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Abstract 

 

Small fibre neuropathy (SFN) is a disorder of thinly myelinated Aδ and unmyelinated C fibres. 

SFN is clinically dominated by neuropathic pain and autonomic complaints, leading to a 

significant reduction in quality of life. According to international criteria, the diagnosis is 

established by the assessment of intra-epidermal nerve fibre density and/or quantitative 

sensory testing. SFN is mainly associated with autoimmune diseases, sodium channel gene 

variants, diabetes mellitus, and vitamin B12 deficiencies, although in more than one-half of 

patients no etiology can be identified. Recently, gain-of-function variants in the genes 

encoding for the Nav1.7, Nav1.8 and Nav1.9 sodium channel subunits have been discovered 

in SFN patients, enlarging the spectrum of underlying conditions. Sodium channel gene 

variants associated with SFN can lead to a diversity of phenotypes, including different pain 

distributions and presence or absence of autonomic symptoms. This suggests that SFN is 

part of a clinical continuum. New assessments might contribute to a better understanding of 

the cellular and molecular substrates of SFN and might provide improved diagnostic 

methods and trial designs in the future. Identification of the underlying mechanisms may 

inform the development of drugs that more effectively address neuropathic pain and 

autonomic symptoms of SFN.  
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Introduction 

 

Knowledge of small fibre neuropathy (SFN) has advanced substantially over the last two 

decades, both at pathophysiological and clinical level. SFN is a condition that selectively 

involves thinly myelinated Aδ-fibres and unmyelinated C-fibres. It is clinically characterized 

by neuropathic pain, most frequently described as burning, shooting and/or prickling. Most 

cases present with a length-dependent or stocking-glove distribution,(Tesfaye, et al., 2010) 

although a non-length-dependent pattern of symptoms may also occur.(Gemignani, et al., 

2010b; Gorson, et al., 2008; Khan and Zhou, 2012; Khoshnoodi, et al., 2016) Dysautonomic 

features may include dry eyes or mouth, orthostatic dizziness, bowel and micturition 

disturbances, a change of the perspiration pattern, accommodation problems, impotence, 

diminished ejaculation or vaginal lubrication, hot flushes, and/or cardiac palpitations.(Lauria, 

2005; Stewart, et al., 1992)   

In general, pure SFN does not show abnormalities in motor and large sensory nerve fibre 

function at neurological examination, while hyperalgesia and allodynia frequently 

accompany nociceptive and temperature sensation loss.(Blackmore and Siddiqi, 2016) In 

patients with pure SFN, nerve conduction studies reveal no signs of large nerve fibre 

involvement. In addition, over the last years, there has been increased awareness of chronic 

itch as a symptom of SFN.(Brenaut, et al., 2015; Devigili, et al., 2014; Martinelli-Boneschi, et 

al., 2017; Misery, et al., 2014) Muscle cramps have also been described to be a symptom of 

SFN, possibly reflecting the location of small nerve fibres as thermoreceptor and nociceptor 

muscle afferents.(Lopate, et al., 2013; Mense, 1996) 

 

Epidemiology 

To date, the only epidemiological study in SFN has been performed in the Netherlands. It 

showed an overall minimum incidence of 12 cases per 100,000 inhabitants per year with 

long-term persistent complaints.(Peters, et al., 2013)  

Children can also suffer from SFN. Although SFN in children is difficult to diagnose because 

of the absence of normative data for intraepidermal nerve fibre density in children, several 

case reports have been published.(Hoeijmakers, et al., 2016; Kafaie, et al., 2016; Oaklander 

and Klein, 2013; Wakamoto, et al., 1999)    

 

Quality of life 
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SFN leads to a significant reduction in the overall QoL,(Bakkers, et al., 2014) at least in part 

due to pain and autonomic symptoms. Thermal thresholds and reduced IENFD have been 

reported to correlate with the deterioration of QoL.(Lin, et al., 2015) A significant 

association was found between pain severity and health status and function.(Schaefer, et al., 

2014) Furthermore, greater adjusted direct and indirect costs were reported at increasing 

levels of pain in idiopathic SFN.(Schaefer, et al., 2014)  

 

 

Definition and diagnosis 

The diagnosis of SFN is made according to a clinically-based definition, including symptoms 

and signs suggestive of SFN and their distribution.(Hoeijmakers, et al., 2012a) The diagnosis 

can be graded as follows: 

- Possible: presence of length-dependent symptoms and/or clinical signs of small fibre 

damage; 

- Probable: presence of length-dependent symptoms, clinical signs of small fibre damage, 

and normal sural NCS; 

- Definite: presence of length-dependent symptoms, clinical signs of small fibre damage, 

normal sural nerve conduction study (NCS), and reduced intraepidermal nerve fibre density 

(IENFD) at the ankle and/or abnormal thermal thresholds.(Cazzato and Lauria, 2017; Lauria, 

et al., 2012; Tesfaye, et al., 2010)  

 

However, this definition only includes length-dependent symptoms, whereas the spectrum 

of clinical signs has widened from the classical length- dependent SFN to include non-length-

dependent patterns.(Gemignani, et al., 2010b; Gorson, et al., 2008; Khan and Zhou, 2012; 

Khoshnoodi, et al., 2016) Furthermore, according to this definition, the diagnosis SFN should 

be considered only in patients with pure or isolated impairment of the Aδ- and C-fibres. 

Patients with predominant features of small fibre neuropathy and clinical and NCS findings 

of large sensory fibre dysfunction should be considered to have a mixed (small and large 

fibre) sensory neuropathy, also described as predominant SFN. A correct classification of SFN 

is of importance, as it impacts the work-up for an underlying condition and the design of 

clinical trials.(Cazzato and Lauria, 2017) 

 

Assessments 
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In the past years, new technologies for the assessment of peripheral neuropathies, including 

SFN, have become available.(Gasparotti, et al., 2017; Lauria, et al., 2010b) A number of 

diagnostic tools is available for the detection of SFN (Table 1). A distinction can be made in 

methods that quantify small nerve fibres and methods that test small nerve fibre function. 

New imaging techniques are likely to impact the diagnostic field in SFN as well.  

