label (q, C, vib) is extended to the label

(q′, C ′, vjb′), where C ′ = C+ c̄ibjb′ and the extension rule for the q component of the
label is defined as follows. Along arcs (vit, v

j
s) and (vik, v

i
t), i, j ∈ N , k ∈ Ki, the

resource consumption does not vary and its value is simply reported in the new
label. Along arcs (vis, v

i
k) and (vir, v

i
q), i ∈ N , k, r, q ∈ Ki, the resource consumption

is increased by dik and diq, respectively. Dominance rules are then applied in order
to discard paths that are dominated by other paths. Label (q′, C ′, vib) dominates
label (q′′, C ′′, vib) if q′ ≤ q′′, C ′ ≤ C ′′, and one of the two conditions is strictly
satisfied.

The ng-path relaxation of the pricing problem is obtained considering a further
component in the label definition, that is a set B of |N | binary resources. A subset
of customers Ni ⊆ N is defined for each customer i ∈ N . Ni includes i and its
closest ν neighbors, where ν is a positive integer value. Each element of B is set
to 0 in the initial label at vertex s. Let us consider then a partial path ending at
vertex vit ∈ V . The extension of the path along arc (vit, v

j
s) ∈ A is feasible with

respect to component B if one of the following conditions holds:

• vjs = t, or equivalently j = 0;

• j /∈ Ni;

• j ∈ Ni and B(j) = 0.

When arc (vit, v
j
s) is traversed, component B is extended as follows. If vjs = t, B′(u)

is set to 0 for each u ∈ N ; otherwise B′(u) is set to 0 for all u /∈ Ni ∩ Nj, B
′(u)

becomes equal to B(u) for all u ∈ Ni ∩Nj, and finally B′(j) is set to 1. When one
arc joining two vertices associated with the same customer is traversed, i.e., one of
the arcs (vis, v

i
k), (vik, v

i
q) or (vik, v

i
t) with k, r ∈ Ki, component B does not change.

Label (q′, B′, C ′, vib) dominates label (q′′, B′′, C ′′, vib) if q′ ≤ q′′, C ′ ≤ C ′′,
B′(u) ≤ B′′(u) for each u ∈ Ni, and one of the conditions is strictly satisfied.
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An ng-path in graph G may contain a cycle vis = i1, i2, . . . , ir = vis, iff i /∈ Niq for
some q ∈ {2, . . . , r − 1} (see Baldacci et al. (2011) for more details). Note that,
when we serve customer i, vertices vis and vit are visited together with at least one
vertex vik with k ∈ Ki. Since graph G(i) is acyclic, a cycle in G is obtained when
at least two customers are considered. Thus, a cycle vis = i1, i2, . . . , ir = vis visits
at least 7 vertices, i.e., r ≥ 7: three vertices correspond to the service of the first
customers, 3 vertices correspond to the service of the second vertex and a further
vertex is visited to return to the first customer.

Preprocessing. For a given set of dual variable values, each partial path reach-
ing vertex vis, i ∈ N , gives rise to at most βi non-dominated partial paths ending
at node vit, where βi is the number of Pareto-optimal solutions of the following
bi-objective problem:

max
∑
k∈Ki

µikYk (24)

min
∑
k∈Ki

dikYk (25)

s.t.:
∑
k∈Ki

dikYk ≤ Q (26)

1 ≤
∑
k∈Ki

Yk ≤ |Ki| (27)

Yk ∈ {0, 1} k ∈ Ki, (28)

where Yk is a binary variable equal to 1 if commodity k ∈ Ki is delivered to
customer i, and 0 otherwise. The objective function (24) aims at maximizing the
values of the dual variables µik associated with commodities k ∈ Ki, while (25)
aims at minimizing the capacity consumption. Constraints (26) and (27) bound
the capacity consumption and the number of commodities that are delivered to
customer i, respectively. The role of constraint (27) will be explained in Section
4.4.

