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ABSTRACT

Redox homeostasis consists of an intricate network in which reactive molecular species
(RMS), redox modifications and redox proteins act in concert to allow both physiological
responses and adaptation to stress conditions. This review highlights established and novel
thiol-based regulatory pathways underlying the functional facets and significance of redox
biology in photosynthetic organisms. This cannot be all-encompassing, but is intended to
provide a comprehensive overview on the structural/molecular mechanisms governing the
most relevant thiol switching modifications with emphasis on the large genetic and
functional diversity of redox controllers (i.e. redoxins). We also summarize the different
proteomic-based approaches aimed at investigating the dynamics of redox modifications
and the recent evidence that extends the possibility to monitor the cellular redox state in
vivo. Lastly, the physiological relevance of redox transitions is discussed based on reverse
genetic studies confirming the importance of redox homeostasis in plant growth,

development, and stress responses.
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I. INTRODUCTION

The research field of redox regulation and signaling in aerobic organisms, including
humans and microbes, has received a great impetus from early studies conducted on
plants. During the sixties and the seventies of the last century, a decade after the discovery
of the photosynthetic CO, fixation cycle, now known as the Calvin-Benson (CB) cycle, it was
observed that some CB cycle enzymes were activated in the light and inactivated in the
dark, indicating that the CB cycle was temporally coupled to the light reactions of
photosynthesis (397) (for a recent review see (339)). Light activation in vivo was first
demonstrated for chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
(13,595), and in the next years for phosphoribulokinase (PRK) (279), and the two
phosphatases, namely fructose-1,6-bisphosphate phosphatase (FBPase) (23) and
sedoheptulose-1,7-biphosphate phosphatase (SBPase) (12). A mechanistic explanation of
these results was essentially provided by Bob Buchanan and collaborators (Peter
Schirmann and Ricardo Wolosiuk in primis) in a series of papers that marked the birth of
the plant redox field (57,58,455,457,538,540,541). Light activation of CB cycle enzymes
was proposed to depend on a novel electron chain made by the interaction of three types
of stromal proteins: ferredoxin (FDX, an iron-sulfur (Fe-S) protein, where electrons come in
from photosystem ), FDX:thioredoxin reductase (FTR, a protein containing an Fe-S sulfur
cluster functionally and physically connected with a disulfide) and thioredoxin (TRX), which
also contains two cysteines (Cys) able to reversibly form a disulfide bond (Figure 1A). By
means of this transduction chain, target enzymes are reduced and hence activated in the
light (Figure 1B). In the absence of light, electrons were believed to return to oxygen
leaving oxidized enzymes in the inactive form (456). Interestingly, at that time TRX was
only known as a protein involved in ribonucleotide reduction in bacteria and the
demonstration of its role in the regulation of chloroplast metabolism opened a wide array
of possibilities for the development of redox biology concepts in all aerobic organisms (54).
Once established the FDX-FTR-TRX system (hereafter named FDX-TRX system) in plants,
new discoveries in the field were obtained in the following decades. By the end of the
century the targets of the system approached the number of 25, including 4 enzymes and
2 regulatory proteins of the CB cycle (529,539,587), several other metabolic enzymes
including NADP-malate dehydrogenase (NADP-MDH) (240,448) and glucose-6-phosphate
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dehydrogenase (G6PDH), the latter remaining the prototypical example of enzymes that

are inhibited, rather than activated, by disulfide reduction in plants (448). Moreover, the
FDX-TRX system was found to be operative also in amyloplasts (non-photosynthetic
plastids) where FDX is reduced by metabolically produced NADPH rather than by light (25).
Knowledge on TRX diversity was limited to chloroplastic TRX f and m, with the addition of
cytoplasmic TRX h, which can be reduced by NADPH:TRX reductase (NTR) using NADPH as
electron donor (Figure 1B). The first structural studies on TRX regulated enzymes (FBPase
and NADP-MDH) appeared in the late nineties providing nice explanations of how redox
regulation could operate at the atomic level, at least in these proteins (55,286,339,456).
NADP-MDH, in particular, constituted an interesting case. Its mechanism of regulation,
based on C- and N-terminal extensions containing Cys pairs able to form internal disulfides
under the control of TRXs, was found to be similar to other proteins like GAPDH (143) and
CP12 (144). Another important achievement of the recent past was the ability to
determine, in vitro, the redox potential of the different dithiol/disulfide interchange
reactions (223), which allowed the development of hypotheses concerning the reciprocal
influence  between TRX and target proteins redox states in  vivo
(92,93,222,223,266,267,322).

Besides the chloroplast pathway for regulatory disulfides reduction, mechanisms of
disulfides formation were also investigated. Current knowledge suggests that formation of
regulatory disulfides in chloroplasts may involve particular types of TRXs (111,133,561)
that shuttle electrons from reduced target proteins to 2-Cys peroxiredoxin (2-Cys PRX) and
then to hydrogen peroxide (H,0,) (see section VII). These findings imply that H,0,, rather
than oxygen, may be the terminal electron acceptor used for down-regulating the TRX-
activated enzymes. This example nicely fits into the general concept, largely developed in
the last decades, that the manifold interactions between reactive molecular species (RMS)
and active protein thiols often play essential physiological roles. However, protein
disulfides may also play structural rather than regulatory roles and the formation of
structural disulfides is a compulsory step in the correct folding of several proteins. Systems
controlling the oxidative protein folding generally rely on two types of proteins, isomerase
and oxidase, forming an electron chain that connects the target protein (where the

disulfide is formed) to the terminal acceptor (430). In plant cells, systems of this type are
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present, at least, in the lumen of the endoplasmic reticulum (190), in the lumen of

thylakoids (256) and in the intermembrane space of mitochondria (72). Different protein
components and final electron acceptors are used in the different locations. For detailed
analyses of oxidative protein folding in plants the reader might refer to other reviews that
cover the subject (7,192,334,384).

At the end of the last century, redox regulation in plants was perceived as an established
physiological mechanism somehow limited in scope, as it appeared to be essentially
required for separating photosynthetic carbon fixation occurring in the light, from
catabolic reactions occurring in the dark in the same organelle, thereby preventing
dangerous futile cycles (54). Twenty years later the concept is still valid and strongly
supported by experimental data, but the field of redox regulation in plants has witnessed
an incredible expansion in many new directions. In this context, this comprehensive
invited review tries to give the right credit to the recent explosion of thiol-based redox
regulation and signaling studies in plants.

The review is organized in sections (section II-VIl) focused on the topics that in our view
represent most significantly the scientific developments achieved in the plant redox field
in recent times. The section on redox biochemistry of protein thiols (section Il) recognizes
the recent transition from a redox biology dominated by TRXs and disulfides, to a more
articulated subject that takes into consideration how reactive oxygen, nitrogen and sulfur
species (ROS, RNS and RSS, respectively) may induce up to ten different post-translational
modifications (PTMs) of protein Cys, in a complex interplay that involves also glutaredoxins
(GRXs) and glutathione, besides classical TRXs. Section Il witnesses the impressive
development of redox proteomic techniques that occurs during the last two decades.
Emphasis is given to the methodological principles and future technical developments in
redox proteomics. To date, these approaches have already allowed the list of putative
redox targets to include hundreds or thousands of members with different known redox
PTMs on specifically identified Cys in different photosynthetic organisms. The biodiversity
of plant TRXs and GRXs and their reducing systems is described in Section IV. Note that
before the genomic revolution that in plants started with the sequencing of the genome of
Arabidopsis thaliana in 2000, the different known TRXs could be counted on one hand and

GRXs were almost unknown. With 20 classes of TRXs and 6 classes of GRXs, photosynthetic
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7
organisms are now believed to contain a potential for redox regulation and signaling that

seems to largely exceed that of non-photosynthetic organisms. The state of the art of the
structure/function relationships studies in TRXs and GRXs, including their mechanisms of
action and interactions with the targets is included in Section V. Section VI deals with the
determination of redox couples in vivo by means of genetically encoded probes and
fluorescence microscopy. This section witnesses the adaptation of green fluorescent probe
(GFP)-based techniques in the redox field leading, for the first time, to dynamically
determine redox states in vivo. Most of the section is dedicated to glutathione and the
popular roGFP probes. Finally yet importantly, section VIl shows that only recently the
original model of redox regulation of chloroplast enzymes is receiving experimental
confirmation by reverse genetic data. These experiments open the new avenue of redox
plant physiology in vivo, including the role of redox regulatory systems in primary
productivity, development and environmental adaptation.

Il. REDOX BIOCHEMISTRY OF PROTEIN THIOLS

Il.LA. Production and detoxification of reactive molecular species (RMS) in plants and
algae

Redox regulation mainly occurs through different types of PTMs of Cys residues that may
occur either through dithiol-disulfide exchange reactions or through reactions in which
particular proteins Cys are attacked by RMS. Biologically relevant RMS are based on
oxygen (ROS), nitrogen (RNS) or sulfur (RSS), and plant cells may properly synthesize or
accidentally release different RMS types by many different mechanisms, both under stress
and non-stress conditions.

II.A.1. Reactive oxygen species (ROS)

Light reactions of photosynthesis constitute a fundamental source of ROS in plants. On the
one hand, it is believed to be a consequence of the sessile nature of plants since ROS may
be produced when the amount of energy obtained from light harvested by photosystems
exceeds the combined capacity of downstream metabolic activities and heat dissipation
mechanisms (112,123,442). On the other hand, ROS are signals that illuminated
chloroplasts continuously produce, even in the absence of stress, as the energetic state of
the photosynthetic electron transport (PET) chain is affected by varying environmental or

metabolic conditions (184). ROS signals produced by altered states of the PET are involved
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in controlling nuclear gene expression by chloroplast retrograde signaling, leading to long-

term acclimation responses (184).

Photosynthesis can produce different types of ROS with different mechanisms (Figure 2).
When light energy absorbed by chlorophylls is not rapidly dissipated, photo-excited
chlorophylls in the triplet state accumulate in photosystems Il and may generate singlet
oxygen (*0,) by interacting with molecular (triplet) oxygen (Figure 2) (148). This reaction is
prevented in light-harvesting antennae where chlorophyll triplet states are quenched by
xanthophyll-type carotenoids that dissipate the excitation energy as heat (442).
Tocopherols and carotenoids provide a primary protection against the destructive action
of '0,, which primarily results in lipid peroxidation, but also oxidative modification of
protein residues including Cys (137,270,391).

Photosystem | is also a potential source of ROS because it contains low potential Fe-S
clusters that easily reduce molecular oxygen to the superoxide ion (0, *) (Figure 2), when
downstream acceptors of the photosynthetic electron transport chain are limiting because
they are already reduced. This condition notably arises when carbon fixation by the CB
cycle is limited by partial activation of its light-dependent regulated enzymes or low CO,
supply from the atmosphere due to stomata closure. Chloroplast superoxide dismutase
(SOD) isoforms guarantee a rapid conversion of 0, ° to H,0, that ascorbate peroxidases
(APXs), glutathione peroxidases-like (GPLXs), and PRXs may then reduce to water (Figure 2)
(377). Ascorbate, glutathione, pyridine nucleotides, TRXs and their reductases, constitute
an interlinked, powerful system of chloroplasts that tries to keep under control the
unavoidable production of H,0, during photosynthesis (155,377). Under particular
conditions, H,0, can react with ferrous ion leading to the formation of hydroxyl radical
(*OH) (Figure 2), the most reactive and damaging ROS molecule.

Although iron-containing components of photosystem | are the major source of 0,™° in
chloroplasts in the so-called pseudocyclic electron transfer, photosynthetic oxygen
reduction may also occur by other mechanisms. These include a long suspected role of the
plastoquinone pool in generating ROS signals (524). However, it is still uncertain whether
oxygen reduction might depend on the activity of the plastid terminal oxidase (365) or

occur at the site of plastohydroquinone oxidation on cytochrome bef (31) or even result
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from the direct reaction between the plastohydroquinone pool and oxygen or O,"* (516)

(Figure 2).

Another important source of ROS is peroxysomal glycolate oxidase (GOX) that, in the
photorespiratory pathway, generates H,0, in stoichiometric amounts with the oxygenase
activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) (Figure 2). Given
the relevant share of photorespiration on photosynthetic metabolism in C3 plants (up to
half of carboxylation at 30 °C (594)), this is arguably one of the most important sources of
ROS in green cells, at least in organisms with no CO,-concentrating mechanisms.
Moreover, photorespiration of C3 plants is also another way by which photosynthesis
unavoidably produces ROS independently from stress conditions (378). However, huge
amounts of catalase (CAT), together with APXs, limit H,O, from escaping peroxisomes
(Figure 2) (337,377).

Similar to animal systems, mitochondria are also in plants a potential source of ROS (Figure
2) (230). Complexes | and Ill are able to transfer single electrons to oxygen thereby
producing 0, °, particularly under conditions of low ADP or low oxygen availability
(358,418). Similar to chloroplasts, mitochondria contain SODs and H,0, detoxifying
systems relying on APXs, GPLXs, and PRXs (Figure 2).

Like H,0,, also O, * may be enzymatically produced in plant cells. NADPH-oxidases of the
respiratory burst oxidase homolog (RBOH) family being probably the major source (Figure
2). A gene family of about ten members in higher plants encodes these NADPH-dependent
flavo-cytochromes. Some of them at least reside at the plasma membrane and release 0,"*
in the apoplast in response to either abiotic or biotic stress and developmental processes
(310). In Arabidopsis, RBOH is responsible for the oxidative burst triggered by incompatible
pathogens. Together with nitric oxide (*NO), the resulting superoxide O, * orchestrates the
hypersensitive response against the pathogens (117). Interestingly, *“NO is also involved in
a feedback loop that inhibits Arabidopsis RBOHD activity via S-nitrosylation of Cys-890
(570). Except for the presence of SOD and low concentrations of ascorbate, the apoplast is
poor in antioxidant systems (19,157), suggesting that apoplastic H,O, may accumulate

more easily than in other cell compartments.
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11.A.2. Reactive nitrogen species (RNS)

Sources of RNS in photosynthetic organisms are diverse and still not fully described. In land
plants, reductive pathways converting nitrite (NO, ) to *“NO seem to prevail over oxidative
pathways that release *NO from arginine (Figure 2) (21). Nitrate reductase (NR) can slowly
produce *NO by reducing NO,, instead of its normal substrate nitrate (NO3"), using NADH
as an electron donor. Since the affinity of NR for NOs™ is higher than for NO,", and since
NOj3" inhibits the reduction of NO, , *NO production by NR is expected to be favored by
stress conditions that lead to toxic nitrite accumulation (418). In any case, the role of NR in
*NO production in Arabidopsis is supported by reverse genetic studies (21). Alternatively
to NR, NO, can be also reduced to *NO by components of the mitochondrial electron
transport chain (complexes Ill and IV) (Figure 2) (196), particularly when oxygen is scarce.
Recently, a complex involving NR and NO-forming nitrate reductase (NOFNiR) was shown
to constitute a new *NO biosynthetic system in the green microalga Chlamydomonas
reinhardtii (74). The role of NR in the complex is to transfer electrons from NAD(P)H to
NOFNiR. Whether a similar complex also exists in land plants is currently unknown.
Oxidative pathways for *NO production from arginine seem to be operative in plants
(Figure 2), but the proteins involved remain to be identified. An ortholog of animal NO
synthases is found in the alga Ostreococcus tauri (151) but not in other algae and higher
plants, where the oxidative release of *NO from arginine may involve distinct mechanisms
(21).

Similar to biogenesis, regulation of intracellular *NO levels may also follow different
pathways. Non-symbiotic hemoglobins convert *NO to NOs~ (356), but as part of *°NO in
the cell is bound to GSH to form nitrosoglutathione (GSNO), the activity of GSNO reductase
(GSNOR) which releases ammonia from GSNO (300,575) is potentially very relevant to
modulate *NO availability and also the levels of GSNO, an important trans-nitrosylating
agent (see section I1.C.4.).

11.A.3. Reactive sulfur species (RSS)

In plants, hydrogen sulfide (H,S) generation occurs through three pathways that differ in
the underlying mechanisms and the subcellular compartments in which they take place.
The primary source of H,S is the chloroplast where it is produced in the reductive sulfate-

assimilation pathway through the action of sulfite reductase (SiR, Figure 2) (488).



Downloaded by L1 CO SA/50127/MI from www.liebertpub.com at 12/06/18. For personal use only.

Page 11 of 149

Antioxidants and Redox Signaling

REDOX HOMEOSTASIS IN PHOTOSYNTHETIC ORGANISMS: NOVEL AND ESTABLISHED THIOL-BASED MOLECULAR MECHANISMS (DOI: 10.1089/ars.2018.7617)
This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

11
Alternative pathways occur in both mitochondria and cytoplasm. B-cyanoalanine synthase

(CAS-C1), catalyzing the conversion of cyanide and Cys to B-cyanoalanine and HS, is found
in mitochondria (Figure 2) (11). In the cytoplasm, the enzyme L-Cys desulfhydrase (DES1)
catalyzes the desulfuration of Cys vyielding sulfide, ammonia and pyruvate (Figure 2)
(9,10,185). In any case, the production of H,S in subcellular compartments where ROS or
RNS may also be produced can result in non-enzymatic reactions, including the one-
electron oxidation of H,S to hydrogen disulfide (H,S,) (Figure 2), which may lead to
persulfidation of protein Cys (see section II.C.5.).

I1.B. Reactivity of cysteines is strictly controlled by the protein microenvironment

In plants, RMS (including ROS, RNS, and RSS) actively participate in redox homeostasis. In
this context, proteins play an essential role as central mediators of RMS-dependent
signaling events. Many of these proteins rely on modifications of Cys residues for
modulating their redox activity whereas a few of them use other residues (e.g.
methionines or tyrosines) for the same purpose, but knowledge on methionine- and
tyrosine-dependent signaling pathways is still limited to a few studies
(35,237,238,265,327).

Cys-based redox modifications have been extensively investigated and they are widely
accepted to play a prominent role in regulatory and signaling networks that support plant
development, metabolic functions, and responses to varying environmental conditions.
The functionality of Cys residues in redox biology depends on the chemical reactivity and
structural flexibility of their sulfur atom. Sulfur can form covalent bonds with different
types of atoms present in living organisms (C, H, O, P, and N) and establish stable
complexes with transition metals (Zn, Fe, and Cu). In addition, being weak acids, Cys thiols
(=SH) are found in equilibrium with the deprotonated thiolate form (-S) over a
physiological range of pH to flexibly optimize the function of specific protein Cys (Figure
3A). Compared to the protonated forms, Cys thiolates are more sensitive to the
intracellular redox environment and susceptible to RMS-dependent oxidative
modifications. Altogether, these features allow Cys residues to play fundamental structural
and catalytic roles, and to function in RMS-mediated redox signaling as reversible

molecular switches (321,508,537).
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The acid dissociation constant (pK,) of a Cys designates its tendency to dissociate. The pK;

of the sulfhydryl groups of free Cys is ~8.3 (395,434,502). A slightly higher pK; value (8.8,
(440)) is attributed to the Cys thiol of reduced glutathione (GSH). These pK, values imply
that these Cys thiols are largely found in the protonated form at neutral pH, while thiolate
forms might progressively accumulate only at alkaline pH values. For example, the
percentage of GSH thiolate (GS™) at pH 7 is only 2%, but this value increase to 14% when
the pH raises to 8. This variability is particularly important in subcellular compartments
that experience a shift from neutral to slightly alkaline pH as observed in the chloroplast
stroma during dark to light transitions (215,221,503).

Although the vast majority of protein Cys harbors a pK, above 8, some of them are acidic
due to the microenvironment in which they are located (395,508). Selected protein Cys
involved in thiol switching reactions have pK, values ranging between 3 and 6.5 (508),
allowing these residues to be predominantly or fully deprotonated at physiological pH
(Figure 3B). The structural features that contribute to modulate the acidity of Cys thiols
mainly include the proximity of amino acids like lysine, histidine or arginine, that by
attracting the proton of the thiol become positively charged and form an ion-pair with the
negatively charged thiolate (Figure 3C) (96,508). These types of interactions are found in
enzymes such as GAPDH (36,576), isocitrate lyase (ICL) (37) and PRXs (368). In other
proteins, hydrogen-bonding networks may also be relevant (Figure 3C); in TRXs and GRXs,
for instance, the hydrogen-bonding network is believed to be the major structural
determinant of the acidity of the catalytic Cys (434). Finally, the location of the Cys residue
at the N-terminus of an a-helix generating an electric macrodipole may also contribute to
its acidity (Figure 3C) and, in general, desolvation can also have an impact on thiol pK, by
decreasing the dielectric constant of water and thus enhancing electrostatic interactions
that occur in catalytic sites (146). In many other cases, the relative influence of each
structural factor to the thiol pKj is still undefined and difficult to derive from the protein
tridimensional structure, such that it needs to be determined experimentally (508).
Although thiolates are stronger nucleophiles than thiols, it should be remembered that the
nucleophilicity of a thiolate actually decreases with decreasing pK, of the Cys. In other
words, the most reactive Cys are often Cys that are acidic enough to be largely

deprotonated at neutral pH, but not too acidic to loose completely their nucleophilicity
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(146,508). Moreover, the protein microenvironment affects the reaction between Cys and

RMS also in other ways, not directly dependent on Cys pK.

