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Abstract We prove the existence of Cantor families of small amplitude, linearly
stable, quasi-periodic solutions of quasi-linear (also called strongly nonlinear) au-
tonomous Hamiltonian differentiable perturbations of the mKdV equation. The
proof is based on a weak version of the Birkhoff normal form algorithm and a
nonlinear Nash-Moser iteration. The analysis of the linearized operators at each
step of the iteration is achieved by pseudo-differential operator techniques and a
linear KAM reducibility scheme.
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1 Introduction and main result

In the paper [5] we proved the first existence result of quasi-periodic solutions
for autonomous quasi-linear PDEs (also called “strongly nonlinear” in [25]), in
particular of small amplitude quasi-periodic solutions of the KdV equation subject
to a Hamiltonian quasi-linear perturbation. The approach developed in [5] (see
also [4]) is of wide applicability for quasi-linear PDEs in 1 space dimension. In this
paper we take the opportunity to explain the general strategy of [5] applied to a
model which is slightly simpler than KdV.
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We consider the cubic, focusing or defocusing, mKdV equation
ut + tgge + 5 0o (u®) + Na(z, u, vz, Ug, Ugee) =0, ¢ = +1, (1.1)
under periodic boundary conditions = € T := R/2nZ, where
Na (@, u, ue, Uze, Uzae) = —0z [(Ouf) (@, u,uz) — Ox((Ou, f)(z,u,uz))] (1.2)

is the most general quasi-linear Hamiltonian (local) nonlinearity. Note that N
contains as many derivatives as the linear vector field Ozzz. It is a quasi-linear
perturbation because Ny depends linearly on the highest derivative ugz, multi-
plied by a coefficient which is a nonlinear function of the lower order derivatives
u, Uz, Uzz. The equation is the Hamiltonian PDE

ut = Xg(u), Xg(u):=08,VH(u), (1.3)

where VH denotes the L?(T,) gradient of the Hamiltonian

H(u):%/Eugdm—%/Tuzldac—k/jrf(m,u,ux)dm (1.4)

on the real phase space
HY(T,) = {u(a:) € H'(T,R) : /Tu(m) dz = o} (1.5)
endowed with the non-degenerate symplectic form
2(u,v) = /T(ﬁz_lu)vdx, Vu,v € H}(Tz), (1.6)

where 97 'u is the periodic primitive of u with zero average. The phase space
H§(T;) is invariant for the evolution of because the integral [ u(z)dz is
a prime integral (the mass). For simplicity we fix its value to [, u(z)dz = 0. We
recall that the Poisson bracket between two functions F, G : H}(Tg) — R is defined
as

(F, G} (u) = 2(Xp (), Xes(w)) = /T VF(u)0: VG (u)da . (1.7)

We assume that the “Hamiltonian density” f is of class C9(T x R x R;R) for
some q large enough (otherwise, as it is well known, we cannot expect the existence
of smooth invariant KAM tori). We also assume that f vanishes at v = ugy = 0
and

|f (2 u,0)| < Clul + o)) V(u,v) € R?, |u]+[v] < 1. (1.8)

As a consequence the nonlinearity AVs vanishes at order 4 at v = 0 and (1.1)) may
be seen, close to the origin, as a “small” perturbation of the cubic mKdV equation

ut + Uzzz + 3su ugy = 0. (1.9)

Such equation is known to be completely integrable. Actually it is mapped into
KdV by a Miura transform, and it may be described by global analytic action-
angle variables, as it was proved by Kappeler-Topalov [2I]. We also remark that,
among the generalized KdV equations u; + uzze + 0z(u?) = 0, p € N, the only
known completely integrable ones are the KAV p = 2 and the cubic mKdV p = 3.
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It is a natural question to know whether the periodic, quasi-periodic or almost
periodic solutions of persist under small perturbations. This is the content
of KAM theory. It is a difficult problem because of small divisors resonance phe-
nomena, which are especially strong in presence of quasi-linear perturbations like
Na.

In this paper (as well as in [5]) we restrict the analysis to the search of small
amplitude quasi-periodic solutions. It is also a very interesting question to inves-
tigate possible extensions of this result to perturbations of finite gap solutions.
A difficulty which arises in the search of small amplitude solutions is that the
mKdV equation is a completely resonant PDE at u = 0, namely the linearized
equation at the origin is the linear Airy equation

Ut + Uggr = 0

which possesses only the 27-periodic in time, real solutions

u(t,z) = Z ujeijsteijm, U_j = Uj. (1.10)
jez\{o}

Thus the existence of small amplitude quasi-periodic solutions of is entirely
due to the nonlinearity. Indeed, the nonlinear term <8, (u®) is the one that pro-
duces the main modulation of the frequency vector of the solution with respect
to its amplitude (the well-known frequency-to-action map, or frequency-amplitude
relation, or “twist”, see ) and that allows to “tune” the action parameters
¢ so that the frequencies becomes rationally independent and diophantine. Note
that the mKdV equation does not depend on other external parameters
which may influence the frequencies. This is a further difficulty in the study of
autonomous PDEs with respect to the forced cases studied in [3]. Actually, in [3]
we considered non-autonomous quasi-linear (and fully nonlinear) perturbations of
the Airy equation and we used the forcing frequencies as independent parameters.

The core of the matter is to understand the perturbative effect of the quasi-
linear term Ny over infinite times. By (1.8), close to the origin, the quartic term
Ny is smaller than the pure cubic mKdV . Therefore, when we restrict the
equation to finitely many space-Fourier indices |j| < C, we essentially enter in
the range of applicability of finite dimensional KAM theory close to an elliptic
equilibrium. The new problem is to understand what happens to the dynamics on
the high frequencies |j| — +o0, since N is a nonlinear differential operator of the
same order (i.e. 3) as the constant coefficient linear (and integrable) vector field

Does such a strongly nonlinear perturbation give rise to the formation of sin-
gularities for a solution in finite time, as it happens for the quasi-linear wave
equations considered by Lax [I8] and Klainerman-Majda [22]? Or, on the con-
trary, does the KAM phenomenon persist nevertheless for the mKdV equation
7 The answer to these questions has been controversial for several years. For
example, Kappeler-Poschel [20] (Remark 3, page 19) wrote: “It would be inter-
esting to obtain perturbation results which also include terms of higher order, at
least in the region where the KdV approximation is valid. However, results of this
type are still out of reach, if true at all”.
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We think that these are very important dynamical questions to be investigated,
especially because many of the equations arising in Physics are quasi-linear or even
fully nonlinear.

The main result of this paper proves that the KAM phenomenon actually
persists, at least close to the origin, for quasi-linear Hamiltonian perturbations
of mKdV (the same result is proved in [5] for KdV). More precisely, Theorem
proves the existence of Cantor families of small amplitude, linearly stable, quasi-
periodic solutions of the mKdV equation subject to quasi-linear Hamiltonian
perturbations. It is not surprising that the same result applies for both the focusing
and the defocusing mKdV because we are looking for small amplitude solutions.
Thus the different sign ¢ = £1 only affects the branch of the bifurcation.

From a dynamical point of view, note that the parameters £ selected by the
KAM Theorem give rise to solutions of — which are global in time. This
is interesting information because, as far as we know, there are no results of global
or even local solutions of the Cauchy problem for —, and such PDEs are
in general believed to be ill-posed in Sobolev spaces (for a rough result of local
well-posedness for (L.1)-(T.2) see [6]).

The iterative procedure we are going to present is able to select many parame-
ters £ which give rise to quasi-periodic solutions (hence defined for all times). This
procedure works for parameters belonging to a finite dimensional Cantor like set
which becomes asymptotically dense at the origin.

How can this kind of result be achieved? The proof of Theorem [I| — which we
shall discuss in more detail later — is based on an iterative Nash-Moser scheme.
As it is well known, the main step of this procedure is to invert the linearized
operators obtained at each step of the iteration and to prove that the inverse
operators, albeit they lose derivatives (because of small divisors), satisfy tame
estimates in high Sobolev norms. The linearized equations are non-autonomous
linear PDEs which depend quasi-periodically on time. The key point of this pa-
per (and [B]) is that, using the symplectic decoupling of [10], some techniques
of pseudo-differential operators adapted to the symplectic structure, and a linear
Birkhoff normal form analysis, we are able to construct, for most diophantine fre-
quencies, a time dependent (quasi-periodic) change of variables which conjugates
each linearized equation into another one that is diagonal and has constant coef-
ficients, that is, in “normal form”. This means that, in the new coordinates, we
have integrated the equations. Then we easily invert the linearized operator (recall
that the inverse loses derivatives because of small divisors) and we conjugate it
back to solve the linear equation in the original set of variables. We remark that
these quasi-periodic Floquet changes of variable map Sobolev spaces of arbitrarily
high norms into itself and satisfy tame estimates. Hence the inverse operator also
loses derivatives, but it satisfies tame estimates as well.

In the dynamical systems literature, this strategy is called “reducibility” of the
equation and it is a quasi-periodic KAM perturbative extension of Floquet theory
(Floquet theory deals with periodic solutions of finite dimensional systems). The
difficulty to make it work in the present setting is due to the quasi-linear character

of the nonlinearity in (1.1)).

Before stating precisely our main result we shortly present some related liter-
ature. In the last years a big interest has been devoted to understand the effect
of derivatives in the nonlinearity in KAM theory. For unbounded perturbations the
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first KAM results have been proved by Kuksin [24] and Kappeler-Péschel [20] for
KdV (see also Bourgain [I3]), and more recently by Liu-Yuan [19], Zhang-Gao-
Yuan [30] for derivative NLS, and by Berti-Biasco-Procesi [7]-[8] for derivative
NLW. For a recent survey of known results for KdV, we refer to [15]. Actually all
these results still concern semi-linear perturbations.

The KAM theorems in [24], [20] prove the persistence of the finite-gap solutions
of the integrable KdV under semilinear Hamiltonian perturbations 9z (0w f)(z, u),
namely when the density f is independent of wu., so that is a differential
operator of order 1. The key idea in [24] is to exploit the fact that the frequencies of
KdV grow as ~ j2 and the difference |53 —i3| > %(j2+i2), i # j, so that KAV gains
(outside the diagonal) two derivatives. This approach also works for Hamiltonian
pseudo-differential perturbations of order 2 (in space), using the improved Kuksin’s
lemma proved by Liu-Yuan in [I9]. However it does not work for the general quasi-
linear perturbation in , which is a nonlinear differential operator of the same
order as the constant coefficient linear operator 9zzz.

Now we state precisely the main result of the paper. The solutions we find
are, at the first order of amplitude, localized in Fourier space on finitely many
“tangential sites”

Sti={7,..,n}, S:={xj:jeST}, 7 eN\{0} Vi=1,...,v. (1.11)

The set S is required to be even because the solutions u of (|1.1) have to be real
valued. Moreover, we also assume the following explicit hypothesis on S:

2 & . . . .
Qy_lzyfaé{J2+k1+k2:3,k€Z\S, J#k}- (1.12)
=1

Assumption (1.12)) is a “non-degeneracy” condition. We assume it to prove that
the Cantor-like set of amplitudes £ € R for which the quasi-periodic solution

(1.13) exists has positive measure, see Lemmata and Remark

Theorem 1 (KAM for quasi-linear perturbations of mKdV) Given v € N, let
f € C? (with q :== q(v) large enough) satisfy . Then, for all the tangential sites
S as in satisfying , the mKdV equation possesses small amplitude
quasi-periodic solutions with diophantine frequency vector w := w(§) = (w;)jes+ € R”
of the form

u(t,z) = Y 24/&; cos(wst + jz) + o(V/[€]), (1.13)
jeSt
where
wi=3"+3[g;—2( > &)]i jest, (1.14)
j'es+t

for a “Cantor-like” set of small amplitudes & € RY with density 1 at & = 0. The
term o(1/[€]) in is a function ui (t,x) = 41 (wt, x), with 41 in the Sobolev space
H* (T, R) of periodic functions, and Sobolev norm ||i1]|s = o(y/|€]) as &€ — 0, for
some s < q. These quasi-periodic solutions are linearly stable.

If the density f(u,uy) is independent on x, a similar result holds for all the choices
of the tangential sites, without assuming ((1.12)).
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This result is deduced from Theorem [2| It was announced also in [4]-[5] under
the stronger condition on the tangential sites

2
2v—1

v
3¢ (1.15)
=1

Let us make some comments.

1. In the case v = 1 (time-periodic solutions), the condition is always
satisfied. Indeed, suppose, by contradiction, that there exist integers 77 > 1,
j,k € Z such that

278 = §% + jk + K2 (1.16)
Then 52 + jk + k2 is even, and therefore both j and k are even, say j = 2n,
k = 2m with n,m € Z. Hence 272 = 4(n2 +nm+m2), and this implies that 7; is
even, say j1 = 2p for some positive integer p. It follows that 2p> = n?+nm-+m?2,
namely p,n,m satisfy . Then, iterating the argument, we deduce that 7;
can be divided by 2 infinitely many times in N, which is impossible.

2. When the density f(u,us) is independent of x, the L?-norm

M(u) ;:/Tu2 dx = ullZa ) (1.17)

is a prime integral of the Hamiltonian equation (|1.1). Hence the solutions of
(1.1) are in one-to-one correspondence with those of the Hamiltonian equation

v =0, VK(v) with K:=H4+AM?, AeR. (1.18)

More precisely, if u(t,z) is a solution of , then v(¢, z) := u(t,z — ct), with
¢ := —4AM (u), is a solution of (I.I8). Vice versa, if v(t,z) solves (I.18), then
the function u(t,z) := v(t,z + ct), with ¢ := —4AM (v), is a solution of
(M (v) is also a prime integral of the equation (I.18)).
The advantage of looking for quasi-periodic solutions of is that, for
A = 3¢/4, the fourth order Birkhoff normal form of K is diagonal (remark |1
and therefore no conditions on the tangential sites S are required (remark
3. The diophantine frequency vector w(§) = (w;j)jes+ € R” of the quasi-periodic
solutions of Theorem [I)is O(|¢])-close as ¢ — 0 (see (1.14)) to the integer vector
of the unperturbed linear frequencies

o:=R,....70) eN. (1.19)
This makes perturbation theory more difficult. This is the difficulty due to the

fact that the mKdV equation (1.1 is completely resonant at u = 0.

4. As shown by (1.13) the expected quasi-periodic solutions are mainly supported
in Fourier space on the tangential sites S. The dynamics of the Hamiltonian
PDE ([1.1)) restricted (and projected) to the symplectic subspaces

Hg := {U = Zujeijx}, Hg = {z = Z Ujeijx € H&(Tx)}, (1.20)
jES jES*®

where S¢ := {j € Z\ {0} : j ¢ S}, is quite different. We call v the tangential
variable and z the normal one. On Hg the dynamics is mainly governed by a
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finite dimensional integrable system (see Proposition , and we find it con-
venient to describe the dynamics in this subspace by introducing action-angle
variable, see section 4 On the infinite dimensional subspace H é‘ the solution
will stay forever close to the elliptic equilibrium z = 0.

In Theorem (1} it is stated that the quasi-periodic solutions are linearly stable.
This information is not only an important complement of the result, but also an
essential ingredient for the existence proof. Let us explain better what we mean.
By the general procedure in [10] we prove that, around each invariant torus, there
exist symplectic coordinates (see (6.13))

(,mw) € TV x R x Hg

in which the mKdV Hamiltonian (1.4)) assumes the normal form

K(’L/}7n7 w) =w-n+ %KQO(QZ))T/ -n+ (Kll(l/))ﬁ»w)Lz(T) + %(K02(¢)w7 w)L2(T)
+ K>3(¢,n,w) (1.21)

where K>3 collects the terms at least cubic in the variables (n,w), see remark
In these coordinates the quasi-periodic solution reads t — (wt,0,0) and the
corresponding linearized equations are

W = Koo (wt)n + KL (wt)w
n=20 (1.22)
w — 8$K02(wt)w = 835K11(wt)77.