For each i ∈ N , we define Si, with |Si| = βi, as the set of Pareto-optimal
solutions of the corresponding problem (24)-(28). The Pareto-optimal solutions in
set Si can be represented by an acyclic network G(i) with source and destination
vertices vis and vit, respectively, and a path between vis and vit for each solution in
Si. Each path consists of a sequence of vertices vik, k ∈ Ki, those corresponding
to the commodities identified by the solution (see Figure 2). Set Si is found by
solving a SPPRC on the acyclic network G(i) (see Frieze (1976)) and keeping the
non-dominated solutions.
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Figure 2: Acyclic network G(i) for customer i ∈ N , with Ki = {1, 2, 4}, di1 = 2,
di2 = 3, di4 = 5, µi1 = 4, µi2 = 2, µi4 = 5, and Si = {{1}, {1, 2}, {1, 4}, {1, 2, 4}}.

Replacing networks G(i) with networks G(i) helps in avoiding redundant com-
putations. The replacement is performed at every column generation iteration as
the value of the dual variables changes at each iteration.

Acceleration strategies. In order to speed up the label setting algorithm we
consider two different acceleration techniques. The first one is the decremental
state space relaxation technique (Righini and Salani (2008)). The idea of this
technique is to iteratively solve the pricing problem by enlarging, at each iteration,
the set of vertices for which the elementarity is required. When combined with
ng-paths, the procedure is such that sets Ni are initially empty and are enlarged
at each iteration. In particular, each customer i ∈ N is associated with a set Mi

of binary values with |Mi| = |N |. At the first iteration, Mi(i) = 1 and Mi(u) = 0,
u 6= i, u ∈ N . Then, the pricing problem is solved with a modified extension rule
for component B when arc (vit, v

j
s) ∈ A is traversed:

• if vjs = t, B′(u) = 0, u ∈ N ;

• otherwise, B′(u) = 0, u /∈ Ñi∩Ñj; B
′(u) = B(u), u ∈ Ñi∩Ñj; and B′(j) = 1,

where Ñi = {u ∈ Ni|Mi(u) = 1}. Once vertex vt0 is reached and an s − t path is
constructed, the procedure checks whether this path is a feasible ng-path, i.e., it
contains no cycle with respect to sets Ni, i ∈ N . If the path is a feasible ng-path,
then the algorithm terminates. Otherwise, the first vertex vus in the path that
defines a forbidden cycle is selected, Mi(u) is set to 1 for each i ∈ N such that
u ∈ Ni, and the solution process is iterated. In practice, the elementarity is not
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required at the first iteration. The problem is solved and the first vertex u which
generates a cycle that is forbidden in the ng-path relaxation is added to all sets
Ñi such that u ∈ Ni.

The second technique we implemented is the 2-cycle elimination proposed in
Christofides et al. (1981). The predecessor of the last vertex visited is considered as
a further component in the label definition. The predecessor is updated whenever
arc (vit, v

j
s) ∈ A is traversed and remains unchanged when the path is extended

through the other arcs of the expanded graph.

Heuristic column generation. To accelerate the solution of the LMP, at each
column generation iteration heuristic versions of the label setting algorithm are
applied before solving the pricing problem to optimality. While solving the pric-
ing problem heuristically, the decremental state space relaxation technique is not
applied and the dominance among labels is checked without considering the values
of component B.

At each column generation iteration we derive from graph G a graph G ′ where,
for each i ∈ N , a subset of the outgoing arcs (vit, v

j
s) ∈ A, j ∈ N , is considered.

This subset includes the n̄a outgoing arcs with lowest reduced cost values. Different
heuristic algorithms are considered. The first two heuristics look for negative
reduced cost paths in graphs G ′ and G, respectively, not allowing the possibility to
perform split deliveries. The last two heuristics work again on graphs G ′ and G,
respectively, but allow the possibility to perform split deliveries.

At each iteration of the column generation algorithm the heuristics are sequen-
tially applied. The iteration finishes as soon as a heuristic succeeds in finding
negative cost paths.

