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Abstract

Recently, response-adaptive designs have been proposed in randomized

clinical trials to achieve ethical and/or cost advantages by using sequen-

tial accrual information collected during the trial to dynamically update

the probabilities of treatment assignments. In this context, urn models

- where the probability to assign patients to treatments is interpreted as

the proportion of balls of different colors available in a virtual urn - have

been used as response-adaptive randomization rules.

We propose the use of Randomly Reinforced Urn (RRU) models in a simu-

lation study based on a published randomized clinical trial on the efficacy

of home enteral nutrition in cancer patients after major gastrointestinal

surgery. We compare results with the RRU design with those previously

published with the non-adaptive approach. We also provide a code writ-

ten with the R software to implement the RRU design in practice.

In detail, we simulate 10,000 trials based on the RRU model in three set-

ups of different total sample sizes. We report information on the number

of patients allocated to the inferior treatment and on the empirical power

of the t-test for the treatment coefficient in the ANOVA model. We carry

out a sensitivity analysis to assess the effect of different urn compositions.

For each sample size, in approximately 75% of the simulation runs, the

number of patients allocated to the inferior treatment by the RRU design

is lower, as compared to the non-adaptive design. The empirical power of

the t-test for the treatment effect is similar in the two designs.

Keywords: non-adaptive trial design; Randomly Reinforced Urn model; Ran-

domized trials; Response-adaptive randomization; Simulation study.
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1 Introduction

In the statistical literature, urn models have been widely studied as mathe-

matical tools to implement randomization in the context of clinical trials (e.g.

see Wei, 1978; Wen et al. 2017). These designs randomly assign those subjects

that sequentially enter the trial to the treatment arms according to the color

of the balls sampled from a virtual urn. Hence, the probability to assign a pa-

tient to a treatment arm is modelled by the proportion of the different types of

balls in the urn. Recently, interest has been increased in the use of urn models

for responses-adaptive designs, in which the probability to sample a ball of a

certain type depends on the treatment performance observed on the subjects

previously randomized (Durham et al., 1998; Atkinson and Biswas, 2014). These

designs are, therefore, able to achieve desirable statistical properties taking into

account the ethical aspects of the clinical experiment (see e.g. Hu and Rosen-

berger, 2006). A popular class of such designs is the Randomly Reinforced Urn

(RRU) model, which has been introduced in Durham et al. (1998) for binary

treatment responses and extended in Muliere et al. (2006) to handle continuous

responses. The main asymptotic results on the proportion of subjects assigned

to the treatment groups by a RRU design have been established in Flournoy

and May (2009) and Muliere et al. (2006). For the purposes of this paper, we

simply remind that a RRU design assigns patients to the superior treatment

with a probability that converges to one as the sample size increases. For an

overview on the RRU designs and its properties, we refer to Flournoy et al.

(2012).

Although the theoretical result of assigning most of the patients to the supe-

rior treatment is very attractive from the ethical point of view, the RRU design

have rarely been implemented in clinical trials or in simulation studies based

on a real set-up (e.g. see Chapter 12 in Lachin and Rosenberger, 2002). This

may depend on some feasibility issues that affect the practical implementation

of adaptive designs in general. In addition, although only few decision rules and
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basic programming skills are needed to implement the RRU design in clinical

practice, there are currently a few groups of researchers that combines knowl-

edge of the theoretical properties of urn models and experience in planning and

running clinical trials.

The substantial lack of dedicated software in standard statistical packages

used in clinical practice is an additional issue that have prevented a broader use

of RRU designs in this field.

The aim of the current paper is to popularize the statistical and ethical

advantages of the RRU design, and of urn schemes in general, and to promote

their use in clinical practice through a dedicated code written in R. In detail, we

will simulate a large number of trials that follow the RRU model starting from

the real-life data collected in a (previously published) Home Enteral Nutrition

(HEN) randomized trial (Gavazzi et al., 2016), where a non-adaptive design

was originally adopted. Comparing the performance of the RRU with that

of the original non-adaptive design, we expect that the RRU design will: 1)

assign fewer patients to the inferior treatment; 2) maintain similar inferential

properties. This will be an advantage in terms of both statistical performance

and ethical responsibility.

