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Abstract

The Team Orienteering Problem (TOP) aims at maximizing the total
amount of profit collected by a fleet of vehicles while not exceeding a pre-
defined travel time limit on each vehicle. In the last years, several exact
methods based on different mathematical formulations were proposed. In
this paper, we present a new two-index formulation with a polynomial num-
ber of variables and constraints. This compact formulation, reinforced by
connectivity constraints, was solved by means of a branch-and-cut algo-
rithm. The total number of instances solved to optimality is 327 out of 387
benchmark instances, 26 more than any previous method. Moreover, 24 not
previously solved instances were closed to optimality.
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1 Introduction

The Team Orienteering Problem (TOP) can be defined over a complete directed
graph G = (V,A) with node set V = {0, . . . , n + 1} and arc set A = {(i, j) :
i 6= n + 1; j 6= 0; i 6= j; i, j ∈ V }. The node set V contains nodes 0 and n + 1,
representing the initial and final depots, respectively, and the set N = {1, . . . , n},
indicating the n customers. Each node i ∈ V has a profit pi, with p0 = pn+1 = 0. A
non-negative travel time tij, with t0,n+1 = 0, is associated with each arc (i, j) ∈ A.
Travel times satisfy the triangle inequality. A fleet F of m identical vehicles is
available to serve the customers. When a customer is visited, the corresponding
profit is collected by the vehicle serving the customer. Each customer cannot be
visited more than once. Each route is a path from node 0 to node n+ 1 in graph
G. Moreover, the duration of the route associated with each vehicle cannot exceed
a predefined threshold Tmax. The objective is to find a set of vehicle routes each
of which not exceeding the maximum time duration and serving a subset of the
customers in such a way that the total collected profit is maximized.

The problem, proposed by Chao et al. (1996), has been recently studied and
new solution algorithms, both exact and heuristic, have been proposed. In this
paper, we focus on mathematical formulations proposed for the problem and on ex-
act solution approaches. If we exclude some preliminary works by Gueguen (1999)
and Butt and Ryan (1999) analyzing variants of the TOP (with time windows
and with a heterogeneous fleet of vehicles, respectively), the first exact approach
is due to Boussier et al. (2007) where a branch-and-price algorithm was proposed.
The method, based on a set packing formulation, has the advantage of being eas-
ily adaptable to other vehicle routing problems with profits. In particular, the
authors apply it to the TOP and to a variant by considering capacity and time
window constraints. The authors tested the method on the 387 benchmark in-
stances proposed by Chao et al. (1996) by solving to optimality 270 instances. In
de Aragão et al. (2010) different formulations were proposed. However, they did
not present a full implementation of the branching scheme and, thus, reported only
partial results. In Dang et al. (2013) the authors solved a three-index formulation
with a polynomial number of binary variables and generalized subtour elimination
constraints. They introduced a branch-and-cut method based on valid inequalities
and a set of dominance properties that includes symmetry breaking conditions on
the objective function, lower and upper bounds on solution profit and on the num-
ber of customers, and clique cuts based on graph incompatibilities. They were able
to solve 29 previously unsolved benchmark instances. More recently, Keshtkaran
et al. (2016) proposed a branch-and-price approach where the pricing subproblem
is solved by a bounded bidirectional dynamic programming algorithm with decre-
mental state space relaxation featuring a two-phase dominance rule relaxation.
The authors were able to solve 301 instances out of 387, by closing 17 previously
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unsolved instances. The most recent exact approach is due to El-Hajj et al. (2016),
who proposed the effective use of a linear formulation with a polynomial number
of variables. Cutting planes are the core component of the algorithm that closed
to optimality 12 previously unsolved benchmark instances.

In this paper, we propose a new two-index formulation with a polynomial num-
ber of variables and constraints. This compact formulation was inspired by the
formulation proposed by Maffioli and Sciomachen (1997) for the Sequential Order-
ing Problem (SOP) where jobs characterized by a release date and a due time have
to be processed on a single machine. A set-up time was also considered for chang-
ing from one job to the other. The SOP consists in finding an ordering of the jobs
such that the completion time of the job processed last is minimized. The formu-
lation we propose for the TOP was reinforced by the introduction of connectivity
constraints and solved by means of a branch-and-cut algorithm. We compared it
with the methods of Boussier et al. (2007), Dang et al. (2013), Keshtkaran et al.
(2016) and El-Hajj et al. (2016) on the 387 benchmark instances of Chao et al.
(1996). The total number of instances solved to optimality is 311, when tested
on a single thread, and 327 when multiple threads are allowed, 10 and 26 more
than any previous method, respectively. Most interestingly, 24 previously unsolved
instances were solved to optimality, reducing the number of open instances to 49.