The H,0,-dependent oxidation of Cys thiolate nicely exemplifies this latter point. By
comparing the reactivity towards H,0, of two thiolate-containing proteins, namely PRX
and GAPDH (pK, values of ~5 and ~6, respectively), it was observed that PRX reacts with
H,0, 10*-10° times faster than GAPDH (508,536). Since the catalytic Cys of both PRX and
GAPDH are fully or almost fully deprotonated at neutral pH, other factors than thiolate
availability and exposure should be taken into account to explain the vastly different
reactivity. Indeed, the stabilization of the transition state (—S:-:O--:0O---H) by active-site
residues was recently proposed to sustain the catalytic power of PRX (207,362). A counter
example is given by GRX S12, that contains a highly acidic catalytic Cys (pK; value <4.0;
(102,573)) but exhibits a reactivity towards H,0, that is comparable to GAPDH (pK, ~6;
(508,573,576)). Based on these observations, we can conclude that although oxidation
mainly affect acidic Cys, the Cys microenvironment can control the reaction kinetics with
H,0, and possibly other RMS, as detailed in the following subsections.

I1.C. Cys residues may be modified in many different ways by RMS or enzymes

The cellular capacity for RMS-mediated regulatory pathways depends on different types of
Cys modifications that allow oxidant signals to be transduced into biological responses. In
the following subsections, the chemistry and mechanisms of oxidative modifications
induced by each class of RMS molecules, namely ROS, RNS and RSS, are discussed.
Alternative mechanisms of protein Cys oxidation catalyzed by enzymatic systems or
mediated by intermediate Cys oxoforms (i.e. sulfenic acids and nitrosothiols) or oxidant
molecules (e.g. oxidized glutathione, GSSG) are also described.

II.C.1. ROS-dependent redox modifications of protein thiols

Protein Cys thiol can be oxidized by both radical (0, *, *OH) and non-radical ROS molecules
(*0,, H,0,). Singlet oxygen is a non-radical molecule that can react with sulfur-containing
amino acids (i.e. Cys and methionine) but also with histidine, tryptophan and tyrosine
residues (391). The oxidation of Cys thiols by 'O, occurs via formation of a short-lived
zwitterionic intermediate (RS*(H)-00") which decomposes yielding oxidized sulfur species
such as sulfonic acids (—SOsH) or alternatively, disulfides if another Cys residues is able to

react with the initial intermediate (Figure 4) (360,391). Although 'O, is believed to play a
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sighaling role in chloroplasts (276), the molecular bases of its action are not fully

understood.

The radical superoxide (0,°°) is a relatively unreactive radical and its preferential targets
appear to be other radical species such as *NO (395). In proteins, O, * can react with Fe-S
clusters and some transition metals (113,537), and shows low reactivity towards protein
side chains, Cys being one of the less sensitive amino acids (113). However, if this reaction
occurs, Cys may undergo cysteinyl (thiyl) radical (-S°*) formation and possibly peroxidation
(i.e. thiol peroxide formation) (Figure 4) (169,454). In contrast to O, °, *OH is highly
reactive and is capable to oxidize nearly all protein residues with second order rate
constants near the diffusion limit (ie. 10°-10" M™s™*) (113). Protein Cys oxidation
mediated by *OH is postulated to occur through hydrogen atom abstraction from S—H
bonds yielding thiyl radicals (-S°, Figure 4) (15,113,477,519).

The aforementioned reactions are likely to occur under physiological conditions but their
relevance in thiol-based redox signaling networks might be limited. These ROS molecules
(*0,, 0,°°, *OH) have high reactivity with biological macromolecules other than proteins.
The abundance of these targets in vivo results in very short lifetimes and limited diffusion
from the sites of generation. Therefore, oxidation by these ROS is restricted to proteins
located at the proximity of production sites. In addition, they react with diverse protein
side chains and display no specificity for reactive Cys.

Among ROS, H,0; has the longest lifetime and is highly selective towards sulfur-containing
residues, Cys thiolates being the most sensitive (226,395,453). The H,0,-dependent two-
electron oxidation of reactive Cys leads to the formation of a sulfenic acid (~SOH) (Figure
4). Sulfenic acids are emerging as redox signaling hubs implicated in different types of
secondary modifications. Owing to their reactive nature, sulfenic acids are often
considered as an unstable intermediate subjected to several alternative fates (Figure 4). In
the presence of excess H,0,, sulfenic acids can act as a nucleophile and be further oxidized
to sulfinic (-SO,H) and sulfonic acid (-SO3H) Figure 4), with reaction rates that are
generally slower (0.1-10>° M's™)) than the primary oxidation event (10-10° M™'s™?)
(395,508). Sulfinic and sulfonic acids are usually considered irreversible forms except for
sulfinated 2-Cys PRX (PRX-SO,H), which can be reversibly reduced to the thiol form by

sulfiredoxin (243). Sulfenic acids can alternatively serve as electrophiles reacting with the
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backbone amide group of a neighboring residue forming a reversible cyclic sulfenamide or

condensate with an interfacing additional sulfenic acid to generate a thiosulfinate (Figure
4). In most cases, however, sulfenic acids react with a proximal thiol from a protein Cys or
a GSH (Figure 4) leading to the formation of intra/inter-molecular disulfide bonds (-S-S-)
or a mixed-disulfide (—S—SG, S-glutathionylation). Besides protein Cys, H,O, can also react
with GSH yielding glutathione sulfenate intermediates (GSOH) but, owing to its pKj,, this
reaction proceeds very slowly (~1 M%s™) (395).

I.C.2. Plant cysteine oxidases catalyze the enzymatic oxidation of protein cysteines to
sulfinic acids

Besides protein disulfides, other oxidative modifications are found to be catalyzed by
specific enzymes. Indeed, Cys oxidation to sulfinic acids can occur in the presence of plant
Cys oxidases (PCOs). These enzymes are nonheme Fe**-dependent dioxygenases catalyzing
an essential step of the N-end rule pathway in plants that controls, for example, the
stability of group VII ethylene response factors (ERF-VIls). Whereas ERF-VIIs are rapidly
degraded in normoxia, flooding-induced hypoxic conditions reduce the activity of PCOs
allowing ERF-VIIs stabilization and consequently transcriptional adaptative responses
(509,531,533). The molecular mechanisms underlying PCO activity have been recently
established and Cys sulfinic acids are generated via an oxygen-dependent reaction
(532,533). Besides oxygen, ROS and likely °NO are postulated to be involved in such
reactions but the mechanisms are still not clarified (418).

1.C.3. RNS-dependent redox modifications of protein thiols

In biological systems, *NO and derived compounds (i.e. nitric dioxide (*NO,), dinitrogen
trioxide (N,Os), and ONOO") can also induce oxidative modifications of protein residues
including Cys thiols (Figure 5). Similar to 0,™°, °*NO is a relatively unreactive radical and
preferentially reacts with other radical species and with metals. By reacting with 0,”°, *°NO
generates ONOO". Besides binding to heme-containing proteins (395), *°NO is involved in a
covalent modification of protein Cys termed S-nitrosylation (575). This reversible
modification does not directly involve *NO and three major mechanisms have been
proposed to account for S-nitrosothiol (-SNO) formation (575). The reaction of *NO with
transition metals of metalloproteins yields unstable metal-nitroxyl complexes that can

then transfer the NO moiety to a Cys residue that generally belongs to the same protein
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(Figure 5). Alternatively, *NO,, which is spontaneously generated by the reaction of *NO

with molecular oxygen, can induce the one-electron oxidation of Cys thiolates (Figure 5).
This reaction leads to the formation of thiyl radicals that can undergo radical-radical
combination with *NO to yield S-nitrosothiols. S-nitrosothiols formation can also be
generated by the nitrosating compound N,0s that is spontaneously formed by the radical
reaction between *NO and *NO, (107,395). N,O3 can subsequently transfer its nitrosonium
group ("NO) to proteins or low-molecular weight thiolates generating S-nitrosothiols and
releasing NO, .

Due to its high intracellular concentration (1-5 mM, (156,373,440)) GSH might be a primary
target of N,0s-dependent nitrosylation yielding GSNO (Figure 6). This molecule along with
S-nitrosylated proteins can transfer the NO moiety to another Cys in a process termed
trans-nitrosylation (Figure 5). Within cells, the equilibrium between GSH and GSNO
controls the level of S-nitrosylation in some proteins at least (Figure 6) (43,580). TRXs
efficiently reduce GSNO in vitro ((369); Zaffagnini et al., personal communication) and
catalyze protein denitrosylation of specific targets in vivo (262). However, TRX-dependent
reduction of GSNO or protein-SNO releases a nitroxyl (HNO) that is highly reactive and still
able to interact with Cys residues (49). To date, the foremost enzyme known to control the
intracellular concentration of GSNO is GSNOR (300,575) (see Section 11.C.4.).

The sensitivity of a particular Cys thiolate to trans-nitrosylation seems to depend on
different factors including Cys reactivity, the accessibility to NO donors and the local Cys
microenvironment (e.g. acid-base motif and hydrophobic residues)
(129,153,304,320,469,579). In general, trans-nitrosylation is considered not only as a
prominent mechanism of protein S-nitrosylation but also as a mechanism that allows
propagating the NO signal far away from the site of *°NO production (395). Compared to
sulfenic acids, nitrosothiols cannot further react with oxidants but can generate sulfenic
acids by spontaneous hydrolysis (Figure 5) or alternatively, form disulfides in the presence
of protein or GSH thiolates (Figure 5).

Peroxynitrite (ONOQO") and its protonated form (ONOOH) are highly reactive non-radical
species that can cause oxidation of several protein residues including Cys, methionine,
tryptophan and tyrosine. The most relevant peroxynitrite-mediated reaction is tyrosine

nitration but its physiological relevance in signaling pathways still requires further
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confirmation. Similar to *OH, the reaction of ONOO™ with protein Cys yields thiyl radicals

(Figure 5) (113,486) but other oxidation products such as sulfenic acids are also generated
(Figure 5) (584).

11.C.4. GSNO reductase controls the level of nitrosothiols in plants

GSH can efficiently reduce protein S-nitrosothiols (181,433,575). However, although this
non-enzymatic reaction restores reduced proteins, it also generates GSNO (Figure 6),
which can further react with reactive Cys thiols yielding de novo S-nitrosothiols (97,575).
Consequently, GSH by acting as an efficient reducing system can also promote further S-
nitrosylation via GSNO. To date, the foremost enzyme known to control the intracellular
concentration of GSNO is GSNOR (300,551,575). This enzyme is highly conserved in most
bacteria and all eukaryotes including plants (303). GSNOR belongs to the class Ill alcohol
dehydrogenase family and catalyzes the reduction of GSNO using NADH as an electron
donor (268,271,303). The effective contribution of GSNOR in degrading GSNO relies on its
catalytic ability to reduce GSNO into glutathione sulfenamide (GSNH;), which
spontaneously forms GSSG and NHs in the presence of GSH (Figure 6). Consequently,
GSNOR acts as a specific scavenging system for GSNO and indirectly controls the extent of
GSNO-dependent protein S-nitrosylation.

In plants, the role of GSNOR in S-nitrosothiols metabolism was demonstrated by Loake and
colleagues (139). Arabidopsis mutants that do not express GSNOR (gsnor) have more low
molecular weight nitrosothiols (e.g. GSNO) and high-molecular weight nitrosothiols (e.g. S-
nitrosylated proteins). The function of GSNOR was also associated to various physiological
processes including pathogen response, thermotolerance, plant growth, flowering,
hypocotyl elongation and germination, and resistance to cell death. Whether these effects
are also mediated by S-nitrosylation, however, still need to be clearly established
(139,272,281,300,443).

The activity of plant GSNOR itself has been recently reported to be altered by redox
modifications (Figure 6). Arabidopsis and poplar GSNOR were found to undergo S-
nitrosylation in vivo under conditions of increased endogenous NO availability (83,162).
Intriguingly, this modification causes partial inhibition of GSNOR activity (162,193). More
recently, AtGSNOR was also found to be negatively affected by in vitro treatment with

H,0, or exposure of Arabidopsis plants to paraquat (268). Altogether, these evidences



Downloaded by L1 CO SA/50127/MI from www.liebertpub.com at 12/06/18. For personal use only.

Antioxidants and Redox Signaling

REDOX HOMEOSTASIS IN PHOTOSYNTHETIC ORGANISMS: NOVEL AND ESTABLISHED THIOL-BASED MOLECULAR MECHANISMS (DOI: 10.1089/ars.2018.7617)
This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Page 18 of 149

18
suggest that the transient inhibition of plant GSNOR by oxidative modifications might

reinforce NO signaling by favoring GSNO accumulation (193,268,300).

11.C.5. RSS-dependent redox modifications of protein thiols

The prototypical inorganic RSS is H,S, which is the most stable RMS with a half-life in the
minute time-scale (485). Based on its chemical properties (pKs1 = 7 and pKs; = 12-15;
(80,343)), H,S can easily dissociate under physiological conditions and it is therefore
assumed that H,S pools mainly include H,S and HS". In plants, the involvement of H,S as a
signaling molecule is receiving growing attention because of its ability to interact with
proteins and possibly with other RMS (16,17,79). Given its nucleophilic properties, H,S can
scavenge reactive intermediates including *NO, 0,™°, ONOO", or H,0,, suggesting that it
can play protective effects against oxidative stress (249,534). However, a biological
relevance for this activity is largely speculative because of its limited reactivity compared
to GSH and its intracellular concentration, which is considered low (174,249,485). With
proteins, H,S can interact with some heme groups but also with Cys residues in a process
called persulfidation. This oxidative modification consists in the conversion of a protein Cys
into a persulfide (-S-SH) and it is suggested to modulate protein functions
(259,361,392,393) by increasing the nucleophilicity of the Cys (106,392). Noteworthy, this
reaction can involve both Cys thiolates and oxidatively-modified Cys intermediates like
sulfenic acids (395). Although persulfidation has been proposed as a new key player in
redox signaling, the underlying mechanisms are poorly understood and the physiological
relevance of H,S-related mechanisms in plants is still largely unknown.

Three major mechanisms for protein persulfidation have been postulated (Figure 7), none
of which involves a direct reaction between H,S and Cys residues (249,505). The first two
mechanisms involve a nucleophilic attack of H,S on oxidized protein Cys, either present as
sulfenic acid or engaged in disulfide bonds (i.e. intra/inter or mixed disulfide) (Figure 7).
However, disulfide-mediated persulfide formation is uncertain mainly because H,S is a
poor reductant compared to GSH and this reaction may proceed very slowly in vivo
(70,395). Another possibility is that alternative intermediate Cys oxoforms (e.g. S-
nitrosothiols or sulfenylamides) can react with H,S yielding persulfides. The third

mechanism involves the ROS-mediated oxidation of H,S to H,S, (n=2 or higher) which can
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subsequently undergo a nucleophilic attack by a protein thiolate to give rise to a persulfide

(Figure 7).

Similar to nitrosothiols and sulfenic acids, persulfides contain two electrophilic centers and
can react with another protein thiol yielding a disulfide or facilitating trans-persulfidation
(Figure 7). The latter route is reminiscent to trans-nitrosylation and is likely to be highly
protein specific (395).

I1.C.6. S-glutathionylation as a special type of disulfide formation

Disulfide bond formation is the best-characterized Cys-based redox modification. It
consists in the covalent bonding between two Cys residues belonging to the same or
different polypeptides. Besides the well-known role of TRXs in dithiol-disulfide interchange
reactions (see Introduction) (Figure 8A), disulfide formation may also involve RMS. One
possible route relies on the primary oxidation of a Cys to sulfenic acid or S-nitrosothiol,
followed by thiol condensation with an additional Cys (Figure 8A; see paragraphs 1.3.1 and
1.3.3, respectively).

Protein S-glutathionylation has emerged as a widespread oxidative modification involved
in the modulation of protein function but also in the protection of protein Cys from
irreversible oxidation (i.e. sulfinic and sulfonic acid formation) (572,574). As already
mentioned, one potential mechanism of protein S-glutathionylation is the condensation of
GSH with an intermediately oxidized Cys (i.e. sulfenic acid or S-nitrosothiol; see sections
II.C.1 and II.C.3, respectively). The electrophilic nature of these oxidative intermediates
favor the nucleophilic attack of GSH thiolates leading to the formation of protein mixed-
disulfides (Figure 8B).

Another mechanism of protein S-glutathionylation involves a thiol-disulfide exchange
between GSSG and a protein Cys thiolate (Figure 8B). Typically, this reaction proceeds very
slowly and is supposed to be thermodynamically prevented by the high GSH/GSSG ratios of
most plant subcellular compartments (see Section VI) (155,157,458). Nevertheless, we
cannot exclude a priori the possibility that specific proteins might undergo GSSG-
dependent glutathionylation being highly sensitive to limited fluctuations of the
glutathione redox pool. Plastidial GRXS12 for instance is glutathionylated in vitro at
GSH/GSSG ratios of 10> -10° that fully prevent the glutathionylation of other targets like
cytoplasmic GAPDH (36,573).
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As an alternative to GSSG, protein glutathionylation can occur in the presence of GSNO

(Figure 8B). This molecule can allow the formation of S-nitrosothiols but can also transfer
its GS-moiety to a target Cys. The structural features controlling one reaction over another
are still uncertain and are likely related to the local environment surrounding the target
Cys residue. GRXS12 is an example of a protein that is glutathionylated by GSNO, rather
than nitrosylated (573).

Finally, in addition to non-enzymatic mechanisms, protein glutathionylation might also be
catalyzed by specific oxidoreductases (Figure 8B). This was shown for human GRX2 that
appears to promote protein S-glutathionylation following a reaction mediated by either
GSSG or GS® radical (38,163). Both mechanisms rely on the formation of glutathionyl-GRX
intermediates and the ability of GRX to transfer the glutathionyl-adduct to an acceptor
protein thiolate in a trans-glutathionylation reaction. To date, no evidence suggests the
ability of plant GRXs to catalyze such reactions in vivo. However, a remarkable example of
enzyme-assisted glutathionylation occurring in plants involves the genetically encoded
probe roGFP2 fused to human GRX1 (GRX1-roGFP2; (333,458)). This chimeric protein has
been developed to monitor the glutathione redox state and its functioning is specifically
related to reversible trans-glutathionylation reactions between the probe and GRX1.