The paper is structured as follows. Section 2 provides some preliminary in-

formation on the HEN trial and its results (Gavazzi et al., 2016), introduces

the RRU model as a form of response-adaptive design, and describes how we

carried out the simulations of the RRU design based on the original HEN data.

Section 3 provides a comparison of the performance of the RRU versus the

non-adaptive design in the simulation study based on the HEN data. Section 4

provides some suggestions on tuning parameters and the R codes for the im-

plementation of a RRU design in the practice of randomized clinical trials. We

conclude the paper with a Discussion (Section 5).
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2 Materials and Methods

2.1 A randomized controlled trial of home enteral nutri-

tion versus nutritional counselling

The RRU model was here implemented in a simulation study based on re-

sults from a multicenter, controlled, open-label, two-parallel groups, randomized

clinical trial conducted at the Fondazione IRCCS Istituto Nazionale dei Tumori

(INT), Milan, Italy, and at the European Institute of Oncology, Milan, Italy,

between December 2008 and June 2011 (Gavazzi et al., 2016). Malnutrition in

gastrointestinal cancer patients is an independent risk factor for post-operative

morbidity and mortality (Bozzetti et al., 2000) and a prognostic factor for worst

long-term outcome, especially after major surgery (Martin et al. 2015). There-

fore, the trial was primary aimed at investigating the effectiveness of enteral

nutrition in limiting weight loss after home discharge from surgery, in compari-

son to nutritional counselling.

The enrolled subjects were adult (> 18 years) patients with documented upper

gastrointestinal cancer (esophagus, stomach, pancreas, biliary tract) who were

candidates for major elective surgery and showed a preoperative nutritional

risk score that indicated a potential benefit from any nutritional intervention.

A random permuted block design (stratified for referring center) randomly as-

signed patients before discharge to receive either HEN to cover the basal energy

requirement (experimental group), or nutritional counselling by an expert di-

etitian, including oral supplements only when needed (Control Group - CG), in

a 1:1 ratio. The protocol allowed the removal of HEN after two months from

discharge if a weight gain ≥5% was reported and oral diet was regular and ade-

quate. Therefore, the minimum treatment period in this trial was two months.

The treatment effect was defined as the difference between the mean “weight

change” (weight after two months - weight at baseline) in the HEN and nu-

tritional counselling arms (primary end-point). The total sample size required

to detect a statistically significant treatment effect was of 140 patients (70 per

6



arm). The sample size was calculated with α = 5% (two-sided) and power

1 − β = 80% under the following assumptions derived from a previous pilot

study conducted at INT:

• the baseline standard deviation of the weight distribution was equal to 10

kg;

• normality and homogeneity of weight variances was assumed across times

of assessment and arms;

• 5 kg of difference was expected in the two-months mean weight change of

treated versus control patients;

• a correlation coefficient of 0.5 was assumed between weights at baseline

and weights after two months.

The planned efficacy analyses included one interim and one final analysis, with

the interim analysis to be carried out when half of the patients had been fol-

lowed for at least two months. In order not to exceed an overall type I error

of 5%, the nominal significance level required by each analysis for the evalua-

tion of efficacy was 2.94%, according to the Pocok’s procedure (Pocock, 1977).

The main analysis on the primary end-point was conducted with a univariate

ANOVA including treatment as the main effect, after checking that standard

ANOVA assumptions were satisfied.

In total, 79 patients were initially randomized; however, 11 patients had a miss-

ing weight at two months; the final analysis was, therefore, performed on 68

patients, of which 33 patients were allocated to the HEN group and 35 to the

CG. The main result of the primary end-point analysis was that the mean weight

loss in the patients undertaking the HEN treatment was significantly lower than

that in the CG, with a treatment effect estimated by the corresponding ANOVA

model coefficient (95% confidence interval) of 3.2 (1.1-5.3) and a p-value from

the corresponding two-sided t-test equal to 0.31% < 2.94%. For this reason,

the trial was stopped at the interim analysis and results from this analysis were
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published in (Gavazzi et al., 2016). So, the HEN was found to be the superior

treatment in this trial.

2.2 Randomly Reinforced Urn design

We briefly introduce a RRU model for continuous responses to two treat-

ments (Muliere et al., 2016), which has been implemeted in accordance with the

design characteristics of the HEN trial.