4.3 Valid inequalities

When the LMP solution is fractional and the node cannot be pruned, before start-
ing the branching phase we look for violated capacity constraints which are for-
mulated as follows:

∑
r∈R

∑
(i,j)∈δ+(S)

brijλ
r ≥

⌈∑
i∈S
∑

k∈Ki
dik

Q

⌉
S ⊆ N. (29)

In order to identify violated inequalities (29), we implemented the shrinking
heuristic presented in Ralphs et al. (2003). In particular, two variants of the
shrinking heuristic are implemented, namely the extended shrinking heuristic and
the greedy shrinking heuristic. The reader is referred to Ralphs et al. (2003) for
more details on these algorithms.
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4.4 Branching

When the optimal solution of the current LMP (λ̃, φ̃, z̃, x̃) is fractional, different
branching rules are hierarchically applied. The rules are presented in the following,
in order of priority.

The first branching rule is on the fractional number of vehicles used. Then, the
number of visits to each customer is considered. If z̃i is fractional for some i ∈ N ,
we branch on it. We give priority to z̃i lower than 2. This allows us to forbid split
deliveries to customer i when zi is fixed to 1. Moreover, when zi is constrained to
be greater than or equal to α > 1, then the right-hand side term of constraint (27)
is set equal to |Ki| − (α− 1). For each class of priority, we choose the customer i
with fractional part of z̃i closest to 0.5.

The third branching rule is related to the arc use, i.e., to variables x̃. If x̃ij is
fractional for some (i, j) ∈ A, then we branch on the use of arc (i, j). As before,
we choose the arc (i, j) with fractional part of x̃ij closest to 0.5.

Finally, if none of the above branching decisions can be imposed, we consider
each pair of different commodities p and q, p ∈ Ki, q ∈ Kj, i, j ∈ N , and com-
pute κpq =

∑
r∈R a

r
pia

r
qjλ̃

r, i.e. κpq is the sum of the λ variables associated with
routes delivering commodities p and q to customers i and j, respectively. If κpq is
fractional for some pair p and q, we branch on it. On one branch we set κpq = 0,
meaning that commodities p and q must be delivered in different routes, while
on the other branch we set κpq = 1, meaning that commodities p and q must
be delivered in the same route. The subproblem is modified accordingly. When
κpq is set to 0, a new binary resource Bpq must be introduced in the label def-
inition in order to prevent the delivery of both commodities. Bpq is set to 0 in
the initial label and is increased by one whenever commodity p or q is delivered.
Label L′ is feasible w.r.t. resource Bpq if L′(Bpq) ≤ 1, and may dominate label
L′′ if L′(Bpq) ≤ L′′(Bpq). When κpq is set to 1, two new binary resources, Bp

and Bq, are required. Bp (Bq) is set to 0 in the initial label and is increased by
one whenever commodity p (q) is delivered. Label L′ is feasible w.r.t. resource
Bp (Bq) if L′(Bp) ≤ 1 (L′(Bq) ≤ 1). In particular, label L′ may dominate label
L′′ if L′(Bp) = L′′(Bp) and L′(Bq) = L′′(Bq), and is extended to vertex t if
L′(Bp) = L′(Bq). We give priority to κpq values where commodities p and q are
associated with the same customer. For each class of priority, we choose the κpq
value closest to 0.5. This branching rule implements the Ryan and Foster (2003)
rule and guarantees the correctness of the solution algorithm (see Barnhart et al.
(1998)).

The search tree is explored according to a best-first-strategy.
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5 Experimental results

The branch-price-and-cut algorithm was implemented in C++ and compiled in
release mode under MS Visual Studio Express 2013 for Windows Desktop (64-bit
version). The experiments were carried out on a 64-bit Windows machine, with
Intel Xeon processor W3680, 3.33 GHz, and 12 GB of RAM. CPLEX 12.5 (64
bit version) was used to solve the linear relaxation of the MPs at each column
generation iteration. The overall execution time limit for each run was set to 2
hours. A single thread was used in all experiments.