 

Quantification of small nerve fibres  

Skin biopsy  

The diagnostic value of skin biopsy with IENFD in patients with clinically suspected SFN has 

been established and the method is generally considered the ‘gold standard’ for the 

diagnosis, though a true gold standard for SFN is lacking.(Lauria, et al., 2010a; Lauria, et al., 

2010b) IENF are unmyelinated sensory endings with exclusive somatic function that arise 

from nerve bundles of the sub-papillary dermis.(Lauria, et al., 2009) They lose the Schwann 

cell ensheathment as they cross the dermal–epidermal junction,(Boulais and Misery, 2008; 

Lauria, et al., 2004; Lauria, et al., 2014) and widely express the capsaicin receptor, making 

them the most distal nociceptors. Skin biopsy is commonly taken with a 3-mm disposable 

punch, from the lower leg, 10 centimeters proximal from the lateral malleolus, within the 

territory of the sural nerve. By means of immunohistochemistry, IENF are visualized using 

antibodies against the protein gene product (PGP9.5), a cytoplasmic ubiquitin carboxyl-

terminal hydrolase. The number of fibres crossing the dermal-epidermal junction is 

quantified, the length of the section is measured and the linear density of IENF per 

millimeter is obtained and compared with age- and gender-matched normative 

values.(Lauria, et al., 2010a) Recent studies have shown that right and left-side IENFD 

overlap in healthy subjects and in patients with length-dependent SFN, and that IENFD is 

stable when re-assessed within a 3-week period that is the time of epidermal renewal, 

through a follow-up biopsy in the same sensory territory.(Lauria, et al., 2015)  

Disadvantages of skin biopsy are that the analysis is time-consuming and relatively costly, 

and that sensitivity is moderate. Indeed, some patients with symptoms of SFN may have 

normal IENFD and possibly represent pre-degenerative functional impairment of the nerve 

fibres.(Devigili, et al., 2008) 

IENFD decreases with ageing,(Lauria, et al., 2010a) and values in upper arm and proximal 

thigh are significantly higher than in wrist and distal leg, respectively.(Liu, et al., 2014) One 

study performed to monitor IENFD during disease course in idiopathic SFN found similar 

rates of decrease in proximal and distal sites of the lower limb.(Khoshnoodi, et al., 2016) The 
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rates of IENFD decrease over time do not differ between idiopathic SFN, diabetic SFN and 

impaired glucose tolerance SFN.(Khoshnoodi, et al., 2016)   

IENFD has been reported to be reduced also in other painful conditions, such as Guillain-

Barré syndrome,(Ruts, et al., 2012) meralgia paraesthestica,(Wongmek, et al., 2016) 

notalgia,(Lauria and Lombardi, 2007) Ehlers-Danlos syndrome,(Cazzato, et al., 2016) and 

fibromyalgia,(Kosmidis, et al., 2014) and non-painful disorders, such as Parkinson's disease 

and related disorders,(Kass-Iliyya, et al., 2015; Podgorny, et al., 2016; Schrempf, et al., 2016) 

amyotrophic lateral sclerosis,(Dalla Bella, et al., 2016; Nolano, et al., 2016; Truini, et al., 

2015) critical illness,(Skorna, et al., 2015) and peripheral arterial disease.(Grone, et al., 2014) 

New techniques to determine the IENFD with indirect immunofluorescence,(Provitera, et al., 

2016) automated PGP9.5 immunofluorescence staining (laboratory developed test),(Van 

Acker, et al., 2016) and 3D-analysis(Dauch, et al., 2013) have been reported. One study 

investigated the global spatial sampling in order to determine the epidermal nerve fibre 

length density (ENFLD) taking into account its biologic complexity.(Karlsson, et al., 2013) 

Results showed that ENFLD is comparable with IENFD in differentiating between SFN and 

healthy individuals.(Karlsson, et al., 2013) 

In hairy skin, dermal nerve fibres are organized in small bundles. The bundles located just 

below the dermal– epidermal junction constitute the subepidermal neural plexus, from 

which fibres arise to reach the epidermis. Other bundles can be found in the deeper dermis. 

Most fibres are unmyelinated, and the minority of myelinated fibres are detectable in the 

upper dermis, usually close to hair follicles or vascular structures.(Lauria, et al., 2014) A 

method for the assessment of dermal nerves by measuring the overall length of the fibres 

was shown to be reliable in terms of diagnostic yield in patients with pure SFN.(Lauria, et al., 

2011) 

The skin is also rich with autonomic nerve fibres, innervating different autonomic structures 

such as sweat glands and pilomotor muscles. The innervation of dermal autonomic 

structures can be investigated using markers for adrenergic, noradrenergic, and cholinergic 

sympathetic fibres and vasodilatory peptidergic fibres.(Lauria, et al., 2014) Indeed, several 

methods have been described to obtain a morphometry of sweat gland and pilomotor 

muscle innervation.(Gibbons, et al., 2009; Nolano, et al., 2010) 

 

Corneal Confocal Microscopy 

Corneal Confocal Microscopy (CCM) is a method that visualizes the unmyelinated C-nerve 

fibres that originate from the trigeminal nerve and travel to the Bowman’s membrane of the 
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cornea.(Tavakoli, et al., 2008) It allows an in vivo evaluation of disease or surgery-induced 

alterations of corneal nerves.(Oliveira-Soto and Efron, 2001; Patel, et al., 2009) 

Four established parameters  - corneal nerve fibre density (CNFD), corneal nerve branch 

density (CNBD), corneal nerve fibre length (CNFL) and corneal nerve fibre tortuosity (CNFT) – 

can be quantified by means of the software program CCMetrics. An international normative 

dataset of these corneal nerve fibre parameters has been published.(Tavakoli, et al., 2015)  

CCM is a non-invasive tool with high repeatability.(Petropoulos, et al., 2013) Studies in 

patients with non-length dependent SFN(Gemignani, et al., 2010a) and length-dependent 

SFN(Tavakoli, et al., 2010) demonstrated a decrease in CNFD. However, these studies 

included small patient groups (6 and 25, respectively). Regeneration of the small fibres in 

the cornea was found in diabetic patients after kidney and pancreas transplantation 

(Tavakoli, et al., 2013) and after continuous subcutaneous insulin therapy in comparison 

with injections without improvement in the IENFD and QST. .(Azmi, et al., 2015)  

CCM has been used to detect small fibre damage in other neurological diseases, such as 

Fabry’s disease, chronic inflammatory demyelinating polyneuropathy, Charcot-Marie Tooth 

type 1A, and multiple sclerosis.(Bitirgen, et al., 2017; Stettner, et al., 2016; Tavakoli, et al., 

2012; Tavakoli, et al., 2009) Conversely, research on patients with Parkinson’s showed an 

increase in CNBD and CNFL.(Kass-Iliyya, et al., 2015) 

 

Assessment of the function of small nerve fibres  

Quantitative sensory testing 

Quantitative sensory testing (QST) is a non-invasive psychophysical method that quantifies 

the thresholds of sensory perception carried by large and small nerve fibres.(Dyck, et al., 