Consider patients that sequentially enter a trial and have to be randomly as-

signed to either treatment R or treatment W. To model this, we assume that,

before subject i ≥ 1 enters the trial, we have a virtual urn with Ri−1 > 0

red balls and Wi−1 > 0 white balls. We indicate with (Ri−1,Wi−1) the urn

composition before subject i ≥ 1 enters the trial. We also set the initial urn

composition balanced (i.e., R0 = W0), to reflect the 1:1 randomization.

When subject i enters the trial, a ball is sampled from the virtual urn and

he/she is assigned to treatment R if the sampled color is red (Xi = 1) or to

treatment W if the sampled color is white (Xi = 0). When his/her response

to the assigned treatment is ascertained, we indicate it by ξRi if the assigned

treatment is R or by ξWi if the assigned treatment is W. The responses condi-

tional on treatment are assumed independent and identically distributed.

The urn is then updated by adding balls of the same color as the sampled one;

in detail, the number of balls added to the urn is represented by the utility func-

tion u, which is a suitable positive monotone increasing function of the response

observed on subject i. Formally, the urn composition is updated as follows:


Ri = Ri−1 +Xiu(ξRi)

Wi = Wi−1 + (1−Xi)u(ξWi),

(1)

where we called ’reinforcement’ the quantities u(ξRi) and u(ξWi).

The updating rule in (1) implies the single responses are available before the

next patient enters the trial. In the case of ’delayed responses’, we propose here
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a variant of the previous design in the same spirit of Bai et al. (2002): the urn

updating is based only on those responses that were available during the time

interval between the arrivals of subject i and i+ 1. Formally, for any i ≥ 1, let

us denote by Ai the set of patients whose responses to treatments are available

before subject i arrives. Then, the urn composition is updated as follows:


Ri = Ri−1 +

∑
k∈(Ai+1\Ai)

Xku(ξRk)

Wi = Wi−1 +
∑

k∈(Ai+1\Ai)
(1−Xk)u(ξWk),

(2)

where (Ai+1 \Ai) refers to those subjects whose responses are available during

the time interval between the arrivals of subject i and i+1. In case of no delayed

responses, (Ai+1 \Ai) = i, and hence (1) and (2) are equivalent.

It follows from the RRU design definition that the probability to assign a

subject i to the treatment R is the proportion of red balls in the urn at the

moment of his/her entrance in the trial:

P(Xi = 1|Ri−1,Wi−1) =
Ri−1

Ri−1 +Wi−1
, (3)

where the right hand side of the formula indicates the urn proportion at time

i − 1. Hence, the sequence {Xi; i ≥ 1} of the subject assignment indicators is

composed by conditionally Bernoulli random variables. In addition, it is worth

noting that the urn proportion:

• needs not to be a rational number in general, as reinforcement values may

be any real positive numbers;

• changes as far as a new response is made available; as a consequence,

the probability to assign any new subject to one treatment or to the other

depends on the treatment performance, in accordance with other response-

adaptive designs.

Now, define NR(n) =
∑n

i=1Xi as the number of subjects assigned to treat-
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ment R among the first n patients enrolled in the trial and NW (n) = n−NR(n)

as the number of subjects assigned to W.

The main asymptotic result of the RRU design is that the proportion of subjects

assigned to the superior treatment converges to one, as the sample size increases

to infinity. Formally, denoting by mR := E[u(ξR1)] and mW = E[u(ξW1)], from

Muliere et al. (2016) we have that

NR(n)

n

a.s.→


1 if mR > mW ,

0 if mR < mW .

(4)

Hence, the RRU design asymptotically targets the superior treatment R. As a

consequence, we expect that, as the sample size increases, a RRU design assigns

a lower number of subjects to the inferior treatment with a higher probability,

as compared to a non-adaptive design.

2.3 Simulations of Randomly Reinforced Urn designs

In this subsection, we describe how we simulated the RRU design starting

from the HEN trial data and how we derived the results for comparing the RRU

design with the non-adaptive one. We considered the following main steps:

(i) using the HEN trial dataset (Gavazzi et al. 2016) described in Subsec-

tion 2.1:

(1) we estimated the parameters of the Gaussian distribution of the re-

sponses to the HEN group;

(2) we estimated the parameters of the Gaussian distribution of the re-

sponses in the CG;

(3) we computed the empirical distribution of the difference between ar-

rival times of consecutive subjects;

(ii) we simulated N independent trial samples based on the RRU model; for
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each sample, responses to both treatments and intervals between arrival

times were randomly generated from distributions introduced in point (i);

(iii) we computed from these N trials:

(1) the empirical distribution of the number of subjects assigned to the

inferior treatment W;

(2) the empirical power of the corresponding test.