After a preliminary testing phase we fixed the parameters of the branch-price-
and-cut algorithm as follows. The number of neighbors ν used while defining the
ng-path relaxation of the pricing problem is set to dn

2
e, provided that 10 ≤ dn

2
e ≤

15. If dn
2
e < 10 then ν = 10, while ν = 15 when dn

2
e > 15. The parameter n̄a used

in the heuristic column generation phase is set to min{10, (n+ 1) ∗ 2−4}. Finally,
violated inequalities are identified up to the fifth level of the branch-and-bound
tree and, then, only when the branching has no impact on the lower bound, i.e.,
when the lower bound of the child node is equal to the lower bound of the father
node.

5.1 Test Instances

We tested the branch-price-and-cut algorithm on benchmark instances for the C-
SDVRP proposed in Archetti et al. (2014). Three sets of instances with up to
3 commodities were generated: small instances with n = 15, mid-size instances
with n = 20, 40, 60, 80, and large instances with n = 100. We consider only the
small and the mid-size instances, as no significant result could be obtained on large
instances.

Small instances have the following characteristics:

• Customer locations: The first 15 locations in the R101 and C101 Solomon’s
instances are considered;

• Number of commodities: Two and three;

• Probability that a customer requires a commodity: Two cases are considered.
Probability set to 100% means that each customer requires each commodity.
Probability set to 60% means that the probability that a customer requires
a commodity is 60%;

• Demand range: This data represents the interval for the generation of the
demand of each customer for each commodity. Two intervals are considered:
[1;100] and [40;60];
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• Vehicle capacity: Denoting as dmax = maxi∈C
∑m

j=1 dij, the vehicle capacity
is generated as Q = αdmax. Four values of α are considered: 1.1, 1.5, 2 and
2.5.

One instance for each of the 64 combinations of characteristics was generated.
Mid-size instances have a number of commodities equal to three, demand range

[1;100], and α = 1.5. For each of the 16 combinations of value of n, type of in-
stance (R101 and C101), and value of the probability (60% and 100%), 5 different
instances were generated by randomly choosing customers from the original in-
stance. The total number of mid-size instances is 80.

5.2 Computational results on small instances

Detailed results on the set of small instances are reported in Table 1. The first
four columns report data on the instance: name of the original instance, number of
commodities (m), probability that a customer requires a commodity (p), demand
range (∆) and value of α. The following 4+4 columns refer to the computational
results. The first four columns report statistics on the solution obtained at the
root node of the branch-and-bound tree: the value of the LMP as a percentage of
the final lower bound value (z∗LMP ), the time spent to compute z∗LMP in seconds
(tLMP ), the value of the LMP once the capacity cuts are added as a percentage of
the final lower bound value (z∗LMP+cuts) and the time spent to compute z∗LMP+cuts

(tLMP+cuts). The last four columns report statistics on the final solution obtained
by the branch-price-and-cut algorithm: the lower bound value (z∗), the upper
bound value (z∗), the optimality percentage gap (gap %) and the total execution
time in seconds (t).

The algorithm is able to solve to optimality all instances. In particular, it
solves 41 instances out of the 64 in less than 1 second and takes more than 10
seconds for only 6 instances. As mentioned in the introduction, Archetti et al.
(2014) proposed a branch-and-cut algorithm for the C-SDVRP which was able to
solve 25 out of the 64 instances within a time limit of 30 minutes.
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Table 1: Small instances

Instance root z∗ z∗ gap t
m p ∆ α z∗LMP tLMP z∗LMP+cuts tLMP+cuts (%) (sec.)