1993) QST is considered a diagnostic tool in SFN,(Devigili, et al., 2008; Hoitsma, et al., 2003) 

and consensus recommendations were provided for clinical use of QST,(Backonja, et al., 

2013) emphasizing the need of a standardized protocol, adequate equipment, trained staff 

and use of normative values. The method of levels (ie a reaction time–independent method; 

the subject answers per stimulus whether a warmer or cooler temperature is sensed) has 

several advantages: there is no effect of stimulus temperature change rate, applicability is 

possible even in subjects with cognitive impairment and children, and repeatability is 

comparable or better compared to the method of limits (reaction time-dependent; pushing 

a button when a change in temperature or pain is sensed).(Bakkers, et al., 2013; Kemler, et 

al., 2000; Pertovaara, et al., 1996; Yarnitsky and Ochoa, 1991) The combination of bilateral 
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warm and cold thresholds of the hands and feet by the levels method probably provides the 

most optimal sensitivity and specificity.(Bakkers, et al., 2015)  

Thermal threshold deterioration was associated with the intensity of pain in peripheral 

neuropathy.(Ng Wing Tin, et al., 2014) In diabetes without sensory large nerve involvement, 

a significantly lower IENFD and higher cold perception threshold were found in comparison 

with controls, irrespective of whether they had symptoms of polyneuropathy or not. 

However, a reduction of IENFD was the most frequent abnormal finding in the subgroup 

of patients with neuropathic symptom, and therefore seemed more sensitive as a diagnostic 

tool.(Loseth, et al., 2008)  

Furthermore, QST requires the patient to be alert and cooperative, the test cannot 

discriminate between central and peripheral nervous system diseases,(Maier, et al., 2010) 

and may be influenced by malingering or other nonorganic factors.(Dyck, et al., 1998; Shy, et 

al., 2003; Verdugo and Ochoa, 1993; Yarnitsky, et al., 1994) For all these reasons, QST should 

be used in relation to the clinical context and in conjunction with other tests, and not alone 

for the diagnosis of a neurological lesion.(Hansson, et al., 2007)  

 

Microneurography  

Microneurography is used to record the activity of C-nociceptors and sympathetic fibres and 

to test the efficacy of different compounds in blocking abnormal on-going activity in both 

animal models and in patients.(Serra, 2010) The use of microneurography is increasing in 

disorders affecting the peripheral nervous system.(Donadio and Liguori, 2015; Kleggetveit, 

et al., 2016; Liguori, et al., 2011; Ochoa, et al., 2005) However, its application in clinical 

practice remains limited due to the technical challenges, the amount of time needed to 

perform the examination, the small number of nerve fibres that can be studied in any given 

patient, and the test awaits validation of diagnostic value.(Mainka, et al., 2015)  

 

Nociceptive Evoked Potentials 

Nociceptive evoked potentials can be used to investigate the conduction properties of small 

nerve fibres in a fashion not dependent on patients’ cooperation and attention.(Le Pera, et 

al., 2002) These nociceptive evoked potentials can be generated by either radiant heat 

(laser-evoked potentials, LEPs) or contact heat (contact heat-evoked potentials, CHEPs). 

Both LEPs and CHEPs are based on selective of Aδ- and C-fibre activation, whereas induction 

of pain-related evoked potentials (PREPs) involves the preferential stimulation of Aδ-

fibres.(Merkies, et al., 2015) Skin denervation induced by topical capsaicin causes the 
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decrease of LEP amplitude.(Rage, et al., 2010) LEPs are a validated technique to investigate 

the neural bases of nociception.(Garcia-Larrea, et al., 2003; Mobascher, et al., 2009) LEP 

amplitudes correlate with the reported intensity of perceived pain,(Garcia-Larrea, et al., 

1997) and negatively with age.(Truini, et al., 2005) Moreover, it is modulated by 

opioids(Hoeben, et al., 2012) and pain expectation.(Colloca, et al., 2008; Hird, et al., 2017) 

Comparable to QST, LEPs cannot discriminate the site of pathology (peripheral nerves, 

plexus, roots, spinal cord or brainstem),(Cruccu, et al., 2008) and should therefore also be 

considered a supportive tool for diagnosing SFN. 

Age- and gender adjusted normative values have been reported for the clinical use of 

CHEPs.(Lagerburg, et al., 2015) More recently, a strong correlation between CHEP 

amplitudes with the degree of skin innervation was found in a large SFN cohort.(Wu, et al., 

2017) Patients with sensory neuropathy and an IENF loss have lower-amplitude 

CHEPs.(Atherton, et al., 2007; Casanova-Molla, et al., 2011; Chao, et al., 2008) However, 

CHEPs cannot be recorded in all healthy participants, which makes the clinical interpretation 

of absent CHEPs difficult.(Lagerburg, et al., 2015)  

Intraepidermal electrical stimulation (IES) has also been described as a potential additional 

tool in detecting functional changes in Aδ-fibres and C-fibres in SFN,(Inui and Kakigi, 2012; 

Kodaira, et al., 2014) and in patients with neuropathic pain.(Omori, et al., 2017) 

 

Imaging 

Peripheral Nerve Ultrasound 

Ultrasound (US) showed enlargement in cross-sectional area (CSA) of the sural nerve in SFN 

patients with reduced IENFD, compared with body mass index matched healthy 

controls,(Ebadi, et al., 2015) indicating changes in structure or morphology of larger nerve 

fibres in SFN. Possible explanations for this large nerve fibre enlargement include impaired 

axoplasmic flow in proximal (larger) nerve segments due to loss or injury of distal small 

nerve fibres, or sodium channel dysfunction, leading to axonal degeneration with axonal 

swelling.(Persson, et al., 2016; Persson, et al., 2013) Alternatively, changes in the 

extracellular space within peripheral nerves and/or change in non-neuronal connective 

tissue surrounding the axons may contribute. At present, more data are needed to establish 

the value of ultrasound as a diagnostic tool in SFN.   