I1l. REDOX PROTEOMICS: METHODOLOGICAL PRINCIPLES AND FUTURE DEVELOPMENTS
IN THE PLANT FIELD

Despite the latest improvements of mass spectrometry (MS) in terms of sensitivity and
resolution over the last decade, direct analysis of redox-modified proteins remains highly
challenging. As shown in Figure 9 (see also Section 1), more than ten thiol-based redox
PTMs are currently known (101,182,395). Due to their lability, their low stoichiometry and
their possible interchange during sample processing as exemplified in Figure 9 (black and
gray boxes corresponding to primary and secondary modifications), the redox proteomics
field has to face different biochemical, methodological and instrumental challenges to get
insights about the in vivo dynamics of redox PTMs. In complex systems, redox proteomic
strategies currently rely on the differential labeling of Cys according to their modification
state followed by MS analyses at the peptide level after an affinity enrichment step.
Non-targeted quantitative strategies, such as OxICAT (283,470) and OxiTMT (474) were

developed to determine oxidation levels of hundreds of Cys upon oxidative treatments. To
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date, these approaches have been applied to quantitatively identify oxidative-prone Cys in

the marine diatom P. tricornutum (436) and the cyanobacteria Synechocystis sp. PCC 6803
(194). In this latter organism, 20 to 40% of proteins were found to contain oxidized Cys in
the dark. Nevertheless, these strategies are unable to distinguish which reversible redox
PTM is at the origin of the modification of the Cys. In this section, we will focus on
approaches trapping selectively the different reversible redox PTMs with a special
emphasis on their advantages, drawbacks and limitations, and their use in photosynthetic
organisms.

lll.A. Thioredoxome

Two main proteomic strategies have been employed to identify hundreds of proteins
containing disulfide bonds reduced by TRX (56,299). The first and most common approach
takes advantage of the ability of a monocysteinic TRX variant (Figure 10), where the C-
terminal active site Cys is replaced by serine or alanine, to covalently bind oxidized target
proteins (for the mechanism, see Section V). The monocysteinic TRX is most often grafted
on a chromatographic resin and TRX-bound targets are eluted with a chemical reductant
like dithiothreitol (DTT). This type of column has been applied to numerous protein
extracts from the cyanobacterium Synechocystis sp. PCC 6803 (298,402,404) and also
different photosynthetic eukaryotes
(6,24,27,28,32,187,208,227,285,317,319,353,543,552,565). This approach has several
drawbacks. First, it lacks specificity as several TRX classes (f, m, y, h) immobilized to the
resin retain the same targets while they have distinct specificities in solution at more
diluted conditions (see Section IV). This may be due to the high concentration of TRX or to
peculiar properties of the monocysteinic variants (339). Moreover, depending on the
washing conditions, proteins interacting with TRX targets may be eluted together with
genuine TRX targets thereby increasing false-positive rates. Nevertheless, the major
drawback of the column approach is that it only identifies the target protein whereas the
exact Cys targeted by TRX remains unknown.

The second main strategy, named “reductome” approach, is based on the in vitro
reconstitution of the enzymatic TRX system (NADPH, NADPH:TRX reductase and TRX)
within a cell-free protein extract followed by labeling of newly exposed Cys with

fluorescent (311,559), radioactive (318) or biotinylated probes (317) (Figure 10). This
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strategy was applied to total or subcellular soluble protein extracts from different land

plants (6,26,27,208,311,312,325,542,543,558). Biotinylated tags allow enrichment of Cys-
containing peptides by affinity purification and allow identification of TRX-targeted Cys, a
major advantage of the reductome approach. Unfortunately, to increase the number and
diversity of targets, the in vitro reduction has to be performed using relatively high TRX
concentration for which isoform specificity is mostly lost. Therefore, the lack of specificity
is common to both the affinity column and reductome approaches. The two approaches
are complementary as the targets identified only partially overlap (317,405,543).

Recently, quantitative adaptations of the reductome approach were developed for MS
analyses based on chemical labeling with cleavable Isotope-Coded Affinity Tag reagents
(cICAT) (205,206) or with Cys-reactive Tandem Mass Tag (Cys-TMT) (588). The most recent
study combined the column with the quantitative reductome approach to investigate the
thioredoxome of the unicellular green alga Chlamydomonas reinhardtii and identified 1188
proteins and 1052 Cys regulated by TRX. The quantitative approach based on differential
cICAT labeling allowed to decrease false positives by filtering out the noise due to
incomplete thiol blocking of the protein extract and thereby retain only proteins that are
effectively reduced by TRX (405). Nevertheless, the targets identified remain putative and
the presence of a TRX-reduced disulfide bond needs to be confirmed experimentally. Some
TRXs were also shown to function, on specific targets, as denitrosylase (41,42,46,487) and
deglutathionylase (36,189,482). However, such activities should not impact the
identification of TRX targets in both approaches as the vast majority of nitrosylated
proteins are denitrosylated by GSH rather than TRX (44,388,433,580), and TRX targets
were analyzed in conditions where S-nitrosylation and S-glutathionylation are limited or
absent (350,571). Moreover, the reduction of S-nitrosylated or S-glutathionylated proteins
by monocysteinic TRX is considered to yield nitrosylated or glutathionylated TRX rather
than mixed disulfide with the target (36,262,405). Finally, both the proteomic
identification of already established TRX targets and the biochemical confirmation of
targets previously identified by proteomics strongly support the reliability of proteomic
approaches to identify TRX targets. Biochemically confirmed TRX targets previously
identified by proteomic studies include at least 2-Cys PRX (187,353), phosphoglycerate
kinase (349) magnesium chelatase CHLI subunit (232), B-amylase 1 (478), methionine
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sulfoxide reductases (494,517), glucan water dikinase (342), uricase (130), and cytosolic

NAD-MDH (212).

lll.B. Nitrosylome

The identification and the quantification of S-nitrosothiols and S-nitrosylated proteins in
biological samples remain highly challenging due to the lability of the —SNO bond (242)
whose stability is strongly influenced by multiple factors including light, metals and
reducing compounds such as GSH or TRXs. Such an instability of S-nitrosothiols precludes
their direct detection by matrix-assisted laser desorption-ionization (MALDI) MS (250) and
even by electrospray (ESI) MS (211) unless ionization parameters are carefully optimized
(525). Therefore, high throughput analysis of nitrosylated proteins is based on indirect
methods for which the NO moiety is replaced by a more stable tag that allows an
enrichment step.

Most studies rely on the Biotin Switch Technique (BST) developed in 2001 (241) which was
the first approach allowing detection and identification of S-nitrosylated proteins at the
proteome scale (Figure 10). This method consists in the replacement of the NO moiety of
S-nitrosylated Cys residues by a disulfide-bonded biotin tag in a three step process: (i)
initial blocking of unmodified Cys thiols under denaturing conditions; (ii) “specific”
reduction of =SNOs by ascorbate; (iii) labeling of the nascent thiols with the biotinylating
reagent N-[6-(biotinamido)hexyl]-3’-(2’-pyridyldithio)-propionamide (Biotin-HPDP). The
replacement of the —SNO moiety by a disulfide bonded biotin tag allows detection of
previously S-nitrosylated proteins by immunoblotting or purification by avidin-based
affinity chromatography and DTT elution for MS-based identification (301). Many variants
of the original BST approach have been proposed such as the —SNO site identification
(SNOSID) approach which includes a trypsin digestion step before enrichment (210) or the
—SNO resin-assisted capture (SNO-RAC) method which takes advantage of a thiol-reactive
resin for capturing nascent thiols after ascorbate reduction (Figure 10) (152). The two
methods allow identification of both the modified proteins and the modified Cys. The BST
was applied to a wide range of photosynthetic organisms (reviewed in (269,420,463,575))
and allowed identifying nitrosylated proteins in different organs and subcellular
compartments (73,385,389,463), in mutant lines (229,296), and in plants exposed to
exogenous NO donors (301,350,389) or affected by biotic (20,432) or abiotic stresses



Downloaded by L1 CO SA/50127/MI from www.liebertpub.com at 12/06/18. For personal use only.

Antioxidants and Redox Signaling

REDOX HOMEOSTASIS IN PHOTOSYNTHETIC ORGANISMS: NOVEL AND ESTABLISHED THIOL-BASED MOLECULAR MECHANISMS (DOI: 10.1089/ars.2018.7617)
This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Page 24 of 149

24
(1,64,136,217,296,421,462,463,491,492,512). The most extensive studies identified 492

proteins and 392 sites in Chlamydomonas reinhardtii cells subjected to a 15 minutes GSNO
treatment (350) and 926 proteins and 1195 sites in Arabidopsis Col-0 and KO mutants for
GSNOR (gsnor1-3 lines; (229)).

Despite its popularity, BST is a very difficult technique with inherent limitations and biases
that are not sufficiently taken into account. A major drawback relies in the identification of
false positives due to incomplete blocking and loss of targets due to spontaneous
denitrosylation during sample handling. Moreover, the specificity of the ascorbate-
dependent reduction step is difficult to establish unambiguously toward either disulfide
bonds (105), or byproducts of reactions of classical thiol blocking agents with other species
such as sulfenic acids (426). Overall, the signal to noise ratio is low and variable due to
differences in biological material, growth conditions, experimental design, sample
handling, instrument setup, and bioinformatic data analysis. This strongly decreases the
reproducibility and sensitivity of the method.

Several quantitative BST approaches allowing quantification of nitrosylation levels have
been proposed. They are based on the combination of BST with chemical labeling
strategies such as ICAT or related molecules (136,167,388,421), Cys-TMT (359), iodo-TMT
(422) or isobaric tag for relative and absolute quantification (iTRAQ) using the SNO-RAC
method (152), stable isotope labeling with amino acids in cell culture (SILAC) (593) or label-
free spectral counting (589). Such quantitative approaches will certainly improve the
confidence into data generated by BST-based studies and allow uncoupling protein levels
from nitrosylation levels. We believe that a method more reliable than BST is probably
required for analysis nitrosylation at a dynamic level. More direct and promising
approaches based on direct capture of S-nitrosocysteine residues have been proposed but
need further confirmation of their potential for quantitative proteomic studies
(129,135,520).

llI.C. Glutathionylome

Proteomic analysis of S-glutathionylated proteins has been initially performed using
radiolabeling of the glutathione pool in cell cultures in the presence of >>S-cysteine and
protein synthesis inhibitors (Figure 10). Radiolabeled proteins are visualized by

fluorography after separation on 2D gels. The spots disappearing in the presence of
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reducing agent, which correspond to S-glutathionylated proteins, are then identified by

MS. Originally developed for human cells (160), this method allowed identification of 25
proteins in Chlamydomonas reinhardtii (340) but proved unsuccessful in Arabidopsis due
to low levels of radiolabeling (126). This method has numerous drawbacks: (i) the protein
synthesis inhibitors perturb cell physiology; (ii) this method cannot distinguish S-
glutathionylated proteins (protein-SSG) from other forms of S-thiolation such as S-
cysteinylation; (iii) it is limited by the necessity to perform 2D gels; (iv) it can only be used
with cell cultures, thereby precluding studies on whole plants, (v) it can only detect
proteins undergoing glutathionylation during treatment excluding proteins already
glutathionylated under basal conditions, and (vi) finally it precludes high-throughput
identification of glutathionylated sites.

An alternative method is based on biotinylated glutathione (BioGSH/BioGSSG) or the
membrane permeant biotinylated glutathione ethyl ester (BioGEE) (Figure 10). The
presence of the biotin tag allows detection of S-glutathionylated proteins by
immunoblotting or enrichment by affinity chromatography. The latter can be coupled to
MS for identification of not only S-glutathionylated proteins but also S-glutathionylated
Cys if proteins are trypsin-digested before enrichment, as in the SNOSID approach (see
paragraph 11.2). The major drawback of such methods is that proteins are not S-
glutathionylated by the cellular GSH itself but by an exogenous, sterically different
molecule. The presence of the biotin tag on the glutathione molecule might perturb the
function of glutathione-dependent enzymes and especially GRXs (Zaffagnini et al., personal
communication). Another drawback, shared with the **S labeling method, is that proteins
glutathionylated under basal conditions are not detected. Originally used in mammals
(483), this approach allowed identification of more than 70 S-glutathionylated proteins in
Arabidopsis (126,236), 225 proteins and 56 S-glutathionylation sites in Chlamydomonas
(571) and 349 proteins and 145 sites in Synechocystis sp. PCC 6803 (76).

Several additional methods have been employed but not yet used in photosynthetic
organisms. Commercial anti-glutathione antibodies which can be useful for analysis of
isolated proteins lack specificity and sensitivity, precluding application for high-throughput
proteomics. S-glutathionylation can also be studied using an adaptation of the BST where

the reduction step is performed with GRXs instead of ascorbate (Figure 10)
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(175,209,253,297). This approach has roughly the same drawbacks as the BST. In addition,

the blocking of free thiols under denaturing conditions is difficult to combine with the
enzymatic reduction of S-glutathionylated proteins by the GRX system (NADPH,
glutathione reductase, GRX; see Section V) that has to be performed in the absence of
detergents.

Overall, despite the fact that S-glutathionylation is more stable than S-nitrosylation, the
methods currently employed have numerous caveats and drawbacks and the development
of new approaches is most probably required for proteome-wide quantitative analysis of
glutathionylation. A “chemobiology” approach based on click chemistry (417) may be
possible since biosynthesis of a click analogue of glutathione seems experimentally
feasible (141,254,445,446). Such approaches have proven very efficient for proteomic
analysis of S-palmitoylation (323,592), N-myristoylation (545) or glycosylation (292,496).
lII.D. Sulfenylome

Proteomic analysis of sulfenic acids follows two major strategies that are based on either
chemical or genetically encoded probes (4,413,554). Current chemical probes are mostly
based on 1,3-carbonyl scaffold such as the cyclic dimedone (5,5-dimethyl-1,3-
cyclohexanedione) (198,424). At physiological pH, dimedone is in equilibrium with its
enolic form which itself performs a nucleophilic attack on sulfenic acid. Dimedone tagged
peptides can be detected by MS and due to the generated mass increase, the involved Cys
can be easily characterized. Nevertheless, dimedone has limited application for complex
samples as it lacks a functional group for enrichment. Therefore, molecules harboring a
dimedone conjugated with a fluorescent tag (DCP-Rho and DCP-FL series) or a biotin tag
(DCP-Bio series) have been developed (Figure 10) (77,415). These probes have proven
efficient but the presence of a bulky tag may alter cell permeability or prevent interaction
with sulfenic acids that are not fully solvent accessible (413,466).

Recently, small biorthogonal probes derived from dimedone have been developed such as
DAz-1/DAz-2 (289) and DYn-1/DYn-2 (396). These probes can be biotinylated through click
chemistry allowing enrichment of sulfenylated peptides. Used at lower concentrations
than the classical dimedone, they are non-toxic and do not influence the intracellular
redox balance (396,555). Analysis of sulfenylated Cys with dimedone-based probes is

compatible with classical quantitative MS-based strategies such as iTRAQ or TMT, which
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introduce reporter tags on tryptic peptides. Another way consists in synthesizing light and

heavy isotope-coded forms of DYn-2 (556). Such a strategy allowed identification, in
human cells, of 1000 sulfenylated Cys in 700 proteins (555). Despite their selectivity, these
probes suffer from poor reaction kinetics under physiological conditions compared to
biological reactions of sulfenic acids (197). New probes with faster reaction rates are
therefore being considered to further expand our ability to monitor the sulfenome
(198,199,302,416). Biotinylated strained bicyclo[6.1.0]nonyne derivatives appear
promising tools as they show reaction rates two orders of magnitude higher than
dimedone even at low concentrations (UM range) (416).

The second approach is based on the yeast transcription factor Yap-1 which naturally
interacts with the sulfenic acid formed on the Orpl protein through formation of a
transient mixed-disulfide (Figure 10) (116,544). An engineered monocysteinic His-tagged
version of Yapl has been developed and shown to covalently trap sulfenylated proteins in
E. coli (489) and S. cerevisiae (490). The major advantage of this type of probe is that their
reaction kinetics is, at least theoretically, faster than dimedone-based chemical probes (4).
Moreover, since they are genetically encoded they can be controlled through genetic
circuits and can be targeted to explore the sulfenylome of diverse subcellular
compartments. Yapl-based methods also have several drawbacks including a low
efficiency that may be linked to in vivo reduction of Yapl-target mixed disulfides and, a
selectivity-bias due to the Yap1-protein backbone and its steric effects.

In photosynthetic organisms, few studies addressed the question of the sulfenylated
proteome in vivo. A combination of DCP-Bio and Yap1 probe allowed identification of 91
proteins in Medicago truncatula and 20 in its symbiont Sinorhizobium meliloti (381). More
recently, the YAP1 probe was combined with a tandem affinity purification tag to detect 97
sulfenylated proteins in Arabidopsis cell suspensions under H,0, stress (527). The DYn-2
probe was also recently employed in Arabidopsis and allowed identification of 226
sulfenylated proteins (3). Interestingly, a low overlap (17%) was observed between the
two Arabidopsis sulfenylomes obtained by the same groups suggesting that both

approaches are highly complementary.
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I1l.E. Persulfidome

Persulfides exhibit a reactivity similar to thiols rendering their analysis at a proteome scale
challenging. Some BST-based proteomic strategies aiming at unravelling persulfidation in
complex samples have been recently developed. In the pioneering method, free thiols are
blocked by methyl methanethiosulfonate (MMTS) whereas unblocked persulfides are
subsequently biotinylated by HPDP-Biotin before enrichment by avidin-based affinity
chromatography (361). Nevertheless, the assumed selectivity of the strong thiol-alkylating
agent MMTS is questionable as it was shown to react indifferently with thiols and
persulfides (390). Another approach combines initial blocking of all free thiols and
persulfides with N-ethyl maleimide (NEM), DTT reduction and labeling of nascent thiols
with NEM-biotin (511). This strategy should be used with care as many proteins can
undergo multiple DTT-reducible redox PTMs (186,405).

A more innovative proteomic approach, called Tag-switch, allows persulfide biotinylation
without the use of any reductant (585). In this strategy, both thiols and persulfides are first
blocked with the alkylating reagent methylsulfonyl benzothiazole (MSBT) but only the
activated disulfide bond of MSBT-derivatized persulfides are able to react in a second step
with the biotinylated electrophile methyl cyanoacetate (Figure 10). After enrichment using
avidin-based affinity purification, persulfidated proteins are eluted under non-selective
denaturing conditions that may lead to contaminations with proteins tightly bound to
avidin such as endogenously biotinylated proteins. Another issue is linked to the selectivity
of the Tag-switch approach as methyl cyanoacetate can cross-react with other forms of
protein oxidations (sulfenic acid, sulfenylamide, carbonyls) (585).

The last strategy recently developed consists in the direct alkylation of persulfidated
proteins with biotinylated cysteine alkylating reagents (127,165). In this case, both
persulfides and thiol groups are indiscriminately biotinylated and persulfidated proteins
retained on avidin affinity columns are specifically eluted in the presence of DTT.
Nevertheless, to avoid that true persulfidated proteins remain linked to the column due to
the presence of other biotinylated surface-exposed cysteines in their sequence, low
concentration (50 uM range) of biotinylated alkylating reagents should be employed as
these conditions are known to promote alkylation of hyper-reactive thiols such as

persulfides and thiolates rather than thiols (165,530). The persulfide site identification
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approach, which is equivalent to the SNOSID approach, circumvents these pitfalls by

identifying persulfidated peptides and thus cysteines instead of proteins (165). Moreover,
it remains compatible with classical quantitative MS techniques to compare persulfidomes
(307).

In photosynthetic organisms, data about protein persulfidation are limited. Only two
studies attempted to characterize the persulfidome in the model plant A. thaliana. By
using either the pioneering approach (17) or the Tag-switch assay (16), these studies
allowed the identification of 106 and 2015 persulfidated proteins, respectively. These
proteins are localized in different subcellular compartments but mainly reside in
chloroplasts and cytoplasm (65%) and are involved in a wide variety of pathways and
processes suggesting that persulfidation may be an important thiol switching mechanism
as other redox PTMs in photosynthetic organisms.

ll.F. The Cys proteome: a complex dynamic network

Before the advent of omics strategies, research in cell signaling has been conducted using
ingenious analytical approaches. It is becoming clear now that proteomes are so intricate
that we cannot understand the cellular functional organization using only a reductionist
approach studying a limited number of cellular components. This is especially relevant for
redox signaling which coordinate large numbers of redox elements involved in a multitude
of pathways and cellular processes to allow resistance and adaptation to environmental
challenges (182). This Cys proteome can be considered as an interface between the
functional genome and the external environment (183). This highly dynamic network
probably involves spatial and temporal regulation of multiple interconnected redox PTMs
on hundreds of protein thiols with flexible reactivities (395,414,530). Therefore, global
approaches are required to fully understand the entire molecular complexity of redox
signaling pathways and their links with numerous pathophysiological features. Among
global approaches, MS-based strategies have benefited lately from tremendous
technological improvements, and are now ready to face the challenge of comprehensive
and quantitative proteomic approaches at the level of protein expression, protein
interactions or PTMs (372).