Previous literature (Flournoy and May, 2009; Ghiglietti and Paganoni,

2014) demonstrates the asymptotic normality of the distribution of

the test statistic under the null hypothesis of equal response means.

However, since this is an approximated test and the variances of the

treatment responses are estimated from the data, in this paper we

opt for a Student’s t-test.

The previous steps are detailed in the following.

To start, we considered the following three different choices of trial sample sizes:

(a) n = 58;

(b) n = 68;

(c) n = 78,

where the total sample size 68 of the HEN trial (Section 2.1) was used as the

reference set-up and we moved ±15% from that to get other two reasonable

sample sizes.

For each set-up, we performed N = 10, 000 simulations of independent trials

based on the RRU design: in each run we have a virtual urn to be sampled

and reinforced as described in Subsection 2.2. Formally, we denote by (Rj
i ,W

j
i )

the urn composition and by Rj
i/(R

j
i + W j

i ) the urn proportion in simulation

j = {1, .., N} at time i ∈ {1, .., n}.

All the urns start with the same (fixed) initial composition, i.e. (Rj
0,W

j
0 ) =

(R0,W0) for any j = {1, .., N}. Then, the urn composition (Rj
i ,W

j
i ) is updated
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as in (2): 
Rj

i = Rj
i−1 +

∑
k∈(Aj

i+1\A
j
i )
Xj

ku(ξjRk)

W j
i = W j

i−1 +
∑

k∈(Aj
i+1\A

j
i )

(1−Xj
k)u(ξjWk),

where Xj
k is a Bernoulli random variable with parameter Rj

k−1/(R
j
k−1 +W j

k−1)

and the set Aj
i here includes all the patients who arrived two months earlier

than subject i. Indeed, in the HEN trial, responses were available only two

months after treatment administration.

In addition, as normality assumptions in the original data were not rejected

(see Subsection 2.1), responses to both treatments were generated as indepen-

dent Gaussian random variables with arm-specific means and variances com-

puted using the HEN dataset and given by: mR = −0.315 and σR = 3.868 for

treatment R (HEN group), mW = −3.571 and σW = 4.789 for treatment W

(CG). Formally, we generated the following quantities:

(1) ξjR1, .., ξ
j
Rn ∼ N (mR, σ

2
R) potential responses to treatmentR (HEN group);

(2) ξjW1, .., ξ
j
Wn ∼ N (mW , σ2

W ) potential responses to treatment W (CG),

where either ξjRi or ξjWi is observed, as each subject just receives one treatment.

We also randomly generated the potential arrival times from the corresponding

empirical distribution in the HEN dataset.

For any sample size n (cases (a)-(b)-(c)) and any simulation j = {1, .., N},

we finally reported:

(1) the number of patients N j
W (n) =

∑
(1−Xj

i ) assigned to the CG, known

to be the inferior treatment in the HEN trial (Subsection 2.1);

(2) the result Ijn ∈ {0, 1} of the t-test for equal mean changes at level α = 0.05

(corresponding to the treatment coefficient in the ANOVA model): Ijn = 0

if the test does not reject H0, while Ijn = 1 if the test rejects H0.

It is worth noting that N j
W (n) (and consequently N j

R(n)) typically differs across

simulations, because the urn processes are independent and the subjects are
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allocated to the treatments depending on the urn-specific path of colors of the

sampled balls. We also estimated the power of the t-test from the N simulated

trials referring to the empirical power 1− β̂ = N−1
∑N

j=1 I
j
n.

Without loss of generality, we set the u function as: u(x) = (x + 20)/40.

Since in the HEN trial the response values, x, range in the interval (−20, 20),

this function was chosen to map linearly our simulated responses, x, in (0, 1).

We also assumed the initial urn composition to be R0 = W0 = 1 (i.e. one ball

of each color initially put into the urn). However, we carried out a sensitivity

analysis to assess the effect of different initial urn compositions for the different

total sample sizes available. In detail, we considered the cases: R0 = W0 = 5 or

R0 = W0 = 10.