 

Magnetic Resonance Imaging   

This article is protected by copyright. All rights reserved.
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Non-invasive imaging techniques, such as functional magnetic resonance imaging (fMRI), are 

used to measure neuronal activity in humans in order to study regional activation in various 

parts of the brain in chronic pain states. The advantage of fMRI is the ability to ascribe 

function to specific brain regions. The resolution of fMRI images has become more detailed 

with increasing magnet strength. Skin denervation has been associated with abnormal 

recruitment of pain-related regions in the brain,(Tseng, et al., 2013) especially in diabetic 

neuropathic pain,(Cauda, et al., 2010; Cauda, et al., 2009) suggesting altered patterns of 

activation of the brain in painful neuropathy. Volume reduction was most notable in pain-

processing regions, particularly the bilateral anterior cingulate cortices, which was 

associated with greater depletion of IENF.(Hsieh, et al., 2015) However, whether a specific 

activation pattern can be seen depends on many factors, such as type of brain imaging 

modality.(Apkarian, et al., 2005) It is conceivable that a particular type of pain (stimulus) 

may enhance a specific pain brain pattern, but patient-specific factors (ie gender, genetic 

and epigenetic factors) may influence the pain activation network.(Cole, et al., 2010; 

Paulson, et al., 1998; Quiton and Greenspan, 2007) Psychological modulation as well as 

chronicity of pain may influence the activation network, and should therefore be taken into 

account.(Gracely, et al., 2002; Grachev, et al., 2000; Phillips, et al., 2003; Ploghaus, et al., 

2000; Ploghaus, et al., 1999; Rainville, et al., 1997) 

 

Autonomic testing  

Changes in peripheral autonomic nervous system function may be an early manifestation in 

SFN.(Low, et al., 2006) Dysfunction of the sudomotor system may result in an increase or 

decrease in sweat production, resulting in disturbances of thermoregulation. Traditional 

measurements of sudomotor function include thermoregulatory sweat testing, quantitative 

sudomotor axon reflex testing (QSART), silicone impressions, quantitative direct and indirect 

axon reflex testing, and the sympathetic skin response (SSR).(Illigens and Gibbons, 2009)  

 

Thermoregulatory sweat testing 

Thermoregulatory sweat testing is performed by increasing the ambient room temperature 

which in turn raises blood and skin temperature. The degree and extent of sweat production 

is then visualized with an indicator dye.(Illigens and Gibbons, 2009) The test is time-

consuming, requires special equipment, and special preparation and treatment of the 

patient, and is therefore only performed in highly specialized centres, limiting the clinical 

applicability.  
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Quantitative sudomotor axon reflex testing (QSART) 

QSART is used to evaluate postganglionic sympathetic cholinergic sudomotor function by 

measuring the axon-reflex mediated sweat response over time. QSART can be of value in the 

diagnosis of SFN.(Namer, et al., 2013; Thaisetthawatkul, et al., 2013) It has been suggested 

to add QSART as one of the core diagnostic tests, requiring abnormality on 2 measures for a 

diagnosis of SFN (clinical findings, QST, QSARTS, and skin biopsy. Though QSART can be of 

value in the diagnosis of SFN, normative data are needed to determine its usefulness for 

clinical practice.(Cazzato and Lauria, 2017) 

 

Silicone impression method 

The silicone impression method is used to evaluate the postganglionic sympathetic 

cholinergic sudomotor function by measuring the direct and axon-reflex mediated sweat 

response at specific time points.(Stewart, et al., 1994) Although the silicone impression 

method is probably the easiest method to perform in the clinical realm, artifacts may 

influence the test results.  

 

Quantitative direct and indirect axon reflex testing 

Quantitative direct and indirect axon reflex testing is a method to evaluate the 

postganglionic sympathetic cholinergic sudomotor function by measuring the direct and 

axon-reflex mediated sweat response in a dynamic fashion. The test is simple, but further 

studies are required to determine its diagnostic value in SFN.(Illigens and Gibbons, 2009)  

 

Sympathetic skin response (SSR) 

SSR is a measure of electrodermal activity and provides a surrogate measure of sympathetic 

cholinergic sudomotor function. Although easy to perform, there is high variability within 

and between subjects, and sensitivity and specificity of the method are low.(Hoitsma, et al., 

2003; Lacomis, 2002)  

 

Electrochemical skin conductance 

More recently, the Sudoscan was developed. It is a simple, quick, painless and non-invasive 

quantitative test measuring C-fibre postganglionic sympathetic nerve function in sweat 

glands of the palms and soles of the feet, areas that contain a high density of these 

glands.(Grandinetti, et al., 2007; Mao, et al., 2017; Nevoret and Vinik, 2015; Tesfaye, et al., 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
2010) The Sudoscan measures the electrochemical skin conductance.(Bordier, et al., 2016; 

Nevoret and Vinik, 2015; Sato, et al., 1989) Most studies on the Sudoscan have been 

performed in patients with diabetic neuropathy, demonstrating a decrease of 

electrochemical skin conductance and a correlation with small fibre dysfunction and 

neuropathic symptoms.(Casellini, et al., 2013; Nevoret and Vinik, 2015; Parson, et al., 2013) 

A recent review concluded that normative values are inconsistent across publications, and 

large combined data sets do not support a high sensitivity and specificity.(Rajan, et al., 2018) 

Therefore, the value of Sudoscan as a diagnostic tool for SFN still needs to be determined. 

 

Neuropad 

Another recently developed test, the Neuropad, was introduced to measure sweat 

production based on the colour change of a cobalt II compound.(Ponirakis, et al., 2014) 

Moderate sensitivity and specificity (68% and 49%, respectively) were found using the warm 

perception threshold as a reference method, and these were enhanced when the corneal 

nerve fibre length (CNFL) was used as a reference method (83% and 80% respectively). The 

contribution of this test to the diagnosis SFN needs to be established.  

 

Stimulated skin wrinkling (SSW) 

SSW is a test for sympathetic function based on changes of dermal arteriovenous tissue 

vasoconstriction of the digits. A negative digit pulp pressure will occur after a warm water 

bath for 30 minutes. Wrinkling would occur when epidermal skin is drawn down unevenly, 

because of its varying tautness.(Wilder-Smith, 2004) The eutectic mixture of local 

anaesthetics (EMLA©) cream can also be used as a vasoconstrictive factor with similar 

results.(Hsieh, et al., 2007; Wilder-Smith and Chow, 2003; Willatts and Reynolds, 1985) In 

clinical practice, SSW is usually performed in the hands and graded using a published 5-

point-scale.(Teoh, et al., 2008; Wilder-Smith, 2015; Wilder-Smith, et al., 2009) Foot skin 

wrinkling is hardly ever performed, as wrinkling is poor because of higher sympathetic nerve 

activity to the lower limbs.(Anderson, et al., 1987) Reduced SSW was found in patients with 

diabetic neuropathy(Clark, et al., 1984; Ping Ng, et al., 2013; Vasudevan, et al., 2000) and in 

idiopathic SFN.(Teoh, et al., 2008; Wilder-Smith, 2015; Wilder-Smith, et al., 2009) However, 

the value of SSW as a diagnostic tool is currently limited.  