The paper is organized as follows. In Section 2, we describe the mathematical
formulation used, and in Section 3, the branch-and-cut approach. Computational
results are presented in Section 4.

2 Mathematical formulation

We model the problem by means of a two-index commodity flow formulation that
makes use of three sets of variables. Binary variables xij, (i, j) ∈ A, and yi, i ∈ N ,
are equal to 1 if arc (i, j) is traversed and customer i is visited, respectively,
whereas continuous variables zij, (i, j) ∈ A \ {(0, n + 1)}, represent the arrival
time at vertex j of a vehicle coming from vertex i. For each set S ⊆ N , let
δ+(S) = {(i, j) ∈ A : i ∈ S, j /∈ S} and δ−(S) = {(i, j) ∈ A : i /∈ S, j ∈ S} be the
set of arcs leaving and entering the set S, respectively, with δ+(i) = δ+({i}) and
δ−(i) = δ−({i}). The model is as follows.

3



max
∑
i∈N

piyi (1)∑
j∈N

x0j =
∑
i∈N

xi,n+1 = m (2)∑
(j,i)∈δ−(i)

xji =
∑

(i,j)∈δ+(i)

xij = yi i ∈ N (3)

z0j = t0jx0j j ∈ N (4)∑
(i,j)∈δ+(i)

zij −
∑

(j,i)∈δ−(i)

zji =
∑

(i,j)∈δ+(i)

tijxij i ∈ N (5)

zij ≤ Tmaxj,n+1xij (i, j) ∈ A \ {(0, n+ 1)} (6)

zij ≥ t0ijxij (i, j) ∈ A \ {(0, n+ 1)} (7)

yi ∈ {0, 1} i ∈ N (8)

xij ∈ {0, 1} (i, j) ∈ A \ {(0, n+ 1)} (9)

0 ≤ x0,n+1 ≤ m, (10)

where t0ij = t0i + tij, with t00 = 0, and Tmaxj,n+1 = Tmax − tj,n+1, with tn+1,n+1 = 0.
This formulation has a polynomial number of variables and constraints. The

objective function (1) calls for the maximization of the collected profit. Constraints
(2) and (3) are the degree constraints for the depots and the customer nodes,
respectively. In particular, constraints (2) impose that exactly m vehicles have to
leave and come back to the depot, whereas constraints (3) impose that a customer
node i is entered and leaved exactly once if it is visited (i.e. if yi = 1). Constraints
(4) bound the flow originating from the initial depot. Flow conservation constraints
(5) update the flow value coming out from each visited customer, while constraints
(6) set the time limit on the duration of each route. Constraints (7) impose lower
bounds on the values of the z variables in order to restrict the range of feasible
values that these variables can assume in fractional solutions. Note that if xij = 1
then zij denotes the arrival time at node j, whereas xij = 0 implies zij = 0. Finally,
(8)–(10) are variable definition constraints.

In order to strengthen the formulation, a further constraint can be imposed on
the global duration of the routes:∑

(i,j)∈A\{(0,n+1)}

tijxij ≤ mTmax. (11)
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3 Branch-and-cut algorithm

In this section, we briefly describe the branch-and-cut algorithm used to solve the
formulation described in Section 2 with the addition of valid inequality (11).

Although equalities (4) and (5) are sufficient to prevent the generation of sub-
tours and to ensure the connectivity of each route, we decided to further strengthen
the problem formulation by adding the following more general type of connectiv-
ity constraints (see also Toth and Vigo (2002), p. 15, for the use of these cuts in
three-index VRP formulations):∑

(i,j)∈δ+(S)

xij ≥ yh S ⊆ N, |S| ≥ 2, h ∈ S. (12)

The number of the connectivity constraints (CCs) is exponential in the size
of N . This excludes the possibility to explicit them through a commercial MILP
solver even for small-size instances. The CCs are thus dynamically separated along
the branch-and-bound tree.

Let (ȳ, x̄, z̄) be an optimal fractional solution of (1)–(11). Violated connectivity
constraints are identified by means of an exact separation algorithm as follows.
We consider the graph Ḡ = (V , Ā) induced by the fractional solution, where arc
(i, j) ∈ Ā if the corresponding x̄ij value is greater than 0. With each arc (i, j) ∈ Ā
a capacity equal to x̄ij is associated. Then, for each pair < i, n + 1 >, i ∈ N , the
max-flow/min-cut problem is solved on graph Ḡ, where vertex i is the source of
the flow and vertex n+ 1 is the sink. We consider the partition S induced by the
min-cut such that i ∈ S. If n + 1 /∈ S and the value of the flow is less than ȳv
for some v ∈ S, then a violated connectivity constraint has been identified. The
violated constraint is inserted for i = argmax v∈S{ȳv}. Max-flow/min-cut problems
are solved by means of the algorithm described in Boykov and Kolmogorov (2004).