To carry out the comparison with the non-adaptive design, we calculated the

number of subjects allocated to the inferior treatment when the non-adaptive

design was assumed. Let us denote this by nW . In case (b) (reference set-

up: n = 68), nW was known to be equal to 35, as in the HEN trial 35 out

of 68 subjects were allocated to the inferior treatment. In addition, we have

to estimate nW in cases (a) and (c). In case (a) (n = 58), we built several

(' 10, 0000) subsamples of size 58 from the original HEN sample of total size

68; we estimated nW as the mean number of subjects allocated to the CG across

the available samples of size 58. To estimate nW in case (c) (n = 78), we applied

a proportin similar to that found in (b) on the 78 available subjects of this case.

The corresponding nW were equal to 29 for case (a) and 38 for case (c). The

empirical power of the adaptive design was compared with the theoretical power

of the non-adaptive t-test which was computed assuming that the true difference

of the mean weight changes between the two arms is equal to the value obtained

in the HEN trial.

All the analyses have been performed using a specialized code (available upon

request from the authors) within the framework of the open-source statistical

software R.
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n NW (n) nW 1− β 1− β̂
1st quartile Mean Median 3rd quartile

(a) 58 19 25.6 25 31 29 0.88 0.83
(b) 68 22 29.6 29 36 35 0.92 0.88
(c) 78 25 33.6 33 41 38 0.94 0.92

Table 1: Summary statistics (1st and 3rd quartiles, mean, and median) of the empirical
distribution of the number of subjects assigned to the inferior treatment, NW (n), and
empirical power, 1 − β̂, of the t-test for equal mean weight changes (corresponding
to the treatment coefficient in the ANOVA model) for the different sample sizes n in
the Randomly Reinforced Urn design, in comparison with the corresponding results
for the non-adaptive design, nW and 1 − β. We reported in bold typeface the results
obtained with the same sample size of the original Home Enteral Nutrition trial. The
initial composition of the urns in all simulations was set at: R0 = W0 = 1.

3 Results

In this section we show the performance of the simulated RRU trials based

on the HEN data. Table 1 shows some descriptive statistics of the empirical

distribution of the number of subjects assigned to the inferior treatment, NW (n),

and the empirical power of the t-test, 1 − β̂, for the different sample sizes n

and a fixed initial urn composition R0 = W0 = 1, in comparison with the

corresponding results for the non-adaptive design, nW and 1− β.

For all sample sizes under consideration [cases (a)-(b)-(c)], the mean and

the median of NW (n) were smaller than nW , the number of subjects assigned

to the inferior treatment by the non-adaptive design. It follows that the RRU

design presented the 50% of probability (or more) to assign fewer subjects to the

inferior treatment, as compared to the non-adaptive design. Although higher

than nW for all the sample sizes considered, the third quartile of NW (n) in the

RRU design was very close to nW for any n under consideration. In addition,

the obtained values for the t-test’s empirical power under the RRU design were

close, but slightly smaller than, the corresponding power values derived in the

non-adaptive design.

Further information on the distribution of NW (n) is provided by the boxplots

reported in Figure 1. For any sample size, the median of NW (n) was below the

dashed line indicating the number of subjects assigned to the inferior treatment
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by the non-adaptive design. Similarly, we confirmed that, although higher, the

third quartile was closer than the median to the dashed line for the three cases

under consideration. In addition, the probability that NW (n) was less than

nW was close to 75% for any sample size under consideration. Finally, although

mostly symmetric, the empirical distributions of the number of subjects assigned

to the inferior treatment showed a high level of variability. This variability

increases, as the total sample size increases.

0
2
0

4
0

6
0

8
0

1
0
0

(a) n=58

0
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0

8
0
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0
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(b) n=68
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4
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6
0

8
0

1
0
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(c) n=78

Figure 1: Boxplots of the number of subjects assigned to the inferior treatment
(Control Group) in the three cases reported above each picture: (a) n = 58, (b)
n = 68, (c) n = 78. The dashed line indicated the number of subjects assigned to the
control group in the non-adaptive trial in the three cases.