 

Outcome measures  

Surveys might help clinicians to diagnose and assess treatment responses. The 13-item SFN-
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Symptom Inventory Questionnaire© (SFN-SIQ), an ordinal based multi-item composite 

measuring 13 SFN-related symptoms, was transformed through Rasch to an interval 

measure which can be used as a diagnostic screening tool enabling parametric 

analyses.(Bakkers, et al., 2010; Brouwer, et al., 2015a) Furthermore, a disease-specific 32-

item SFN-Rasch-built Overall Disability Scale (SFN-RODS©) questionnaire was developed via 

Rasch analyses, suitable for detecting activity limitations and participation restrictions in 

patients with SFN.(Brouwer, et al., 2015a) A Small-Fibre Symptom Survey has also been 

developed with satisfactory psychometric properties, indicating potential future utility for 

surveying patient-reported symptoms; however, this is an ordinal scale, hampering 

meaningful calculations.(Treister, et al., 2017) Finally, the The Utah Early Neuropathy Scale 

was developed to evaluate the sensory signs and symptoms in sensory and small fibre nerve 

neuropathy, and may be a useful tool for clinical use and in trials.(Singleton, et al., 2008) 

 

Underlying conditions and pathophysiology 

SFN is associated with multiple diseases which can be categorized as metabolic, immune-

mediated and infectious diseases, exposure to drugs and toxins, and genetic causes.(Cazzato 

and Lauria, 2017; Lauria, et al., 2012) In a large cohort of 921 patients, 75% of them did not 

have a known preselected comorbidity before the diagnostic workup. Immunological 

conditions were found in 175 patients (19%); other associated conditions were sodium 

channel gene variants (16.7%), diabetes mellitus (7.7%), vitamin B12 deficiency (4.7%), 

alcohol abuse (3.0%), chemotherapy (2.2%), monoclonal gammopathy of undetermined 

significance (MGUS) (1.4%), and haemochromatosis (0.3%) (Figure 1).(de Greef BT, 2017) 

Systemic dysimmunity was more prevalent in idiopathic SFN patients than in the general 

population, though the pathogenic role of isolated autoantibodies remains uncertain.(de 

Greef BT, 2017) Another smaller study confirmed the presence of immunological 

abnormalities (eg ANA, ENA and celiac autoantibodies), whereas diabetes, prediabetes, and 

hypertriglyceridemia were not associated with SFN.(Lang, et al., 2016) A large study 

demonstrated that the prevalence of Fabry´s disease is irrelevant in adult SFN patients, a 

finding that allows excluding this genetic screening in patients with confirmed diagnosis of 

SFN.(de Greef, et al., 2016) Early degeneration of small nerve fibers can occur in the 

presymptomatic stage of patients carrying TTR mutations,(Masuda, et al., 2017) whereas 

patients with a symptomatic stage of familial amyloid neuropathy more likely present with a 

mixed neuropathy.(Adams, et al., 2016) 
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Even in patients with a known possible etiology, additional underlying causes can be found 

in 27% of patients.(de Greef BT, 2017) It is therefore recommended to screen patients with 

SFN at least for autoimmune diseases, diabetes mellitus including glucose intolerance, 

vitamin B12 deficiency and sodium channel gene variants, even when they already have a 

potential underlying condition at referral.   

 

Voltage-gated sodium channelopathies in small fibre neuropathy 

Voltage-gated sodium channels play an essential role in regulating the excitability of 

nociceptive primary afferent neurons. Three voltage-gated sodium channels, NaV1.7, NaV1.8 

and NaV1.9, encoded by genes SCN9A, SCN10A and SCN11A, are preferentially expressed in 

peripheral neurons and are known to play a role in human pain disorders.(Dib-Hajj, et al., 

2013)   

Gain-of-function SCN9A variants have been described in three painful human pain 

conditions: inherited erythromelalgia (IEM), paroxysmal extreme pain disorder (PEPD) and 

SFN. By contrast, congenital insensitivity to pain (CIP) is associated with autosomal recessive 

loss-of-function SCN9A variants. Increased understanding of the pathophysiological 

mechanisms underlying sodium channelopathies(Cummins, et al., 2009; Dib-Hajj, et al., 

2017) paved the way for the development of isoform-selective blockers as a targeted 

treatment modality.(Alexandrou, et al., 2016; Cao, et al., 2016; Zakrzewska, et al., 2017)   

 

NaV1.7 in inherited erythromelalgia  

Inherited erythromelalgia (or erythermalgia; OMIM 133020; IEM) is characterized by attacks 

of bilateral symmetrical burning pain together with redness and warmth in the feet or 

hands. Moderate exercise and heat provoke and aggravate the attacks, whereas cold, rest 

and raising the affected limbs may provide relief.(Drenth and Michiels, 1990; Drenth and 

Waxman, 2007; McDonnell, et al., 2016) In most patients with IEM symptoms start in early 

childhood (prior to 5-6yrs of age); occasional families show an older age at onset.(Burns, et 

al., 2005) Except for reddening of the skin of affected body parts due to vasomotor 

dysregulation during attacks,(Rush, et al., 2006) autonomic symptoms, such as in SFN, has 

been rarely reported in IEM.(McDonnell, et al., 2016) 

IEM is an autosomal dominant painful neuropathy, caused by variants in SCN9A.(Burns, et 

al., 2005; McDonnell, et al., 2016; Michiels, et al., 2005) Gain-of-function variants that shift 

activation of Nav1.7 in a hyperpolarizing direction, slow deactivation, and enhance ramp 

currents cause IEM. Over 20 different IEM variants have been discovered in Nav1.7, and 
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almost all variants investigated so far result in a hyperpolarizing shift of activation, allowing 

Nav1.7 to open at lower potentials compared with the wild type,(Ahn, et al., 2013; Choi, et 

al., 2010; Cregg, et al., 2013; Dib-Hajj, et al., 2005; Estacion, et al., 2013; Harty, et al., 2006; 

Kim, et al., 2013; Lampert, et al., 2009; Lampert, et al., 2006; Lampert, et al., 2008; Namer, 

et al., 2015; Novella, et al., 2007; Sheets, et al., 2007; Stadler, et al., 2015) in familial 

cases,(Cheng, et al., 2008; Choi, et al., 2010; Yang, et al., 2016; Yang, et al., 2004) and 

children.(Estacion, et al., 2013; Tanaka, et al., 2017) This left shift of activation enhances 

excitability, intuitively explaining the pain phenotype.(Choi, et al., 2006; Cummins, et al., 

2004; Dib-Hajj, et al., 2005) The phenotype, however, can be complex and variable,(Cheng, 

et al., 2008; Drenth, et al., 2005; Gurkiewicz, et al., 2011; Han, et al., 2009; Han, et al., 2007; 