4 Experimental results

The branch-and-cut algorithm was implemented in C++, by using CPLEX 12.6
Concert Technology. The code was compiled in release mode with MS Visual
C++ 2012 Express Edition for Windows Desktop. The experiments were carried
out on a 64-bit Windows computer, with the Intel Xeon processor W3680, 3.33
GHz, and 12 GB of RAM. CPLEX built-in cuts were used in all experiments. We
set IloCplex::ParallelMode to 1 in order to force CPLEX to always use determin-
istic algorithms. Parameter IloCplex::Threads has been set to different values as
illustrated in the following. For all the other CPLEX’s parameters we kept their
default values. All experiments were run on the 387 benchmark instances proposed
by Chao et al. (1996) with a time limit of 2 hours as in Boussier et al. (2007), Dang
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Table 1: Benchmark instances

Set # |N | m Tmax

1 54 32 2 - 4 3.8 - 22.5
2 33 21 2 - 4 1.2 - 42.5
3 60 33 2 - 4 3.8 - 55.0
4 60 100 2 - 4 3.8 - 40.0
5 78 66 2 - 4 1.2 - 65.0
6 42 64 2 - 4 5.0 - 200.0
7 60 102 2 - 4 12.5 - 120.0

et al. (2013), Keshtkaran et al. (2016), and El-Hajj et al. (2016). Although a direct
comparison of methods using different hardware is not a straightforward task, we
recall here that Boussier et al. (2007) used a PC Pentium IV 3.2 GHz, Dang et al.
(2013) tested their branch-and-cut method on an AMD Opteron 2.60 GHz by using
CPLEX 12.4 as MIP solver, Keshtkaran et al. (2016) conducted their experiments
on a single core of an Intel Core i7 3.6GHz, and finally El-Hajj et al. (2016) run
tests on an AMD Opteron 2.60GHz, by using CPLEX 12.5 as MIP solver.

The data set by Chao et al. (1996) consists of 387 instances divided into 7 sets
according to the number of control points (customers) ranging from 21 to 102.
In each set the instances differ only for the number of vehicles available to serve
the customers (from 2 to 4) and for the value of the maximum time duration of a
route. For each set, Table 1 reports the number of instances in the set (‘#’), the
number of customers in each instance (‘|N |’), the range values for the number of
available vehicles (‘m’) and for the maximum time duration of a route (‘Tmax’).

As previously done in Dang et al. (2013), a node is removed if the travel time
of the tour containing only such a node exceeds the time limit Tmax. Similarly, we
eliminated all the inaccessible arcs.

We first show the results on the effectiveness of the CCs and then compare our
method with the methods proposed by Boussier et al. (2007), Dang et al. (2013),
Keshtkaran et al. (2016), and El-Hajj et al. (2016). A detailed comparison on the
partial set of instances tested in de Aragão et al. (2010) is reported in Keshtkaran
et al. (2016).

Table 2 is devoted to testing the effectiveness of the CCs. This first set of
experiments was carried out setting the number of threads available to CPLEX
to 1 (IloCplex::Threads := 1). The first three columns report the set of instances
(‘Set’), the number of vehicles (‘m’) and the number of instances in the row (‘#’).
Then, the following six columns show the results for the branch-and-cut algorithm
on the compact formulation (1)–(11) with the separation of the CCs. The six
columns report the number of instances solved to optimality, the average com-
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putational time needed in seconds to find the optimal solution, the number of
unsolved instances, the final average optimality gap computed on the unsolved in-
stances, the average number of branch-and-bound nodes inspected and the average
number of cuts generated. The last five columns report similar statistics for the
case where the CCs are not included. In general, including the CCs is beneficial,
in terms of number of instances solved, computational time needed to find the
optimal solutions, and optimality gap for the unsolved instances. There are only
few cases (see for example the results for Set 5) where the solution of the pure
compact formulation gives slightly better results. In such cases, it seems that the
separation of the CCs guides the search towards area of the solution space not
including good feasible solutions, leading CPLEX to explore a higher number of
nodes, and to sometimes miss the optimal solution.