(sec.) (sec.)
C101 2 0.6 [1;100] 1.1 100.00 0.168 - - 283.3404 283.3404 0 0.169

0.6 [40;60] 1.1 100.00 0.014 - - 480.4342 480.4342 0 0.015
1 [1;100] 1.1 99.63 0.099 99.76 0.124 422.4965 422.4965 0 0.261
1 [40;60] 1.1 98.59 0.024 98.77 0.029 685.1662 685.1662 0 0.051

0.6 [1;100] 1.5 99.81 0.189 100.00 0.221 241.0386 241.0386 0 0.222
0.6 [40;60] 1.5 97.50 0.042 100.00 0.079 348.2731 348.2731 0 0.079

1 [1;100] 1.5 95.77 0.148 99.61 0.222 340.5474 340.5474 0 1.070
1 [40;60] 1.5 97.39 0.082 97.84 0.131 490.2973 490.2973 0 0.248

0.6 [1;100] 1.1 100.00 0.287 - - 200.9092 200.9092 0 0.287
0.6 [40;60] 1.1 100.00 0.147 - - 239.6829 239.6829 0 0.147

1 [1;100] 1.1 99.61 0.212 99.97 0.426 239.9424 239.9424 0 0.688
1 [40;60] 1.1 97.62 0.182 99.50 0.381 357.5929 357.5929 0 1.407

0.6 [1;100] 1.5 99.36 0.453 100.00 1.102 170.0453 170.0453 0 1.103
0.6 [40;60] 1.5 99.30 0.264 99.97 0.436 207.8259 207.8259 0 0.710

1 [1;100] 1.5 99.53 0.654 100.00 0.962 205.7830 205.7830 0 0.963
1 [40;60] 1.5 97.35 0.261 99.97 0.436 302.1813 302.1813 0 0.639

R101 2 0.6 [1;100] 1.1 97.82 0.076 99.68 0.140 408.8971 408.8971 0 0.321
0.6 [40;60] 1.1 95.94 0.018 98.25 0.025 565.3383 565.3383 0 0.087

1 [1;100] 1.1 99.45 0.086 99.67 0.119 537.2029 537.2029 0 0.310
1 [40;60] 1.1 100.00 0.018 - - 679.0232 679.0232 0 0.018

0.6 [1;100] 1.5 98.28 0.116 99.89 0.246 353.0119 353.0119 0 0.324
0.6 [40;60] 1.5 97.34 0.039 99.48 0.069 455.9724 455.9724 0 0.116

1 [1;100] 1.5 97.50 0.105 99.23 0.163 443.0829 443.0829 0 0.259
1 [40;60] 1.5 99.57 0.050 100.00 0.063 558.9565 558.9565 0 0.063

0.6 [1;100] 1.1 100.00 0.230 - - 301.4316 301.4316 0 0.230
0.6 [40;60] 1.1 97.28 0.057 98.77 0.109 379.2848 379.2848 0 0.299

1 [1;100] 1.1 97.24 0.245 100.00 0.481 370.5561 370.5561 0 0.482
1 [40;60] 1.1 98.53 0.078 99.63 0.096 444.1868 444.1868 0 0.236

0.6 [1;100] 1.5 99.73 0.331 100.00 0.403 280.7646 280.7646 0 0.403
0.6 [40;60] 1.5 96.38 0.139 97.65 0.190 342.6854 342.6854 0 0.581

1 [1;100] 1.5 98.45 0.509 99.98 0.887 323.5761 323.5761 0 1.459
1 [40;60] 1.5 97.64 0.161 99.71 0.277 401.6087 401.6087 0 0.412

C101 3 0.6 [1;100] 1.1 97.76 0.184 100.00 0.312 333.4709 333.4709 0 0.312
0.6 [40;60] 1.1 93.08 0.100 95.47 0.196 440.2241 440.2241 0 17.776

1 [1;100] 1.1 93.96 1.827 98.42 5.359 428.5164 428.5164 0 740.205
1 [40;60] 1.1 98.18 0.264 99.45 0.426 638.0919 638.0919 0 3.354

0.6 [1;100] 1.5 93.79 0.292 100.00 0.637 262.8069 262.8069 0 0.638
0.6 [40;60] 1.5 98.27 0.256 99.99 0.417 306.6363 306.6363 0 0.572