Han, et al., 2006; Meijer, et al., 2014) even within families carrying the same 

variant.(McDonnell, et al., 2016) The I234T-variant, which causes IEM-like pain phenotype, 

exhibits a complex phenotype that includes automutilation (Ahn, et al., 2010; Meijer, et al., 

2014) and bilateral congenital corneal anesthesia.(Kim, et al., 2015) These findings, which 

suggest both gain-of-function and loss-of-function at the clinical level for patients carrying 

this variant, are explained by the unusually large hyperpolarization of activation of the 

mutant channel, which produces a massive depolarization in the resting potential of some 

DRG neurons, thus silencing them.(Huang, et al., 2018) Several variants have been reported 

without functional testing.(Dabby, et al., 2011; Skeik, et al., 2012) Recently, a Nav1.8 variant 

has been linked to a syndrome with clinical characteristics similar to IEM.(Kist, et al., 2016) 

 

NaV1.7 in paroxysmal extreme pain disorder  

Paroxysmal extreme pain disorder (PEPD), previously known as familial rectal pain (OMIM 

167400) is an inherited condition characterized by paroxysms of rectal, ocular, or 

submandibular pain with flushing. Patients with PEPD can also suffer from autonomic 

dysfunction leading to poor feeding and reflux, vomiting, tonic attacks, breath holding spells, 

and bradycardia that sometimes requires insertion of a pacemaker. PEPD is caused by gain-

of-function NaV1.7 variants that mostly result in impaired fast-inactivation. So far, ten 

variants in NaV1.7 are known that cause PEPD.(Choi, et al., 2011; Dib-Hajj, et al., 2008; 

Fertleman, et al., 2006; Imai, et al., 2015; Jarecki, et al., 2009; Suter, et al., 2015; Theile, et 

al., 2011) It is thought that the variant induces a depolarizing shift of steady-state fast 

inactivation, hampering channel closure during action potential electrogenesis.  

 

NaV1.7 in channelopathy-associated insensitivity to pain  
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Patients with congenital insensitivity to pain (CIP) do not perceive physical pain (OMIM 

243000). The difference between sharp and dull and hot and cold is felt, but the pain 

awareness is absent. Young children with CIP may accrue mouth or finger wounds due to 

repeated self-biting, may also experience multiple burn-related injuries, and may injure 

bones and joints without experiencing pain. They also have a complete loss of the sense of 

smell (anosmia). SCN9A homozygous missense and deletion variants have been described in 

these patients, who do not produce functional Nav1.7 channels, and has been linked to the 

absence of pain perception.(Bartholomew, et al., 2014; Bogdanova-Mihaylova, et al., 2015; 

Cox, et al., 2006; Cox, et al., 2010; Goldberg, et al., 2007; Kurban, et al., 2010; Mansouri, et 

al., 2014; Nilsen, et al., 2009; Shorer, et al., 2001; Shorer, et al., 2014; Staud, et al., 2011) 

Partial deletion of pain perception was also described.(Yuan, et al., 2011) The clinical 

phenotype of patients with reduced pain sensibility due to Nav1.9-variants is different than 

Nav1.7-associated CIP.(King, et al., 2017; Phatarakijnirund, et al., 2016; Woods, et al., 2015) 

Large hyperpolarizing shifts in the voltage dependence of activation in the mutated NaV1.9 

channels in these cases are associated with insensitivity to pain. This evokes a massive 

degree of membrane depolarization that renders DRG neurons hypoexcitable.(Huang, et al., 

2017) 

 

NaV1.7 in small fibre neuropathy  

The first gain-of-function variants in NaV1.7 that change the properties of the channel and 

the excitability of DRG neurons were described in 2012 in skin biopsy- and QST-confirmed 

idiopathic SFN.(Faber, et al., 2012a) Unexpectedly, while there is a strong correlation 

between genotype and phenotype for many mutations, some patients carrying NaV1.7 

variants show a remarkable degree of genotype-phenotype variability. Thus a single NaV1.7 

variant can be associated with a range of clinical phenotypes, and the same clinical 

phenotype may be associated with multiple different variants.(Brouwer, et al., 2014; 

Devigili, et al., 2014; Estacion, et al., 2011; Faber, et al., 2012a; Han, et al., 2012; 

Hoeijmakers, et al., 2015; Hoeijmakers, et al., 2012b; Hoeijmakers, et al., 2012c; Waxman, et 

al., 2014) The I228M variant, for example, may present with facial pain, or with a distal 

SFN.(Estacion, et al., 2011) Most SFN variants in NaV1.7 are associated with distal pain  but 

the G856D variant was linked to a more complex phenotype of very severe pain, together 

with erythema, dysautonomia and small hands and small feet 

(acromesomelia).(Hoeijmakers, et al., 2012b) The IEM-associated G856R variant was 

recently also shown to be associated with impaired distal limb development, suggesting that 
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some gain-of-function variants of NaV1.7 may adversely affect limb morphogenesis during 

development.(Tanaka, et al., 2017) Furthermore, some variants present with severe 

autonomic symptoms, while others do not. This differential effect of certain NaV1.7 variants, 

rendering DRG neurons hyperexcitable and sympathetic ganglion neurons hypoexcitable, 

can be explained by the presence or absence of Nav1.8 in dorsal root ganglion versus 

sympathetic ganglion neurons, respectively.(Han, et al., 2012; Rush, et al., 2006) In addition 

to providing a mechanistic basis for pain and autonomic symptoms in SFN, the presence of 

gain-of-function variants in NaV channels may provide insights about the mechanisms that 

lead to degeneration of axons in SFN. In vitro studies have demonstrated that reverse-mode 

(Ca2+ -importing) Na/Ca exchange can be triggered by a small but sustained influx of Na+ ions 

due to pathogenic sodium channel variants found in SFN patients, thereby impairing neurite 

outgrowth, suggesting a molecular mechanism of axon degeneration in SFN.(Persson, et al., 

2013) 

Multiple modulatory factors can shape the pain experience of patients carrying Nav1.7 gain-

of-function mutations;  for example, a recent study of two patients with IEM both carrying 

the same Nav1.7mutation but with different pain profiles, demonstrated that a variant of a 

second gene, in a potassium channel, can introduce a degree of resilience to pain.(Mis, et 

al., 2018) Moreover, Nav1.7 mutations may affect multiple cell types including some cells 

outside the nervous system. Some patients with painful SFN can develop diabetes years 

after SFN becomes clinically manifest. It has been speculated that Nav1.7 variants, present in 

pancreatic ß-cells as well as DRG neurons, may increase susceptibility for development of 

diabetes via ß-cell injury and produce painful neuropathy via a distinct effect on DRG 

neurons.(Hoeijmakers, et al., 2014) This hypothesis remains to be experimentally tested. 