Table 3 summarizes the results of the comparison between our branch-and-cut
algorithm with CCs and the other state-of-the-art exact algorithms. We included
in the comparison two versions of our algorithm: single and multi-thread. In the
first version, CPLEX is forced to use 1 thread only (IloCplex::Threads := 1), while
in the second one CPLEX can use up to 6 threads (IloCplex::Threads := 6). For
each known method, each row reports the number of instances solved to proven
optimality (out of the total number of instances in the set), and the average compu-
tational time w.r.t. such instances optimally solved. Since Dang et al. (2013) and
El-Hajj et al. (2016) do not report complete results on the computational times,
only the number of instances solved to optimality is shown in the table for such
methods. For each version of our algorithm we report, in addition to the number
of solved instances and their average computational time, the average optimality
gap (%) computed w.r.t the instances not solved to proven optimality. In terms
of total number of instances solved, the single thread version solves 10 instances
more than each of the other methods, the multi-thread 26 more.

As each method solves different sets of instances, it is also interesting to look
at the specific instances solved. Then, in Table 4 we list the instances solved to
optimality for the first time by means of our branch-and-cut algorithm. Columns
labeled with ‘Instance’, ‘n’, ‘m’, and ‘Tmax’ indicate the name of the instance
solved, the number of customers, the number of vehicles and the time limit, re-
spectively. Column ‘Opt.’ reports the objective function optimal value. The last
two columns show the computational time in seconds required to solve the instance
in the single-thread and multi-thread versions. A ‘-’ indicates that the instance
could not be solved to optimality within the time limit.
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Table 4: New optimal solutions

Time
Instance n m Tmax Opt. Single thread Multi-thread
p4.2.c 76 2 35 452 3.8 3.0
p4.2.d 90 2 40 531 115.4 32.5
p4.2.e 97 2 45 618 83.6 38.3
p4.2.g 98 2 55 757 513.3 178.7
p4.2.n 98 2 90 1174 885.5 289.4
p4.2.o 98 2 95 1218 1528.7 546.6
p4.3.d 45 3 26.7 335 5.2 2.1
p4.3.e 56 3 30 468 55.4 16.4
p4.3.f 71 3 33.3 579 35.1 9.0
p4.3.j 97 3 46.7 861 - 4196.8
p4.3.n 98 3 60 1121 - 6633.4
p4.4.g 49 4 27.5 461 33.5 9.0
p5.3.r 64 3 30 1125 - 6979.1
p7.2.j 100 2 100 646 1263.0 282.0
p7.2.k 100 2 110 705 1387.8 390.1
p7.2.l 100 2 120 767 690.0 126.4
p7.2.m 100 2 130 827 2156.1 1009.4
p7.2.n 100 2 140 888 1083.4 85.1
p7.2.o 100 2 150 945 1615.7 627.7
p7.2.p 100 2 160 1002 4234.1 3154.0
p7.2.r 100 2 180 1094 3063.1 4147.9
p7.2.s 100 2 190 1136 4417.5 5789.1
p7.3.o 100 3 100 874 - 5640.8
p7.3.p 100 3 106.7 929 - 6231.4

5 Conclusions

A new compact formulation for the Team Orienteering Problem, with a poly-
nomial number of variables and constraints, was presented. Such a formulation
was reinforced with connectivity constraints and solved with a branch-and-cut
algorithm. The approach was compared with all the previously proposed exact
methods that were tested on the 387 benchmark instances. In terms of total num-
ber of instances, we solved to optimality 311 instances on a single thread and 327
on multiple threads. This implies that we solved 10 more instances, with a single
thread, and 26 more instances, with multiple threads, than any other previous
method. Most interestingly, we solved 24 previously unsolved instances. This is
due to the fact that the different methods solve different sets of instances and,
somehow, complement each other. The extension of the proposed formulation to
other routing problems is a promising research direction.

9



References

S. Boussier, D. Feillet, and M. Gendreau. An exact algorithm for team orienteering
problems. 4OR, 5:211–230, 2007.

Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. In IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 2004.

S.E. Butt and D.M. Ryan. An optimal solution procedure for the multiple tour
maximum collection problem using column generation. Computers & Operations
Research, 26(4):427–441, 1999.

I.-M. Chao, B.L. Golden, and E.A. Wasil. The team orienteering problem. Euro-
pean Journal of Operational Research, 88:464–474, 1996.

D.-C. Dang, R. El-Hajj, and A. Moukrim. A branch-and-cut algorithm for solving
the team orienteering problem. In C. Gomes and M. Sellmann, editors, Integra-
tion of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, Lecture Notes in Computer Science, pages 332–339.
Springer Berlin Heidelberg, 2013.

M. Poggi de Aragão, H. Viana, and E. Uchoa. The team orienteering problem:
Formulations and branch-cut and price. In OASIcs-OpenAccess Series in Infor-
matics, volume 14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

R. El-Hajj, D.-C. Dang, and A. Moukrim. Solving the team orienteering problem
with cutting planes. Computers & Operations Research, 74:21–30, 2016.
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