1 [1;100] 1.5 96.43 2.694 99.96 5.137 315.9600 315.9600 0 6.394
1 [40;60] 1.5 96.25 0.867 100.00 1.658 457.9430 457.9430 0 1.659

0.6 [1;100] 1.1 99.26 0.392 - - 204.9380 204.9380 0 7.360
0.6 [40;60] 1.1 93.54 0.190 99.63 0.361 263.2896 263.2896 0 1.365

1 [1;100] 1.1 93.20 1.945 99.93 4.343 265.0623 265.0623 0 7.256
1 [40;60] 1.1 99.66 1.475 100.00 2.336 347.3580 347.3580 0 2.337

0.6 [1;100] 1.5 99.43 0.967 99.94 1.300 168.2958 168.2958 0 3.075
0.6 [40;60] 1.5 100.00 0.345 - - 202.9044 202.9044 0 0.345

1 [1;100] 1.5 98.64 35.196 99.86 62.526 206.6970 206.6970 0 116.820
1 [40;60] 1.5 95.12 2.048 99.69 4.515 310.7978 310.7978 0 103.281

R101 3 0.6 [1;100] 1.1 97.54 0.095 100.00 0.212 401.7502 401.7502 0 0.212
0.6 [40;60] 1.1 97.73 0.036 99.63 0.097 497.1385 497.1385 0 0.262

1 [1;100] 1.1 97.90 0.586 99.41 1.129 491.0411 491.0411 0 49.043
1 [40;60] 1.1 98.67 0.123 100.00 0.199 679.0232 679.0232 0 0.200

0.6 [1;100] 1.5 98.32 0.241 98.62 0.328 347.3693 347.3693 0 1.230
0.6 [40;60] 1.5 97.57 0.115 99.09 0.191 410.8130 410.8130 0 0.824

1 [1;100] 1.5 96.64 1.408 97.75 1.931 409.2905 409.2905 0 8.755
1 [40;60] 1.5 97.04 0.374 100.00 0.598 541.0336 541.0336 0 0.598

0.6 [1;100] 1.1 100.00 0.404 - - 303.1439 303.1439 0 0.405
0.6 [40;60] 1.1 99.76 0.227 99.76 0.247 343.7159 343.7159 0 0.380

1 [1;100] 1.1 98.89 1.709 100.00 2.811 345.8351 345.8351 0 2.813
1 [40;60] 1.1 97.25 1.029 99.19 1.732 444.1868 444.1868 0 3.033

0.6 [1;100] 1.5 100.00 0.886 - - 278.2234 278.2234 0 0.887
0.6 [40;60] 1.5 99.05 0.380 100.00 0.485 312.3100 312.3100 0 0.485

1 [1;100] 1.5 97.77 25.233 99.03 33.867 320.3490 320.3490 0 43.270
1 [40;60] 1.5 96.78 1.458 99.81 2.634 393.8357 393.8357 0 3.275
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5.3 Computational results on mid-size instances

Detailed results on the set of mid-size instances are reported in Table 2. The
first four columns report statistics on the instance: name of the original instance,
number of customers (n), probability that a customer requires a commodity (p),
instance id (id). We recall that, in the set of mid-size instances, 5 instances are
generated for each combination of characteristics and that the number of com-
modities is set to three, the demand range is [1;100] and α = 1.5. The following
4+4 columns refer to the computational results and have the same meaning as in
Table 1. The column ‘nodes explored’ gives the number of nodes explored in the
branch-and-bound tree. Finally, the last two columns report the value of the best
known feasible solution, taken from Archetti et al. (2014), and the percentage gap
between this value and the lower bound reported in column z∗, respectively.