Thus the actions n(t) = 7(0) do not evolve in time and the third equation reduces
to the forced PDE
w = E);,;Kog(wt)[w] + 8EK11(wt)[770] . (1.23)

Ignoring the forcing term 9, K11(wt)[no] for a moment, we note that the equation
W = 9 Koz(wt)[w] is, up to a finite dimensional remainder (Proposition [3), the
restriction to Ha of the “variational equation”

hi = 0z (OuVH) (u(wt, z))[h] = Xk (h),
where X is the KdV Hamiltonian vector field with quadratic Hamiltonian K =
%(((%VH)(u)[h},h)Lz(m) = 2(0uuH)(u)[h,h]. This is a linear PDE with quasi-
periodically time-dependent coefficients of the form

ht = Oz (a1 (wt, )0zh) + Oz (ao(wt, z)h) . (1.24)

In section |8 we prove the reducibility of the linear operator w — 8, Koz (wt)w, which

conjugates ([1.23]) to the diagonal system (see (8.64]))
Otv = —1Doov + f(wt) (1.25)

where Doo := Op{uj°}jese is a Fourier multiplier operator acting in H7,

p5° = i(—mag® +muj) +r3° €iR, je€ 8¢,
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with mg = 1+ 0(e?), m1 = 0(e?), SUpjege ;0 = o(e?), see (8.61)), (8.62). The
eigenvalues u;’o are the Floquet exponents of the quasi-periodic solution. The solu-
tions of the scalar non-homogeneous equations

’[;j—l—u;?ovj:fj(wt), jESC, ,LL(J?OEi]R,

are -
1w-
fie

’UJ(t) = Cjeujot + ’lN)J(t), Where ’lNJJ(t) = Z m
J

lezv
(recall that the first Melnikov conditions (8.66]) hold at a solution). As a conse-
quence, the Sobolev norm of the solution of ([1.25]) satisfies

@z < Cllv(O)llm;, VteR,

i.e. it does not increase in time.

We now describe in detail the strategy of proof of Theorem [I}] Many of the
arguments that we use are quite general and of wide applicability to other PDEs.
Nevertheless, we think that a unique abstract theorem of existence and stability
of quasi-periodic solutions applicable to all quasi-linear PDEs cannot be expected.
Indeed the suitable pseudo-differential operators that are required to conjugate
the highest order of the linearized operator to constant coefficients highly depend
on the PDE at hand, see the discussion after .

There are two main issues in the proof:

1. Bifurcation analysis. Find approximate quasi-periodic solutions of up
to a sufficiently small remainder (which, in our case, should be O(u%)). In this
step we also find the approximate “frequency-to-amplitude” modulation of the
frequency with respect to the amplitude, see . This is the goal of sections
and [

2. Nash-Moser implicit function theorem. Prove that, close to the above ap-
proximate solutions, there exist exact quasi-periodic solutions of . By
means of a Nash-Moser iteration, we construct a sequence of approximate so-
lutions that converges to a quasi-periodic solution of (sections .

The key step consists in proving the invertibility of the linearized operator and

tame estimates for its inverse. This is achieved in two main steps.

(a) SYMPLECTIC DECOUPLING PROCEDURE. The method in Berti-Bolle [10] allows
to approximately decouple the “tangential” and the “normal” dynamics
around an approximate invariant torus (section @ It reduces the problem
to the one of inverting a quasi-periodically forced PDE restricted to the
normal subspace H Slv Its precise form is found in section

(b) ANALYSIS OF THE LINEARIZED OPERATOR IN THE NORMAL DIRECTIONS. In sec-
tions [7] [§] we reduce the linearized equations to constant coeflicients. This
involves three steps:

i. Reduction in decreasing symbols, sections and
ii. Linear Birkhoff normal form, section [8:4]
ili. KAM reducibility, section [8.6]

All the changes of variables used in the steps i)-iii) are p-dependent families

of symplectic maps ¢(¢) which act on the phase space H}(Tz). Therefore they

preserve the Hamiltonian dynamical systems structure of the conjugated linear
operators.
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Let us discuss these issues in detail.

Weak Birkhoff normal form. According to the orthogonal splitting
H}(Ta) = Hs & Hg
into the symplectic subspaces defined in ([1.20), we decompose

u=v+z v=Igu ::Zujei”, 2= Igu:= Z:ujei”7 (1.26)
JjES jeSe

where I1g, Hé‘ denote the orthogonal projectors on Hg, Hé‘.

We perform a “weak” Birkhoff normal form (weak BNF), whose goal is to find
an invariant manifold of solutions of the third order approximate mKdV equation
(L)), on which the dynamics is completely integrable, see section [3] We construct
in Proposition [1] a symplectic map ®p such that the transformed Hamiltonian
'H := H o & possesses the invariant subspace Hg (see (|1.20))). To this purpose we
have to eliminate the term [v3zdz (which is linear in z). Then we check that its
dynamics on Hg is integrable and non-isocronous. For that we perform the classical
finite dimensional Birkhoff normalization of the Hamiltonian term [ v* dz which
turns out to be integrable and non-isocronous.

Since the present weak Birkhoff map has to remove only finitely many mono-
mials, it is the time 1-flow map of an Hamiltonian system whose Hamiltonian is
supported on only finitely many Fourier indices. Therefore it is close to the identity
up to finite dimensional operators, see Proposition [I} The key advantage is that it
modifies Ny very mildly, only up to finite dimensional operators (see for example
Lemma , and thus the spectral analysis of the linearized equations (that we
shall perform in section is essentially the same as if we were in the original
coordinates.

The weak normal form (3.7)) does not remove (nor normalize) the monomials
O(z%). We point out that a stronger normal form that removes/normalizes the
monomials O(2?) is also well-defined (it is called “partial Birkhoff normal form” in
Kuksin-Poschel [26] and Poschel [27]). However, we do not use it because, for such
a stronger normal form, the corresponding Birkhoff map is close to the identity
only up to an operator of order 0(8;1), and so it would produce terms of order
Ozz and Oy. For the same reason, we do not use the global nonlinear Fourier
transform in [2I] (Birkhoff coordinates), which is close to the Fourier transform
up to smoothing operators of order O(d; ') (this is explicitly proved for KdV).

We remark that mKdV is simpler than KdV because the nonlinearity in is
cubic and not only quadratic, and, as a consequence, less steps of Birkhoff normal
form are required to reach the sufficient smallness for the Nash-Moser scheme to
converge (see Remark [T1)).

Action-angle and rescaling. At this point we introduce action-angle variables on the
tangential sites (section and, after the rescaling , we look for quasi-periodic
solutions of the Hamiltonian . Note that the coefficients of the normal form
N in depend on the angles 6, unlike the usual KAM theorems [27], [23],
where the whole normal form is reduced to constant coefficients. This is because
the weak BNF of section [3| did not normalize the quadratic terms O(z2). These
terms are dealt with the “linear Birkhoff normal form” (linear BNF) in section
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In some sense the “partial” Birkhoff normal form of [27] is split into the weak
BNF of section [3] and the linear BNF of sections [8.4]

The present functional formulation with the introduction of the action-angle
variables allows to prove the stability of the solutions (unlike the Lyapunov-
Schmdit reduction approach).

Nonlinear functional setting and approximate inverse. We look for a zero of the non-
linear operator , where the unknown is the torus embeddeding ¢ +— (), and
where the frequency w is seen as an “external” parameter. This formulation is con-
venient in order to verify the Melnikov non-resonance conditions required to invert
the linearized operators at each step. The solution is obtained by a Nash-Moser
iterative scheme in Sobolev scales. The key step is to construct (for w restricted to
a suitable Cantor-like set) an approximate inverse (a la Zehnder [31]) of the lin-
earized operator at any approximate solution. Roughly, this means to find a linear
operator which is an inverse at an exact solution. A major difficulty is that the
tangential and the normal dynamics near an invariant torus are strongly coupled.

Symplectic approzimate decoupling. The above difficulty is overcome by implement-
ing the abstract procedure in Berti-Bolle [10], which was developed in order to
prove the existence of quasi-periodic solutions for autonomous NLW (and NLS)
with a multiplicative potential. This approach reduces the search of an approxi-
mate inverse for to the invertibility of a quasi-periodically forced PDE re-
stricted to the normal directions. This method approximately decouples the tan-
gential and the normal dynamics around an approximate invariant torus, intro-
ducing a suitable set of symplectic variables

(b, m,w) € TV x RY x Hg

near the torus, see . Note that, in the first line of , ¢ is the “natural”
angle variable which coordinates the torus, and, in the third line, the normal
variable z is only translated by the component zo(¢)) of the torus. The second
line completes this transformation to a symplectic one. The canonicity of this
map is proved in [I0] using the isotropy of the approximate invariant torus is, see
Lemma (8| In these new variables the torus ¢ — ig() reads ¢ — (1,0,0). The
main advantage of these coordinates is that the second equation in (which
corresponds to the action variables of the torus) can be immediately solved, see
. Then it remains to solve the third equation , i.e. to invert the linear
operator L. This is a quasi-periodic Hamiltonian perturbed linear Airy equation
of the form

h— Loh = g (w-0ph 4 da(a102h) + dz(aoh) + 8xRh), Vhe Hg, (1.27)

where R is a finite dimensional remainder. The exact form of L, is obtained in
Proposition [3} see (|7.23]).

Reduction to constant coefficients of the linearized operator in the normal directions. In
section [8| we conjugate the variable coefficients operator £, to a diagonal operator
with constant coefficients which describes infinitely many harmonic oscillators

by +pv; =0, pFi=i(-msj® +mig) +75° €iR, ¢S, (1.28)

where the constants ms — 1, m1 € R and sup, |r;’°| are small, see Theorem |4 The
main perturbative effect to the spectrum (and the eigenfunctions) of £, is due to
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the term a1 (wt, )0z (see )7 and it is too strong for the usual reducibility
KAM techniques to work directly. The conjugacy of L., with is obtained in
several steps. The first task (obtained in sections is to conjugate L, to
another Hamiltonian operator of H é‘ with constant coefficients

Ly := Hﬁ(w-8¢+m38mw+m18$+R5)H§, mi,m3 € R, (1.29)

up to a small bounded remainder R = O(@S), see . This expansion of L,
in “decreasing symbols” with constant coefficients follows [3], and it is somehow
in the spirit of the works of Iooss, Plotnikov and Toland [I7]-[16] in water waves
theory, and Baldi [2] for Benjamin-Ono. It is obtained by transformations which
are very different from the usual KAM changes of variables. We underline that the
specific form of these transformations depend on the structure of mKdV. For other
quasi-linear PDEs the analogous reduction requires different transformations, see
for example Alazard-Baldi [I], Berti-Montalto [12] for recent developments of these
techniques for gravity-capillary water waves, and Feola-Procesi [I4] for quasi-linear
forced perturbations of Schrodinger equations.

The transformation of (1.27)) into ([1.29)) is made in several steps.

1. Reduction of the highest order. The first step (section is to eliminate the
z-dependence from the coefficient ai(wt, z)0zze of the Hamiltonian operator
L. For this purpose, we have to construct a symplectic diffeomorphism of H §
near A, :=1I é‘AH é‘, where A is a diffeomorphism of the form

u— (Au)(p,2) := (14 Bz(p, z))ulp, 2 + Bp, ),

see (8.1). The starting point is to observe that A is, for each ¢ € T, the
time-one flow map of the time dependent Hamiltonian transport linear PDE

O = 0 (b7 2)u) by o) 1= —DET) (1.30)

14+ 7Ba(p,@)
Actually the flow of (|1.30)) is the path of symplectic diffeomorphisms

u(p, z) = (1+762(0, ))ulp, x + 76(p, ), 7€[0,1].

Thus, like in [5], we conjugate L, with the symplectic time-one flow map of
the projected Hamiltonian equation

Oru = I3 0z (b(r, 2)u) = 9u(b(r, x)u) — Mgds(b(r,2)u), we Hg  (1.31)

generated by the the quadratic Hamiltonian § S b(r, x)u?dx restricted to Hz .
By Lemma [15| (which was proved in [5]) such a symplectic map differs from
A only for finite dimensional operators.

This step may be seen as a quantitative application of the Egorov theorem, see
[29], which describes how the principal symbol of a pseudo-differential operator
(here a1 (wt, )0zzz) transforms under the flow of a linear hyperbolic PDE (here

@31)

Because of the Hamiltonian structure, the previous step also eliminates the
term O(0zz), see (8.13)). In section we eliminate the time-dependence of
the coefficient at the order Ogqq.
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2. Linear Birkhoff normal form. In section [8.4] we eliminate the variable coefficient
terms at the order O(e?), which are present in the operator L, see —
(7.24). This is a consequence of the fact that the weak BNF procedure of
section [3| did not touch the quadratic terms O(z?). These terms cannot be
reduced to constants by the perturbative scheme in section (developed in
[3]) which applies to terms R such that Ry~! < 1 where 7 is the diophan-
tine constant of the frequency vector w (the case in [3] is simpler because the
diophantine constant is v = O(1)). Here, as well as in [5], since mKdV is com-
pletely resonant, such v = o(e?), see (5.3). The terms of size £ are reduced
to constant coefficients in section by means of purely algebraic arguments
(linear BNF), which, ultimately, stem from the complete integrability of the
fourth order BNF of the mKdV equation . More general nonlinearities
should be dealt with the normal form arguments of Procesi-Procesi [2§] for
generic choices of the tangential sites.

Complete diagonalization of (1.29). In section we apply the abstract KAM re-
ducibility Theorem 4.2 of [3], which completely diagonalizes the linearized opera-
tor, obtaining . The required smallness condition for Rs holds, after
that the linear BNF of section [§-4] has put into constant coefficients the unbounded
terms of nonperturbative size €2, and the conjugation procedure of sections
and has arrived to a bounded and small remainder Rs.

The Nash-Moser iteration to an invariant torus embedding. In section El we perform
the nonlinear Nash-Moser iteration which finally proves Theorem [2|and, therefore,
Theorem [I} The smallness condition that is required for the convergence of the
scheme is €2/ F(,0,0)||so+py 2 sufficiently small, see . It is verified because
1Xp(,0,0)]s <s e>~?* (Lemmal5) and v = 27 with a > 0 small. See also remark
for a comparison between the smallness condition required here with the one
in [5].

Notation. We shall use the notation
a<sb <<= a<C(s)b forsome constant C(s) > 0.

We denote by 7o the operator

1
u — 7o (u) ::u—%/rud:c. (1.32)

2 Functional setting

For a function u : 2, — E, w — u(w), where (E, || | g) is a Banach space and 2,
is a subset of R”, we define the sup-norm and the Lipschitz semi-norm

[ull 5™ = llulEy, = sup [lu(w)lE,
wEe 2, ( )
2.1
li li lu(wr) — w(w2)|lE
lullg = lulg g, == sup ;
’ w1 Fwa |w1 _w2|
and, for v > 0, the Lipschitz norm
Li Li li

lull 5P = [full 557 = ll3P + el (2.2)

If E = H® we simply denote HuHI;Iif(w = ||u\|£ip(7).
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Sobolev norms. We denote by
ulls == llull s (rvsry = llullag (2.3)

the Sobolev norm of functions v = u(yp,z) in the Sobolev space H®(T*T1). We
denote by || |[zs the Sobolev norm in the phase space of functions u := u(x) €
H*(T). Moreover || || Hg denotes the Sobolev norm of scalar functions, like the

Fourier components u;(¢).
We fix so := (v+2)/2 so that H*(T**!) < L>°(T"*!) and any space H*(T" 1),
s > so, is an algebra and satisfy the interpolation inequalities: for s > sg,
d
[uvlls < C(so)llullsllvllse + C()llullsollvlls,  Vu,v € H(T?).
The above inequalities also hold for the norms || [|L*P(.
We also denote

HE (T o= {u e HY(TYY) @ u(yp,-) € HF Vo € TV},
HH(T" Y = {u e HY(T"M") : u(p, ) € Hg Yo € T"}.
Matrices with off-diagonal decay. A linear operator can be identified, as usual, with

its matrix representation. We recall the definition of the s-decay norm (introduced
in [9]) of an infinite dimensional matrix.