Table 2 shows the results of the sensitivity analysis to different initial urn

compositions. Our analysis was robust with respect to the initial urn composi-
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Results

Scenarios NW (n) 1− β̂
n R0 = W0 1st quartile Mean Median 3rd quartile

1 19 25.6 25 31 0.83
58 5 23 27.4 27 31 0.86

10 24 27.9 28 31 0.87
1 22 29.6 29 36 0.88

68 5 27 31.7 32 36 0.91
10 29 32.6 32 37 0.91
1 25 33.6 33 41 0.92

78 5 31 36.1 36 41 0.94
10 33 37.3 37 42 0.94

Table 2: Sensitivity analysis to different urn initial compositions with R0 = W0: sum-
mary statistics (1st and 3rd quartiles, mean, and median) of the empirical distribution
of the number of subjects assigned to the inferior treatment, NW (n), and empirical
power, 1− β̂, of the t-test for the combination of different available sample sizes n and
urn initial compositions. We reported the reference scenario in bold typeface.

tion chosen. Indeed, the mean and median number of subjects allocated to the

inferior treatment in the RRU design was still below the corresponding number

of subjects in the non-adaptive design, for any n and fixed urn composition

under consideration. In addition, as far as the number of balls initially inserted

into the urn increases, for fixed n, the medians increase and, with R0 = W0 = 10,

they almost reached the number of patients assigned to the inferior treatment

in the non-adaptive design, nW . The empirical power of the t-test was corre-

spondingly higher than in the reference scenario of R0 = W0 = 1 for any n

under consideration, thus making it almost identical to the empirical power in

the non-adaptive design (see column 1− β in Table 1). Similarly, as far as the

number of balls initially inserted into the urn increases, for fixed n, the vari-

ability of NW (n) decreases and the adaptive design becomes closer and closer

to the non-adaptive one.
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4 Practical implementation of the RRU design

In the following, we give some technical details on how to implement a RRU

design in the practice of clinical trials. The initial set-up at the trial start

involves:

• total sample size n;

• initial urn composition (R0,W0);

• utility function u.

We highlight that the implementation of the RRU design does not require

any theoretical support or add-on code for sample size calculation. We just sup-

pose that the trial investigators have calculated a total sample size n according

to some approach, including traditional non-adaptive techniques.

There is no standard approach to choose the initial urn composition. However,

extreme choices in the initial urn composition or in reinforcement values may

lead to more and more extreme urn compositions, and, on this way, to swamp

the urn and to compromise the adaptive mechanism of the trial. Such extreme

situations may be avoided by setting the initial urn composition at the same or-

der of magnitude of the reinforcement values. To this purpose, a general rule of

thumb could be to set R0 and W0 such that: (i) their sum (R0+W0) is similar to

the mean number of balls added to the urn at any time a new response is avail-

able, and (ii) the initial proportion of red balls in the urn, Z0 = R0/(R0 +W0),

may reflect the a priori belief on which treatment is superior: the better the

treatment R, the higher is Z0. In our simulation study, we always set R0 = W0

and therefore: Z0 = 0.5, meaning that we have no reason to believe a priori

that one treatment is superior. In accordance with the equipoise principle, this

proportion is typically set to Z0 = 0.5 in the clinical practice.

The utility function, u, is, in principle, any positive monotone increasing func-

tion that maps the range of continuous responses into a positive bounded inter-

val. For instance, in our simulation of the HEN trial, since the response values,
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x, range in the interval (−20, 20), we set u(x) := (x+ 20)/40, in order to obtain

reinforcements in (0, 1).

The RRU design is practically implemented as follows:

• information storing:

The minimal set of information for implementing the RRU design may be

collected in two databases. In the former one, we store for each subject

(in rows) the following variables (in columns):

– subject ID;

– date of entry in the study;

– treatment assignment;

– date of response;

– response value.

In the latter one, we store for each date of subject response (in rows)

the updated urn composition (R,W ) (in columns). In the first row, we

have the randomization date of the first patient entered in the study and

(R0,W0).