Combinations of multiple redox PTMs act as a cellular network rather than as insulated

elements. Understanding the organization of these networks will require to unravel the
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determinants of the specificity of the diverse redox PTMs for proteins and Cys. Indeed, it

remains unclear whether multiple redox PTMs occur on a limited number of proteins
containing reactive Cys or if each modification targets a distinct redox network. Recently,
the identity of redox-modified Cys belonging to proteins undergoing at least two different
redox PTMs (among targets of TRX, S-glutathionylation and S-nitrosylation) were
compared in Chlamydomonas (405). This analysis revealed that 86% of these cysteines
were modified by only one type of redox modification. This comparison indicates, on one
hand, that the Cys proteome does not represent a subset of highly reactive cysteines that
are modified indiscriminately and highlights, on the other hand, a strikingly high specificity
of each modification for distinct Cys residues (405). A similar high specificity with a limited
overlap between Cys targeted by multiple PTMs was also reported in human and mouse
(186,289). These results indicate that the Cys proteome does not represent a small subset
of highly reactive Cys that are modified through indiscriminate interaction with the
molecules they encounter but represent a complex system of redox PTMs that are specific
toward distinct interconnected protein networks (405).

The complexity of the network likely provides the robustness and specificity required to
allow simple molecules such as ROS, RNS and RSS to play a signaling role. This redox
network is presumably a major component of signal integration and constitutes the
molecular signature of the ROS/RNS/RSS crosstalk whose importance in cell signaling has
been recognized (158,161,191,347,471).

Understanding this complex network will require to determine the stoichiometry and
dynamics of multiple redox PTMs under diverse physiological conditions or in different
genetic backgrounds, and at different time scales. This should be favored in the future by
the development of sensitive and accurate redox quantitative MS approaches combined
with the development of new chemospecific probe molecules (554). These chemical
probes will have to (i) be specific for a given modification with no interference with other
biological molecules, (ii) be compatible with quantitative MS, (iii) be non-toxic and
membrane permeable to allow in situ or in vivo labeling, (iv) be highly sensitive to allow
detection of low abundant proteins or low levels of modifications, (v) allow efficient
enrichment methods using e.g. click chemistry, and (vi) exhibit fast reaction rates

compatible with the half-life and reactivity of the species studied. New types of



Downloaded by L1 CO SA/50127/MI from www.liebertpub.com at 12/06/18. For personal use only.

Page 31 of 149

Antioxidants and Redox Signaling

REDOX HOMEOSTASIS IN PHOTOSYNTHETIC ORGANISMS: NOVEL AND ESTABLISHED THIOL-BASED MOLECULAR MECHANISMS (DOI: 10.1089/ars.2018.7617)
This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

31
modifications may also become amenable to proteomic analysis with the development of

new probes such as NO-Bio, a recent biotin-tagged probe for proteomic analysis of sulfinic
acids (306). Future redox proteomic studies will have to take advantage of isotope-coded
multiplex reagents such as tandem mass tags to monitor multiple modifications or multiple
samples simultaneously. Progress in the sensitivity of MS instruments and proteomic
methods will allow analyses on limited amounts of biological samples and thus foster the
development of single cell redox proteomic approaches to decipher the redox signaling
network rather than unravel averaged redox signals from multiple cells. In other words,
temporal quantitative redox proteomics on limited number of cells is certainly the grail
that will allow us to discriminate redox modifications events from noise and thus shed light
on the functioning of the redox network.

In addition, computational structural genomic approaches will be required to integrate the
Cys proteome at the structural level. Finally, besides redox PTMs, the integration of the
signal implicates a myriad of other molecules and processes acting at multiple levels (326).
In photosynthetic organisms, several redox PTMs are linked to signaling pathways
controlled by hormones (140,262,497,522,528,567) or calcium (506) and in mammals,
nitrosylation was shown to interfere with signaling processes mediated by
phosphorylation, ubiquitylation, sumoylation, acetylation or palmitoylation (214).
Therefore, a strong effort is required to integrate redox networks with other signaling
pathways and to analyze their impacts on the cellular responses at multiple levels. This will
certainly be crucial to unravel how environmental challenges are encoded into a
biochemical signal than can be exploited to trigger the appropriate responses in terms of
localization, duration and intensity, at the genome, transcriptome, proteome and
metabolome level to allow adaptation and survival.

IV. THE REMARKABLE DIVERSITY OF REDOXINS IN PHOTOSYNTHETIC ORGANISMS

IV.A. A general introduction on plant TRX superfamily (redoxins)

The TRX superfamily encompasses several protein families (notably TRXs, GRXs, protein
disulfide isomerases (PDI) and glutathione-S-transferases (GSTs)), the members of which
have in common a specific structural arrangement named the TRX fold (see Section V) and

often a typical XCXXC/S signature containing the redox active Cys pair.
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The number of PDI genes found in plant genomes is comparable to the one in mammals

and higher than the one in fungi (465). For the TRX, GRX and GST gene families, algae and
terrestrial plants have an expanded number of representatives, which is explained in part
by the existence of additional classes (87,100,274,286,287,336). Hence, in the next
subsections, we will focus our attention on the remarkable diversity found in TRX and GRX
families, describing their subcellular distribution and how comparative genomics led to a
rather exhaustive and refined classification of these genes/proteins and to a better
understanding of their evolution.

IV.B. Classification and evolution of redoxins and their reductases

TRXs and GRXs were initially defined by quite strict signatures e.g. WC[G/P]PC and
YCP[F/Y]C respectively, but the sequencing of numerous genomes pointed to the existence
of a large variety of other combinations. These variations are usually still compatible with
an oxidoreductase activity, although some are associated with the capacity to bind Fe-S
clusters as observed initially for GRXC1 which possesses a slightly divergent YCGYC active
site signature and then with several other GRXs (441). In the PDI family, the majority of
plant isoforms possess a WCGHC signature, but variations also appeared in some
representatives (465). There is no such universal signature for GSTs and actually only a
very few of them have conserved both Cys. An important number has even lost the first
catalytic Cys that has been replaced by a serine. This has led to a change in the type of
activity catalyzed by GSTs. Those that kept the catalytic Cys have glutathione-removing
activities whereas those possessing a serine have glutathione-conjugating activities, this
residue serving for the activation of the thiol group of the glutathione molecule. Besides,
GSTs have a particular structural arrangement with the existence of an all-helical domain
fused at the C-terminus of the TRX domain. We invite the reader to refer to the following
reviews for detailed information about phylogenomic analyses of PDIs (287,465) and GSTs
possessing the catalytic Cys (274). From now, this section will uniquely focus on the TRX
and GRX systems that primarily control the RMS-dependent PTMs of protein Cys.

IV.B.1. Phylogenetic and sequence diversity within the TRX and TRX reductase families
The TRX family is split into 21 well-defined classes including the NADPH-TRX reductase C
(NTRC) fusion proteins that contain a TRX domain and a TRX reductase domain (Table 1

and Figure 11). Some TRX family members can unequivocally be distinguished by the
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active site signature and domain organization. Typical TRX isoforms (TRX f, m, x, y, z, o, and

h classes) are formed by a single domain with regular WCGPC or WCPPC active site
signatures corresponding to the one found in ancestral TRXs (Figure 11). In addition, there
are larger proteins that contain either two or more TRX domains (chloroplast drought-
induced stress protein of 32 kDa, CDSP32 or nucleoredoxins, NRX) or a TRX domain fused
to a domain with other functions (TRX reductase domain in NTRC, tetratricopeptide repeat
domain in tetratricopeptide domain-containing TRXs (TDXs) (Figure 11). The active site
signatures of the TRX domain(s) are also usually regular or with little variations. In CDSP32,
the first domain has lost the Cys whereas the signature of the C-terminal domain is of the
HCGPC type (Figure 11). Among NRXs, three groups can be distinguished. In NRX1 and
NRX3 members, both TRX domains have generally WCGPC or WCPPC active site signatures
whereas in NRX2 members, only the C-terminal domain conserved the Cys and the
consensus signature has significantly diverged being of the [W/R]C[L/A]P[C/G] form (Figure
11). The C-terminal TRX domains in NTRC and TDX have a TCGPC and WCGPC signature,
respectively (Figure 11). Finally, there are atypical TRXs formed by a single domain and
divergent active site motifs: CLOT (WCPDC), HCF164 (WCEVC), TRX-likel (most often
WCRVC), TRX-like2 (WCRKC), TRX-lilium1 (GCGGC), TRX-lilium2 (WC[G/A]SC), TRX-lilium3
(SCGSC), TRX s (no conserved signature) and TRX CxxS (often WC[M/I]PS) which are
included in the TRX h class (Figure 11). Lilium-type TRXs are also known as atypical Cys
histidine-rich TRXs (ACHT, (110,111,133)) because they contain several conserved Cys and
histidine residues outside the active site. These chloroplast atypical TRXs are proposed to
play a role in the inactivation of light-activated redox targets (see Section VII). It is worth
mentioning that HCF164 possesses an N-terminal anchoring domain to the thylakoid
membrane (Figure 11). The TRX s class is not presented in Table 1 because it is only found
in some leguminosae. There are four members in Medicago truncatula (428) and they
likely possess specific functions for the establishment of symbiotic interactions between
plants and bacteria of the rhizobia genus. Interestingly, the TRX s1 is secreted into the
microsymbiont although it seems that it derived from plastidial TRX m (428). Therefore, it
may be that the plastid targeting sequence evolved into a secretory signal.

When considering two angiosperms, the dicot Arabidopsis thaliana and the monocot

Oryza sativa; a lycophyte, the fern Selaginella moellendorffii; a bryophyte, the moss
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Physcomitrella patens; a green alga, Chlamydomonas reinhardtii and a cyanobacterium,

Synechocystis sp. PCC 6803, the minimal TRX equipment in photosynthetic organisms, as
found in this cyanobacterium and conserved in all other organisms, appears to be formed
by 4 members belonging to the HCF164, TRX m, TRX x, and TRX y types (Table 1) (87). This
number increases to 20 in C. reinhardtii with the appearance of TRX f, h, o, z, CDSP32,
CLOT, TRX-like, TRX-lilium, NRX and NTRC. Another increase occurred in terrestrial plants,
both non-vascular (mosses) and vascular (ferns and angiosperms) ones. So far, in land
plants, the lowest and highest numbers of reported TRXs have been found in S.
moellendorffii (22 isoforms, Table 1) and in Eucalyptus grandis (45 isoforms) (412). This rise
is mostly linked to duplications within existing classes, as the sole innovation specific to
angiosperms is the TDX class that contains one or two members. These substantial
differences in the TRX content among terrestrial plants are appealing although some
cautions may be needed for recent, automatically annotated genomes.

Why the evolution positively selected complexity in the plant TRX system (on average in
the human genome one TRX-coding gene is found for every 10,000 protein-coding genes
versus 1350 protein-coding genes in Arabidopsis) is unknown. Reasonably more than a
single evolutionary cause has contributed to positive selection. In fact, it is generally
accepted that in plants several physiological processes are under the control of the TRX-
mediated redox mechanisms. Whether as a result of the sessile lifestyle of photosynthetic
organisms or due to the greater permissiveness to genome doubling events as well as
arising from the existence of three evolutionary distinct genomes (nuclear, mitochondrial
and plastid genome) inside a cell, plant TRX system is indeed more complex and versatile
than that of prokaryotes (e.g. bacteria) and heterotrophic organisms (e.g. animal and
fungi).

On the contrary, there are only minimal variations concerning the TRX reductases (TRs)
along the green lineage (Table 1). The FTR is composed by a catalytic and a variable
subunit (Figure 12), which is, by definition, difficult to identify based on sequence
homology. Hence, concentrating on the FTR catalytic subunit, all analyzed genomes
contain a single gene except P. patens which has two (Table 1). Concerning NTRs, there is
usually a single NTRC isoform and 1 to 2 NTRA/B members (Table 1, Figure 11 and Figure

12). A large number of NTRA/B genes (six) is found in the genome of Quercus robur but the
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same caution as before applies for this first assembled genome version (412). One

particularity is the presence of a mammalian-type NAPDH-TRX reductase in some green
algae such as C. reinhardtii (239). These are remnant selenoproteins common to many
eukaryotes but not terrestrial plants, since they lost the system for selenocysteine
insertion.

The subcellular localization of most Arabidopsis TRXs and TRs has been determined
experimentally. The mitochondrion is likely the less rich compartment containing only
TRXs o and a TRX h2 in some organisms as poplar and Arabidopsis (172,275,330). They
should be maintained reduced via NTRA or NTRB, both isoforms having been detected
although NTRB may be more abundant (425). Both TRXs o1 and 02 show double
localization, the former in mitochondria and nucleus, the latter in mitochondria and
cytoplasm (118,171). Both NTRA/B are also found in the cytoplasm whereas NTRA may
also be in the nucleus (316,425). In these compartments, they might reduce a certain
number of cytoplasmic TRXs (Clot, TRX-like 1, TRX h1, h3 to h8, TRX CxxS1, TDX) and
nuclear proteins (NRX1, NRX2 and NRX3) (85,316) but also some membrane-bound TRXs
(TRX h9, TRX CxxS2) owing to the existence of N-terminal glycine and Cys residues
promoting membrane anchoring through N-myristoylation and palmitoylation,
respectively (330,507). The employed reduction system has not been validated for all of
them but TRX CxxS and TRX h9 (or TRX h4 in poplar) use a GSH/GRX system (173,264,330).
Besides, a myristoylated glycine in A. thaliana TRX h7 and TRX h8 promotes their
attachment to the ER/Golgi endomembrane system (507). An orthologous tobacco TRX h is
secreted which raises the question of its reduction (247).

The chloroplast possesses by far the largest TRX equipment. In A. thaliana, there are 20
TRXs taking into account NTRC (52,61,92,110,288,330,468). All regular/typical TRXs (i.e.
TRX m, f, x, y, z) are reduced by FTR (87,564) and some of them, such as TRX z, may be
reduced by NTRC as well (563). It is not yet clear how CDSP32 is recycled upon oxidation
whereas poplar TRX-Like 2.1 and TRX-Lilium2 were shown to be reduced by a GSH system
(85). ACHT1/4 were proposed to be reduced by TRX-regulated ADP-glucose
pyrophosphorylase, thereby contributing to its downregulation (133) (see Section VII).
HCF164 is attached to thylakoids, likely facing the luminal side (288) and would relay the
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reducing equivalents from stromal TRXs into the lumen (352), where proteins regulated by

disulfide formation are present (475).

As far as their reducing activity is concerned, TRX m and f reduce disulfides on several
metabolic targets, including enzymes of the CB cycle, oxidative pentose phosphate
pathway, starch metabolism, ATP synthase and malate valve (68,92,200,349,367,478-480).
TRX x and y, together with CDSP32 and ACHT1/4 are more specific for antioxidant
enzymes, e.g. PRXs and methionine sulfoxide reductases
(93,111,124,147,164,225,494,495).

IV.B.2. Phylogenetic and sequence diversity within the GRX family

The GRX family can be split into six classes (see below for further details; Figure 13). Class |
and Il are shared by eukaryotes and cyanobacteria (Table 1). Class Ill and IV are specific to
eukaryotes (Table 1 and Figure 13). Classes V and VI to cyanobacteria though they are not
present in Synechocystis sp. PCC 6803 (Table 1 and Figure 13). Therefore, both
photosynthetic eukaryotes and cyanobacteria contain GRXs belonging to up to four classes
(eukaryotes: class I, IlI, Ill, IV; cyanobacteria: class I, I, V, VI). As for the TRX family,
members of these GRX classes differ notably by their active site signature and domain
organization (Figure 13). The nomenclature established previously using A. thaliana
members relies on the presence of a Cys or a serine at the last position of the active site
signature (439). Therefore, they were named from GRXC1 to C14 and from GRXS1 to S17
albeit AtGRXS13 possesses a CPLG motif and at the time, the two class IV members (see
below) were not included. The presence of a residue different from Cys or serine at the
last position is also observed in a limited number of GRX members in some other species
(e.g. Oryza sativa or Sorghum bicolor).

Except for the specific case of the PRX-GRX fusion proteins found in some cyanobacteria,
class | GRX isoforms (GRXC1-C5, GRXS12 and cyanobacterial GRX |) are formed by a single
domain with a quite regular YC[P/S/G][Y/F]C active site signature with some exceptions as
GRXC5 (WCSYC) and GRXS12 (WCSYS) (Figure 13). The phylogenetic analysis reveals that
cyanobacterial and algal GRXs form independent clades whereas terrestrial plants can be
further divided into GRXC1/C2, GRXC3/C4 and GRXC5/S12 subgroups (Figure 13), and

these subgroups also differ in their biochemical and redox properties (100-102,104,573).
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Only two class | isoforms are found in model non-photosynthetic organisms such as E. coli

and H. sapiens, but four in S. cerevisiae.

The class Il GRXs are typified by their extremely conserved CGFS signature. They can be
also further divided into four subclasses (GRXS14, S15, S16 and S17) in eukaryotic
photosynthetic organisms according in particular to the existence of multidomain proteins
whereas cyanobacterial GRX Il isoforms systematically grouped independently (Figure 13).
The GRXS14 and S15 members are only formed by a single GRX domain, as are
cyanobacterial orthologs (Figure 13). The GRXS16 and S17 have a modular organization
(Figure 13). The former possesses an N-terminal domain with some similarity with a
certain type of endonuclease and the latter is formed by an N-terminal TRX-like domain
with a distorted active site signature fused to one to three GRX domains. It is extremely
interesting to point out how the GRXS17 fusion appeared and evolved during evolution.
Indeed, haptophytes such as Emiliania huxleyi have isoforms with only one GRX domain,
heterokonts and green algae with two GRX domains, sequenced mosses (P. patens and
Sphagnum fallax), liverwort (Marchantia polymorpha) and fern (S. moellendorffii)
possesses isoforms with two and/or three GRX domains, and gymnosperms (Picea abies)
and angiosperms have isoforms with three GRX domains (100). Since GRXS16 prototypes
are specific to the green lineage, only one to three class Il isoforms are found in model
non-photosynthetic organisms, one in E. coli, three in S. cerevisiae and two in H. sapiens.
The class Ill GRXs are characterized by the presence of two adjacent Cys forming CCxC,
CCxS or CCxG signatures (Figure 13). They are uniquely found in terrestrial plants, ranging
from 2 isoforms in P. patens to 24 in P. trichocarpa (100,412). The expansion of class Il
GRXs in angiosperms occurred mainly through paleopolyploidy duplications shortly after
the monocot-eudicot split (201) and then proceeded by species-specific duplication
leading to the existence of multiple tandem duplication.

The class IV GRXs (also referred to as GRX-like) are only present in terrestrial plants and
they are rarely represented by more than two isoforms in a given species. These proteins
have a particular domain organization with the presence of a long N-terminal extension
followed by a GRX domain with a quite divergent active site signature (though green algal
ancestors have CPYC/CPHC motifs), and two additional domains with unknown function,

named DEP (domain found in Dishweller, Egl10 and Pleckstrin) and DUF547 (domain of
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unknown function 547) (Figure 13). There are in fact two clades, the first containing

sequences with a NCRD[C/S] signhature, the second comprising sequences with a GCE[E/D]C
signature.

As mentioned above, the class V and VI GRXs are found uniquely in cyanobacteria but not
in all of them. They are for instance absent in Synechocystis sp. PCC 6803 and thus not
included in Table 1. On the contrary, a few species have both of them (100). Members of
class V are formed by a GRX domain with a highly conserved CPWG followed by a C-
terminal extension predicted to form three to five transmembrane domains (Figure 13).
Members of class VI are formed by an N-terminal DUF296 domain, followed by a C-
terminal GRX domain with a CPW[C/S] signature (Figure 13). From the presence of this
DUF296 domain in proteins that contain AT-hook motifs and the conservation of metal-
binding histidines, it is predicted that these proteins have DNA-binding properties.

When considering the same set of representative organisms as before, the basal common
GRX equipment in photosynthetic organisms as found in Synechocystis sp. PCC 6803 is
formed by three members, two belonging to the class | and one to the class Il (Table 1).
This number increases to seven in C. reinhardtii because of duplications occurring for class
Il GRXs and of the appearance of class IV GRXs (Table 1). Another increase occurred in non-
vascular plants (mosses) and in ferns with further duplications occurring for class Il GRXs
and with the appearance of class Ill GRXs (Table 1). Finally, the class Ill GRX has strongly
expanded in seed plants, from 9 in Carica papaya to 24 in P. trichocarpa (Figure 13)
(201,412). To date, in terrestrial plants, the lowest and highest numbers of reported GRXs
are found in P. patens (15 isoforms) and in P. trichocarpa (38 isoforms), respectively (Table
1) (412).