Definition 1 Let A := (A??)

i1/%1,12€

s-decay norm |A|s is defined by
. o) 2
A= D70 ( sup |42])" (2.4)
iezb 1=

For parameter dependent matrices A := A(w), w € 2, C R, the definitions (2.1])
and (2.2) become

lip . [Alwr) — A(w2)ls

S

AP .= sup |A(W)|s, |A[NP = sup LT AR2)ls 2.5
A = sup AL, 4L T (25)

76, b > 1, be an infinite dimensional matrix. Its

w1 Fwa
and [A|FP0) = AP 44| AfEP.

Such a norm is modeled on the behavior of matrices representing the mul-
tiplication operator by a function. Actually, given a function p € H® (’]I‘b), the

multiplication operator h — ph is represented by the Toplitz matrix T;J = pi_i
and |T|s = ||p|ls. If p = p(w) is a Lipschitz family of functions, then

Li Li
TIP) = il
The s-norm satisfies classical algebra and interpolation inequalities proved in [3].

Lemma 1 Let A = A(w), B = B(w) be matrices depending in a Lipschitz way on the
parameter w € 2, C RY. Then for all s > so > b/2 there are C(s) > C(so) > 1 such
that

4B < O(s) A0 B,
|AB|£JP(’Y) < C(S)\A|£ip(7)|3|£‘3p(7) + C(SO)|A‘§;P(’Y)|B|EP(’Y).
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The s-decay norm controls the Sobolev norm, namely
HAhHLlP('Y) < C(S)(|A|L1p(')’)||h||18.dp('7) + |A‘];_Alp('y)||h”]{;gp('y))

Let now b := v + 1. An important sub-algebra is formed by the Téplitz in time
matrices defined by

A3 = A% ),

whose decay norm (2.4) is

AZ= 3 ( suwp AR5

jEL T J1—J2=]
These matrices are identified with the ¢-dependent family of operators
J J o J il-p
Ap) = (AZ(),,cpn AR =3 A%(De
which act on functions of the z-variable as

A(p) : h(z) = Zhe T A(p)h(z) Z A @)hj, e

JEL J1,J2€%Z

Transformations of this kind were also used in [3] and in [9], [11]. All the transfor-
mations that we construct in this paper are of this type (with j, j1, jo # 0 because
they act on the phase space H}(Tz)).

Definition 2 We say that

1. an operator (Ah)(p,z) := A(@)h(p, ) is symplectic if each A(p), ¢ € T, is a
symplectic map of the phase space (or of a symplectic subspace like H é‘),

2. an operator is real if it maps real-valued functions into real-valued functions;

3. the real operator w - 8, — 0:G(p) is Hamiltonian if each G(p), ¢ € T, is self-
adjoint with respect to the L2 (T) complex scalar product.

A Hamiltonian operator is transformed, under a symplectic map, into another
Hamiltonian operator, see [3]-section 2.3.

We conclude this preliminary section recalling the following well known lem-
mata about composition of functions (see, e.g., Appendix of [3]).

Lemma 2 (Composition) Assume f € C*(T¢ x By), By := {y € R™ : |y| < 1}.
Then Yu € H*(T¢, R™) such that |lu||L=~ < 1, the composition operator flu)(z) =

f(x,u(z)) satisfies | f(uw)|ls < C||fllcs (|ulls —I—l) where the constant C' depends on s, d.
If f € C°2 and ||u+ hl|p~ < 1, then for k=0,1

: P FOw) K
[flu+n)=>" g (W]l < Cllflles+2 (Rl Lo (I1Rl]s + 1Bl Lo [[ulls)-
=0 '

The statement also holds replacing || ||s with the norms | |s.co of W (T%).
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Lemma 3 (Change of variable) Let p € WS®(T% RY), s > 1, with ||p|ly1.
< 1/2. Then the function f(z) = x+p(x) is invertible, with inverse f~*(y) = y+q(y)
where ¢ € W5 (T, R?), and |lg|ws. < C|lpllwe.os -

If, moreover, p depends in a Lipschitz way on a parameter w € 2 C RY, and
|Dzp|l~ < 1/2 for all w, then HqHa;lZ(;) < C’Hpﬂaﬁgw The constant C' := C(d, s)
is independent of ~.

Ifu e H*(T4,C), then (uo f)(z) := u(x + p(z)) satisfies

wo flls < C(llulls + lIpllws.o llull1),
luo f—ulls < C(lIpllLoelulls+1 + llplwe[|ull2),

Li Li Li Li
[uo FI5PD < € (Jull 27 + 1plR D ful| 5P).

The function wo f~ satisfies the same bounds.

3 Weak Birkhoff normal form

In this section it is convenient to analize the mKdV equation in the Fourier rep-
resentation

u(z) = Zjez\{o}“jeijxv u(x) «— u:= (uj)jez\{o}, U—j = Uy, (3.1)

where the Fourier indices are nonzero integers j, by the definition (1.5) of the
phase space, and u_; = u; because u(z) is real-valued. The symplectic structure

(1.6) writes

Z du] Ndu_j, 2(u,v) = Z iujv,j, (3.2)
]750 J#0

the Hamiltonian vector field Xg in (1.3)) and the Poisson bracket {F,G} in (1.7)
are respectively

[Xn(w)]j =ijou_; H(u), {F.G}(u)= =3 ij(0u_,F)(u)(@u,G)(u).  (3.3)
J#0
We shall sometimes identify v = (v;)jes and z = (z;) jege-

The Hamiltonian of the perturbed cubic mKdV equation (1.1 is H = Hs +
Hy + H>j5 (see (1.4)) where

Ha(u) —/u—mda: Hy(u :—g/ T dr, Hss(u) ::/f(x,u,uz)d:r, (3.4)

¢ = &1 and f satisfies ). According to the splitting (1.26) v = v + 2z, where
ve Hg and z € Hg, we have H>(u) = H2(v) + Ha(z) and

H4(u):—£/ d:c—g/v zdx——/vzd:c /vzgd:c—i/z4dm.
4 Jr T T 4 Jr

For a finite-dimensional space
E:= Ec :=span{e?” : 0 < |j| < C}, C >0, (3.5)

let ITy denote the corresponding L2-projector on E.
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In the next proposition we construct a symplectic map @p such that the trans-
formed Hamiltonian H := H o &g possesses the invariant subspace Hg defined in
, and its dynamics on Hg is integrable and non-isocronous. To this purpose
we have to eliminate the term [v%zdx (which is linear in z) and to normalize the
term [v*dz (which is independent of z) in the quartic component of the Hamil-
tonian.

Proposition 1 (Weak Birkhoff normal form) There exists an analytic invertible
symplectic transformation of the phase space g : H} (Ty) — HE(Ty) of the form

Sp(u) =u+¥(u), ¥(u)=IIg¥(lgu), (3.6)
where E is a finite-dimensional space as in (3.5)), such that the transformed Hamilto-
nian s

H:=Ho®p =Hy+Hs+H>s5, (3.7)
where Hy is defined in (3.4)),
3¢ 3¢
Hy = Z(Z \uj|4 — Z |u]-\2|uj/\2) -5 / v?2? dx
jeSs

53’8 ! (3.8)

—g/vz?’dx—i/z‘ldz,
T 4 Jr

and H>s5 collects all the terms of order at least five in (v,z).

Proof In Fourier coordinates (3.1]) we have (see (3.4))
1 202 S
Hy(u) =5 > 5°uy|*,  Ha(w) =~ S ujugugu, (3.9)
Jj#0 J1+J2+Jjs+7a=0

We look for a symplectic transformation @ of the phase space which eliminates or
normalizes the monomials uj, u;,uj,u;, of Hy with at most one index outside S.
By the relation j;1 +jo 4+ j3+j4 = 0, they are finitely many. Thus, we look for a map
b= (4535’)\15:1 which is the time 1-flow map of an auxiliary quartic Hamiltonian

F(u) = Z Fj1j2j3j4uj1 Uy UjgUsy -
Ji+Je+iz+7ia=0
The transformed Hamiltonian is
H:=Ho®=Hz+Hs+H>s, Hq = {H2, F} + Hy, (3.10)

where H>5 collects all the terms in H of order at least five. By (3.9) and (3.3) we
calculate

S ./ .3 .3 .3 .3
T D R B . o S AL SRR
J1+J2+Jjs+ja=0

In order to eliminate or normalize only the monomials with at most one index
outside S, we choose

ic e
- . - . if (j1,72,73,J4) € A,
Greag+aem ) (3.11)
0 otherwise,

Fj1j2j3j4 =
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where

A= {(j1, 42, 43,5a) € (\{ON : ji+j2+ s +a =0, ji 4353+ 45 +34i #0,
and at least three among j1, j2, j3, ja belong to S}.

We recall the following elementary identity (Lemma 13.4 in [20]).
Lemma 4 Let j1,j2,J3,ja € Z such that j1 + j2 + ja + ja = 0. Then
3 3, .3, .3 . Ny Ny )
Ji + 42 + 5 + i = =301 +j2) (1 + 53) (42 + js)-

By definition 7 H4 does not contain any monomial u;, u;,u;,uj, with three
indices in S and one outside, because there exist no integers ji,j2,j3 € S, j4 € S¢
satisfying j1 + j2 +js +ja = 0 and 53 4+ j5 + 73 + 43 =0, by Lemma and the fact
that S is symmetric.

By construction, the quartic monomials with at least two indices outside S are
not changed by &. Also, by construction, the monomials wj, uj,uj,uj, in Hyq with
all integers in S are those for which j1 + jo + j3 +j4 = 0 and j; + 55 —i—jé1 +43=0.
By Lemma [, we split

> Ujy Wi gy uj, = A1+ Az + A
J1,J2,73,Ja€S
J%+J§+J3+J%=O
Ji+tis+iz+3i=0

where A; is given by the sum over ji, j2, j3,j4 € S, j1 + j2 + j3 + ja = 0 with the
restriction j; + j2 = 0, A2 with the restriction j; + j2 # 0 and j; + j3 = 0, and A3
with the restriction j; + j2 # 0, j1 + j3 # 0 and j2 + j3 = 0. We get

2 2 2 2 4 2 2
A= D fuglPlug P = D7 Pl |® = Jugl*, Ar= > gy,

7,3’ €S J.J' €S jES 7,3'€S
i'#—j
2 2 2 2 4
Az = > fulPluy P = D0 Pl ® =2 fuyl?,
Jj' €S J.j'es jes
J'AEd

whence (3.8)) follows. O

Remark 1 In the Birkhoff normal form for the Hamiltonian K = H + AM? defined
in , three additional terms appear in (3.8]), which are

AT JuPlugel? + 20M (v) M (2) + AM?(2).
4.4'€S

Then in (3.8) the sum (A — 38) 2jies luj|?ujr|? vanishes if we choose X := 3¢/4.
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4 Action-angle variables

We introduce action-angle variables on the tangential directions by the change of
coordinates

uj = \/& + |il7; % forjes:; u;j :=2%; forje s, (4.1)

where (recall that u_; = ;)

=&, &§>0, §_;=3;, 0_;=-0;, 0;,5;€R, VjeS. (42)
To sim~plify notation, f0r~the tangential sites S := {71,...,7»} we also denote
gji = eia gji = g’h gji = gia 1= 17- c. Ve

The symplectic 2-form 2 in (3.2) (i.e. (1.6])) becomes

17 v
W::Zdéi/\dgji—i-% > %dzjmzz_j = (>_df; Adjjs) ® 2g. =dA (4.3)
i=1 jese\{o} i=1

where 2. denotes the restriction of 2 to Hg (see (.20))) and A is the Liouville

1-form on T x RY x Hg defined by A5z RV XRY x HE — R,
%)

~

~ - 1, 1. .
A(é,y},%) [0, Y, 2] =y 0+ 5(5& 12?, Z)L2(']l') . (44)
We rescale the “unperturbed actions” ¢ and the variables 6,7, 7 as
E=c%, g=¢y, z=¢%%, b>1, (4.5)

where b > 1 will be fixed below (see (5.9) and Remark . The symplectic 2-form
in (4.3) transforms into £2'W. Hence the Hamiltonian system generated by H in
(3.7) transforms into the new Hamiltonian system

0= OyH:(0,y,2),
§=—0pHe(0,y,2), He:=c"Ho A, (4.6)
2= 0;V.H:(0,v, 2),

where

Ac(0,y,2) = cv-(0,y) + %2, v:(0,y) := Z V&G + 20Dy, €% T (4.7)

jES

We still denote by
Xu. = (OyHe, =09 He, 05V 2 He )

the Hamiltonian vector field in the variables (6,y,z) € TV x R” x Hé‘.

We now write explicitly the Hamiltonian H.(0,y, z) defined in (4.6). Recall the
expression of H given in (3.7). The quadratic Hamiltonian Hs in (3.4]) transforms
into

672bH2 o A: = const + Z )

3 1 2
]eS+] yj + i/rzz dx , (4.8)



KAM for quasi-linear mKdV 19

and, by (3.8)), (3.7) we get (writing, in short, ve := v<(0,y))

He(0,0,2) = e(€) +al&) -y + 5 [ Ado— 5 [ 22 do
2 Jr 2 T
1 . L.
+ 3§E2b(§ Z j2yj2- - Z ]yj]'yj/) — §51+b/ ve2’ da
jes+ j.j'es+ T

- %5%/ 2 de + 672bH25(€U5(9, y) + ebz) (4.9)
T

where e(¢) is a constant, and a(¢) € RY is the vector of components
ai(€) =7 +3’G —2(&+ ... +&)Ji, i=1,...,v.

This is the “frequency-to-amplitude” map which describes, at the main order, how
the tangential frequencies are shifted by the amplitudes ¢ := (&1,...,&). It can be
written in compact form as

a(f) ==+ %A, A:=3¢Dg(I —2U), (4.10)
where @ := (73,...,75) € N” (see (1.19)) is the vector of the unperturbed linear

frequencies of oscillations on the tangential sites, Dg is the diagonal matrix

Dg :=diag(7,...,7v) € Mat(v x v),

I is the v x v identity matrix, and U is the v x v matrix with all entries equal to
1. The matrix A is often called the “twist” matrix . It turns out to be invertible.
Indeed, since U? = vU, one has (I —2U)(I — 52 U) = I, and therefore

-1_ 1 2 —1
AT = o ([ T U)DS . (4.11)
With this notation, one can also write
1 . S 1
5 2 3ui— D uid'vy = 5(I - 20)(Dsy) - (Dsy). (4.12)
JjeST J.j'est

Remark 2 By remark (1] for the Hamiltonian K = H 4+ AM?, X := 3¢/4, defined in
(1.18]) the twist matrix in the frequency-amplitude relation (4.10)) becomes A =
3¢Dg, which is diagonal.