The algorithm is able to solve to optimality all, except one, instances with 20
customers and 5 instances with 40 customers. The number of nodes explored is
less than 100 for all instances except 4 with 20 customers. The low number of
nodes explored for the instances with 60 and 80 customers is due to the fact that
in many cases the computing time is entirely spent to compute the lower bound
at the root node.
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Table 3 reports a summary of the computational results on the mid-size in-
stances. Instances are clustered on the basis of the values of n and p. Each row
corresponds to 10 instances. Column ‘# opt.’ reports the number of instances
solved to optimality, ‘# LB’ is the number of times a lower bound was computed,
‘av. gap’ and ‘max gap’ report, in percentage, the average and maximum gap,
respectively, between the computed lower bound and the value of the best known
solution (the best between the solution computed by the branch-price-and-cut al-
gorithm and the one reported in Archetti et al. (2014)), and ‘# best known’ is
the number of times the branch-price-and-cut found or improved the best feasible
solution. In parentheses we report the number of improved feasible solutions with
respect to the best known reported in Archetti et al. (2014).

As expected, instances of larger size are more difficult to solve. Moreover, when
p = 1 the difficulty of solving the problem increases. This is due to the fact that,
when p = 1, all customers require all the commodities while a smaller number of
commodities are required when p = 0.6. In the latter case, the expanded graph
used for the solution of the pricing problem is smaller. Out of the 30 instances for
which the algorithm finds a solution, this solution is better than the best known
solution found in Archetti et al. (2014) on 20 cases. For all instances, except one,
with up to 60 customers a lower bound is found and the maximum optimality gap
is 2.41%.

Table 3: Summary of results on mid-size instances

av. max # best
n p # opt. # LB gap gap known
20 0.6 10 10 0.00 0.00 10(1)

1 9 10 0.04 0.42 10(10)
40 0.6 4 10 0.30 1.57 7(6)

1 1 10 0.94 2.29 1(1)
60 0.6 0 10 0.95 2.04 2(2)

1 0 9 1.66 2.41 0
80 0.6 0 9 2.08 3.13 0

1 0 1 7.10 7.10 0

Finally, in Table 4 we report some information concerning the solution of the
mid-size instances for which the branch-price-and-cut algorithm was able to com-
pute a feasible solution. These are the 30 instances for which an upper bound (z∗)
is provided in Table 2. The first 4 columns have the same meaning as in Table
2. We then report the number of routes performed and the number of customers
served in each route. When the number of customers visited in a route is under-
lined, the route contains at least one split customer. In the following column we
report the number of split deliveries performed in each route that visits at least one
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split customer. Finally, the last two columns report the total number of customers
that are served by two and three routes, respectively. In all except one instance
at least one customer receives a split delivery while in only 4 instances we have
customers which are served by 3 routes. Moreover, in 20 cases over 30 the number
of routes containing at least one split customer is greater than or equal to half of
the total number of routes. The number of split customers in a single route is in
most cases 1 or 2 but is as large as 5 in one case.
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6 Conclusions

We presented in this paper a branch-price-and-cut algorithm for the solution of
a routing problem that explicitly considers the presence of multiple commodities
in a distribution problem and allows multiple visits to a customer as long as a
commodity is not split between vehicles. The algorithm solves instances with up
to 40 customers and 3 commodities, more than doubling the size 15 of the instances
previously solved to optimality. In particular, if we consider the 60 medium size
instances with at most 60 customers, the algorithm is able to compute or improve
the best known upper bound values in 50% of cases (30/60), and only in 5/59 cases
the lower bound computed is far from the best known upper bound by more than
2%. The algorithm was not able to compute the lower bound for one instance, but
for the remaining 59/60 instances the average and maximum optimality gaps are
0.63% and 2.41%, respectively. Also, for the instances with at most 60 customers
we improved 20 of the best known solutions.

Future research should be devoted to the development of a heuristic for the
solution of the C-SDVRP. In fact, the problem was solved heuristically by Archetti
et al. (2014) by transforming it into a VRP while no ad-hoc heuristic has been
proposed. Several variants of the C-SDVRP that consider multiple commodities
would also deserve to be studied.
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