The subcellular localization of many poplar and Arabidopsis GRXs has been determined
experimentally. First, it is important to point out that there might be a single GRX in
mitochondria, which is the class Il GRXS15 (30,351). This is extremely surprising because it
has no or extremely poor oxidoreductase activity (39,351) while there is an intense GSH-
dependent metabolism in this compartment suggesting that a catalyst of protein
deglutathionylation is required. In chloroplasts, there are three GRXs in most
photosynthetic organisms, GRXS12 (class 1) and GRXS14 and S16 (class Il) (30,104). A

variation is observed in brassicaceae including A. thaliana due to existence of the close



Downloaded by L1 CO SA/50127/MI from www.liebertpub.com at 12/06/18. For personal use only.

Page 39 of 149

Antioxidants and Redox Signaling

REDOX HOMEOSTASIS IN PHOTOSYNTHETIC ORGANISMS: NOVEL AND ESTABLISHED THIOL-BASED MOLECULAR MECHANISMS (DOI: 10.1089/ars.2018.7617)
This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

39
GRXS12 paralog, GRXC5, and in algae, because they have only the two class Il GRXs

(102,104,284). It is again surprising that there is no class | GRX with regular GSH-
dependent activity in algal plastids. The fourth class Il GRX, GRXS17, is found both in the
cytoplasm and in the nucleus as do GRXC1 and C2 and most class Il GRXs
(30,228,263,366,431,441,549,550,553). In fact, there are still some uncertainties about
several class Ill GRXs, for which the targeting has not been experimentally verified or which
have N-terminal extensions (104,439). Interestingly, GRXC3 and C4 have also short N-
terminal extensions, which may represent either a signal peptide for secretion or a
membrane-anchoring sequence.

In conclusion, the genomic and phylogenetic analyses indicate that the TRX and GRX
families constitute a largely diversified group of proteins in plants with numerous plant-
specific isoforms or classes, which appeared during evolution whereas this
expansion/diversification did not occur in bacterial, fungal and animal kingdoms. Although
this classification is quite robust, relying on the use of specific motifs for protein
identification (for instance the presence of glutathione-binding residues in the case of the
GRX family) (100), one could wonder whether all these proteins adopt a TRX fold and have
oxidoreductase activity. Hence, having systematic activity and structural information for
isoforms belonging to each class would be mandatory in assessing to which extent the
electrostatic surfaces are crucial in determining the specificity of TRXs and GRXs towards
their targets as proposed in the case of E. coli PAPS reductase (48). This may provide clues
to refine the classification on an activity/structure basis. Besides and this is not detailed at
all in previous paragraphs, the presence of extra-Cys residues in some specific GRXs or
TRXs is known to interfere with their activity and recycling. To cite only two examples,
some TRX h having an additional Cys at position 4 become dependent on GSH and GRX
instead of NTR (264), and the glutathionylation of Cys67 of A. thaliana TRX f1 inactivates
the protein preventing its regeneration by FTR (338). Finally yet importantly, besides the
punctual changes in key amino acids, many proteins have additional domains, the function
of which is often not yet determined although it could considerably affect their
localizations, protein-protein interactions or activities. It would be expected that these
protein innovations modify for instance the set of partner proteins. In this regard, it is

interesting to see the intricate relationship between class Il GRXs and TGA transcription
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factors, sustaining the role of these GRXs in plant stress response and development

(notably floral development) (201).

V. STRUCTURES AND CATALYTIC MECHANISMS OF REDOXINS

V.A. The TRX-fold and the structural determinants of redoxin reactivity

The TRX fold, common to all TRXs and GRXs, is composed by a central core made by a four
to five stranded mixed beta-sheet, flanked by three to four a-helices (Figure 14A and 14B).
The residues forming the typical CXXC/S signature containing the catalytic Cys are
positioned at the N-terminus of one of the a-helices. Another important structural feature
of the TRX superfamily members is the presence of an invariant cis-Pro residue that is
found about 40 amino acids on the C-terminal side of the CXXC/S motif and, in the
tridimensional structures, faces the catalytic Cys in the active site. This fold was firstly
identified in the crystal structure of oxidized E. coli TRX1 (224). Since then, several
structures of TRXs and GRXs from different photosynthetic organisms have been solved
(Table 2).

The catalytic site containing the redox active Cys is located in a hydrophobic region quite
exposed to the solvent. The thiol group of the first Cys of the generic CyX1X,C¢/S signature
(where Cy and Cc are the N-terminal and C-terminal Cys, respectively), is accessible and
can easily react with disulfides or possibly other forms of oxidized thiols on the target
proteins (Figure 14A and 14B). On the contrary, the thiol of the second Cys, substituted by
serine in some GRX classes (see Section IV and Figure 13), is buried and surrounded by
hydrophobic residues. The reactivity of the N-terminal Cys is mainly determined by the pK;
of its thiol group (see Section Il) ranging from 4.0 to 5.0 in GRX (102,104,573) and from 6.3
to 7.1 in TRX ((434), Zaffagnini et al., personal communication), indicating partial or
complete deprotonation of the N-terminal Cys at physiological pHs. In spite of their acidic
Cys, neither TRX nor GRX are particularly prone to oxidation by H,0,, confirming that other
factors come into play in the thiolate to sulfenic acid conversion ((508,573), Zaffagnini et
al., personal communication). On the other hand, the C-terminal active site Cys, which may
be absent or not essential for activity in GRX, shows a pkK, that may even be higher than
that of free Cys and therefore should be relatively unreactive ((88), Zaffagnini et al.,
personal communication). Nevertheless, the C-terminal Cys of TRX is involved in the thiol-

disulfide exchange reaction. The mechanism proposed for E. coli TRX (89) predicts that a
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buried and highly conserved aspartic residue (Asp26 in E. coli TRX) works as an acceptor

for the proton released by the C-terminal thiol when it attacks the N-terminal Cys bonded
with the target protein (see below) (65,329).

The low pK, of the N-terminal Cys of both TRXs and GRXs is chiefly determined by a
hydrogen bond network, whereas the contribution of the helix macrodipole is negligible
(150,435). Crystallographic investigations showed that the N-terminal Cys thiolate is often
stabilized by hydrogen bonds with residues belonging to the catalytic sequence
CnX1X2Cc/S. For example, in barley TRX h1 (PDB ID 2VM1; (314)) the sulfur atom of the N-
terminal Cys40 is involved in a double hydrogen bond with the sulfhydryl group and the
backbone amide group of the C-terminal Cys (Cys43; Figure 14C). The lower pK, value of
the N-terminal Cys in GRX like Arabidopsis GRXC5 was explained by an additional, third H-
bond with the backbone amide group of the X, residue, that further stabilizes the N-
terminal thiolate (Figure 14D) (104). A similar hydrogen bond network could not be
established in most TRX active sites due to the presence of a proline in the X, position
(150).

V.B. TRX and GRX: mechanisms of disulfide reduction

Although the large superfamily of TRXs include members that do not appear to be redox
active, TRXs and GRXs can be considered anyway typical reducing agents for disulfide
bonds. The TRX system is older than the GRX system in evolutionary terms (171,335) and it
is more efficient in reducing protein disulfides even under severe oxidative stress ensuring
a reduced environment in the cell. On the other hand, GRXs are more versatile being able
to reduce protein disulfides compensating if necessary TRXs, but also glutathione-mixed
disulfides. Reduced GRXs are regenerated mainly by GSH and in a few cases by TRX
reductases (i.e. FTR, NTR), depending on the redox potential and catalytic mechanism of
the specific GRX (145,246,578). Instead, TRXs are mainly reduced by TRX reductases (FTR,
NTR), but a small subgroup of plant TRXs h is uniquely reduced by the GSH/GRX system
(see Section 1V.B.1; (173,264,330)).

In the catalytic mechanism of TRXs, the exposed N-terminal Cys of the active site CyX1X>Cc
signature performs a nucleophilic attack on the disulfide of the target protein forming a
mixed disulfide bond with the target protein itself (Figure 15A). Then, the free C-terminal

Cys becomes reactive (deprotonated) thanks to the proton accepting role of a conserved
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nearby Asp and attacks the N-terminal sulfur atom involved in the mixed disulfide,

generating oxidized TRXs and reduced target proteins (Figure 15A). The reaction is
reversible and its equilibrium is determined by the redox potentials of both TRXs and
target proteins (92,93,222,223,322,478-480). The midpoint redox potential of TRX fand m
is about -290 mV at pH 7 (223,339) and several target proteins show midpoint redox
potentials that differ from that of these TRXs by less than £ 30 mV (92,93,222,223,322,478-
480), suggesting that fluctuations in TRX redox state may effectively translate in
fluctuations of target protein redox states and viceversa. An exception to this general view
is constituted by Lilium/ACHT atypical TRXs that possess redox potential about 50 mV less
negative than typical TRX f or m (85,110). Indeed these TRXs have been proposed to
shuttle electrons from reduced AGPase to 2-Cys PRX in the presence of H,0,, possibly
constituting a pathway of downregulation of chloroplast starch biosynthesis under low-
light intensity. A similar role of TRX in the oxidation of reduced chloroplast targets might
be expected for TRX y that on one side is less reducing than TRX f and m (93), and on the
other hand is a good reductant for 2-Cys PRX (93,124).

Though typical of TRXs, the dithiol oxidoreductase mechanism just described is also shared
by some GRXs (166,578). Most GRXs, however, are specialized in protein
deglutathionylation. In this reaction, the N-terminal catalytic Cys of GRXs attacks the
disulfide of the glutathionylated protein, releases the reduced peptide and becomes itself
glutathionylated (Figure 15B). Afterwards, a second GSH molecule reduces back the
glutathionylated thiol of GRX (60,379) generating GSSG (Figure 15B), in turn reduced to
GSH by NADPH and glutathione reductase (GR) all together forming the GSH/GRX reducing
system (100,574). The C-terminal Cys of GRXs when present is not involved in this
mechanism, which is therefore called monothiol mechanism. The monothiol mechanism
requires a single Cys on GRX (the N-terminal of the active site signature) but two
glutathione molecules, one bound to the target protein and one free (39). This mechanism
may be used both by class | GRX with a single Cys in the active site or having also the
second one (see Section IV.B.2.), although it is not part of the catalytic cycle. An example
of GRX utilizing a monothiol mechanism for deglutathionylation is poplar GRXS12 found in

chloroplasts with a WCSYS active site sequence, unique to plants (102,573).
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Some GRXs such as GRX3 from Chlamydomonas (578) use instead a dithiol mechanism for

deglutathionylation (Figure 15C). In this mechanism, the deglutathionylation of the target
protein occurs like in the monothiol mechanism. However, the glutathionylated GRX is
then deglutathionylated by a second protein Cys that generates an internal disulfide and
releases the GSH (Figure 15C). Depending on the GRX isoform, the second Cys may or may
not belong to the active site. The latter is the case of GRX3 from Chlamydomonas, a
chloroplast class Il GRX whose internal disulfide is very efficiently reduced by FTR, thus
constituting a potential link between deglutathionylation and photosynthesis (335,578).
Unlike TRXs, some plant GRXs (GRXC1, GRXC5, GRXS14-S17) have been identified as Fe-S
cluster binding proteins ligating [2Fe-2S] clusters (30,142,233,351,441). While the Fe-S
clusters bound to class | GRXs (GRXC1 and GRXC5) may modulate GRX activity (the
holoforms are inactive) under oxidative stress conditions for instance, class Il GRX
(GRXS14-S17) are involved in Fe-S cluster biosynthesis and assembly in specific cell
compartments (103).

V.C. Structural basis of TRX/target interaction and specificity

A detailed comparison of the crystal structures of two plastidial TRXs from the same
organism (spinach TRX f and TRX m) showed that in spite of a quite similar overall
structure (rmsd 1.2 A for 102 superimposed C, atoms; (65)), they show a different
distribution of charges around the active site, with TRX f being characterized by a positive
region that is less prominent in TRX m. In addition, TRX f active site is more flexible and the
Trp4d5, the residue preceding the N-terminal Cys, can adopt different conformations. It is
plausible that these features contribute to the different specificities shown by these two
TRXs toward their targets. Indeed, although many tested targets may be reduced in vitro
by either TRX f or m, in some cases a strong specificity for TRX f was documented ((339)
and references therein).

The crystal structure of TRX/target complexes provide further information on the
interaction between plant TRXs and their targets. One study investigated the complex
between barley TRX h2 and barley alpha-amylase/subtilisin inhibitor (BASI) (313). The
interface area between the two proteins is quite small (762 A%). TRX h2 recognizes the
target by interacting with the exposed Cys (Cys148) with which it forms the mixed disulfide
bond, and two preceding residues (Asp146, Trp147). This short peptide of BASI which is
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solvent exposed and free of intermolecular contacts, forms van der Walls interactions and

three backbone-backbone hydrogen bonds with two TRX residues (Met88 and Alal06)
both belonging to loop regions. Therefore, the TRX h2 active site portion (Trp45-Cys46-
Gly47-Pro48) plus two additional segments (Ala87-Met88-Pro89 and Val104-Gly105-
Ala106) form the so called “substrate recognition loop motif”, which is also conserved in
several other TRXs, but also in some GSTs, few PDIs and different proteins as cytochrome c
(313). A similar motif is also observed in the co-crystal structure of the E. coli 3’-
phosphoadenosine-5’-phosphosulfate reductase covalently bound to E. coli TRX1 (78).

VI. GENETICALLY ENCODED SENSORS FOR DETECTION OF REDOX COUPLES IN VIVO

VI.A. Detection of RMS and antioxidants in plant cells

Biochemical techniques have been largely applied to study RMS and the redox status of
the most important antioxidant pools in plant cells or tissues (375,376). In most cases,
these are still the only methods available allowing analysis of the general redox state of
antioxidant molecules like ascorbate and glutathione in whole tissues or subcellular
compartments (157). Data on the subcellular concentrations of ascorbate and glutathione
in plant tissues were also obtained by immunogold electron microscopy, a technique that
cannot distinguish between reduced and oxidized forms (582,583). TRX isoforms, for which
the subcellular distribution is usually known, were quantified by proteomic methods and
their redox state under light and dark conditions examined by redox western blots (564).
Unfortunately, in most cases biochemical assays require tissue homogenization which, on
one side, may dramatically reduce the sensitivity of the analysis and, on the other, can
introduce artefacts due to the sample manipulation. Since both RMS and antioxidants are
unevenly distributed in different subcellular compartments, the meaning of biochemical
determinations of concentrations and redox states in raw extracts is intrinsically limited,
independently from the precision of the measurements.

To overcome these problems, in the last 15 years, biologists have started to use new in
vivo technologies which rely on the use of genetically encoded sensors that enable a real-
time monitoring of the dynamics of chemical species and redox couples (333,458). While
this approach has greatly increased the precision and the flexibility of the measurements

that can be performed in vivo, the availability of genetically encoded sensors is still
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restricted to few chemical species and redox couples. Technical developments are urgently

needed for expanding the palette of sensors to a larger number of redox compounds.

VI.B. Genetically encoded sensors for glutathione

In the redox field, the most commonly used genetically encoded sensors are RxYFP,
roGFP1 and roGFP2 that are based on modified yellow (YFP) or green (GFP) fluorescent
proteins (128,333,386,458). In these modified versions of the GFP- or YFP-based sensors,
two Cys residues have been inserted in adjacent B-strands on the surface of the protein B-
barrel making the protein able to make a disulfide in a cellular context (333,458). The Cys
residues, being positioned in close proximity to the chromophore, can form a disulfide
bond that causes a structural change influencing the light absorption and fluorescence of
the sensor (Figure 16A).

To reveal the formation or reduction of the disulfide bond, it is required to perform a
ratiometric imaging by dual and sequential excitation of the sensor, usually with violet
(~405 nm) and blue (~488 nm) light (Figure 16A). The emitted fluorescence is then
acquired in a 505-540 nm window. Specifically, the disulfide-induced structural change of
the fluorescent sensor has the effect of changing the quantum vyield (QY) of its two main
absorption peaks with an opposite trend: the QY at 405 nm increases, whereas the QY at
488 nm decreases, hence leading to a ratiometric response. The ratio of the light emitted
after excitation at 405 and 488 nm (briefly, the 488/405 nm ratio) provides a direct
readout of disulfide bond formation in the sensor population. The higher the 488/405 nm
ratio is, the higher the oxidation of the sensor (i.e. the percentage of sensor molecules
bearing the disulfide). Most importantly, such ratio can be monitored in real time and in
vivo with different grades of resolution depending on the system used for the acquisition
(e.g. wide-field and confocal microscopy or a fluorescent-based plate reader).

The field of application of the system depends on whether the sensor in vivo equilibrates
with one or more redox couples such that it can be used to measure the redox state of
these couples. The sensors of the roGFP family show midpoint redox potentials (E%ogrp)
between -260 and -290 mV and are proposed to provide an accurate determination of the
redox potential of glutathione (Egsy) in vivo (331,387,459). This implies that glutathione is
assumed to equilibrate with the sensor in vivo. Since the midpoint redox potential of

glutathione is less negative (E%ssq —240 mV), the roGFP sensors are intrinsically more
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adapted to measure highly reduced than oxidized glutathione redox states. Moreover,

since GSH dimerizes upon oxidation (GSSG + 2 e + 2H" > 2 GSH), the Egsy depends on the
[GSH]?/[GSSG] ratio. In other words, it depends on both the GSH/GSSG ratio and the total
concentration of GSH plus GSSG. Therefore, glutathione redox potentials estimated by the
roGFP cannot be translated into GSH/GSSG ratios unless the total concentration of
GSH+GSSG is known (157).

Key advantages of the ratiometric nature of these sensors are manifold. First, the sensor
readout is largely independent on their concentration in the cell. Second, the ratiometric
feature of the sensors allows for the correction of focus changes or moving artefacts when
samples are imaged by microscopy. Third, by using different promoters, they can be
specifically expressed in different tissues and engineered for their targeting to different
subcellular compartments or to modify their properties. Considering all these features,
these redox genetically encoded sensors have been shown to be suitable for deriving
information on redox conditions prevailing in the cell in different plant species, different
cell types as well as different subcellular compartments.

Concerns about the specificity of the roGFP for glutathione have long been debated.
Peroxidases like yeast Orpl and mammalian GPX4 appear to oxidize roGFP2 directly in
response to H,0; in Hela cells, suggesting that the roGFP redox state may be influenced by
other factors than glutathione (203). In fact, roGFP is not oxidized by H,0, in vitro but is
rapidly oxidized by H,0, in vivo. Whether this effect is mediated by glutathione or
peroxidases is difficult to tell. Anyway, even if different compounds obviously influence the
roGFP redox state in vivo it is still possible that roGFP and glutathione reciprocally
equilibrate under any condition. As briefly discussed below, experimental evidence
acquired so far supports this hypothesis.

The first work reporting the expression of a redox sensor in plants was published in 2006
(244) in a study where the roGFP1 was expressed in the cytoplasm and mitochondria of
Arabidopsis thaliana and performed oxidation and reduction treatments with H,O, and
DTT (244). This pioneering work showed the possibility to monitor dynamically subcellular
redox changes by measuring in real time the sensor fluorescent emission ratio. By carrying
out a calibration curve, it was possible to convert the sensor ratios into redox potentials

showing that in mitochondria the E,,grp Was more reduced than in the cytoplasm (-362 mV
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and -318 mV, respectively). Soon after the development of the rxYFP and roGFP sensors

and their first applications in animals and plants, it clearly emerged that both redox
sensors equilibrated predominantly with glutathione (331,387,459) and that equilibration
in vivo was accelerated by GRXs which mediated the thiol-disulfide exchange between
glutathione and the redox sensor (458). A confirmation of this came in 2007 when Meyer
and co-workers expressed the roGFP2 sensor in Arabidopsis (GFP2 is an enhanced variant
of GFP1, see below). Also in this case the roGFP2 reversibly responded to redox changes
induced by incubation with H,O, or DTT and, more important, the sensor was severely
oxidized in mutants with reduced levels of glutathione and in wild-type plants in which the
glutathione content was depleted by treatments with an inhibitor of glutathione
biosynthesis (L-buthionine-sulfoximine, BSO) (332). Soon after another work confirmed
these results in Arabidopsis leaves (459). The fact that different laboratories with different
imaging techniques, wide-field vs confocal microscopy, obtained similar results pointed
out the reliability of the roGFP measurements. In addition, Schwarzlander and co-workers
showed that, in vivo, roGFP1 had a lower dynamic range and was less photostable than
roGFP2. Hence, the use of roGFP2 instead of roGFP1 was recommended (458).