We write the Hamiltonian in (4.9) (eliminating the constant e(¢) which is
irrelevant for the dynamics) as H. = N+ P, where

N0, y,2) =a(f) y+ %(N(0)272)L2(T) ,

(4.13)
(N()z,2) L2T) = [Ezgdx — 3¢e? /E v2(0,0)2% da,
describes the linear dynamics, and P := H. — N, namely
3¢ 3c
Pim 51 - 20)(Ds0)  (Dsw) — T 2 [ [2(6.0) — 206,02 o
— et t? /11‘ ve (0, 9)2> do — % g% /ﬂ‘ e+ e o5 (v (0,y) +72), (4.14)

collects the nonlinear perturbative effects.
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5 The nonlinear functional setting

We look for an embedded invariant torus

i TV ST xRV x Hy, ¢ i(p) = (0(2), y(p), 2()) (5.1)

of the Hamiltonian vector field X g_ filled by quasi-periodic solutions with diophan-
tine frequency w € R”, that we regard as independent parameters. We require that
w belongs to the set

2 = a([L,2") = {a(§) : € € [1,2)"} (5.2)

where « is the affine diffeomorphism (4.10). Since any w € £2: is e%-close to the
integer vector w € N” (see (4.10), (1.19)), we require that the constant v in the
diophantine inequality

lw-1| >~()"T, Vlez”\ {0}, satisfies v=¢e>T" for some a>0. (5.3)

In we will fix a € (0,1/6) (see also the discussion in Remark [3). Note that
the definition of v in is slightly stronger than the minimal condition, which
is v < ce? with ¢ small enough. We assume a > 0 just for simplicity. In addition
to we shall also require that w satisfies the first and second order Melnikov-
non-resonance conditions (8.63|).

We fiz the amplitude £ as a function of w and e, as

Ei=e A w—-0q], (5.4)

so that a(¢) = w (see (4.10)).

Now we look for an embedded invariant torus of the modified Hamiltonian
vector field X, . = Xpg, +(0,¢,0), ¢ € R”, which is generated by the Hamiltonian

HE,C(07:L/7Z) = H5(97y72)+<'0, CGRV~ (55)

Note that the vector field Xp_ . is periodic in 6 (unlike the Hamiltonian H, ). We
introduce ¢ in order to adjust the average in the second equation of the linearized
system , see . The vector ¢ has however no dynamical consequences.
Indeed it turns out that an invariant torus for the Hamiltonian vector field Xy,
is actually invariant for Xp_ itself, see Lemma @ Hence we look for zeros of the
nonlinear operator

F(i,0) = F(i,¢,w,¢) = Dui(p) — Xpz.(i(¢)) + (0,¢,0) (5:6)
( Do,b(p) — Ay He(i()) )
= | Duy(y) + 0pHe(i(0)) + ¢
Dyz(p) — 0:V 2 He(i(p))

DuO(p) — 9y P(i(p))
= (Dwy(w) + 509 (N(0())2(), 2()) 2 (1) + 0pP(i(0)) + C)
Duwz(p) — 0= N(0(p))2(p) — 0= V=P(i(p))

where O(p) := 0(p) — ¢ is (2m)”-periodic and we use (here and everywhere in the
paper) the short notation
Dy i=w- . (5.7)
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The Sobolev norm of the periodic component of the embedded torus

I(p) =1i(e) = (£,0,0) := (B(9),y(p), 2(¢)),  Olp) :=10(¢) — ¢, (5.8)
is (301« := 1611z + lyllars + Iz« where [|zlls == [[2]srs _ is defined in (Z3). We
link the rescaling with the diophantine constant v = 2% by choosing

y=eT0 = b=14(a/2), ac(0,1/6). (5.9)
Other choices are possible, see Remark
Theorem 2 Let the tangential sites S in satisfy . For all € € (0,¢0),

where €9 is small enough, there exist a constant C > 0 and a Cantor-like set Ce C (2,
with asympotically full measure as € — 0, namely

lim Cel

=1, 5.10
lim 1o (5.10)

such that, for all w € Ce, there exists a solution ico(p) : = ioc(w,€)(p) of the equation
F(ioco,0,w,e) = 0 (the nonlinear operator F(i,(,w, ) is defined in ) Hence the
embedded torus ¢ — ico(yp) is invariant for the Hamiltonian vector field Xy, and it
is filled by quasi-periodic solutions with frequency w. The torus iso Satisfies

llico(2) = (12,0, 0) |22 < P27t = et 720 (5.11)

for some p := pu(v) > 0. Moreover, the torus iso is linearly stable.

Theoremis proved in sections It implies Theoremwhere the &; in (L.13)
are the components of the vector A™"[w—]. By (5.11)), going back to the variables
before the rescaling (&.5)), we get Oso = O(e°™ %), oo = O(£°72), 200 = O(£2720).

Remark 3 The way to link the amplitude-rescaling with the diophantine con-
stant y = 279 in is not unique.

The choice £2* < ~ (i.e. “b > 1 large”) reduces to study the Hamiltonian He in
as a perturbation of an isochronous system (as in [23], [25], [27]). We can take
b =4/3 in order to minimize the size of the perturbation P = O(¢7/?), estimating
uniformly all the terms in the last two lines of . As a counterpart we have
to regard in the constants a := a(¢) € R” (or ¢ in (4.7)) as independent
variables. This is the perspective described for example in [10]. Then the Nash-
Moser scheme produces iteratively a sequence of &, = &p(w) and embeddings
@ = in(@) = (On(®),yn(p), 2n(p)) at the same time.

The case e2° > 5 (i.e. “b > 1 small”), in particular if b = 1, reduces to study
the Hamiltonian H. in as a perturbation of a non-isochronous system a
la Arnold-Kolmogorov (note that the quadratic Hamiltonian in satisfies
the usual Kolmorogov non-degeneracy condition). In this case, the constant &; in
and the average of |jly;(¢) have the same size and therefore the same role.
Then we may consider ; as fixed, and tune the average of the action component
y;j(¢) in order to solve the linear equation , which corresponds to the angle
component. We use the invertible (averaged) “twist”-matrix to impose that
the right hand side in has zero average.

The intermediate case e2° = ~, adopted in this paper (as well as in [5]), has the
advantage to avoid the introduction of the £(w) as an independent variable, but it
also enables to estimate uniformly the sizes of the components of (0(¢), y(¢), z(¢))
with no distinctions.
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Now we prove tame estimates for the composition operator induced by the
Hamiltonian vector fields X, and Xp in , which are used in the next sections.
Since the functions y +— /¢ + 26=D|j|y, 0 e are analytic for € small enough,
j € S and |y| < C, the composition Lemmaimplies that, for all ©,y € H*(T",R")
with |O]lse, lyllse < 1, setting 6(p) := ¢ + O(p), one has the tame estimate

l[0e(0(), y(@))lls <s T+ [1Olls + llylls -

Hence the map A in (4.7) satisfies, for all ||3H£ip(w <1 (see (5.8))

0

1A=(0(), y(), 2() [P <5 e(1 + 3][5PD). (5.12)

In the following lemma we collect tame estimates for the Hamiltonian vector fields

Xn, Xp, Xp_ (see (4.13), (4.14)) whose proof is a direct application of classical
tame product and composition estimates.

Lemma 5 Let 3(p) in (5.8)) satisfy H3||Lip(’y) < 0Py = 0. Then, writing

) so+3
in short || ||s to indicate || HI;lp(’Y), one has
18y P(i)]ls <s €% + [T s+3 180P(i)ls <o €2 (1+ |3l s+3)
IV2P(@)]ls <s €* 7+ 573l s35 IXp(i)ls <o €72 + [Tl s43
180y P(i)|ls <s €® + &>l s43 18y V=P (0)|ls <o €0 +€2)[3]| 543

18yy P(i) — €’ ADg||s <s "7 +%||3)|s43

(A, Dg are defined in (4.10)) and, for all7:= (é,g?, 2),

19ydi Xp(D)[]lls <s € (IFlls+5 + 131543/ lls0+3) (5.13)
I1di X, ()] + (0,0, Oraw)lls <s € ([T lls+3 + 1Tlls+3Tllso+3) (5.14)
145 Xpr. (D21 <s €2 (17 s431@llso+3 + [T ]ls+317115+3) - (5.15)

In the sequel we also use that, by the diophantine condition (5.3)), the operator
D' (see (5.7)) is defined for all functions u with zero w-average, and satisfies

~1 -1 -1 Li -1 Li
DS ulls < Oy Hullsar, 105 5P < Oy ullFED) (5.16)

6 Approximate inverse

In order to implement a convergent Nash-Moser scheme that leads to a solution
of F(i,¢) = 0, we now construct an approzimate right inverse (which satisfies tame
estimates) of the linearized operator

di,C]:(im CO)[?v a = Dwif diXHg (ZO(SO))[ﬂ + (Ov E? 0) ’ (61)

see Theorem |3} Note that d; F(io, (o) is independent of (o (see )

The notion of approximate right inverse is introduced in [31I]. It denotes a lin-
ear operator which is an ezact right inverse at a solution (0, (o) of F(io,¢o) = 0.
We implement the general strategy in [10] which reduces the search of an approx-
imate right inverse of to the search of an approximate inverse on the normal
directions only.
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It is well known that an invariant torus ig with diophantine flow is isotropic (see
e.g. [I0]), namely the pull-back 1-form igA is closed, where A is the Liouville 1-form
in . This is tantamount to say that the 2-form W (see ) vanishes on the
torus ip(T"), because igW = igdA = dijA. For an “approximately invariant” torus
io the 1-form ijA is only “approximately closed”. In order to make this statement
quantitative we consider

* 14
A=) _ a(p)der,

6.2)
1 ~ (
ar(p) = — ([0e00(2)] y0(©)k + 5 (Do z0() 0 ' 20(9)) 1
and we quantify how small is
ZSW = dZSA = Z Akj (<p)d<pk N d(p]‘ s Akj = Bwkaj — 8%. ag,. (63)
1<k<j<v

Along this section we will always assume the following hypothesis (which will be
verified at each step of the Nash-Moser iteration):

e AssuMPTION. The map w — ig(w) is a Lipschitz function defined on some subset
2, C 2, where (2 is defined in (5.2)), and, for some p := p(r,v) > 0,

Li —2b_— —4b Li —2b
190lI5) < Cce®y 7 = 0Pz R0 < ce T, (6.4)
y=eTr = pi=14(a/2), ac(0,1/6),

where Jo(¢) := io(¢) — (¢,0,0), and
Z(p) = (21,22, Z3) () = F(i0, Co)(p) = w - Opio(p) — Xm._ ., (io(v))  (6.5)
is the “error” function.

Lemma 6 (Lemma 6.1 in [5]) [P < CHZHEP(W). If F(io,¢o) = 0, then
Co =0, and the torus io(y) is invariant for Xp_.

Now we estimate the size of iiW in terms of Z. From (6.2, (6.3) one has
HAijI;lp('y) <s [30)1P) ) Moreover, Ay also satisfies the following bound.

s+2
Lemma 7 (Lemma 6.2 in [5]) The coefficients Ay;(¢) in (6.3) satisfy
Li -1 Li Li ~ L
14k 15 <o 1203802 + 121550 1901557 2) - (6.6)

As in [10], we first modify the approximate torus ip to obtain an isotropic
torus ¢5 which is still approximately invariant. We denote the Laplacian A, :=

ZZ:l 882%'

Lemma 8 (Isotropic torus) The torus is(¢) := (60(v), ys(¢),20(p)) defined by
vs =0 + [0.00(0)] " le),  pil0) =AY B, Ari(e) (6.7)

is isotropic. If (6.4) holds, then, for some o := o(v,T),

lys — woll5 ™™ <, 30][52, (6.8)
lys = volls™™ <oy H{IZIZED + 121551301150} (6.9)
1F(is, Co)IET <o 1215 + 130l 201 211555 (6.10)
195 li5]llls <s [@lls + 1 Tolls-to lls (6.11)
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In the paper we denote equivalently the differential by 9; or d;. Moreover we denote
by o := o(v,7) possibly different (larger) “loss of derivatives” constants.

Proof Tt is sufficient to closely follow the proof of Lemma 6.3 of [5]. We men-
tion the only difference: equation (6.11) of [5] is ||]:(i57§0)\|151p(w <s ||Z||I;_1~_p0(7) +
aQb_l'y_lﬂjoﬂgfa(wHZHS;?F(;), with a big factor £2*714~! = 7! more with re-
spect to the present bound (6.10)). In (6.10) there is no such a factor, because, by
the estimates for 9ydy P, Oyy P, 0y V. P in Lemma |5 here we have ||0,Xp(i)|ls <s

(14 ||3|s+3). Hence (6.8), (6.9), (6-4) imply that

1Xp(is) = Xp(io)lls <s [IZlls+o + [Tollstoll Z]lso+o - (6.12)

Then the proof goes on as in [5], without the large factor g20-1,71, O

In order to find an approximate inverse of the linearized operator d; - F(is) we
introduce a suitable set of symplectic coordinates nearby the isotropic torus is.
We consider the map Gy : (,n,w) — (,y,2) of the phase space T x R” x Hg
defined by

9 " 0o (¢)
<y> = Gs (77> i= | ys(¥) + [04.00()] T + [(99Z0)(Bo(v))] 05 w | (6.13)
20(¢) +w

where Zo(6) := 20(05 *(0)). It is proved in [I0] that G5 is symplectic, using that the
torus i is isotropic (Lemma. In the new coordinates, is is the trivial embedded
torus (¢¥,n,w) = (¢,0,0). The transformed Hamiltonian K := K(¢,n,w,(o) is

(recall (5.5)))

K:=H.¢ oGs (6.14)
= 00(¢) - Co + Koo(v) + K10(¥) - n + (Ko1 (), w) 21y + 5 K20()n -1
+ (K11(1/J)775 w)Lz(T) + %(K02(¢)W,W)L2<T) + K23(w777aw)

where K>3 collects the terms at least cubic in the variables (n, w). At any fixed ¥,
the Taylor coefficient Koo(¢) € R, K10(v) € RY, Ko1(¢)) € Hg (it is a function of
x € T), K2o(¥) is a v x v real matrix, Ko2(¢) is a linear self-adjoint operator of Hg
and Ki1(¢) : RV — Hé‘. Note that the above Taylor coefficients do not depend on
the parameter (p.

The Hamilton equations associated to are

& = Kio(¥) + Kz0(¢)n + Ky (¥)w + 0y K5 (4,m, w)

i = —[000 ()] Co — 0y Koo(¥) — [0y K10(4)] "1 — [0 Ko1 (¥)] T w
— 0y {5 K20(¥)n -+ (K11 (¥)n, w)r2(my + 5 (Ko2(¥)w,w)p2¢y  (6.15)
+K>3(1,n,w)}

W = 0z (Ko1(¥) + K11(¢)n + Ko2(¥)w + Vu K>3(¥,n,w))

where [Bleo(w)]T is the v x v transposed matrix and the operators [8¢K01(1p)]T
and K{i(¢) : H& — RY are defined by the duality relation (8wK01(w)[zﬁ],w)Lz
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= [3¢K01(¢)]Tw, for all ) € RY, w € Hé, and similarly for K71. Explicitly, for
all w e H§‘, and denoting ¢, the k-th versor of R”,

v v

Kh($)w = Z (KT1()w - ep)er = Z (waKu(w)Qk)Lz(T)Qk eRY.

k=1 k=1

In the next lemma we estimate the coefficients Koo, K10, Ko1 of the Taylor ex-
pansion (6.14]). Note that on an exact solution we have Z = 0 and therefore
Koo(’g[)) = const, K190 = w and Kp; = 0.