• subject randomization:

Equation (3) is implemented in the following R function:

new_subject <- function(R,W){

## (R,W): urn composition

## before the arrival of the new subject

Z <- R/(R+W) ## compute the urn proportion

U <- runif(1,0,1) ## sample a ball from the urn

if (U<=Z) {T <- ’R’} ## if the sampled ball is red,

## assign the subject to treatment ’R’

else if (U>Z) {T <- ’W’} ## if the sampled ball is white,
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## assign the subject to treatment ’W’

return(T) ## return the treatment assigned to the subject

}

At the arrival of the ith subject, we assign him/her to treatment calling

the function with the current urn composition:

> new_treatment<-new_subject(R,W)

For instance, if the current urn composition is (R,W ) = (20, 25), we may

obtain:

> new_treatment<-new_subject(20,25)

> new_treatment

[1] "R"

• urn updating:

Equation (1) is implemented in the following R function:

new_response <- function(R,W,xi,T,u){

## (R,W): the urn composition

## at the time the new response is available,

## xi: value of the new response,

## T: treatment associated to the new response (’R’ or ’W’)

## u: utility function

if (T==’R’) {R <- R+u(xi)}

## if xi is a response to treatment ’R’,

## we increase the number of red balls in the urn

else if (T==’W’) {W <- W+u(xi)}

### if xi is a response to treatment ’W’,

## we increase the number of white balls in the urn

return(data.frame(R,W))

### return the urn composition after the update

}
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The utility u has to be specified in a suitable R function. For instance,

in our simulation the utility function is implemented in R as follows:

utility<-function(xi){(xi+20)/40}

When the subject gives his/her response to treatment, we call the new_response()

function, with the updated information on treatment and response:

> new_urn_comp<-new_response(R,W,xi,new_treatment,utility)

and we obtain the updated urn composition. For instance, if the response

to treatment is xi= 10, we obtain:

> new_urn_comp<-new_response(20,25,10,’R’,utility)

> new_urn_comp

R W

1 20.75 25

to be inserted as the new urn composition in the corresponding database,

together with the new date of response.

5 Discussion

The current paper provides scientific and practical support to a broader use

of the RRU response-adaptive design in randomized clinical trial planning, to

alter the randomization ratio and favor patients allocation to the most effective

treatment. We applied the RRU design in a simulation study based on real-life

data from a randomized trial planned with a non-adaptive design, to compare

the RRU performance with the original results from this trial. The simulation

study gave scientific evidence of the possible advantages achieved with such a

design, in that, as compared to the corresponding non-adaptive design, fewer

subjects were allocated to the inferior treatment with a higher probability and
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with a limited loss of power in hypothesis testing. We also showed the possi-

bility of the practical use of the RRU design by providing the R code for its

implementation.

The above results were derived by implementing a modification of the RRU

design proposed in Muliere et al. (2006) that takes into account the more re-

alistic case of delayed treatment responses. The adaptive randomization prob-

abilities are determined based on the data observed thus far. This is a step

forward in the modeling of real-life problems with urn models. Indeed, in the

vast majority of medical research, including oncology, end-points are accessible

for the evaluation of treatment efficacy during a relatively long follow-up period.

In all these cases, our approach does not require suspending patient accrual and

thus avoids wasting resources, adding administrative inconvenience and, in the

end, having an infeasible trial. In addition, we referred to previous literature

on asymptotic normality of the distribution of the test statistic under the null

hypothesis of equal response means (Flournoy and May, 2009; Ghiglietti and

Paganoni, 2014). In this paper, we opted for a Student’s t-test. This choice is

reasonable considering that the Student’s t-test is more conservative than the

z-test.

We acknowledge that sample size, test power and treatment effect size are

three issues to be addressed within the RRU design and related one to the other.

The current application considers the total sample size as a fixed aspect of the

problem. Our choices were in line with the real set-up of the Italian efficacy

study of HEN for gastrointestinal cancer patients. In particular, we hypothe-

sized the following alternatives: 68 (total sample size of the HEN trial; reference

set-up), together with 58 and 78, obtained by moving ±15% from 68. For all

the three settings, our results showed that fewer subjects were allocated to

the inferior treatment CG with a higher probability, as compared to the corre-

sponding non-adaptive design. In detail, in approximately 75% of the 10,000

simulation runs the number of patients allocated to the inferior treatment by

the RRU design is lower than the corresponding one in the non-adaptive de-
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sign. For instance, in the reference case of 68 subjects collected in the original

trial, the RRU design provided a median number of patients allocated to the

inferior treatment equal to 29, versus a corresponding number as high as 35 in

the non-adaptive design.

The total sample size is related to the effect size and power in a way that

goes beyond the scope of this paper. Therefore, we did not include in the present

work any theoretical development or add-on code for sample size calculation.