As the equilibrium between roGFPs and glutathione was suspected to be mediated by
GRXs in vivo, it was reasoned that the availability of endogenous GRXs might limit the fast
equilibration between glutathione and the sensor. To overcome this problem, human
GRX1 was fused to the roGFP2 (202). This new GRX1-roGFP2 was expressed and tested in
plants such as A. thaliana and tobacco and in the phytopathogenic fungus Botrytis cinerea
(132,216,328). In Botrytis, a side by side comparison of GRX1-roGFP2 and roGFP2 revealed
that the oxidation of GRX1-roGFP2 was slightly faster than roGFP2, thereby sustaining the
hypothesis that GRX could facilitate the equilibrium between glutathione and the sensor
(216). The functional interaction between glutathione and GRX1-roGFP2 is proposed to
involve first the glutathionylation of GRX1 by GSSG, then the internal trans-
glutathionylation of roGFP2 by GRX1, followed by the formation of the disulfide in the
roGFP2 (Figure 16B). All steps are reversible (Figure 16B). Note that roGFPs do not contain
acidic/reactive Cys, therefore its glutathionylation can proceed via GRX1-dependent trans-

glutathionylation with no requirement of H,0, and transient sulfenic acid formation (see
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Section I1.C6 and Figure 8). Neither GRX1 nor roGFP2 are expected to react with H,0,

directly.

Altogether, the results obtained with different redox sensors based on roGFP1/2
expressed in different subcellular compartments of different organisms under
physiological conditions show that the sensors are always highly reduced in mitochondria,
nuclei, peroxisomes, chloroplasts and cytoplasm and highly oxidized in the ER lumen (458).
Interestingly, the picture changes in stress conditions. For example, drought stress causes
oxidation of roGFP1 in the cytoplasm of Arabidopsis (Egsy shifted from -311 mV to -302
mV) with reversion to control values after re-watering (248). Strong oxidation of
cytoplasmic roGFP2 was also observed in the root tip of Arabidopsis seedlings treated with
cadmium (515) and in wounded Arabidopsis leaves (40,332). In the latter case, an
oxidation wave propagating from the wound area preceded a reduction wave in the
opposite direction, suggesting a systemic signaling response as previously hypothesized for
ROS waves (346). Technically, the in vivo monitoring of the GSH/GSSG status in real time
offered an unprecedented spatial and temporal resolution which may be difficult, if not
impossible, to reach with other techniques.

The oxidation of cytoplasmic roGFP2 was also reported in Arabidopsis and tobacco leaves
infected with the avirulent pathogen Pseudomonas syringae DC3000 (328). The
mitochondrial version of roGFP1 and roGFP2 sensors were oxidized in response to heat
stress, cadmium and darkness (437,458,460). Dark-induced roGFP2 oxidation occurred also
in plastids, peroxisomes and cytoplasm, but in all cases with a different and slower timing
than in mitochondria (437), suggesting that mitochondria may represent the origin of the
oxidative stress in the dark occurring during the senescence program. In chloroplasts,
treatments with electron transport inhibitors (3-(3,4-dichlorophenyl)-1,1-dimethylurea,
DCMU; 2,5-Dibromo-6-isopropyl-3-methyl-1,4-benzoquinone, DBMIB) led to stromal
roGFP2 oxidation and, in the same organelle, increased formation of stromules (53). The
effect is interesting since stromules were shown to play a role in oxidative signaling (66).
As expected for a sensor sensing the glutathione redox potential, roGFP2 was also found
more oxidized in Arabidopsis mutants (rml1, (8); cad2, (332)) in which the total glutathione
content is strongly diminished (62,514), and in mutants of glutathione reductase (gri, gr2)
in which the GSH/GSSG is more oxidized (324,569).
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VI.C. Other redox sensors

The high sensitivity of thiol peroxidases, including PRXs, for H,0, was exploited to develop
a redox sensor with different specificity than roGFP variants. PRXs bear an extremely
reactive catalytic Cys that forms a sulfenic acid upon reaction with H,O,. The sulfenic acid
is then resolved by a second Cys forming a disulfide. Although in the common catalytic
cycle of PRXs, the disulfide is reduced by TRX or GRX, some PRXs harbor an intrinsic and
powerful capacity to act as H,0,-dependent protein thiol oxidases when they are recruited
into proximity of oxidizable target proteins (203). Hence, the idea of fusing the yeast
glutathione peroxidase-like protein Orp1 to the roGFP2 to get an H,0, sensor came (203).
However, this probe cannot be considered as a strict H,0, sensor as the roGFP2-Orp1 is on
one side oxidized by H,0,, but on the other is likely to be reduced in vivo by TRXs that have
been shown to directly reduce Orpl (458). Different from the GRX1-roGFP2 probe whose
oxidation by GSSG and reduction by GSH is reversible, the oxidation of the catalytic Cys of
Orpl by H,0, is not reversed by water ((508); sulfenic acids are not easily reduced by
water), such that roGFP2-Orp1 cannot equilibrate with the H,0,/H,0 redox couple. As a
matter of fact, the redox state of roGFP-Orp1 is not only influenced by the level of the
oxidant (H,0,), but also by the reductants, GRXs and TRXs. This makes the sensor
unsuitable to determine absolute H,0, levels (458). Nevertheless, the roGFP2-Orpl
expressed in Drosophila showed a different redox state from GRX1-roGFP2 during
development and aging (5), suggesting that both sensors provide different information.
The roGFP2-Orpl sensor has been recently used in Arabidopsis, revealing that in guard
cells treatment with H,S determines its oxidation via activation of NADPH oxidase (H,0,
production) (461).

Other relevant redox couples important for redox homeostasis in plants are represented
by nicotinamide adenine dinucleotides. In vivo monitoring of NADH/NAD" ratios was
attempted by combining a bacterial NADH-binding protein and a fluorescent protein
variant, creating a genetically encoded fluorescent biosensor of the cytoplasmic
NADH/NAD" redox state, named Peredox (231). The functionality of Peredox was
demonstrated in mammalian cells showing that it efficiently reported the cytoplasmic
NADH/NAD" ratio and that it was sensitive to exogenous administration of lactate and

pyruvate (231). Such sensor was also employed in the fungus Ustilago maydis to monitor
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cytoplasmic NAD redox dynamics (213). More recently, a new ratiometric, pH-resistant,

genetically encoded fluorescent indicator for NADPH (iNap) was also generated (493). The
iNap sensors have been used to monitor NADPH fluctuations during the activation of
macrophage cells or wound response in vivo (493). Up to now there are no reports
showing the functionality of such NAD(P)(H) sensors in plant cells.

VII. REDOX PLANT PHYSIOLOGY IN VIVO

As outlined above, plants organize a multiplicity of different low-molecular weight redox
couples and redox proteins to regulate cellular redox homeostasis. Whereas research in
the past mainly focused on the characterization of these components during in vitro
studies, recent progress has been made to resolve the organization and biological
significance of this complex redox network in planta. In the following section, we will
review the emerging roles of this regulatory network in integrating photosynthesis,
growth, development and stress responses of plants to cope with fluctuating
environmental conditions.

VII.LA. Redox regulation of light acclimation: the FTR-TRX system and light-responsive
control of photosynthesis within the chloroplast

Sunlight represents the source of energy for photosynthesis and plant growth. However,
photosynthetic cells have to manage strong fluctuations in light intensities that can occur
very rapidly in nature. This requires sensitive and rapid light acclimation mechanisms to
maintain photosynthetic performance and chloroplast functions in a dynamic manner and
to avoid the generation of potentially harmful ROS.

One pathway to transfer light signals to chloroplast target enzymes is provided by the FDX-
TRX system (54). It involves sequential transfer of reducing power from photosynthetic
light reactions via FDX and FTR to five different TRX classes (f, m, x, y and z), which activate
specific sets of stromal and thylakoid proteins by reducing their regulatory disulfides
(Figure 17) (564).

Comparative studies using sets of recombinant purified TRX isoforms and target proteins
revealed functional specificities of the different classes of TRXs for their targets in vitro
(92,322,500,562). TRXs belonging to f- and m-classes revealed metabolic functions in
activating enzymes of the CB cycle, starch synthesis, redox export via the malate valve and

ATP synthesis, whereas isoforms belonging to the x and y classes revealed antioxidative
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functions in providing reducing power to PRXs. For a comprehensive overview on the TRX

target proteins and their regulatory specificities for different TRX isoforms identified
during in vitro studies see (171).

Although until recently most of our knowledge on the functional diversity of chloroplast
TRXs relied on in vitro studies, a boost of genetic studies in the last years specifically in
Arabidopsis led to a rapid increase in our knowledge on their roles in vivo. As outlined in
Section IV, the plant genome contains a complex gene family of TRXs, with up to 21
different TRX classes, including 7 classes containing typical TRXs because of their
conserved active site signature and single domain structure. Typical TRXs from five classes
reside in Arabidopsis chloroplasts, with different isoforms (TRXs f1-2, m1-4, x, y1-2 and z).
The chloroplasts contain also several atypical TRX isoforms that are often little studied
with respect to typical ones. A quantification of the protein levels of typical TRX isoforms
showed that TRXs fand m are the major isoforms, accumulating to 22 and 69% of the total
level of typical TRXs in the chloroplast stroma, respectively (383). For the sake of simplicity,
when not otherwise specified, the term TRX will be used for typical TRXs in the following
text.

Arabidopsis mutants deficient in TRX f1 (lacking 70-90% of total TRX f proteins) or with
combined deficiencies of TRXs f1 and f2 (TRXf null mutants) revealed that f-class TRXs are
important for the rapid activation of carbon metabolism and photosynthesis in response to
light. During rapid dark-light transitions, TRX f deficiency led to delayed and incomplete
reduction and activation of the CB cycle enzyme FBPase and RubisCO activase, retarded
light activation of CB cycle activity and transient inhibition of photosynthetic electron
transport, whereas thermal dissipation of the absorbed light energy by non-photochemical
guenching (NPQ) was transiently increased (363,383,498,501,562). This shows a role of
TRX f in short-term light adjustment of photosynthetic carbon fixation to optimize
photosynthetic efficiency. Deficiency of TRX f also led to an incomplete photoreduction of
the small subunit of the key starch synthetic enzyme AGPase resulting in decreased starch
accumulation during the day, providing evidence for a role of TRX f in regulating diurnal
starch turnover in response to dark-light alterations (363,498,500). Interestingly, despite
the complete lack of f-class TRXs, FBPase and RubisCO activase became partially reduced

during illumination (363,382,562) indicating functional compensation by other classes of
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TRXs or thiol-reduction systems (see below). In line with this, silencing of TRX f did not

substantially affect overall rates of photosynthetic carbon fixation and plant growth under
long-day conditions, whereas there were only slight growth retardations under short-days
or very low light intensities (363,498).

TRXs of the m-class have more diverse in vivo functions than TRX f. Earlier studies
documented a role of the very low abundant TRX m3 in symplastic permeability and
meristem development (45), see also below). On the other hand, more recent reports
revealed photosynthetic functions for the relatively high abundant TRXs m1, m2 and m4,
each representing approx. 23% of the total stromal TRX (99,383,501,523). For TRX m4 a
role in the regulation of cyclic photosynthetic electron transport was revealed (99),
whereas TRXs m1 and m2 were found to participate in the rapid light-activation of NADP-
MDH (501) involved in the export of excess reducing equivalents from the chloroplast via
the malate valve to prevent photoinhibition (447). This indicates that TRXs m1, m2 and m4
are important to balance the chloroplast ATP/NADPH ratio for optimized photosynthesis.
Arabidopsis double mutants with combined deficiencies of TRXs m1 and m2 showed wild-
type growth and photosynthesis under constant light conditions, but photosynthetic
parameters were strongly modified in fluctuating light environments with rapidly
alternating low and high light intensities (501). Combined silencing of TRXs m1 and m2 led
to lower photosynthetic efficiency in high light, but surprisingly had the opposite effect in
the low light periods. This indicates that TRXs m1l and m2 are involved in dynamic
acclimation of photosynthesis, being essential for full activation of photosynthesis in the
high-light peaks by rapid induction of the malate valve to prevent photoinhibition,
whereas there is a trade-off in photosynthetic efficiency during the low-light phases of
fluctuating light (501). The reason for the higher photosynthetic efficiency of the
TRXmIm2 mutants in low light is unclear and requires further investigation.

Interestingly, multiple silencing of TRX m1, TRX m2 and TRX m4 in triple Arabidopsis
mutants led to more severe phenotypes, depending on the extent of the decrease in total
TRX m protein (383,523). A decrease in TRX m protein to approx. 30% of the level found in
wild-type plants led to incomplete photo-reduction of FBPase and SBPase from the CB
cycle and NADP-MDH from the malate valve in response to light, resulting in decreased

CO, assimilation rates, inhibition of photosynthetic electron transport and substantial
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retardations in plant growth under constant light conditions (383). When compared with

TRXf1f2 mutants (see above), this reveals a high level of redundancy of f- and m-class TRXs
in the light activation of the CB cycle and photosynthesis being operational in vivo, which is
unexpected given the predominant role of f-class TRXs in regulating enzymes of the CB
cycle as proposed by in vitro studies (171). When the total amount of TRX m proteins was
decreased to less than 15% of the level found in wild-type plants, mutant plants displayed
very severe growth defects, pale green leaves, strongly decreased PSIl activity and
impaired PSIl assembly (383,523). In line with this, triple silencing of TRXs m1, m2 and m4
in transgenic Arabidopsis led to a decrease in chlorophyll accumulation and in the redox
status and activity of Mg-protoporphyrin IX methyltransferase (CHLM), which catalyzes the
second step in the chlorophyll synthesizing Mg branch of the tetrapyrrol pathway in the
chloroplast (108). Interestingly, studies in pea revealed that simultaneous silencing of TRX f
and m genes is required to decrease the in vivo redox status of the Mg chelatase CHLI
subunit (CHLI), catalyzing the first step of the Mg branch, as well as chlorophyll content
and photosynthetic capacity (309). While interpretation of in vivo results is complicated by
the fact that genetic removal of part of the TRX pool is likely to affect the redox state of
the remnants, overall, these studies suggest redundant roles of f- and m-class TRXs in,
both, rapid light activation of photosynthetic metabolism and more long-term light
regulation of the biosynthesis of photosynthetic machineries.

Arabidopsis mutants deficient in the less abundant TRXs x or y showed wild-type
phenotypes, despite their proposed roles in reduction of 2-Cys PRX and PRX Q for peroxide
detoxification based on in vitro studies (280,419). This indicates functional compensation
by other chloroplast TRX systems in vivo (see below). In contrast to this, deficiency of the
low abundant TRX z led to an albino phenotype with impaired photoautotrophic growth
and disturbed chloroplast development, similar to mutants of chloroplast gene expression
(18). In confirmation to this, TRX z was found to act as an essential structural component
of the plastid-encoded RNA polymerase complex and proposed to be important for the
light-dependent expression of photosynthetic genes in the chloroplast. However, the role
of TRX z in this context seems to be independent of its redox activity (535) and the in vivo
pathways leading to its reduction are currently unclear (563) because the Arabidopsis

isoform does not seem to be reduced by FTR in vitro (51) unlike poplar counterpart (86).
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Further studies will be necessary to elucidate the role of TRX z in the chloroplast

dithiol/disulfide network.

VII.B. Redox-regulation of light acclimation: chloroplast NTRC, 2-Cys PRXs and
photosynthetic performance under low light

In addition to the light-dependent FDX-TRX system described above, the more recently
discovered NTRC forms a separate thiol reduction cascade in the chloroplast stroma,
combining both NTR and TRX activities on a single polypeptide (Figure 17) (468). Unlike
FTR, NTRC receives its reducing potential from NADPH and provides electrons to target
proteins via its own TRX domain (47). Biochemical and genetic studies established a major
role of NTRC in reducing 2-Cys PRXs involved in the scavenging of H,0, within the
chloroplast (409,563). Comparative studies using Arabidopsis mutants deficient in NTRC
and TRX x identified NTRC as the primary electron donor for 2-Cys PRXs in vivo, providing a
redox buffer to keep this enzyme in a reduced state for antioxidant functions in the light as
well as in the dark (419). Although these studies suggested that NTRC operated as a
separate thiol-reduction system independently of light, recent work provided in vivo
evidence for additional functions of NTRC in the light-dependent regulation of
photosynthetic metabolism and thylakoid energy transduction similar to the FDX-TRX
system. In Arabidopsis mutants, deficiency of NTRC led to incomplete photo-reduction of
regulatory disulfides in enzymes involved in chlorophyll biosynthesis (CHLI, CHLM and
glutamyl-transfer RNA reductasel, GIuTR1; (407,429)), starch biosynthesis (AGPase; (498)),
CB cycle (FBPase, SBPase and phosphoribulokinase (PRK) (371,382,498,563)), ATP synthesis
(y-subunit of CF1-ATP synthase (69,371)) and NADPH export (NADP-MDH; (501)) in
response to dark-light transitions, resulting in impaired chlorophyll accumulation
(429,468), starch turnover ((290,498), CO, assimilation (498), photosynthetic light-energy
utilization (69,364,371,498,501) and plant growth (290,364,498). For most of these
parameters, silencing and overexpression of NTRC led to opposing effects, indicating that
NTRC is limiting for CO, fixation, photosynthetic efficiency and growth in wild-type
Arabidopsis plants (371) and may be a promising target for biotechnological strategies to
improve crops (370). The role of NTRC to optimize photosynthetic efficiency is specifically
relevant under constant (69,364) and fluctuating low light intensities (69,501). When light

availability is limiting, NADPH-dependent NTRC allows efficient redox-activation of proton-
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coupled ATP synthase, leading to lower acidification of the thylakoid lumen and lower

energy dissipation by NPQ resulting in a more efficient utilization of available light energy
for photosynthesis and growth (69,364). In confirmation to this notion, blocking of NPQ in
the ntrc mutant background led to partial recovery of photosynthetic performance and
growth, indicating that NTRC promotes photosynthesis by regulating NPQ (364). Under
rapidly alternating low and high light intensities, NTRC is indispensable to ensure the full
range of dynamic responses of NPQ to optimize photosynthesis and maintain growth in
fluctuating light environments occurring frequently in nature (501).

VII.C. Redox-regulation of light acclimation: cooperation of FTR-TRX and NADPH-NTRC
systems for photoautotrophic growth

The participation of NTRC in the light activation of enzymes known to be regulated by the
FDX-TRX system suggests that chloroplast redox regulation depends on the cross talk
between both thiol-redox systems in vivo. To dissect the relationship of NTRC with the
other TRXs, recent studies investigated Arabidopsis mutants with combined deficiencies of
NTRC and TRXs. When the deficiency of NTRC was combined with those of TRX f1/2
(382,498) or TRX x (382), double/triple mutants showed severe growth retardation
phenotypes, almost abolished light activation of FBPase from the CB cycle, severely
impaired CO, assimilation, starch turnover, photosynthetic efficiency and chlorophyll
accumulation, whereas single mutants were hardly affected. Severe growth retardation
and severely impaired chlorophyll synthesis were also revealed when NTRC deficiency was
combined with deficiencies of TRXs m1, m2 and m4 in quadruple mutants (108). A double
mutant combining the deficiency of NTRC and of the catalytic subunit of FTR was not
viable under photoautotrophic conditions (563). This suggests that NADPH dependent
NTRC acts concertedly with diverse other classes of TRXs of the light dependent FDX-TRX
system in photosynthetic redox regulation, with TRXs f1/2, m1/2/4 and x showing a high
degree of functional redundancy. A cooperation of both thiol-reduction loops is therefore
indispensable to sustain light acclimation of photosynthetic metabolism, photosynthetic
efficiency and photoautotrophic growth of plants.

Different mechanisms have been proposed to explain the functional integration of NTRC
and FDX/TRX systems. The phenotypic recovery of the ntrc Arabidopsis mutant by

overexpression of redox-inactive forms of NTRC together with bimolecular fluorescence
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complementation (BiFC) assay based protein-protein interaction studies provided evidence

that NTRC physically interacts with the FDX-TRX system and its targets in vivo (371).
However, the functional role of this interaction is still unclear. In vitro studies show that
NTRC is very inefficient in reducing TRXs f1, f2, m1, m4, x and y1 (51,563) and is not able to
reduce the regulatory disulfides of the TRX target enzymes FBPase, SBPase and NADP-
MDH directly (382,563). This puts forward indirect effects to explain why light activation of
the CB cycle and export of excess reducing equivalents require NTRC. Recent studies show
that decreased levels of 2-Cys PRX suppress the phenotype of the ntrc single and ntrc-
trxf1-trxf2 triple Arabidopsis mutants, indicating that FDX-TRX and NTRC redox systems are
integrated via the redox balance of 2-Cys PRX (408). As NTRC is the major system to
provide electrons for the reduction of 2-Cys PRXs (419,563), it will indirectly maintain the
reducing capacity of the pool of FDX-TRXs (408) and restrict re-oxidation of their targets
via an oxidation loop involving H,0,, oxidized 2-Cys PRX and the atypical TRXs ACHT1/4
(111,133,371) and TRXL2 (561) to finally increase the reduction state of disulfides in target
proteins of the FDX-TRX system (Figure 17).