Lemma 9 Assume (6.4). Then there is o0 := o(1,v) such that

Li Li Li Li Li Li
18y Koo |5, [ K10 — w5, [ Kor [EPD) <4 2] XPD) 411 2 500 |36 P

Proof Follow the proof of Lemma 6.4 in [5]. The fact that here there is no factor
£26=1y71 is a consequence of the better estimate (6.10) for F(is, (o) compared to
the analogous estimate in [5]. O

Remark 4 1f F(io,¢o) = 0 then o = 0 by Lemma @ and Lemma |§| implies that
(6.14) simplifies to the normal form

1 1
K = const o+ 5 Kao()n-n+ (K1 (9)1,0) ) + 3 (Koa (9w, w) oy + Kvs

We now estimate Kao, K11 in (6.14). The norm of K¢ is the sum of the norms
of its matrix entries.

Lemma 10 Assume (6.4). Then

| K20 — e2PADg |5 <4 24! 4 £2b) 30|20 | (6.16)
Li —2b Li b Li Li

1EK11n)s ™) <o 2725 4 230 |FED) Il (6.17)
T Li 5—2b Li 2b~ Li Li

IE T w]s P <o 2wl ST + 2130 | KEO JwlFG) . (6.18)

In particular ||K20 — 62bAD5|H;§p(7) < Ce®? and

Li - Li Li _ Li
HKll/r]”slp(’Y) SCE5 2b||77|| ip(7v) HKlTl,w”Slp(’Y) SCE5 2b||w|| 1p(’Y).

0 S0 ) 0 so+2

Proof See the proof of Lemma 6.6 in [5]. O

Consider the linear change of variables (5, 7,%2) = DG;(,0,0)[0, 7, @], where
DGs(p,0,0) is obtained by linearizing G5 in (6.13)) at (¢,0,0), and it is represented
by the matrix

D00 () 0 0
DGs(,0,0) = (%2!5(90) [0600(0)] " —[(3950)(90(90))]T3m1) - (6.19)
Dy zo() 0 I

The linearized operator d; ¢ F(is, (o) transforms (approximately, see (6.40])) into
the operator obtained linearizing (6.15) at (v, n, w,¢) = (¥, 0,0, o) (with 8; ~ D),
which is the linear operator
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where

By := Dt — 0y K10(9)[] — K20(0)7i — K11 (), (6.20)
By 1= Do + [0,00(2)]TC + 04 [000 ()] T [, Co] + D Koo () ]

+ [0y K10(0)] 7+ [0y Kor (9)] " @,
Bs 1= D@ — 9:{0y Ko1(¢)[0] + K11 ()7} + Koz ()@}

Lemma 11 (Lemma 6.7 in [5]) Assume (6.4) and let 7:= (QZ, N, ). Then

IDG5(0,0,0) @l + | DG (2,0,0) ™ [illls <s [[2lls + |Tol|s+ Ellso (6.21)
ID*Gs(,0,0) 1, 22]lls <s [[21llslEzllso + 2 llso [B2lls + 1 Tollsto 7L 5o [R2lls0

for some o := o(v, 7). The same estimates hold for the || \|§ip(7) norm.

In order to construct an approximate inverse of (6.20) it is sufficient to solve
the equation

~ ~ Duth — Koo ()i — K1y ()@ g
D[+, 7, @, ] == Dosii + [0y00 ()] T ¢ = | g2 (6.22)
Do — azKll(SD)ﬁ_axKOQ((P)ﬁ)\ g3

which is obtained by neglecting in Bj, B2, B3 in the terms 0y K10, 9yy Koo,
Ay Koo, 8yKo1 and 8y[0,00(¢)] [, o] (these terms are naught at a solution by
Lemmata |§| and

First we solve the second equation in (6.22)), namely D7) = g2 — [8¢90(¢)]TZ.
We choose ¢ so that the p-average of the right hand side is zero, namely

(= (g2) (6.23)

(we denote (g) := (27) ™" [}, g(¢)de). Note that the p-averaged matrix ([8¢90]T)
= (I 4 [0,60]") = I because 0o(p) = ¢ + Oo(p) and Og(y) is a periodic function.
Therefore

7:=D5" (92 — [0y00(o)]" (92)) + (M), (M) €R”, (6.24)

where the average (7)) will be fixed below. Then we consider the third equation
EW{U\ = g3 + ag;Kll(ga)’;]\7 ,Cw = w - 89(; — 89;[(02(@) . (625)

e INVERSION ASSUMPTION. There exists a set 200 C 20 such that for all w € 2, for
every function g € H;,t“('ﬂ‘wrl) there ezists a solution h := LL'g € Hg, (TY*+1) of
the linear equation L,h = g, which satisfies

— Li — Li —1y~ pLi Li
125 gl < C(s)y (gl 2R + €24 Toll O [lglsiP ) (6.26)

for some p := p(r,v) > 0.

By the above assumption there exists a solution

@ = L5 [g3 + K11 (9)77] (6.27)
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of (6.25)). Finally, we solve the first equation in (6.22)), which, substituting (6.24]),
.27

27)), becomes
D) = g1 + M1 () (@) + Ma(0)g2 + Ms(9)gs — Ma(9)[000]" (g2) , (6.28)
where

Mi(p) = Kao(p) + KT (9) L5 0 K11 (),  Ma(p) == Mi(p)DS ",
Ms(p) := Ki1(9) Lo

To solve equation (6.28) we have to choose (7)) such that the right hand side in
(6.28]) has zero average. By Lemma and (6.4), the p-averaged matrix

(6.29)

(M) = e ADg + O(°~ ) . (6.30)

Therefore, for e small, (M) is invertible and (M;)™! = O(72%) = O(y 1) (recall
(5.9)). Thus we define

(@) == —(M1) " [(g1) + (Ma2g2) + (Mags) — (Ma[dy00]" ) (g2)]- (6.31)

With this choice of (i), equation has the solution
b =D5 g1 + Mi(9)(@) + Ma(p)g2 + Ms(p)gs — Ma()[0400]" (g2)].  (6.32)
In conclusion, we have constructed a solution (QZ, 7,1, E ) of the linear system .

Proposition 2 Assume (6.4]) and (6.26]). Then, Yw € 00, Vg 1= (91,92,93), the
system (6.22) has a solution D™tg := (w,n,w C) where (w,n,w C) are defined in

|6.32|), (16.24)), 1|6.31|), 1|6.27|), 1|6.23|D, and satisfy

_ Li — Li — Li Li
D g5 <oy T (gl ZR + ey 1\|Jo|\sfﬁ>||g||soi<:>). (6.33)

Proof Recalling , by Lemma “ -, we get ||M2h||s0 + [|[M3h]|s,
< C|hlsg+o- Then by (6.31)) and _2) = O(y '), we deduce
\|Li - L - L
(@I < 071 gHED and , lmply Al <o 7 (gl
+||30||5+g||g\|153p(7)). The bound ( is sharp for @ because £;'gs in (6.27) is

estimated using (6.26)). Finally Jsatisﬁes (6.33) using (6.32)), (6.29)), (6.26)), (5.16)
and Lemma [I0l O

Let Gs(v,m,w,¢) == (Gs(1,n,w),¢). Let ||(w,n7w,§)|\£‘ip(7) denote the maxi-
mum between || (14,7, w)||5"P") and |¢|“P("). We prove that the operator

To := (DGs)(¢,0,0) oD~ o (DGy)(,0,0) " (6.34)
is an approximate right inverse for d; ¢ F(io).

Theorem 3 (Approximate inverse) Assume (6.4) and the inversion assumption
(6.26). Then there exists p := p(r,v) > 0 such that, for all w € Qoo, for all g :=

(91,92,93), the operator Ty defined in (6.34]) satisfies

IToglls™ ™ <o 4 (IglZE + €27 HIFollE O gl ). (6.35)
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The operator T is an approzimate inverse of d; ¢ F(io), namely

. Li
1(d; ¢ F(io) o To — I)g]|s"? (6.36)
— . Li Li
<s v 1 F o, o) 12 gl B
— . Li — . Li Li Li
+ 47 HIF (o, )IZES + 2y M IF (o, NS N1T0ll5 R Mgl sRG

Proof In this proof we denote || ||s instead of || ||£fip(7). The bound (6.35]) follows
from (6.34)), (6.33)), (6.21). By (5.6)), since X does not depend on y, and 44 differs
from ig only for the y component, we have

di ¢ F(i0)[7,C] = di ¢ F(i5)[3,C] = di X p(i5) [7] — di X p (i0)[7] (6.37)

1
= / Ayd; X p (00,90 + s(ys5 — v0), 20)[ys — yo,7)ds =: & (7 C].
0

By 613, @3, E9), [©4). we estimate
€07 Cllls <s 1 Zllso+olllls+o + (1Z]ls+o + 1 Z]lso+o 1 Tolls+o)lellso+o  (6.38)

where Z := F(io, (o) (vecall (6.5)). Note that &z C] is, in fact, independent of
¢. Denote the set of variables (¢,n,w) =: u. Under the transformation Gy, the
nonlinear operator F in (5.6)) transforms into

F(Gs(ulp)), ¢) = DGs(u(p)) (Duulp) — X (u(e), C)), (6.39)

where K = H, ; o G, see (6.14))-(6.15)). Differentiating (6.39) at the trivial torus
u5(~<p) = Ggl(ié)(cp) = (¢,0,0), at ¢ = (o, in the direction (4, ) = (DG5s(us) " [7],¢)
DG (us) [, (], we get

-~

d; ( F(is)[7 C] =DGs(us) (Du — dy ¢ X5 (us, (o) [8, C]) + &1[7,C], (6.40)
&1[%,¢] :=D?G5(us) [DGs(us) ' Flis, Co), DGs(us)~'[7]], (6.41)

where d, ¢ Xk (us, (o) is expanded in (6.20). In fact, & is independent of C. We
split

Dol — dy ¢ X1 (us, 0)[8,¢] = DG, ¢] + Rz [4, ],

where D[q, E] is defined in (6.22)) and Rz [y, 7, w, (/j\] is defined by difference, so that
its first component is —8y K10()[t], its second component is

Dy [000(9)] [, Co] + Dy Koo () [¥] + [0y Kr0())" 7 + [0y Ko ()] @,

-~ -~

and its third component is —8.{dy Ko1(p)[®]} (in fact, Rz is independent of ().

By (6.37) and (6-10),
d; ¢ F(io) = DGg(us) o Do DGs(us) "' + &0 + &1 + &2,
52 = DG(;(U(;) [e] RZ [e] Dé5(u5)_l.

By Lemmata EL @, and (6.10), (6.4), the terms &1, &2 satisfy the same bound

(6.38) as &. Thus the sum &£ := &y + &1 + &2 satisfies (6.38). Applying To defined
in (6.34) to the right in (6.42)), since D o D™! = I (see Proposition , we get

di ¢ F(ip) o Tog — I =& oTy. Then (6.36) follows from (§6.35) and the bound (6.38)
for €. ad

(6.42)
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7 The linearized operator in the normal directions

The goal of this section is to write an explicit expression of the linearized operator
L, defined in , see Proposition To this aim, we compute  (Koz2(1)w, W) 2(T),
w € Hg, which collects all the terms of (He o G5)(¢,0,w) that are quadratic in w,
see . We first recall some preliminary lemmata.

Lemma 12 (Lemma 7.1-[5]) Let H be a Hamiltonian function of class C*(Hg (Tz), R)
and consider a map ®(u) := u + ¥(u) satisfying ¥(u) = Hg¥(IIgu), for all u, where
E is a finite dimensional subspace as in (3.5)). Then

Ou[V(H o )](u)[h] = (0uVH)(@(u))[1] + R(u)[R], (7.1)

where R(u) has the “finite dimensional” form
R(u)[h] = Z\ﬂSC (hvgj(u))Lz(T)Xj(u) (72)

with x;(u) = 9% or gj(u) = 7% The remainder in (7.2)) is R(u) = Ro(u)+Ri (u)+
Ro(u) with

Ro(u) := (uVH)(®(u)du¥(u),  Ra(u) = [0u{¥'(w)"}][-, VH(S(u))],
Ra(u) := [0u® ()] (0uV H) (®(w))8ud (). (7.3)

Lemma 13 (Lemma 7.3 in [5]) Let R be an operator of the form
1
Rh = Z A (h7 9;j (T))L2 (T)X] (T) dr ’ (74)
ljl<C

where the functions g;(7), xj(7) € H®, 7 € [0,1] depend in a Lipschitz way on the
parameter w. Then its matriz s-decay norm (see (2.4])-(2.5])) satisfies

Li Li Li Li Li
REPD < 37 sup (GO lgg (D5 + I (71157 gy (1)15).
g1<c el

7.1 Composition with the map Gs

In the sequel we use the fact that Js5 := J5(p;w) :=i5(¢;w) — (v, 0,0) satisfies, by

and (.4),

1351155 < Ce* 7t = >, (75)

In this section we study the Hamiltonian K := H. o G§ = e 0 A 0 G5 defined

in , . Recalling , , Ae 0 Gg has the form
Ac(Gs(t,n.w)) = eve (B0 (), ys (W) + L ()0 + La()w) +€"(20(4)) +w)  (7.6)

where ve is defined in (4.7)), and

Li(4) := (000 ()] 7T, La(¥) := [(B6Z0)(Bo(v))] 05" (7.7)
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By Taylor’s formula, we expand ((7.6) in w at (n, w) = (0,0), and we get
(Ae 0 G5)(¥,0,w) = T5(¢) + T ()w + T2 (¥) [w, w] + T>3(¥, w) ,
where

T5(4) == Ac(G5(1,0,0)) = evs(¥) + 20(v), vs(¥) == ve(Bo(¥), ys(¥))  (7.8)

is the approximate isotropic torus in the phase space H} (T) (it corresponds to is
in Lemma ,

Ty (¥)w := 271U () w + ’w, To () [w,w] := E4b73U2(1/1)[w, w]

Uy = 3 @ L,
7€s 24/&; + 20Dl [ys (w));

(Lo ()w]? P @)

w,w| = — J eijz .
e y;? 8{¢; + 20~V jllys (W)];332 (710

and T>3(¢, w) collects all the terms of order at least cubic in w. The terms Uy, Uz =
O(1) in e. Moreover, using that La(v) in (7.7)) vanishes as zo = 0, they satisfy

(7.9)

[U1wlls <s [[Tsllsllwllso +1Tsllso ]]s ,
~ 2 ~ 112
[U2[w, wllls <s 1351l Tslso lwll5 + 135115, lwllsollwlls

and also in the || ||I;ip(7)-norm. We expand H by Taylor’s formula

H(u+ h) = H(u) + (VH) (W), 1) r2er) + 5 ((0uVH) (w)[R], h) g2 (1) + O(R®).

Specifying at u = T5(v) and h = T (¢¥)w + T2 (¢)[w, w] + T>3 (¢, w), we obtain that
the sum of all the components of K = e~ 2°(Ho A- 0 G5) (1,0, w) that are quadratic
in wis

(7.11)

3 (Koaw, w) gy = e > ((VH)(T5), Tow, w]) 2 ()
+ 2 L((0uVH) (T5)[T1w], Tyw) 27y -
Inserting the expressions , in the last equality we get
Koa()w = (8, VH)(Ts) [w] + 26~ (0, VH) (Ts) [Urw] (7.12)
+ 2O VUT (0, VH) (T5) [Urw] + 263 Us w, |7 (VH)(T5).