One strategy could be to calculate a reference upper bound for the sample

size by following standard approaches for non-adaptive designs and apply an

adjustment that increases this value and protects from the loss of power expected

with the RRU design. A more refined solution is to consider a trial simulation

investigating the impact of the tuning parameters on total sample size and

corresponding power for the target effect size.

In our application, the differences in the power of the t test for equal mean

changes in the non-adaptive versus adaptive design range from 1% to 6% in

absolute value. Power loss is an expected result, due to the unbalanced ran-

domization ratio that is typical of adaptive designs. However, such loss seems

to be limited and compensated by the expected gain in the number of subjects

assigned to the superior treatment by the RRU design.

The amount of gain in the allocation procedure is related to the estimated

effect size, too. Indeed, the convergence rate to the optimal allocation depends

on the means and variances of the distributions of the responses to treatment,

as proved in Flournoy and May, 2009.

Our simulation study was based on a trial with a differential effect between

competitive treatments. For a high positive difference between the observed and

the target effect size, the adaptive allocation will be strongly unbalanced in favor

of the superior treatment, generating higher and higher loss of power. However,

such loss should be compensated by the gain due to the larger-than-expected

effect size. In the case of no observed effect between treatments, as the sample

size increases to infinity, the stochastic process of the proportions of subjects
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assigned to the superior treatment oscillates and does not convergence to 1

anymore. The distribution of this proportion is, indeed, the unique continuous

solution of a functional equation involving unknown probability distributions

on [0, 1], as shown in Aletti et al. (2007) and Aletti et al. (2009). This is still

a setting where a RRU design can be applied because there will be a sort of

random selection of the arm “receiving” more subjects. In addition, although

we do not know the exact functional form, we can still take advantage of the

fact that the distribution of the proportion has no point mass and has lower

and upper bounds. For instance, we can deal with potential outliers by setting

sensible thresholds to allow updating of the urn composition only when the

proportion falls within the specified range (see Aletti et al. 2013; Ghiglietti and

Paganoni, 2016).

Randomly reinforced urn models share some general issues with sequential

designs that might discourage their broader application in clinical trials. Pa-

tients’ characteristics may change during recruitment because time trends in

the target population and changes in investigator’s conduct may happen. In-

deed, since later-entered patients have a better chance of receiving the better

treatment, clinicians might modify their behavior in selecting patients and as-

sessing their characteristics. In both cases, allocation and assessment biases

could distort the treatment effect estimate. All these issues are less relevant in

short-running studies and when blinding procedures are applicable. Among fea-

sibility issues, adaptive designs generally require that information on response

to treatment be quickly ascertainable and used as far as it is available, but

real-time data collection may be difficult in practice. In some applications, the

response assessment implies a long follow-up time and, therefore, a new sub-

ject is ready for treatment assignment while responses to previously enrolled

patients have not been observed yet. However, our variant of the RRU scheme

is able to manage urn updating when information is available from small blocks

of subjects. In addition, in the practical implementation of a RRU design, we

had to select appropriate values for several parameters, including total sample
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size, initial urn composition, and utility function for the urn reinforcement. Our

choices were informed by the real example under consideration, as suggested in

Section 4. However, the R code provided is very general and can be easily mod-

ified to cope with different real-life situations. If we assumed a different form

for the utility function, we could simply insert it in the right hand side of the

corresponding R function utility, with no modifications in the remaining R

functions. Similarly, if we dealt with a binary outcome, the utility function

could simply be equal to the identity function, as the response values lie in

[0,1]. At the same time, we chose our real-life example to adhere, as far as pos-

sible, to some extra feasibility requirements. In detail, both the time interval

between consecutive patient arrivals and the delay of the responses have to be

similar in magnitude to the total study period divided by the total number of

patients enrolled. For instance, in our example, the mean time intervals between

consecutive patients was about 20 days, the mean delay of the responses was

approximately 2 months, and the study lasts for about 4 years.

In conclusion, we provide support to the theoretical and practical use of

RRU designs in randomized clinical trials: significant ethical and cost advan-

tages are obtained over equal randomization, with fewer subjects assigned to

the inferior treatment with a higher probability. Although we are aware of the

many feasibility issues related to adaptive designs in general, we still believe

that the RRU designs represent a valid attempt to develop an adaptive design

in randomized clinical trials.
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