VII.D. Redox-regulation of light acclimation: integration of redox signals at the cellular
level

In addition to intraorganellar crosstalk of redox systems within the chloroplast, light
acclimation of photosynthesis also requires interorganellar redox communication
(380,449). During acclimation to fluctuating light intensities, chloroplasts communicate
information by retrograde signaling to the nucleus, leading to rapid changes in the
transcription of nuclear genes coding for proteins involved in light harvesting, electron
transport, stromal metabolism and antioxidant systems to balance input of light energy
with photosynthetic capacity (122,184). There is in vivo evidence that H,0, acts as an
important retrograde signal in this response sensing excess excitation energy in the
chloroplast rather than being a toxic byproduct of aerobic metabolism (134,159,345).
Elevated light leads to increased reduction of oxygen to superoxide radicals at the acceptor
side of PSI, leading to increased production of H,0, via superoxide dismutase within the
chloroplast (134,355). The elevated level of H,0, is subsequently transferred from the
chloroplast into the nucleus (50,134,355), where it leads to induced expression of high

light responsive nuclear genes (134,510) via redox sensitive transcription factors (473). As
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H,0, movement from chloroplast to nucleus does not involve the cytoplasm (134), its

transfer most likely involves a close physical association of the two organelles (464)
allowing efficient aquaporin-mediated transmembrane diffusion (50), or the formation of
stromules as direct stroma-filled interorganellar connections (53). In confirmation,
stromule formation between chloroplasts and nucleus is specifically increased in response
to light and chloroplast ROS production (53). This retrograde signaling pathway will (i) be
attenuated by light-dependent reductive signals mediated by chloroplast TRXs and NTRC,
which will diminish the production of H,0, by decreasing acceptor limitation at PSI (501),
(i) increase the scavenging of H,0, by activation of PRXs in the chloroplast stroma (563),
and (iii) restrict the transport of H,0, to the nucleus by inhibiting stromule formation (53).
This is consistent with recent studies on Arabidopsis mutants with combined deficiencies
of chloroplast 2-Cys PRXs and APXs revealing increased H,0; levels and up-regulation of
H,0,-responsive marker genes in the nucleus (22).

Interorganellar redox signaling also involves the exchange of reducing equivalents via
metabolite shuttles, including the triose-P/3PGA shuttle at the chloroplast envelope (518)
and the malate/oxaloacetate shuttles at the chloroplast (260,447), mitochondrial (447)
and peroxysomal (219) envelopes/membranes. This allows high light acclimation
responses at the cellular level by sensing acceptor limitation at PSI via an increase in the
chloroplast NADPH/NADP" ratio, which is transmitted to cytoplasm, mitochondria and
peroxisomes via a combination of the different redox shuttles. Recent studies suggested
that this redox signaling system affects light acclimation responses by (i) translational
inhibition of photosynthetic gene expression via TRX-h dependent regulation of
denitrosylation of the repressor protein NAB1 in the cytoplasm (46), (ii) inhibition of
protein uptake into chloroplasts via redox-regulation of chloroplast envelope translocons
(29,586), (iii) inhibition of catalase in peroxisomes to modulate H,0, signaling responses
(219), and (iv) dissipation of excess reducing equivalents via alternative oxidase in
mitochondria (149,566) probably involving regulation by mitochondrial TRXs (109) to
prevent an over-reduction of the photosystems in the chloroplast (malate valve) and to
modulate ROS responses. Although direct evidence for the light dependency of
mitochondrial TRXs is largely lacking, there is in vivo evidence that the malate valve can act

in the reverse direction by transmitting mitochondrial redox signals to the chloroplasts,
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leading to redox-regulation of chloroplast metabolism (71) and import of chloroplast

precursor proteins (586) via alterations in the chloroplast NADPH/NADP” ratio. This implies
crosstalk of chloroplast, cytoplasmic and mitochondrial TRX systems to integrate redox
signals at the cellular level. Further work is required to resolve the network of
interorganellar redox-communication and the in vivo roles of its components, ensuring
photosynthetic light acclimation and redox balancing at the cellular level.

VIILE. Redox control of abiotic and biotic stress responses: integration of multiple
signaling pathways

In addition to its role in light acclimation of photosynthesis, redox regulation is also
involved in the control of various abiotic and biotic stress responses. As reviewed recently,
ROS and RNS play critical and integrative roles in multiple stress signaling (34,377,472),
controlling pathogen defense (282,450) and abiotic stress tolerance of plants (Figure 17)
(138,423). The complexity in ROS responses to various environmental stimuli is
attributable to the intrinsic chemical properties of different ROS species, different sites
and mechanisms of ROS production, the spatial and temporal coordination of ROS signals
and their integration with other signals related to metabolites, antioxidants, redoxins,
hormones and genetic control elements (reviewed in (34,218,251,341,374,377,423). In this
context, different subcellular sites of ROS production may define specificity in signaling
(341,377). ROS are produced in the apoplast by activation of plasmalemma RBOHs (484) or
cell wall peroxidases (315) and in chloroplasts (123), peroxisomes (115) and mitochondria
(230), as a byproduct of aerobic metabolism (see Section Il). It is proposed that specific
sets of environmental stress conditions, such as pathogen infection, ozone, UV-B, excess
irradiation, salinity, drought, temperature or low oxygen, will result in specific subcellular
ROS, RNS and redox signatures that will in turn lead to the activation of specific defense
and acclimation responses (90,119,403,423). However little is known on the underlying
mechanisms allowing subcellular changes in ROS and RNS levels to be sensed and the
signal being transduced to specific downstream response elements (158,377,423). In yeast
and Chlamydomonas, the induction of autophagy in response to numerous stress
conditions is associated with ROS production and is regulated by TRX-dependent activation
of the ATG4 cysteine protease (398-401,406). In plants, recent studies indicate that

defense responses to abiotic and biotic stresses involve an interplay between salicylic acid
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(SA), ROS, RNS, GSH and TRXs (218,499). Different environmental stimuli lead to ROS

production in different subcellular compartments which precedes SA signaling causing
transcriptional reprogramming of gene expression (218). The ROS/SA interaction is
modulated by GSH, which leads to increased SA production, whereas SA causes increased
GSH levels and reducing power, which in turn is involved in ROS scavenging (131). Upon
pathogen infection, ROS is produced in the apoplast (315) leading to elevated SA levels and
a subsequent more reduced cellular redox state (or at least, glutathione redox state),
which is sensed by the NPR1 protein, a master regulator of pathogenesis related (PR) gene
expression (354). Redox regulation involves NTRA-dependent TRX h5 leading to
monomerization of the NPR1 oligomer in the cytoplasm to allow its translocation into the
nucleus (487), where it activates the expression of PR genes via its interaction with TGA
transcription factors, which are also modulated by redox conditions (262). In this context,
TRX h5 is facilitating NPR1 monomerization by catalyzing the direct reduction of
intermolecular disulfide bonds linking the NPR1 monomers (487) and by denitrosylation of
the regulatory Cys156 in antagonistic action to GSNO and NO (262).

A further cytoplasmic mediator of redox signal transduction is the highly conserved
glyceraldehyde-3-phosphate dehydrogenase C (GAPC), a key glycolytic enzyme with
important non-catalytic functions for various abiotic and biotic stress responses (reviewed
in (220,557,577). Plant GAPCs acts as common target proteins of ROS and RNS with their
catalytic Cys being subjected to diverse reversible modifications, such as S-nitrosylation,
sulfenylation and S-glutathionylation, which can be reversed/reduced by GSH, TRX, and
GRX (36,46,102,166,575,577,580). During cadmium induced oxidative stress, NO
accumulates and GAPC1 is translocated from the cytoplasm to the nucleus, where its role
remains to be established (515). Whereas in mammalian cells nuclear relocalization of
GAPC depends on nitrosylation of its catalytic Cys, mutation of this residue (Cys155) in
Arabidopsis plants led to a stimulation of relocalization, rather than an inhibition (515).
With respect to transcription factors, group VIl ethylene response factors (ERF-VII) have
emerged as novel regulators of abiotic and biotic stress responses involved in oxygen- and
NO-dependent signal transduction in plants (177,560). Molecular oxygen and NO lead to
oxidation of the conserved N-terminal Cys of ERF-Vlls to Cys sulfinic and sulfonic acids

facilitated by PCOs targeting ERF-VII proteins to the N-end rule pathway of proteasomal
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degradation (176,178,179,294,531,533). This provides a sensing mechanism for oxygen

and NO mediating ERF-VII degradation and reprogramming of gene expression
(178,294,560), allowing an efficient regulation of central metabolic processes to optimize
hypoxic resistance (394) and immune responses of plants (394,591). While the N-end rule
pathway has emerged as an important regulator of environmental stress responses,
further studies are necessary to identify N-end rule substrates beyond ERF-VII and their
role in the plant signaling network (125,176).

Recent studies provide evidence for an emerging role of chloroplasts as integrators of
plant stress signals specifically in plant immunity against pathogens (reviewed in
(119,154,252,467). Chloroplasts are important as sensors of available photosynthetic
energy to fuel immune responses and serve as major production sites of pro-defense
molecules such as phytohormones (including SA and jasmonic acid) and ROS providing
retrograde signals to modulate nuclear gene expression and plant resistance to pathogens.
This involves the chloroplast redox status as a major regulator of defense responses
(Figure 17). Manipulation of ROS build-up in chloroplasts by expression of a plastid-
targeted flavodoxin (411), silencing of FTR (295), deficiency of NTRC and PRX (234,235) and
depletion of chloroplast forms of glutathione peroxidases-like, GPXL1 and GPXL7 (75), led
to changes in the expression of pathogenesis related genes and pathogen resistance in
diverse plant species. Although the interplay between plastidial and extra-plastidial ROS
sources during plant immunity is still unclear (341), the specificity of chloroplast ROS
signaling may be attributable to pathogen-induced formation of stromules, providing
physical connections to transport ROS and other pro-defense molecules from the
chloroplast directly to the nucleus (66). This will allow the transport of chloroplast derived
sighaling proteins such as NRIP1 involved in pathogen recognition (67) or WHIRLY1
involved redox sensing (154) to the nucleus to trigger PR gene expression. As NTRC acts a
master regulator of chloroplast redox homeostasis (408) it will affect pathogen related
responses by modulating H,0, production via 2-Cys PRXs (234) and light dependent
stromule formation (53).

GRXs, represented by members belonging to four different classes in terrestrial plants (see
Section IV), are also emerging as important redox-active players of plant responses to

stress. For example, GRXS12 positively correlates with brassinosteroid accumulation and
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antioxidant responses under chilling conditions in tomato plants (548). Although poplar

GRXS12 is very active in protein deglutathionylation in vitro (573), the relevance of this
activity in vivo is still unknown. Class Il GRXs are best known for their role in Fe-S cluster
biogenesis (30,351,481) but they are also implied in stress responses. Class Il GRXS14
levels correlate with plant tolerance to abiotic stress conditions in Arabidopsis (81,427)
and tomato (195). Plants with altered class Il GRXS17 expression were found to be tolerant
to drought, oxidative and heat stresses (82,546,547). Recently, GRXS17 was found
associated with components of the cytoplasmic Fe-S cluster assembly pathway and to be
demanded for a proper response to iron deficiency stress (233) . Members of class lll,
namely GRXC7 and GRXC8 (ROXY1 and ROXY2, respectively), participate in pathogen
responses, overexpressing lines being hyper-susceptible to the infection of the
necrotrophic pathogen Botrytis cinerea with a concomitant accumulation of H,0, (526).
Interestingly, plants impaired in class Il GRXS13 are less susceptible to B. cinerea infection
(273). Transgenic plants with reduced level of GRXS13 and GRXC9 showed increased levels
of superoxide radical and reduced tolerance to high light and methyl viologen treatments
(278). Overexpression of class Il GRXC7 and class | GRXC2 confers increased arsenic
tolerance allowing reduced accumulation of this metal pollutant in both seeds and shoot
tissues (513). In general, plant grx mutant analyses point to a positive role of GRXs of any
class in different biotic and abiotic stress responses in vivo. Mechanistic models of their
function, however, are still largely hypothetical.

VII.F Redox regulation of plant development: integration of redox signals into molecular
networks of developmental control

An increasing number of reports in the literature indicate redox regulation of growth and
development as an emerging field in plant biology. This is summarized in many excellent
recent reviews documenting emerging roles of oxidation (oxygen, ROS, RNS) and reduction
signals (TRX, GSH, GRX) in the regulation of the whole plant developmental cycle
interfacing with signaling pathways involving phytohormones and transcription factors
(95,377,438,451,452,504). There is evidence for the role of ROS, GSH, GRX and TRX in
controlling the development of root and shoot apical meristems. ROS production by
mitochondria (568) and plasmalemma located NADPH oxidases (245) together with
GRXS17 (263) and ABPH2 (553) are involved in the regulation of transcription factors to
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determine meristem size and maintenance. Plastid-located TRX m3 (45) and plasma

membrane-associated TRX h9 (330) allow cell-to-cell communication and meristem
function. Extra-plastidic NTRA/NTRB and GSH (33), and chloroplastic TRXs and NTRC
(261,382) are involved in auxin and redox signaling regulating meristem development.
These mechanisms may also influence cell cycle progression and cell differentiation, which
are associated to oscillations in cellular redox state involving bursts of H,0, and
subsequent import of GSH into the nucleus, regulating transcription factors through
reversible Cys reduction/oxidation via nuclear TRXs (63,120,121). Thiol-based regulatory
mechanisms are also involved in the molecular networks controlling floral development
with GSH and class Ill GRX proteins regulating petal (549) and anther development and
pollen formation (357) by interacting with TGA transcription factors in the nucleus (118).

While research into hypoxia usually emphasized the response to changes in external
oxygen supply during stress responses, there is recent evidence for developmental
transitions in the oxygen status of meristems and reproductive plant organs (reviewed in
(170,509)), while conversely local hypoxic conditions may contribute to regulate
developmental processes in plants (94,293,451). Establishment of internal hypoxic
environments will contribute to developmental regulation by maintaining reducing
conditions in specific plant tissues. In this context, hypoxia arising naturally within growing
anther tissue acts as a positional cue to set germ cell fate (255). Changes in oxygen
concentrations may also contribute to plant development by affecting the stability of ERF-
VIl transcription factors via the N-end rule pathway. As published recently, the N-end rule
pathway controls multiple functions during shoot and leaf development (188) , probably
via its function to sense gaseous signals like oxygen and NO (179,294). This may partly
involve regulation of ERF-VII by protein degradation, as Arabidopsis plants overexpressing
N-end rule insensitive forms of ERF-VII displayed changes in leaf development (180,394)
and photomorphogenesis (2). During leaf development, maturation of chloroplasts
regulates transition from cell proliferation to cell expansion (14). Chloroplast development
is regulated by NTRC and FDX-TRXs (382) leading to changes in the production of oxidation
signals such as oxygen, NO and ROS that will control the transition in leaf development by

acting as retrograde signals (Figure 17) (14). During cell expansion the transcription factor
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KUODA1 inhibits the expression of cell-wall peroxidases, lowering the levels of apoplastic

ROS to restrict cell wall tightening and promote growth (308).

VII.G. Redox regulation in plant physiology: a brief conclusion

There is a balance of oxidation and reduction signals integrating photosynthesis,
development and stress responses allowing plants to cope with fluctuating changes in
their biotic and abiotic environment. This involves intra-organellar crosstalk of redox
systems as well as redox communication within and between cells. In this context, NTRC
acts as an important hub to control the redox balance between oxidation and reduction
pathways within the chloroplast of C3 plants, thereby influencing retrograde signals such
as ROS to control light acclimation, abiotic and biotic stress responses and plant
development. There is also an emerging role of gaseous signals such as oxygen and NO,
which modulate proteasomal degradation of proteins containing an N-terminal Cys via the
N-end rule pathway. While research into hypoxia usually emphasized stress responses,
there are also developmental transitions in the oxygen status, which conversely contribute
to the regulation of plant development. Further studies are needed to dissect this complex
redox signaling network and its integration with other signals related to metabolites,
antioxidants, redoxins, phytohormones and genetic control elements.

Viill. CONCLUDING REMARKS AND FUTURE PERSPECTIVES

The importance and pervasiveness of redox regulation and signaling in plant biology has
currently reached a level that probably Bob Buchanan and collaborators could not even
vaguely imagine when they first discovered the principles of TRX-mediated regulation of
photosynthetic metabolism in plants more than 50 years ago. This comprehensive review
tries to account for the fact that we now know that redox regulation involves not only one
but many different types of PTMs of protein Cys, different RMS, a large number of
redoxins (TRXs, GRXs, and NTRC), and an enormous number of protein targets belonging to
virtually every metabolic or signaling pathway and located in virtually every subcellular
compartment, either of photosynthetic and non-photosynthetic plant cells. As a result,
redox homeostasis infiltrates all aspects of plant physiology. The recent development of
plant redox biology has provided the material of this comprehensive review, but also

opened many questions that need to be answered in the future.
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Combination of traditional biochemical approaches and redox proteomics is showing that

redox-regulated proteins are organized in complex networks that we are just beginning to
understand. A large part of the redox targets that have been identified by proteomics still
have to be analyzed in order to understand the effect, if any, of the redox modification.
Moreover, most of our knowledge is derived from non-quantitative studies performed
under conditions that favor the redox modification of the proteome. We have little
information of the real status of the redox proteome under different physiological or
pathological conditions and even for the best characterized targets, we rarely know which
is the relative abundance of the redox-modified proteins in the cell. To this end,
guantitative proteomic methods are being developed and will allow determining the
stoichiometry and dynamics of multiple redox PTMs in few or even a single cell, under
diverse physiological conditions and time scales. The final goal will be to understand,
besides the pervasiveness, the relevance of redox regulation and signaling for plant
physiology, thereby digging below the surface that we have just started to scratch.

Beyond quantitative proteomics, a field of redox biology that will hopefully grow more and
more in the future regards the genetically encoded redox sensors. At the moment, we
have powerful tools to determine the dynamics of the glutathione redox state. Other
important redox players (NADPH, ascorbate, TRXs, GRXs, RMS) are still waiting to be
assayed in vivo by similar methods. In the absence of accurate information on their
localization, dynamics and redox state, we will hardly get a comprehensive picture of how
redox homeostasis influence plant’s life. Basic research and genetic engineering will have a
fundamental role in the development of new genetically encoded sensors, and the
continuous improvement of fluorescent microscopy imaging techniques will likely provide
further support to this field in the future.

Structural biology is also promising to contribute significantly to our global understanding
of plant redox homeostasis. Once discovered that plants contain tens of different redoxins
coexisting in the same subcellular compartment which, in the same time, also contains
hundreds of proteins potentially targeted by different redox PTMs, we still have only a
vague idea of which are the principles that govern specificity in all possible interactions.
Such principles will be derived from computational analyses of atomic structures of

interacting partners and redox-modified proteins. Our available repertoire of complex
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structures is still limited in number. Solving the tridimensional structure of large complexes

of interacting proteins proved difficult in the past because of the intrinsic limitations in
obtaining crystals of sufficient quality for X-ray diffraction analysis, but cryo-electron
microscopy techniques allow to by-pass the crystallization step and permit to unravel large
complex structures at atomic resolution.

At the end, what we really would like to know best is how redox regulation and signaling
works in the context of plant physiology. Whereas past research into redox regulation was
mainly focused on biochemical studies, a recent boost of genetic studies elucidated the
organization and biological significance of the redox network in planta. These recent
studies have fully confirmed the original model of light-dependent regulation of the CB
cycle as mediated by TRXs, but have also opened new fields of research and new levels of
understanding.