Lemma 14 The operator Ko2 reads

(Koz2(¥)w,w) 21y = ((0uVH)(T5)[w], w) r2(1) + (R(¥)w, w) 2 (1) (7.13)
where R(Y)w has the “finite dimensional” form
R(w)w = Zu‘gc(w’gj(w))LQ(T)Xj(w)' (714)
The functions g;, x; satisfy, for some o :=o(v,T) > 0,
[ N e 1 e P P M e (7.15)
10:9;5 llls X llso + 19595 [ 150 l1X5lls + 11951150 105 x5 [lls + 1191l 195 x5 [l s
<s & ([lsto + 35l stolFllsoto) (7.16)

where i = (0,y,z) (see (5.1)) and 7= (6,7, 7).
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Proof Since Uy = IIgU; and Uy = IIgUs, the last three terms in (7.12) have all
the form ([7.14). We have to prove that they are also small in size.

By (4.8)), (6.13)), , the only term in e 2% Hy (A (G5 (1, n, w))) that is quadra-
tic in w is %fﬂ. wj dx, so this is the only contribution to coming from Hs.
It remains to consider all the terms coming from Hs4 := Ha + Hxs5 = O(u).
The term eb_lauVH24(T5)U1, the term 52(b_1)UT(8uVH>4)(T5)U1 and the term
e 73U VH>4(T5) have all the form and, usmg the 1nequa11ty HT(;HLIP(V) <
e(1+ |35 ||slp(7)) D and ., the bound (| holds. By (6.11]) and usmg
explicit formulae |-j we get ((7.16] -

The conclusion of this section is that, after the composition with the action-
angle variables, the rescaling (4.5)), and the transformation G, the linearized oper-
ator to analyze is w — (9, VH)(Ts)[w], w € H&, up to finite dimensional operators

which have the form (7.14) and size (7.15).

7.2 The linearized operator in the normal directions

In view of ( we now compute ((8uVH)(Ts)[w], w)r2(r), w € Hg, where H =
Ho®p and @B is the Blrkhoff map of Prop081t10nl 1] We recall that ®g(u) = u+¥(u)
where ¥ satisfies and ¥(u) = O(u®). It is convenient to estimate separately
the terms in

H=Hodp=Hy0oPp+HyobPp+ H>50Pp (7.17)

where Ha, Hy, H>5 are defined in (3.4).

We first consider H>5 o #p. By (3.4) we get VHs>s5(u) = mo[(Ouf) (2, u, uz)]
—02{(Ou, f)(x,u,uz)} where o is the operator defined in (1.32). Since &5 has the
form (3.6)), Lemma (at u = Ty, see (7.8)) implies that

OuV(Hz5 0 ) (T5)h] = (0uVH>5)(®5(T5))[h] + R, (T5)[h]
= 0u(r1(T5)0zh) +ro(Ts)h + R, (T5)[h] (7.18)
where the multiplicative functions ro(Ty), m1(Ts) are
ro(Ts) :== Jo(@B(Tg)), 7‘1(T5) = o01(25(Ty)), (7.19)
o0(u) 1= (Quuf) (2, u, uz) = 0uf{ (Quu, f)(2, u, uz)},
01 (u) = _(8umum f)(xv U, u$)7

the remainder Ry, (u) has the form (7.2) with x; = eV or g; = €Y” and, using
(7.3), it satisfies, for some o := o(v,7) > 0,

Li i Li Li
197115 e 15POY 4 (g5 1520 o 157 <o (1 + 13515007, (7.20)
18595 lls 15 10 + 10595 lllso x5 s + 119710 10 s + 111111055 5o

<s & (|illsto + |75 lls+2 [Tl so-+2)-

Now we consider the contributions from Hg o @ and Hy o 5. By Lemma and
the expressions of Hy, Hy in (3.4) we deduce that

OuV(Hz 0 @p)(T5)[h] = —Osah + R, (T5)[h], (7.21)
OuV (Ha 0 Dp)(T5)[h] = —3¢(P5(T5))*h + Ry, (T5)[h], (7.22)
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where Ry, (u), Ry, (u) have the form (7.2). By (7.3), they have size Ry, (T5) =
O(£?), Ry, (Ts) = O(*). More precisely, the functions g;,x; in Ry, (T5) satisfy
the bounds in with £® replaced by ¢*. Regarding Ry, (Ts), we need to find
an exact formula for the terms of order 2.

The sum of (|7.18]), and gives a formula for 9, VH(T}s)[h], where the
terms of form (7.2)) and order &2 are confined in R 1, (Ts). On the other hand, recall-
ing (3.7), H = Ha+Ha+H>s5, and 0, VHa(T5) = —0pe, while 8, VH>5(T5) = O(e®).
Therefore all the terms of order €2 in 9, VH(T}s) can only come from 8, VHa4(Ts).
Using formula for Ha, we calculate

15 (0uVHa(Ts)[h]) = —3¢II5 (T§h) Vh e Hi. .

Hence all the terms of order &2 in IT3 (8, VH(T;)[h]) are contained in the term
—3¢I15 (T?h) (and the term —3¢ITZ (T2h) is included in —3¢I1Z [(®5(Ts))?h] be-
cause ®(Ts) = Ts +¥(Ts)). As a consequence, I13 Ry, (Ts) is of size O(e®), and
its functions g;, x; (see (7.2)) satisfy with €° replaced by 2.

By Lemma[I4] and the results of this section we deduce:

Proposition 3 Assume ([7.5)). Then the Hamiltonian operator L., has the form, Yh €
HE. (T
St ’

Loh = Duh — 83 Kozh = Mg (Dwh + 8z2(a10:h) + 0z (aoh) — 9 Rh)  (7.23)

where Ry := Ry, (Ts) + Ru,(T5) + Ru.,(T5) + R(¢) (with R(1) defined in Lemma
and Ry, (Ts), Ru, (Ts), R, (Ts) defined in (7.18), (7.21), (7.22)) ), the functions

a1 :=1-7r1(Ty), ao = 35(P(Ts))? — ro(Tys), (7.24)
ro,r1 are defined in (7.19), and Ts in (7.8). They satisfy

llar = 15 4 Jlag — 3cTZ 5P <, 3(1 + [135]277), (7.25)
101 [@]ls + i (a0 — 3TAlls <s € (Fllsto + [Tsllssolsors)  (7.26)

where T5(p) := (6o(p) — @, ys(¥), z0(p)) corresponds to Ts. The remainder R« has the

Jorm (7.2)), and its coefficients gj,x; satisfy bounds ([7.15)-(7.16)).

Remark 5 For K = H 4+ AM?, A = 3¢/4, the coefficient ag in (7.24) becomes
apg = 3§7T0 [(@B(T(;))Q] — To(Tg),
where g is defined in (1.32)). Thus the space average of ag has size O(e3).

Bound imply, by Lemma estimates for the s-decay norms of R«. The
linearized operator L, := Lo (w,is(w)) depends on the parameter w both directly
and also through the dependence on the torus i5(w). We have estimated also the
partial derivative 9; with respect to the variables i (see ) in order to control,
along the nonlinear Nash-Moser iteration, the Lipschitz variation of the eigenvalues
of L, with respect to w and the approximate solution 4.
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8 Reduction of the linearized operator in the normal directions

The goal of this section is to conjugate the Hamiltonian linear operator L, in
(7.23]) to the constant coefficients linear operator Loo defined in (8.64). The proof
is obtained applying different kind of symplectic transformations. We shall always

assume (|7.5)).

8.1 Space reduction at the order Oz

As a first step, we symplectically conjugate the operator L, in to £1 in
, which has the coefficient of 9,4z independent on the space variable. Because
of the Hamiltonian structure, this step also eliminates the terms O(9zz).

We look for a ¢-dependent family of symplectic diffeomorphisms &(¢) of H §
which differ from

AL = Hé_'Aﬂé_ ’ (Ah)(@v :L') = (1 + ﬂx(%x))h(%m +ﬂ(907 m)) ) (81)

up to a small “finite dimensional” remainder, see ({8.3]). For each ¢ € T, the map
A(p) is a symplectic map of the phase space, see Remark 3.3 in [3]. If ||3]l1,00 <
1/2, then A is invertible (see Lemma [3)), and its inverse and adjoint maps are

(A7 R) (e, y) = (1 + By (e, 1)) b0,y + B, v))

B 8.2
(ATh)(0,y) = h(o,y + Ble.y)) (52)

where x =y + B(p,y) is the inverse diffeomorphism (of T) of y = = + 3(¢p, z).

The restricted map A (p) : Hé‘ — Hé‘ is not symplectic. We have already
observed in the introduction that A(y) is the time-1 flow map of the linear Hamil-
tonian PDE . The equation is a linear transport equation, whose
charactheristic curves are the solutions of the ODE

d
= —b(p, 1, 7).

To obtain a symplectic transformation close to A, we define a symplectic map
@ of Hé‘ as the time 1 flow of the Hamiltonian PDE . The linear operator
113 85 (b(r, z)u) is the Hamiltonian vector field generated by the quadratic Hamil-
tonian % [ b(r, z)u’dz restricted to H%. The flow of is well defined in the
Sobolev spaces Hg, (Tz) for b(, 7, z) smooth enough, by standard theory of linear
hyperbolic PDEs (see e.g. section 0.8 in [29]). The difference between the time 1
flow map @ and A, is a “finite-dimensional” remainder of size O(f).

Lemma 15 (Lemma 8.1 of [5]) For ||B|lyyso+1.00 small, there exists an invertible
symplectic transformation & = A + Re of HZy, where Ay is defined in (8.1) and
Re is a “finite-dimensional” remainder

1 ..
Roh=3" / (h gy (D) 2 g (P dr 4 3 () o€ (83)
jes’0 jes

for some functions x;(7),9;(7),v; € H® satisfying for all T € [0,1]

[93lls 4+ 1195 (Dlls <s [1Bllwsrzoe s g (Plls <s L+ [1Bllwssre . (8.4)
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Moreover
[Bhlls + |87 hlls <s [hlls + [1Bllwerace lhllse VA€ Hg. . (8.5)

We conjugate L, in (7.23) via the symplectic map & = A, + Rg of Lemma
Using the splitting IIg = I — IIg, we compute

Lo® = ODyy + 3 A(b38yyy + badyy + b1y + bo) g + Ry, (8.6)
where the coefficients b;(p,y), 1 =0,1,2,3, are

by = ATfar(1+ 82)%), b2 i= AT[2(a1)a(1 4 B2)® + 6a1Bec(1+ B2)],  (8.7)

3a1ﬁ:%z
1+ 8z

(Dwﬂr + alﬁr'rr"c + 2(al)mﬁrxr + ((al)rz + ao)ﬁrz) + (ao)x],

by = .AT [(Dwﬁ) +

1
L+ Be

+ 4a1ﬂwwx + 6(a1)¢ﬁa:a: + ((al)arw + aO)(l + 61)]7

bo = AT|:
and the remainder
RI = — Hé: (alaa:xz + z(al)maxx + ((al)wz + ao)aac + (a/O)x)IYS"’4IYSL
— I 0: R« A + [Pu,Ra) + (Lo — D) R - (8.8)

The commutator [Dw, Re) has the form (8.3) with Dwg; or Dwx;j, Dwt); instead of

Xj» 95, ¥; respectively. Also the last term (Lo, — Dw)Rg in (8.8) has the form (8.3)
(note that L, — D,, does not contain derivatives with respect to ). By , and
decomposing I = ITg + Hé_, we get

Loo® = B(Des + b3dyyy + badyy + b10y + bo) 15 +Ryr, (8.9)
Rir:= {Hé(.A - I)HS — Rgs}(b:gayyy 4 b20yy + b10y + bo)Hé +Rr. (8.10)
Now we choose the function 8 = 3(¢, z) such that

a1(p,@)(1 + Bz (0, 2))° = b3 () (8.11)

so that the coefficient b3 in depends only on ¢ (note that AT [b3(¢)] = bz(p)).
The only solution of (8.11) with zero space average is (see e.g. [3]-section 3.1)
B := 03 'po, where po = bs(¢)*3(a1(p,z))""/% =1, and

bs(o) = (o= A(al(ga,m))—l/%x)*g’. (8.12)

Applying the symplectic map ! in we obtain the Hamiltonian operator
(see Definition

Ly =@ L@ = 15 (w- Dy + b3()Byyy + b1y +bo) [T + Ry (8.13)

where 1 := & 'R;;. Note that the term b2dy, has disappeared from (8.13)
because, by the Hamiltonian nature of L1, the coefficient by = 2(b3)y (see [3]-
Remark 3.5) and therefore, by (8.12)), b2 = 2(b3)y = 0.

Lemma 16 (Lemma 8.2 of [5]) The operator R1 in (8.13)) has the form (7.4]).
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Since a1 = 1+ O(£%) and ag = 3¢T7 + O(e?) (see (7.25)-(7.26)) for the precise

estimates), by the usual composition estimates we deduce the following lemma.

Lemma 17 There is 0 = o(7,v) > 0 such that

18115+ [[bs — 1|5 + [|by — 3TFI5P) + [lbo — 3¢(TF) |5

<s 1+ 3lI5), (8.14)
10:80s + 19:bs allls + 19: (br — 3sTF)illls + 183 (bo — 3¢(T5)2) llls
<s ([l 4o + [13sllstoFllso+o) (8.15)
where Ty is defined in (7.8). The transformations &, &~ satisfy
[@h]|5™P + 18~ a7 <o ISR+ 1351 EE AR (8.16)
|0 (@n)lls + 1102~ ) [Ellls <s lhllstolillsoro + lhllsorolillste  (8.17)

+ ||36||s+crHh||50+a||ﬂ|50+6 .

Moreover the remainder R1 has the form (7.4), where the functions x;(7), g; () satisfy

the estimates ((7.15))-(7.16) uniformly in 7 € [0, 1].

8.2 Time reduction at the order Ozzz

The goal of this section is to get a constant coefficient in front of dyyy, using a
quasi-periodic reparametrization of time. We consider the change of variable

(Bw)(p,y) = wlp+walp)y), (B 'h)(0,y) = h(+wi(¥),y), (8.18)

where TV — T, 9 — ¢ = 9+ wa(V) is the inverse diffeomorphism of ¥ = p+wa(yp)
in TY. By conjugation, the differential operators become

B 'w-0,B=p()w -89, B 'oyB=0,, p:=B '(1+w-8a). (8.19)

By (8.13)), using also that B and B~! commute with Hé_, the conjugate operator
B~'£1B is equal to

1% [pw - By + (B 1b3)0yyy + (B~ 01)8y + (B bo)|lIg + B"'R1B.  (8.20)

We choose a such that (B~ 1b3)(0) = map(9) for some constant m3 € R, namely

b3(p) = m3(1+w - dpa(yp)) (8.21)
(recall (8.19)). The unique solution with zero average of (8.21)) is
= Lo, s — N
0(e) = (w09 s —ma)(9). mai= o [ m(o)de. (822

Hence, by (8.20),
B7MLiB =pLy,  Lo:=II%(w- 0y +madyyy + 10y + co) I3 +Ra  (8.23)
cr:=p "B '), co:=p "B 'ho), Me:=p 'BT'RB. (8.24)

The transformed operator £2 in (8.23)) is still Hamiltonian, because the repara-
metrization of time preserves the Hamiltonian structure (see Section 2.2 and Re-
mark 3.7 in [3]).
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Lemma 18 There is 0 = o(v,7) > 0 (possibly larger than o in Lemma such that

ma —1]"P0) < ¢, |oymsfil] < %[l sg 4o (8.25)
Li — Li
ledl5™P) <o 3771+ 11751507

10safillls <s €y ([llsto + [1Tsls+o Tl so+0)
Li ~ nLi
llp— 15 <g &3(1 + |75 2207

s+o
10ip[lls <s €2(|[ills+o + |Tslls+o 7l so+0)
ller — 3STEEPD + Jleo — 36(TF)a 8™ <o 277 A + 1351 HED), (8.26)

185 (1 — 3<T)illls + 19i (co — 3¢(T5)) il s

5 —1 -
<s €77 (Ills+o + 135lls+0 2l so+0)-

The transformations B, B~ satisfy the estimates (8.16), (8.17). The remainder Rz

has the form (7.4), and the functions g;(7), x;(T) satisfy the estimates (|7.15))-(7.16]
for all T € [0,1].