 

NaV1.8 in small fibre neuropathy 

The Nav1.8 sodium channel, expressed in DRG neurons and peripheral nerve axons, 

contributes most of the sodium current underlying the action potential upstroke and 

supports repetitive firing in response to sustained depolarization.(Blair and Bean, 2002; Dib-

Hajj, et al., 2017; Garrison, et al., 2014; Renganathan, et al., 2001) Gain-of-function variants 

in NaV1.8 have been found in patients with painful neuropathy,(Faber, et al., 2012b) which 

had an enhanced channel response to depolarization and produced hyperexcitability in DRG 

neurons, including reduced current threshold, increased firing frequency and spontaneous 

activity. Other NaV1.8 variants also have been linked to SFN,(Han, et al., 2014; Huang, et al., 

2013) some with a clinical phenotype that includes a clinical picture that suggests severe 
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dysautonomia.(Dabby, et al., 2016) Variants in NaV1.8 were found in almost 5% of a group of 

921 consecutive patients with SFN.(de Greef BT, 2017)  

 

NaV1.9 in small fibre neuropathy 

NaV1.9 is preferentially expressed in small-diameter DRG neurons, trigeminal ganglion 

neurons, and intrinsic myenteric neurons.(Dib-Hajj, et al., 2015) Several human pain 

disorders have been linked to dominant gain-of-function NaV1.9 variants, including early-

onset pain in distal extremities,(Han, et al., 2017; Okuda, et al., 2016; Zhang, et al., 2013) 

cold-aggravated pain,(Leipold, et al., 2015) and SFN.(Huang, et al., 2014; Vijayan, et al., 

2015) The expression of NaV1.9 in myenteric neurons can explain the gastrointestinal 

symptoms reported by patients harboring SCN11A variants.(Han, et al., 2017) Finally, gain-

of-function variants in NaV1.9 have been reported in patients with a complex clinical 

syndrome that includes insensitivity to pain.(Leipold, et al., 2013; Phatarakijnirund, et al., 

2016; Woods, et al., 2015) The loss of pain sensibility in these cases arises from a massive 

depolarization of DRG neurons that inactivates the sodium channels in these cells and 

reduces their excitability.(Huang, et al., 2017)  

 

Overlap between pain disorders  

With the description of painful SFN caused by NaV1.7 variants, it has become clear that the 

phenotype of NaV1.7 variants expands, and that the boundaries between these phenotypes 

are not always distinct (Figure 2). Clinically, burning pain with a stocking-glove distribution is 

a common characteristic in SFN but is also seen in IEM.(Faber, et al., 2012a; Yang, et al., 

2004) Facial and diffuse or widespread pain can be seen in SFN and PEPD,(Estacion, et al., 

2011; Faber, et al., 2012a; Fertleman, et al., 2006) and also in IEM.(Drenth and Waxman, 

2007) Although this suggests that the function of small nerve fibers are equally impaired, 

IEM usually is not characterized by a loss of ENFD.(Mantyh, et al., 2016)  

Reddening of the skin can occur in both IEM and PEPD and, to a lesser extent, in SFN. One 

study suggested that the activity of mutant Nav1.7 channels in smooth muscle cells and 

sympathetic fibres innervating skin vessels may contribute to this phenomenon.(Rice, et al., 

2015) Mixed phenotypes of IEM and SFN, IEM and PEPD, or SFN and PEPD associated with 

one variant have been described. Amongst SCN9A variants, the R185H has been found in 

patients diagnosed with either PEPD.(Meglic, et al., 2014) or SFN.(Faber, et al., 2012a) The 

A1632E variant has been found in a patient with a mixed phenotype of IEM and PEPD, and 

causes a mixed physiological change in channel function, of hyperpolarized activation and 
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impaired fast inactivation of the channel, which are typically associated with IEM and PEPD, 

respectively.(Estacion, et al., 2008) The heterozygous L245V variant that was found in a large 

family with IEM did not affect channel activation, but instead resulted in incomplete fast 

inactivation and a small hyperpolarizing shift in steady-state slow inactivation, which is more 

characteristic for PEPD.(Emery, et al., 2015) Overall at the structural level, most IEM variants 

tend to be located within the domains I and II of the protein, while PEPD variants are 

commonly located in the domains III and IV. The structural dichotomy, while not present in 

every case,  parallels the biophysical effects of the two types of variants.(Cheng, et al., 2010) 

 

Electrophysiology and pathogenicity of voltage-gated sodium channels variants 

Although we know that some variants in sodium channels NaV1.7, NaV1.8, and NaV1.9 can 

cause pain disorders, it is important to discriminate disease-causing variants from disease-

contributing variants and variants of uncertain significance.(Waxman, et al., 2014) IEM and 

PEPD are due to rare, high impact, fully penetrant variants in Nav1.7. The frequency of 

specific variants is still low in the SFN population, and one could argue whether these 

variants can be considered risk factors or variants contributing to the disease, but not 

causing the disease. The clinical utility of in silico mutation-prediction programs is at best 

moderate, since these algorithms do not always accurately predict changes in channel 

function.(Waxman, et al., 2014) Consensus has been reached that newly described gene 

variants of SCN9A, SCN10A, and SCN11A should be assessed in the context of phenotype, 

family history, in-silico analysis, and functional profiling of the variant channel, and urge that 

gene variants be interpreted cautiously within clinical practice in the absence of segregation 

with symptoms in a large kindred and/or a pathogenic functional signature showing clear 

pro-excitatory changes in channel physiology.(Waxman, et al., 2014)  

 

Management 

Primary goals of the management of neuropathic pain in SFN are to detect (potentially 

treatable) underlying causes, to eliminate risk factors, and to manage the pain. Patients with 

SFN typically suffer from severe neuropathic pain that may be difficult to treat. At present, 

therapeutic strategies are largely symptomatic. Three main categories of drugs are most 

commonly used for treating neuropathic pain: antidepressants, anti-epileptics, and 

opioids.(Finnerup, et al., 2015) Using the Grading of Recommendations Assessment, 

Development, and Evaluation (GRADE), recommendations were made for the 

pharmacotherapy of neuropathic pain based on the results of a systematic review and meta-
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analysis. There is a strong recommendation for use and proposal as first-line treatment for 

tricyclic antidepressants, serotonin-noradrenaline reuptake inhibitors, pregabalin, and 

gabapentin; a weak recommendation for use and proposal as second line for lidocaine 

patches, capsaicin high-concentration patches, and tramadol; and a weak recommendation 

for use and proposal as third line for strong opioids and botulinum toxin A. Topical agents 

and botulinum toxin A were recommended for peripheral neuropathic pain only. A 

substantial subset of patients with SFN is aged 65 years or older, and comorbidities and 

polypharmacy make neuropathic pain treatment more challenging.(Brouwer, et al., 2015b) 

At present treatment of neuropathic pain is often disappointing, leading overall to pain relief 

of about 50% in only one-half of the patients, and the drug often has to be discontinued due 

unpredictable side-effects. The recent genetic and functional findings in SFN may pave the 

way for the development of new analgesics, through both pharmacogenomic targeting of 

existing medication,(Geha, et al., 2016; Yang, et al., 2017) and the development of a new 

generation of specific sodium channel blockers.(Alexandrou, et al., 2016; Cao, et al., 2016; 

Zakrzewska, et al., 2017). 