Proof To estimate \|a||I§ip(’Y) we also differentiate with respect to the pa-
rameter w. Note that ¢; — 3¢B™1(T#) = O(£?), and similarly ¢y — 3¢B~*((T§)z)
= O(e?). The factor e°4~! in the last two inequalities comes from the estimate of
the difference B™(T§) — TZ ~ (T2)pa = O(%3y71). o

8.3 Translation of the space variable

In this section we remove the space average from the coefficient in front of 9.
Consider the change of the space variable z = y+p(1) which induces on H§, (T* )
the operators

(Tw)(¥,y) == w(@,y+p(®)), (T 'h)®,2)=h(9,z-p()) (8.27)

(which are a particular case of those used in section. The differential operators
become 7T 'w-9yT = w-8y +{w-dyp(9)}8:, T 18, T = 9. Since 7,7 ' commute
with 173, we get

L3:=T "LoT = g (w- By + m3dszz + 105 + do) 115 + K3, (8.28)
di = (T er) +w-dgp, do:=T ‘e, R3 =T 'Ry7T. (8.29)
We choose
mi = 71 / Cld’lgdy p = (w . (919)_1 (ml - i Cldy) (830)
(27I')V+1 Tv+1 ’ 27l' T ’
so that
1 / di(9,2)dz=m1 VI eT". (8.31)
271' T

Recalling (8.26), we analyze the space average of c1 in more detail. To avoid
ambiguity between the space variable y € T and the action ys : TV — R” of (7.8)),
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we rename z € T the space variable, and ¢ € T" the variable on the torus (time

variable). Let
= — i) e i
v(p,x) = Zjes\/gje e’”, (8.32)
where ¢: S — Z" is the odd injective map (see (L.11}))
07) =€, L(=3):=-€, i=1,...,v (8.33)

and e; = (0,...,1,...,0) denotes the i-th vector of the canonical basis of R”. In
view of the next linear Birkhoff normal form step (whose goal is to normalize the
term of size e?), we observe that the component of order ¢ in 7§ (see (7.8)) is
2-2 .
e“v*, with
2 2_2Li 2~ | Li
175 — %15 < 5107 (5.30
2 22\ [~ 2 ~ :
10:(T5 — e"07)[e]lls <s € ([Plls+o + [1Ts/ls+o [Pl s+o) -

Moreover, from (7.8)), since (vs, 20)r2(ry = 0, and (0p)—; = —(6o); for all j € S, we
have

/ngx:z-:Q/vgda:—l—EQb/z%dm:sQZ@+52b2|j|(y5)j+s2b/z(2)dx,
T T T T

JES JES

We define
di i=di — 3§€2172, do = do — 3(52(172)35, (8.35)

and note that, by (8.31) and (8.32),

1 s 3e® [ o, 2 — ,
27"/11‘dl de =m1 — o /TU dr =mq —e"c(§), (&) := 3§j§9£]. (8.36)

Using the explicit formulae above, and Lemma [13| for the estimate of Rs, we get
the following bounds.

Lemma 19 There is 0 := o(v,7) > 0 (possibly larger than in Lemma@ such that

ma — 2c(&)["P < Ce®y7, |omafil] < Ce*[llsoto (8.37)
ISP <o €%y + 1361227
10:p(llls <s [ills+o + €%y 2Tsllso lillso o -
Idk[EPO) <4 &7y 72 4 2 3,]MP) k=01, (8.38)

s 5 —1
10, illls <s &y (Fllsto + [Tsllstolillsoro), *=0,1.
The matriz s-decay norm (see (2.4])) of the operator Ra satisfies
Li ~ 1 Li
|9%3‘5 p(7) <s El+bHJ6H p(7)

- sto (8.39)
10:R3[]ls <s & " ([[ills+o + [1Tslls+o[2llso+o) -

The transformations T, T~ satisfy (8.16)), (8.17)).
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Remark 6 When K = H + AM?, X\ = 3/4, the constant coefficient m; in (8.30)
becomes of size
ma [MPO) < 0Py (8.40)

The inequality (8.40) is the key difference between the cases H + (3¢/4)M? and H
(compare (8.40) with (8.37), where m contains the non-perturbative term 2¢(¢)).

It is sufficient to estimate PR3 (which has the form (7.4])) only in the s-decay
norm (see (8.39)) because the next transformations will preserve it. Such norms
will be used in the reducibility scheme of section [8:6}

8.4 Linear Birkhoff normal form

Now we normalize the terms of order 2 of £3. This step is different from the
reducibility steps that we shall perform in section[8.6} the diophantine constant v in
is 7 = o(¢?), and therefore the terms of order £ are not perturbative, because
ey~ ! is not small (in fact, it is big). The reduction of this section is possible
thanks to the special form of the term 2B defined in : the harmonics of 2B
corresponding to a possible small divisor are naught, except B; (0), see Lemma
Note that, since the previous linear transformations @, B, 7 are 0(557*2)—010&3 to
the identity, the terms of order €2 in £3 are the same as in the original linearized
operator.

First, we collect all the terms of order 2 in the operator £3 in . We have

£3 = Hé_(w . a(p + mSaxxm + 528 + d~1893 + &O)Hé_ + R3

where dy, do,R3 are defined in (8.35), (8.29) and (recall (8.32))
Bh = 350°0zh + 3¢(0%)xh = 95(30°h). (8.41)

Note that B is the linear Hamiltonian vector field of H é‘ generated by the Hamil-
tonian z — 3 I 5222 de.

We transform L3 by a symplectic operator &2 : Hg. (T 1) - HS. (T+1) of
the form

22(k—2)

Ak (8.42)

by 1= exp(52A) = IH§ LAt 54;1\, A= Z o ,

k>2

where A(p)h = ijj/escA;jl (go)hj/eijz is a Hamiltonian vector field. The map @5 is
symplectic, because it is the time 1 flow of a Hamiltonian vector field. We calculate

[:3@2 — @Qﬂé_ (Du + m38www)ﬂé_
= 2T {B + (DuA) + m3[0nae, AMTS + Mg d10.115 + Rs  (8.43)
where

Ry =" 5 {(DwA) + m3[0saw, A] + B(A + 2 A) }Ig (8.44)
+ Héchazﬂé(ég — I) + (Uédoﬂé + 9‘{3)@2 .
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Remark 7 Rs has no longer the form (7.4). However R3 = O(d9) because A =
0(9; ') (see Lemma , and therefore &5 — I, = 0(9; ). Moreover the matrix

decay norm of R is 0(52).

In order to normalize the term of order 2 of (8.43), we expand A;/(ga) =
ez A?l(l)eil'w, and for each 7,7’ € S¢, 1 € Z¥, we choose
B (1)
. _ J ifo-1 13 _ -3 0
A; (l) = i(w 1 +m3(j/3 _j3)) Hao-l+yg J # ’ (845)
0 otherwise.

This definition is well posed. Indeed, by (8.41) and (8.32),

Bl =3d0i Y. \Jeén. (8.46)

J1,J2€8
Ji+ie=5—j'
£(j1)+€(52)=!
In particular Bgl(l) = 0 unless |I| < 2. For || < 2and @-1+ 5% — 43 # 0, the
denominators in (8.45)) satisfy

w1+ ma(§" = %) = Ima(@- 145 = 5°) + (v — ma@) - 1]
> msl|@ -1+ 52 — 52| — |w — maa||l] > 1/2 (8.47)

for ¢ small, because |@ -1+ j% — 53] > 1 (@ 1+ j® — j3 is a nonzero integer),

w =&+ 0(¢?) and by (8.25).

Remark 8 The operator A defined in is Hamiltonian, because B is Hamilto-
nian. The reason is a general fact: the denominators d; j j, 1= i(w -l + ms(k® — %))
satisfy d; ;1 = d_;%; and an operator G(y) is self-adjoint with respect to the
L*(T) scalar product if and only if its matrix elements satisfy G¥(1) = GL(-),
see [3]-Remark 4.5. Alternatively, we could solve the homological equation of this
Birkhoff step directly for the Hamiltonian function whose flow generates ®s.

By the definition (8.45)), the term of order £ in (8.43) is zero on the Fourier
indices (1,7, 4') such that @-1+ ;"3 — j3 # 0, while it is equal to eQBj (1) for (1,5,5")
such that @ -1 + ;" — j2 = 0. Now we prove that the only nonzero components of

B that remain in (8.43) are B; (0).
Lemma 20 If &1+ — > =0 and B (1) # 0, then 1 =0 and j = j'.

Proof If B;:/(l) # 0, then, by (8.46]), there exist j1,jo € S such that ji +jo =5 — 5
and £(j1) + £(j2) = I. Hence, recalling (1.19) and (8.33)),

S G+ LG+ - =i+ 47—

0=w-1+5°—j
This equality, together with ji+j2+j'—j = 0, implies that (j1+j2)(j1+35") (jo+45') =
0 by Lemma [4} Since ji,j2 € S, j/ € S¢, the set S is symmetric, and 0 ¢ S, we
deduce that the factors j; + j and j2 + j' are nonzero. Hence j; + j2 = 0, and
therefore | = £(j1) + £(—j1) = 0. O
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Thus, the only nonzero term of order &2 in (8.43) is B;(O) By (8.46)), we
calculate Bg:(O) = ijc(€), where ¢(¢) is defined in (8.36]). Hence, by (8.45)), Lemma
and (8.36)), the term of order 2 in (8.43) is

2 1E{B + (DwA) + m3[0paz, A Mg = 2c(€)0, 115 . (8.48)

Remark 9 When K = H + AM?2, X = 3¢/4, the operator in becomes Bh =
02(3smo(v?)h). Hence B}(0) = 0, and the right-hand side term in is zero,
namely the first step of linear Birkhoff normal form completely eliminates all the
terms of order 2.

We now estimate the transformation A.
Lemma 21 (i) For alll € ZV, j,5' € S°,
ALl < e+ 1AL @™ <25+ 1D (8.49)
(74) (Al)g,(l) =0 for alll € 7", j,5 € S° such that |j — j'| > 2Cg, where Cg =
max{|j| : j € S}.
Proof (i) As already observed, for all |I|] > 2 one has B;l (I) = 0, and therefore
A;,(l) =0. For |I| <2, j # j/, one has (since |w| < |&] + 1)

Lt ma(§7% = %) = fmallf = 7% = w1l 2 37 +57) = 20wl 2 5(7 +57)
for (j’2 + j2) > C, for some constant C. Since also (8.47)) holds, we deduce that,
for all j # j/,

AD#£0 = Jwl+ms(® — ) > el + 152 (8.50)

On the other hand, if j = j/ € S¢, and | # 0, then Bgl(l) = 0, and therefore
Agl(l) = 0. For j = j' and | = 0 we also have A;,(l) =0 because @ -1+ 53 —j3 = 0.

Hence (8.50)) holds for all 5, 5'. By (8.45)), (8.50), (8.46]) we deduce the first bound
in (8.49)). The Lipschitz bound follows similarly (use also |j—j'| < 2Cs). (ii) follows

by (8.45)- (8.46)). 0

The previous lemma means that A = O(|dz|~!). More precisely, we deduce the
following bound.

Lemma 22 (Lemma 8.19 of [5]) |A81|{;ip(7) + |8xA|{;ip('Y) < C(s).

It follows that the symplectic map @2 in (8.42)) is invertible for e small, with
inverse

-1 _ 24y 25 q._
&, =exp(—e~A) Tge +e74, A Zn21 - (8.51)
|A8x‘§ip(7) + |81A‘T;ip(7) <C(s).
By (8.43) and (8.48) we get the Hamiltonian operator
Ly =By L3®s = 15 (Dw + m30zaz + (£2¢(€) + d1)8z) 15 + Ra, (8.52)
Ry = (5" — 1) (%¢(€) + d1)d. 11§ + 5 "R3. (8.53)
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Lemma 23 There is 0 = o(v,7) > 0 (possibly larger than in Lemma@ such that

Li - Li
RSP < T2 4 2|3, LR

b ) (8.54)
|aiR4m|s <s¢€ |m|s+a +e ||35||s+<7|m|50+0 .
Proof Use (8.44), (8.42)), (8.38]), (8.39), (8.25) and Lemma O

8.5 Space reduction at the order 9,

The goal of this section is to transform L5 in (8.52)) so that the coefficient of 9,
becomes constant. We conjugate L4 via a symplectic map of the form

S = exp(llg (w8, ") Ig = Mg (I +wd; )5 +§, (8.55)
where § := Pk>2 AlTE (woz H)]FITE and w : TYT' — R is a function. Note that

the linear operator I7 é (woy 1)]7 § is the Hamiltonian vector field generated by the
Hamiltonian —3 Jr w(dy *h)? dx, h € qu‘. We calculate

L48 — SITE (Dey + M3z + m102) T4
= Hé‘(?)mgww + 62C(§) + d~1 — ml)awﬂé + R5 R

Rs := IZ {(3mawzz + (£%¢(€) + dy — my) T Fw)mo
+ (Dow) + mgwazs + (2¢(€) + di) Mg ws )95 '
+ (DwS) + m3[02aa, S| + (£2¢(€) + d1)828S — m188s + RaS}g

where Rs collects all the terms of order at most 82. By (18.36), we solve 3mzwy

+e2¢(€) + dy —my = 0 by choosing w := —(3m3) 195 1 (e%c(€) + di — m1). For ¢
small the operator S is invertible, and we get

Ls =8 1£48 = I3 (D + m30uzz +m10:) s + Rs, Rs:=S 'Rs. (8.56)

Since S is symplectic, L5 is Hamiltonian (recall Definition . By (8.38)), (8.37),
B29), ome has [wlls ) <y T2+ 2|35,

Lemma 24 There is 0 = o(v,7) > 0 (possibly larger than in Lemma such that

+1 Li 7. -2 2~ L
SF — I|EPO) < T2 g 2| L)

10:SE fills <s €@ |illsto + %7 H|Ts s to [l soto -

The remainder Rs satisfies the same estimates (8.54)) as Ry.
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8.6 KAM reducibility and inversion of L,

The coefficients m3, m1 of the operator L5 in are constants, and the remain-
der Rs is a bounded operator of order 07 with small matrix decay norm, see (8.59).
Then we can diagonalize L5 by applying the iterative KAM reducibility Theorem
4.2 in [3] along the sequence of scales

No:=NY', n=0,1,2,..., x:=3/2, No>0. (8.57)

In section [9] the initial No will (slightly) increase to infinity as e — 0, see (9.5)). The
required smallness condition (see (4.14) in [3]) is (written in the present notations)

N§°|Rs |5y~ <1 (8.58)

where 3 := 77 + 6 (see (4.1) in [3]), 7 is the diophantine exponent in (5.3) and
(8.63)), and the constant Cop := Co(r,v) > 0 is fixed in Theorem 4.2 in [3]. By

Lemma [24] the remainder Rs satisfies the bound (8.54)), and using (7.5) we get
(recall (5.9))

\Rs|1;;i(g) < Ce'y % =2 |R5\§;i(g)771 <Ce'y P =ce' T3 (8.59)

We use that p in (7.5)) is assumed to satisfy p > o + 3 where o := o(7,v) is given
in Lemma

Theorem 4 (Reducibility) Assume that w +— i5(w) is a Lipschitz function defined

on some subset 2o C e (recall (5.2)), satisfying (7.5) with p > o + 3, where o :=
o(r,v) is given in Lemma and 3 := T1 4+ 6. Then there exists 5o € (0,1) such that,

if
NG Ty = Nl 30 < 5y, vi=e® =21 4 €(0,1/6), (8.60)

then:
(7) (Eigenvalues). For all w € {2 there exists a sequence
5% () o= 52 (w,d5(w)) = 1( = ma(w)i® + i (W)f) +75°(w), j €S, (8.61)

where m3,m1 coincide with the coefficients ms, m1 of Ls in (8.56|) for allw € 2, and

g — 1|MP() < Ce3, i — e2¢(€)|MPO) < Ce®y 7Y,

. (8.62)
reo MR < ce372 e g°

for some C > 0 (and c(§) is defined in (8.36)). All the eigenvalues pj° are purely
imaginary. We define, for convenience, ug° (w) := 0.

(74) (Conjugacy). For all w in the set

. . 2 ~37k3
02 = B0 1= € R0t 14457 ) = i )] 2 2 b

Ve, Wi ke S°u {0}} (8.63)
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there is a real, bounded, invertible linear operator Poo(w) : Hg. (Tv 1) — HZ, (Tv 1),
with bounded inverse ®3} (w), that conjugates Lo in (8.56) to constant coefficients,
namely

Loo(w) 1= D5 (w) 0 L5(w) 0 Poo(w) = w - Bp + Doo(w),

Do (w) = dinge s {15° (@)}

The transformations Poo, Pog are close to the identity in matriz decay norm, with

(8.64)

Li —1 Li 7T -3 2 —1y~ Li
[Poo — 1[50 |0 — 12000 <, &7y 427350 (8.65)

Moreover 4500,45501 are symplectic, and Loo is a Hamiltonian operator.

Proof The proof closely follows the one of Theorem 4.1 in [3], which is based on
Theorem 4.2, Corollaries 4.1, 4.2 and Lemmata 4.1, 4.2 of [3]. Here w € R”, while
in [3] the parameter A € R, but Kirszbraun’s Theorem on Lipschitz extension also
holds in R”. The bound follows by Corollary 4.1 of [3] and the estimate of
Rs in Lemma [24] above.

To adapt the proof of [3] to the present case, the only changes in the statement
of Theorem 4.2 of [3] are: £372% instead of ¢ in (4.18) of [3], and e**? instead of ¢
in (4.23), (4.25) and (4.26) of [3]. The factor e!** comes from the bound for d; Rs,

see Lemma [24] and (8.54)). O

Remark 10 Theorem 4.2 in [3] also provides the Lipschitz dependence of the (ap-
proximate) eigenvalues 7 with respect to the unknown io(y), which is used for
the measure estimate (Lemma [25]).

All the parameters w € 22) satisfy (specialize (8.63)) for k = 0)
liw -1+ pP W) > 29PWOT, Viez’, jess, (8.66)

and the diagonal operator Lo is invertible.
In the following theorem we verify the inversion assumption ([6.26) for L.

Theorem 5 (Inversion of L,) Assume the hypotheses of Theorem || and (8.60]).
Then there exists o1 = o1(r,v) > 0 such that, Vw € 022 (i5) (see (8.63)), for
any function g € H;fal (T"*1) the equation Loh = g has a solution h = L31g €
Hg, (T, satisfying

_ i — Li — ~ Li Li
1252 glls ™ <o v (IglIERE + €2y 7|30 | LR | g5 (8.67)
Proof See the proof of Theorem 8.16 in [5]. O

9 The Nash-Moser nonlinear iteration

In this section we prove Theorem [2] It will be a consequence of the Nash-Moser
Theorem [6] below.
Consider the finite-dimensional subspaces

En :={3(¢) =(0,y,2)(¢) : © =110, y=Iny, z= Iz}
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where Ny, := Nac" are introduced in (8.57)), and IT,, are the projectors (which, with
a small abuse of notation, we denote with the same symbol)

II,0(p) = Z 0,1, Iz, x) = Z zljei(l"”"'jx), (9.1)
ll| <Ny, [(15) | <Nn

where O(p) = Yiczr 1% and z(p,2) = ¥iczv jege 256 P (for May(ep)
similar definition as for I1,60(y)). We define II;- := I —II,,. The classical smoothing
properties hold: for all o, s > 0,

Li ~nLi ~
I3 5207 < N2 35RO va(w) e B,

. . (9.2)
L3I < Ny 3R a(w) € O
We define the constants
p1:=3p+9, a:=3u +1, ai = (a—3p)/2, (9.3)
_ _ 1—3a
=3 H+1 =6 3p7 143 0 - (94
k=3 +p )+1, Br:=06p+3p " +3, <P < G@t3a) (9.4)

where p := p(7,v) is the “loss of regularity” defined in Theorem [3] (see (6.35))) and
C, is fixed below.

Theorem 6 (Nash-Moser) Assume that f € C? with ¢ > so + 1 + 1+ 3. Let
T > v+ 2. Then there exist C1 > max{u1 + «,Co} (where Co := Co(1,v) is the one
in Theorem , 8o := do(7,v) > 0 such that, if

Ngl€b*+27_2 <8o, ~:= €2+a _ E2b7 No := (&_4,}/—3)97 by :=5—2b, (95)
then, for all n > 0:
(P1)yn there exists a function (Jn,(n) 1 Gn C 2 — Ep—1 X RY, w — (Tn(w),(n(w)),

(J0,0) := 0, E—1 := {0}, satisfying |Cn|“P() < C||F(Un)|[2PD,

0

Li be — Li by
a5 < Cueb ™, | FU)IEE 5 < Cue®™ (9.6)

where Un := (in,Cn) with in(p) = (¢,0,0) + Tn(p). The sets Gn are defined
inductively by:

Go = {wng Dw -l > 5; VZGZV\{O}}7

. . _ 29n|5% — K3
Grir = {0 € Gu ¢ fiwo- 1+ ¥ (in) — 2 (i)] > 2220 — K]

"
Vi ke SCU{0}, L€ Z”}, (9.7)

where yn = (1 +27") and p°(w) = p;°(w,in(w)) are defined in (8.61) (and

1o (w)=0). R
The difference Jn, := T — Ipn—1 (where we set Jo := 0) is defined on Gn, and it
satisfies

IBUIERY < Cug® ™ Ball)) < CueP A TINGSE Yn> 1 (98)
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(P2)n ||f(Un)||£;p(7) < C*sb*N;f‘l where we set N_1 := 1.

(P3)n (High norms). HjnHi;i(gl) < CueyTINE_, and Hf(U”)”;ii(gl) < Cue® NE_,.

(P4)n (Measure). The measure of the “Cantor-like” sets G satisfies
12:\ Gol < Cee® Dy |G\ G| < VAN (9.9)

All the Lip norms are defined on Gy, namely || ||£’ip(7) = ||£’i§57).

Proof To simplify notations, in this proof we denote || ||*P™) by ||

STEP 1: Proof of (P1,2,3)0. Recalling (5.6]) we have || F(Uo)||s = ||F(¢,0,0,0)|s
= | Xp(p,0,0)||s <s €272 by Lemma [5| Hence (recall that b. := 5 — 2b) the
smallness conditions in (P1)o-(P3)o hold taking Cx := Cx(so + 31) large enough.

STEP 2: Assume that (P1,2,3)n hold for some n > 0, and prove (P1,2,3)p+1.
The proof of this step closely follows Step 2 in the proof of Theorem 9.1 of [5]. We
just mention the main changes: here it is convenient to define

Wn, 2= 527_2HF(UH)H807 By = 52’7_1||5n||sa+/31 +52’7_2||-7:(Un)”so+51 , (9.10)

while the corresponding quantities defined in (9.18) of [5] have ¢ instead of £ (and
then, with definition (9.10), the bounds (9.19) of [5] are also valid here without
changes). In the present case, the estimates (9.20)-(9.21) of [5] for the quadratic
Taylor remainder have to be adapted by replacing the factor ¢ with 2. The reason
for this improvement is that the nonlinearity in the mKdV equation is cubic,
whereas in the KdV equation considered in [5] the nonlinearity is just quadratic.

Remark 11 Since the KdV, respectively mKdV, nonlinearity is quadratic, respec-
tively cubic, the smallness condition required in [5] for the convergence of the
Nash-Moser scheme is stronger than for Theorem@ it is e]|F (0, 0,0)||so+p7 2 < 1
instead of €2 F(,0,0)|so+uy % < 1. As a consequence less steps of Birkhoff nor-
mal form are required (namely less monomials to work out in the original Hamilto-
nian) to reach the sufficient smallness F(Up) = O(>~2) to make the Nash-Moser
scheme to converge (in [5] it is needed F(Up) = O(~2)).

STEP 3: Prove (P4)y for alln > 0. For all n > 0, the difference Gp, \ Gnt1 is the
union over | € Z”, j,k € S U {0} of the sets Ry;(in), where

Rij(in) == {w € G ¢ iw -1+ p5°(in) — pi°(in)] < 29ml° = K°[ ()77} (9.11)
Since Ry (in) = 0 for j = k, in the sequel we assume that j # k.
Lemma 25 Forn > 1, |l] < Ny—1, one has the inclusion Ryj,(in) C Ryjg(in—1).

Proof The proof closely follows the one of Lemma 5.2 in [3]. The differences are
that here the vector w is not confined along a fixed direction, here we have N, _;
instead of Ny, and the factor € in (5.28) and (5.33) of [3] is replaced here by
£Ty 2 = g2,

In the proof we use (9.8)), (8:59), (8-25), (8:37), and the bounds (4.25), (4.26),
(4.34) of [3] adapted to the present case (the bounds (4.25), (4.26) of [3] hold here
with e'*? instead of e, as already pointed out in the proof of Theorem {4} the bound
(4.34) of [3] holds here with no change). O
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By definition, Rj;;(in) C Gn (see (9.11)). By Lemma forn > 1 and || <
Np—1 we also have Ry (in) C Ryjg(in—1). On the other hand, Rk (in—1)NGn =0
(see (9.7)). As a consequence, Ry (in) = 0 for all |I| < N, 1, and

Gu\Gn1 € |J  Riyrlin) Vn>1L (9.12)
j,keScu{o}
1> Ny

Lemma 26 Let n > 0. If Ry (in) # 0, then |l > C1[5® — k3| > 3C1(5% + Kk?) for
some constant C1 > 0 (independent of 1, j, k,n,in,w).

Proof Follow the proof of Lemma 5.3 of [3], also using (8.62)). Note that |w| < 2|@|
for all w € {2, for € small enough, by (5.2)) and (4.10]). O

Now we study the measure of the resonant sets Ry (in) defined in (9.11). We
have to analyze in more details the sublevels of the function
wi— p(w) ==iw - 1+ p5° (w) — pg (W), (9.13)
appearing in (9.11)) (¢ also depends on I, j, k,in).
Lemma 27 There exists Co > 0 such that for all j # k, with 324+ k% > Co, the set
Ryji(in) has Lebesgue measure |Ryjp(in)| < Ce2v=Dy T

Proof For | # 0, decompose w = sl + v, where [ := U/, s € R, and l-v = 0 (so
that w- 1= sl|). Let ¢(s) := ¢(sl +v). The eigenvalues pu$° are given in . By
and (| ., 2| |llp < (4 for some constant C2 > 0 depending only on the
Set S of the tangentlal sites. Then, by (8.62] - and -7

s (s1) — ma(s2)| < Ce®y st — sal,

i1 (s1) — 1 (s2)| < (Co + Ce®y7?)[s1 — 52| < 2Co|s1 — 52|,

[75°(s1) = 5% (s2)| < C> 720 T 51 — s

for some C > 0 and e small enough, where, with a slight abuse of notations, we
have written

mi(s) =mi(sl+v), i=13 and r}°(s)=r(sl+v), je€S°.
By (8.61) and Lemma [26]

[(s1) = ¢(s2)] > (li] = C*y 5% = k%] = 2Caj — k| — 2C° 7207 1) [s1 — 2

2Ca|5 — k| 2053*2%*1)‘8
75 — &3] 75— k3] )

v

5° = KI(C1 - Ce®y T -

Cl‘
2

—82|

\ V

Jj° - 51 — 82
k|| |

for € small enough and j2 + k? + jk > Co := 12C2/C;. As a consequence, the set
Ayji(in) :={s : sl +v € Ryj1(in)} has Lebesgue measure

2 dmli® — K| _ Cy
Cili =k ()7 )7

| Ak (in)] <

for some C' > 0. The lemma follows by Fubini’s Theorem. ad
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Remark 12 When K = H + AM?, X\ = 3/4, using (8.40)), the conclusion of Lemma
holds without restrictions on j, k.

It remains to estimate the measure of the finitely many resonant sets Ry (in)
for j2 + k? < Co. Recalling (8.36) and the parity £_j =¢&;, we write ¢(§) = 6¢1- ¢
where 1 is the vector (1,...,1) € RY and £ = (§;)cs+ € R”. Hence, by (5.4),

e2e(€) =661 - A7 w— @] =66A™ 1 [w — )] (9.14)
where A~7T is the transpose of A1, We write the function ¢(w) in as
¢(w) = ajp + by - w + gjr(w)
where
aj = —i(5® —k® +6¢(j — k)1- A '),
bijk == i(1+ 65(j — k)A~ 1),
gji(w) = —i(ms — 1) (G = k%) + (i1 — %e(€)) (G — k) + 757 =i

(and ms,m1, §r;°, g all depend on w). By - and since j2 + k2 < Co we
deduce that |q]k|L‘p('Y) < Ce®72%, Recalling (2.2)) we get

— 1i — i —
lgji™"P < 2720, {gn ™ < 47 gy MPO) < 0! T30 (9.15)

so that ¢(w) is a small perturbation of the affine function w — a;j + byji - w. By
the next lemma, the hypothesis ((1.12)) on the tangential sites S allows to verify
that such function does not vanish identically.

Lemma 28 Assume (1.12). Then, for all j # k, j2 + k? < Cy it results aji, # 0.
Proof Using formulae (1.19) and (4.11)), we calculate

_ 1 “L
1A o=~ S752
“ 3c(2v—1) ;JZ

Hence

aj =~ ~ B) (52 + kK - 52 >o3f) #0
by assumption on the set S. a
Lemma [28| implies that ¢ := min{|ay| (24 k2<Co, j#£ K} >0.
Lemma 29 Assume . If 2 + k2 < Co, then |[Ryj5 (in)| < Ce2r=D ()T
Proof Denote b := by, for brevity. For P24k <Chwe Ryji(in), one has, by
(O-11). @13,

- wl > Jaji| = [6(w)] = gjr(w)] = & = 2[5 = K°|(1) T = C>72 > §/2

for € small enough On the other hand, |b- w| < 2|©|[b|] because |w| < 2|©] (see
and (4.10)). Hence |b| > 61 where &1 := 6/(4|&]) > 0. Split w = sb + v where
= b/\b| and v-b=0. Let ¢(s) := ¢(sb+v). By ([©:15), for e small enough, we get

i 1
[9(s1) — (s2)| > (b — |gjx]")|s1 — s2| > 51\81 — s2].

Then we proceed similarly as in the proof of Lemma, O
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The proof of follows from the lemmata e proceeding like in [3]
(see the conclusion of the proof of Theorem 5.1 in [3]). O

Proof of Theorem 2| concluded. The conclusion of the proof of Theorem 2] follows
exactly like in [5] (see “Proof of Theorem 5.1 concluded” in [3]).

Remark 18 By remark Lemma [28| (which is the only point in the paper where
assumption (1.12) is used) is not needed any more. Thus Theorem [1| applies to
K = H + (3¢/4)M? without assuming hypothesis (T.12)).
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