As pain is a complex symptom, in which not only physical factors but also psychological, 

neurophysiological, socio- economic and cultural aspects may influence the experience and 

continuation of pain, a multidisciplinary approach in line with the biopsychosocial model is 

required in optimizing treatment for the individual patient.(McCarberg, et al., 2012) Physical 

therapy modalities and rehabilitation techniques are important options.(Akyuz and Kenis, 

2014) Moreover, supervised exercise in patients with metabolic syndrome showed a 

increased cutaneous regenerative capacity, suggesting potential benefits of peripheral nerve 

function.(Singleton, et al., 2015)  

 

Conclusions 

The universe of causes of SFN is expanding.  Sodium channel gene variants associated with 

SFN have been linked to a spectrum of clinical presentations, including different pain 

distributions together with the presence or absence of autonomic symptoms. The 

observation of mixed or overlap phenotypes suggests that multiple different pain disorders, 

currently considered as clinically distinct, may be part of a physiological continuum or 

spectrum. The number of diagnostic tests for SFN is increasing, although the clinical 

relevance of many is still not established. With the discovery of sodium channel variants 

underlying SFN, the understanding of the pathophysiology of the disorder has increased. 

Variants in sodium channel genes have been found in a relatively small percentage of SFN 
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patients, and while their number is likely to increase, other genetic etiologies are likely to 

emerge. Recent progress is likely to inform the development of new treatments and provide 

a mechanism-based precision medicine approach to neuropathic pain. 
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Key points 

 Small fibre neuropathy (SFN) predominantly affects thinly myelinated Aδ-fibres and 

unmyelinated C-fibres.  

 Quality of life in patients with SFN is significantly reduced. 

 Reliable diagnostic tests are available to assess function and structure of small nerve 

fibres, and new screening tools will likely become available 

 Variants in SCN9A, SCN10A and SCN11A, which encode Nav1.7, Nav1.8 and Nav1.9 

sodium channel alpha subunits, are linked to a continuum of pain phenotypes that 

include SFN. 

 A single pain phenotype may be caused by a range of variants and one specific variant 

may lead to a range of phenotypes, even within one family. 

 Expansion in knowledge on the pathophysiology of SFN will inform the development of 

new therapies. 
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Review criteria 

A literature search was performed to find studies and reviews published on SFN. If 

appropriate, historical papers were also included. PubMed search was performed using the 

keywords “small fibre (fibre) neuropathy”, in combination with any of the following 

keywords: “aetiology/etiology”, “pathogenesis”, “diagnosis”, “prognosis”, “treatment”, “skin 

biopsy”, “quantitative sensory testing”, “nerve conduction study (studies)”. Furthermore, 

the bibliographies of all articles published between 1997 and 2017 regarding SFN were 

checked. Only articles in published in English were included. 
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Table 

Table 1. Diagnostic tests in Small Fibre Neuropathy  

Table 1. Diagnostic tests in SFN  

*Quantification of small nerve fibres  

Skin biopsy 

intra-epidermal nerve fibre density (IENFD) 

dermal nerve fibre length 

sweat gland and pilomotor muscle innervation 

Cornea confocal microscopy 

corneal nerve fibre density (CNFD) 

corneal nerve branche density (CNBD) 

corneal nerve fibre length (CNFL) 

corneal nerve fibre turtuosity (CNFT) 

*Functionality of small nerve fibres 

Quantitative sensory testing 

assessment of large and small sensory nerve fibre function 

Microneurography 

assessment of activity of C-nociceptors 

Nociceptive Evoked Potentials 

generation by laser (LEPs), contact heat (CHEPs) or pain-related (PREPs) 

intra-epidermal electrical stimulation (IES) 

*Imaging 

Peripheral Nerve Ultrasound 

(Functional) Magnetic Resonance Imaging 

*Autonomic Testing 

Thermoregulatory sweat testing  

Quantitative sudomotor axon reflex testing (QSART) 

Silicone impression method 

Quantitative direct and indirect axon reflex testing 

Sympathetic skin response (SSR) 

Electrochemical skin conductance 

Neuropad 

Stimulated skin wrinkling (SSW) 
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Legends of figures 
 

Figure 1. Prevalence of underlying causes in patients with SFN 

Immunological causes: Sarcoidosis, Sjogren’s disease, coeliac disease, other autoimmune 

diseases, and abnormal immunological laboratory findings (antinuclear antibodies, anti-

neutrophil cytoplasmic antibodies, monoclonal gammopathy, soluble interleukin-2 receptor, 

anti-tissue transglutaminase, and anti-Extractable Nuclear Antigen Antibodies) 

MGUS: monoclonal gammopathy of undetermined significance. 

 

 

Figure 2. The triangle of SCN9A-related pain disorders 

SFN = small fibre neuropathy, IEM = inherited erythromelalgia, PEPD = paroxysmal extreme 

pain disorder. Modified from Hoeijmakers, thesis: Small fibre neuropathy and sodium 

channels: a paradigm shift, 2014, chapter 9, figure 1.(Hoeijmakers, 2014) 
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Figure 1. Prevalence of underlying causes in patients with SFN 
Immunological causes: Sarcoidosis, Sjogren’s disease, coeliac disease, other autoimmune diseases, and 

abnormal immunological laboratory findings (antinuclear antibodies, anti-neutrophil cytoplasmic antibodies, 
monoclonal gammopathy, soluble interleukin-2 receptor, anti-tissue transglutaminase, and anti-Extractable 

Nuclear Antigen Antibodies) 
MGUS: monoclonal gammopathy of undetermined significance. 
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Figure 2. The triangle of SCN9A-related pain disorders 
SFN = small fibre neuropathy, IEM = inherited erythromelalgia, PEPD = paroxysmal extreme pain disorder. 
Modified from Hoeijmakers, thesis: Small fibre neuropathy and sodium channels: a paradigm shift, 2014, 

chapter 9, figure 1.(Hoeijmakers, 2014) 
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