Results from reverse genetic studies clearly indicate that redox regulatory and signaling
pathways contain multiple branches and interconnections. Although reverse genetic
approaches are the most powerful way to currently demonstrate the function of a protein
in vivo, complex networks may hinder a clear-cut interpretation of the results. This is
particularly true when a hub element of the network, like for example a TRX, is knocked
out. Indeed, TRX knock out mutants are likely to show pleiotropic effects. Moreover, the
crosstalk between redox signaling pathways requires the combination of different knock
out mutations in order to obtain a reliable interpretation of the emerging phenotypes.
Besides the master redox regulators, also the targets should be investigated in vivo and
mutagenic approaches specifically directed to the redox-active Cys are arguably the best
way to tackle this problem. Also, this approach has its own limitation and in some cases,
the substitution of a single Cys was found to affect protein stability in vivo besides redox
regulation, thereby significantly complicating the emerging picture (204,476).
Nevertheless, this approach seems promising and will possibly be boosted by genome
editing techniques that are becoming available. Overall, we firmly believe that the
integration of in vitro biochemical data with in vivo physiological evidence will provide the

strongest basis to a general understanding of plant redox homeostasis.
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Fifty years after germination, thiol-based redox biology in photosynthetic organisms has

developed into a deeply rooted, well-established plant that grows and expands its foliage
in all directions: it is still in its infancy but the future looks bright and full of opportunities.
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ABBREVIATIONS USED:

ACHT, atypical Cys histidine-rich thioredoxin;

APX, ascorbate peroxidase;

BASI, barley alpha-amylase/subtilisin inhibitor;

BiFC, bimolecular fluorescence complementation;
BST, Biotin Switch Technique;

CAT, catalase;

CB, Calvin-Benson;

CDSP32, chloroplastic drought-induced stress protein;
DTT, dithiothreitol;

FBPase, fructose-1,6-bisphosphate phosphatase;

FDX, ferredoxin;

Fe-S, iron-sulfur;

FNR, ferredoxin:NADPH reductase;

FTR, ferredoxin:thioredoxin reductase;

G6PDH, glucose-6-phosphate dehydrogenase;

GAPC, glyceraldehyde-3-phosphate dehydrogenase C (cytoplasmic isoform);
GAPDH, glyceraldehyde-3-phosphate dehydrogenase;
GFP, green fluorescent probe;

GOX, glycolate oxidase;

GPLX, glutathione peroxidases-like;

GR, glutathione reductase;

GRX, glutaredoxin;

GSH, reduced glutathione;

GSNO, nitrosoglutathione;

GSNOR, nitrosoglutathione reductase;

GSSG, oxidized glutathione;

GST, glutathione-S-transferase;

ICL, isocitrate lyase;

MMTS, methyl methanethiosulfonate;

MS, mass spectrometry;
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NADP-MDH, NADP-malate dehydrogenase;
NEM, N-ethyl maleimide;

NOFNiR, NO-forming nitrate reductase;
NPQ, non-photochemical quenching;

NR, nitrate reductase;

NRX, nucleoredoxins;

NTR, NADPH:thioredoxin reductase;
NTRC, NADPH:thioredoxin reductase C;
OPPP, oxidative pentose phosphate pathway;
PCO, plant cysteine oxidase;

PDI, protein disulfide isomerase;

PET, photosynthetic electron transport;
PRK, phosphoribulokinase;

PRX, peroxiredoxin;

PS, photosystem;

PTM, post-translational modification;

QY, quantum yield;

RBOH, respiratory burst oxidase homolog;
RMS, reactive molecular species;

RNS, reactive nitrogen species;

ROS, reactive oxygen species;

RSS, reactive sulfur species;

RubisCO, ribulose-1,5-bisphosphate carboxylase/oxygenase;

SiR, sulfite reductase;

SOD, superoxide dismutase;

TDX, tetratricopeptide domain-containing thioredoxin;

TR, thioredoxin reductase;
TRX, thioredoxin;
TRXL, thioredoxin-like;

YFP, yellow fluorescent probe
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Table 1. Gene content in the GRX and TRX families in representative organisms of the

green lineage*
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* Sequences from O. sativa (0s), S. moellendorffii (Sm), P. patens (Pp), C. reinhardtii (Cr)

and Synechocystis sp. PCC 6803 (Syn) have been retrieved from genomic data available

through Phytozome V12 portal or cyanobase by BLAST-p analysis using A. thaliana (At)

sequences as references. The classes in the GRX and TRX families have been previously

defined (87,100).
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" The five NRXs found in C. reinhardtii have been arbitrarily classified as NRX1 but they

group independently from land plant NRXs.

* This indicates the existence among NTRA/B from C. reinhardtii of a mammalian-type
selenocysteine-containing NTR.

5 Synechocystis sp. PCC 6803 does not possess an authentic NTR, but another type of

diflavin protein of unknown function (59).
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Table 2. 3D-structures of TRXs and GRXs from photosynthetic organisms H0
PROTEIN (redox state) ORGANISM PDB ID (reference) | METHOD
TRX h (ox) C. reinhardtii 1TOF (344) NMR
TRX h (ox) C. reinhardtii 1EP7 (329) X-ray
TRX h D30A (ox) C. reinhardtii 1EP8 (329) X-ray
TRX h1 (red) H. vulgare 2VM1, 2VM2 (314) | X-ray
TRX h2 (ox) H. vulgare 2VLT (314) X-ray
TRX h2 (partially red) H. vulgare 2VLU, 2VLV (314) X-ray
TRX h1 (ox) A. thaliana 1XFL (410) NMR
TRX h1 (red) P. trichocarpa x P. deltoides | 1TI3 (98) NMR
TRX h4 (ox) P. trichocarpa x P. deltoides | 3D21 (264) X-ray
TRX h4 C61S (red) P. trichocarpa x P. deltoides | 3D22 (264) X-ray
TRX h (red) 0. sativa 1WMIJ (/) NMR
TRX f (short form; ox) S. oleracea 1F9M (65) X-ray
TRX f (long form; ox) S. oleracea 1FAA (65) X-ray
TRX m (red) S. oleracea 1FBO (65) X-ray
TRX m (ox) S. oleracea 1FB6 (65) X-ray
TRX m CH2 (ox) C. reinhardtii 1DBY (277) NMR
TRX 2 (ox) Anabaena sp. PCC 7120 1THX (444) X-ray
TRX 01 (ox) A. thaliana 6G61 (581) X-ray
TRX 02 (ox) A. thaliana 6G62 (581) X-ray
TRX-like2.1 (ox/red) P. tremula x P. tremuloides | 5NYK, 5SNYM (84) X-ray
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GRXC1-Fe;S,-GSH (red) P. trichocarpa x P. deltoides | 2E7P (441) X-ray
GRXC1 (red) P. trichocarpa x P. deltoides | 1Z7P (142) NMR
GRXC1 (red) P. trichocarpa x P. deltoides | 1Z7R (142) NMR
GRXC5-GSH (red) A. thaliana 3RHB (104) X-ray
GRXC5-Fe;S,-GSH (red) A. thaliana 3RHC (104) X-ray
GRXS12-GSH P. trichocarpa x P. deltoides | 3FZ9 (102) X-ray
GRXS12-GSH-BME* P. trichocarpa x P. deltoides | 3FZA (102) X-ray
GRXS14 (GRXcp, red) A. thaliana 3I1PZ (291) X-ray
GRXS14 (red) P. tremula x P. tremuloides | 2LKU (521) NMR
GRXS16 (N-terminal

endonuclease domain, A. thaliana 2LWF (305) NMR
red)

GRX-GSH Fagopyrum tataricum 5KQA (590) X-ray
GRX A (red) Synechocystis sp. PCC 6803 | 3QMX (258) X-ray

*BME: Beta-mercaptoethanol
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Figure 1. TRX-dependent redox systems

(A) Schematic representation of the FDX-TRX system of oxygenic photosynthetic
organisms. In illuminated chloroplasts, FDX distributes PSI-driven electrons (1e™ plus le’)
to oxidized TRX in a reaction catalyzed by FTR (2e” plus 2H"). In turn, TRX reduces target
proteins via a dithiol/disulfide exchange reaction (2e” plus 2H"). (B) Dithiol/disulfide
interchanges of chloroplastic and cytoplasmic/mitochondrial TRX systems. Chloroplastic
TRXs are reduced as described above whereas cytoplasmic/mitochondrial TRXs are
reduced by NADPH:TRX reductase that uses NADPH as electron donor. Once reduced, TRX
catalyzes the reduction of regulatory disulfides on target proteins. Abbreviations: FDX,
ferredoxin; FTR, ferredoxin:thioredoxin reductase; NTR, NADPH:TRX reductase; PSI,
photosystem |; TRX, thioredoxin. To see this illustration in color, the reader is referred to

the online version of this article at www.liebertpub.com/ars.
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Figure 2. Reactive molecular species (RMS): production and scavenging systems

Biologically relevant RMS are based on oxygen (ROS, indicated in white on black
rectangles), nitrogen (RNS, indicated in white on dark grey rectangles) or sulfur (RSS,
indicated in black on light grey rectangles). The generation of RMS occurs through diverse
enzymatic and non-enzymatic pathways and involves all subcellular compartments as
depicted in the figure (for further details please refer to the text). The scavenging system
mainly relies on antioxidant enzymes that are localized in all subcellular compartments
including apoplast. Abbreviations: APX, ascorbate peroxidase; CAS-C1, B-cyanoalanine
synthase; CAT, catalase; DES, cysteine desulfhydrase; GPXL, glutathione peroxidase-like;
GOX, glyoxylate oxidase; GSNOR, nitrosoglutathione reductase; NR, nitrite reductase; POX,
peroxidase; PR, photorespiration; PRX, peroxiredoxin; RBOH, respiratory burst oxidase
homolog; RETC, respiratory electron transport chain; SiR, sulfite reductase, SOD,
superoxide dismutase; TRX, thioredoxin. To see this illustration in color, the reader is

referred to the online version of this article at www.liebertpub.com/ars.
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Figure 3. Biochemical and structural features of protein Cys

(A) Representation of a protein Cys in equilibrium between its thiol form (-SH, left side)
and thiolate form (-S°, right side). (B) Estimation of thiol/thiolate percentage of the
catalytic Cys of photosynthetic GAPDH (pK, = 6) at the indicated pH values (7.0 and 8.0 for
stromal pH under dark and light conditions, respectively). (C) Examples of the main
structural determinants of the Cys thiol reactivity by known protein crystal structures.
From left to right: interactions with basic amino acids (His and Arg; PDB IDs: 4Z0H (576)
and 1HD2 (114), H-bond networks (PDB IDs: 1HD2 (114) and 2EUH (91), and positioning of
reactive Cys at the N-terminus of an a-helix (helix dipole; PDB ID: 1EP7 (329). To see this
illustration in color, the reader is referred to the online version of this article at

www.liebertpub.com/ars.
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Figure 4. ROS-dependent thiol-based redox modifications

Biologically relevant ROS-dependent Cys modifications are depicted (underlined) together
with secondary redox modifications. For further details, please refer to the text. ROS are
indicated in white on black rectangles. Continuous and dotted lines indicate recognized
and possible reactions, respectively. To see this illustration in color, the reader is referred

to the online version of this article at www.liebertpub.com/ars.
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Figure 5. RNS-dependent thiol-based redox modifications

Biologically relevant RNS-dependent Cys modifications are depicted (underlined) together
with secondary redox modifications. For further details, please refer to the text. RNS are
indicated in white on dark grey rectangles. Continuous and dotted lines indicate
recognized and possible reactions, respectively. To see this illustration in color, the reader

is referred to the online version of this article at www.liebertpub.com/ars.
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Figure 6. Redox homeostasis of protein and low-molecular S-nitrosothiols

Protein S-nitrosylation is generally induced by GSNO-dependent trans-nitrosylation with
concomitant release of GSH. The reduction of protein S-nitrosylation is mainly controlled
by GSH leading to the formation of GSNO. Once formed, GSNO is reduced to NH3; and GSSG
(if GSH is present) by the Zn-containing GSNOR using NADH as electron donor. The
reactivity of GSH thiolate (GS™) with H,0,, O, °, and N,Os is also represented and indicated
by continuous and dotted lines for established and hypothetical reactions, respectively. To

see this illustration in color, the reader is referred to the online version of this article at
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Figure 7. RSS-dependent thiol-based redox modifications

Biologically relevant RSS-dependent Cys modifications are depicted (underlined) together
with secondary redox modifications. For further details, please refer to the text. RSS are
indicated in black on light grey rectangles. Continuous and dotted lines indicate recognized
and possible reactions, respectively. To see this illustration in color, the reader is referred

to the online version of this article at www.liebertpub.com/ars.
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139

(A) Enzymatic (upper panel) and non-enzymatic (lower panel) mechanisms of disulfide

formation involving diverse enzymes (TRX or ACHT) or Cys oxoforms (sulfenic acid or S-

nitrosothiol). Continuous and dotted lines indicate recognized and possible reactions,

respectively. (B) Enzyme-catalyzed protein S-glutathionylation (-SSG, mixed disulfide

formation) involving GRX or other not identified enzymes (upper panel). Non-enzymatic

mechanisms (side and lower panels) of protein S-glutathionylation involving diverse

oxidizing molecules (GSNO, GSSG) or Cys oxoforms (sulfenic acid or S-nitrosothiol).

Continuous and dotted lines indicate recognized and possible reactions, respectively. To

see this illustration in color, the reader is referred to the online version of this article at

www.liebertpub.com/ars.
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Figure 9. Primary and secondary thiol-based redox modifications

Biologically relevant RMS-dependent Cys PTMs (i.e. redox PTMs) are represented as
follow: proteomic-suited primary redox modifications (white on dark blue rectangles), non-
proteomic-suited primary redox modifications (black on white rectangles), and secondary
redox modifications (black on light blue rectangles) occurring through further oxidative
reactions of primary Cys oxoforms (S-nitrosothiols, sulfenic acid, S-glutathionyl and
persulfide). Continuous and dotted lines indicate primary and secondary redox reactions,
respectively. To see this illustration in color, the reader is referred to the online version of

this article at www.liebertpub.com/ars.
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Figure 10. Methodological principles of redox proteomic-based approaches

Workflows of current redox proteomic strategies are depicted according to the targeted
redox PTM. The starting material (proteins, cells or organisms) is indicated at the beginning
of each workflow. The main steps are indicated in black/white on white/blue boxes, and
the information level obtained by MS (identification of the modified protein and/or the
modified Cys) is indicated at the end of each workflow. The initial modification state of Cys
(-SH: reduced Cys; -S-S-: disulfide bond; -S—-NO: nitrosylated Cys; —-S-SG: glutathionylated
Cys; -S-OH: sulfenylated Cys; —S-SH: persulfidated Cys) subjected to the redox proteomic
strategy is indicated in bold. (1), proteins: cell-free protein extracts; (2), cells: intact cells.
To see this illustration in color, the reader is referred to the online version of this article at

www.liebertpub.com/ars.
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FIGURE 11. Phylogenetic analysis of plant TRXs and schematic representation of the
architecture of TRX members

A total of 267 sequences have been retrieved by blastp analyses from 10 genomes found in
the cyanobase (http://genome.microbedb.jp/cyanobase/) for cyanobacterial genomes and
from the version 12 of the Phytozome portal
(http://phytozome.jgi.doe.gov/pz/portal.html) for algal and terrestrial plant genomes.
Sequences were aligned using ClustalOmega and the phylogenetic tree was constructed
with BioNJ (168) in Seaview using the observed distance methods and ignoring all
sequence gaps. The robustness of the branches was assessed by the bootstrap method
with 1000 replications. The scale marker represents 0.1 substitutions per residue. The tree
was then edited with Figtree software (http://tree.bio.ed.ac.uk/software/figtree/). The
names of individual sequences have been indicated and proteins possessing classical or
additional domains as predicted by the pfam or NCBI conserved domain tools have been
represented with the exception of TRX lilium1-3, CLOT, TRX-likel-2, and TRX s. The TRX
domain of a chosen A. thaliana representative is colored in light blue with the active site
signature in white. The TRX domains without active site signatures have lost both catalytic
cysteines. Among additional domains, NTR stands for NADPH thioredoxin reductase, HIP-N
for N-terminal domain of HSP70-interacting proteins, C1 for C1 domain (short domain rich
in cysteines and histidines) and TPR for tetratricopeptide repeat. The only protein with a
membrane-anchoring domain, represented as a cylinder, is HFC164. The size of the boxes
and strings is proportional to the length in amino acids. Note that TRX s and NRX2 are
absent in A. thaliana and that poplar NRX2 was used as the plant representative. To see
this illustration in color, the reader is referred to the online version of this article at

www.liebertpub.com/ars.
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FIGURE 12. Structural and schematic representation of the architecture of plant TRX
reductases (TRs)

(A) The catalytic (FTRB) and variable (FTRA) subunits of FTR from Synechocystis sp. PCC
6803 are represented (upper panel: ribbon, PDB ID: 2PVD; lower panel: schematic
subunits), and colored in cyan and light green, respectively. Accession numbers: catalytic
FTR subunit, Q55389; variable FTR subunit, Q55781. (B) The FAD- and NADP(H)- binding
domains of NTRB/A from Arabidopsis thaliana are represented as ribbon (upper panel,
PDB ID for Arabidopsis NTRB: 1VDC) and schematic domains (lower panel), and colored in
red and orange, respectively. Accession numbers: NTRB, Q39243; NTRA, Q39242. For both
panels, the size of the boxes is proportional to the length in amino acids. To see this
illustration in color, the reader is referred to the online version of this article at

www.liebertpub.com/ars.
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FIGURE 13. Phylogenetic analysis of plant GRXs and schematic representation of the
architecture of GRX members

The retrieval and alignment of amino acid sequences (415 from 58 organisms) and the
building of the phylogenetic tree were achieved exactly as described in the legend of
Figure 11. The names of individual sequences have been indicated and proteins possessing
classical or additional domains as predicted by the pfam or NCBI conserved domain tools
have been represented. The GRX domain is colored in light blue with the active site
signature of a chosen A. thaliana representative shown in white, except when there was
no Arabidopsis representative, which is the case for the PRX-GRX, GRX V and GRX VI clades
specifically found in cyanobacteria. Among additional domains, DEP stands for domain
found in Dishweller, Egl10 and Pleckstrin, DUF547 for domain of unknown function 547,
GIY-YIG for domain similar to the catalytic domain of I-Tev and UvrC endonucleases,
DUF296 for domain of unknown function 296 and Ahpl for an alkyl hydroperoxide/PRX
domain. Membrane-anchoring domains have been represented as cylinders, when the
predicted score using the TMpred server was above 1000. The size of the boxes and strings
is proportional to the length in amino acids. To see this illustration in color, the reader is

referred to the online version of this article at www.liebertpub.com/ars.
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FIGURE 14. Structural features of typical TRX (TRX h1) and class | GRX (GRXC5)

Ribbon representation of the crystal structure of (A) reduced TRX hl from Hordeum
vulgare (PDB ID 2VM1; (314)) and (B) GRXC5 from Arabidopsis thaliana (PDB ID 3RHB;
(104)). The secondary structure elements are differently colored. The two protein present
a very similar fold and the active sites formed by two close cysteine residues, are located
at the N-terminus of helix a2 and quite solvent exposed. Representation of the hydrogen
bonds formed by the N-terminal catalytic cysteine in (C) reduced TRX h1 from Hordeum
vulgare (PDB ID 2VM1; (314)) and (D) GRXC5 from Arabidopsis thaliana (PDB ID 3RHB;
(104)). To see this illustration in color, the reader is referred to the online version of this

article at www.liebertpub.com/ars.
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FIGURE 15. Schematic representation of TRX and GRX reduction mechanisms.

(A) TRX-dependent molecular mechanism of protein disulfide reduction. Under
physiological conditions, the thiolate form of the N-terminal Cys of the CXXC active site
initiates a nucleophilic attack on the disulfide bond in a protein target. Due to local
conformational perturbations, the transient intermolecular disulfide formed is resolved by
the C-terminal Cys in TRX, resulting in the formation of an intramolecular disulfide in TRX
and the release of reduced target. The reduction of oxidized TRX is then catalyzed by the
FDX-FTR or NADPH-NTR systems. (B) GRX-dependent monothiol deglutathionylation
mechanism. In GRX, the nucleophilic active site Cys forms a mixed-disulfide with GSH upon
reaction with an S-glutathionylated target. Typically, a second GSH resolves the enzyme-
glutathione mixed disulfide bond to generate the reduced GRX. (C) GRX-dependent dithiol
deglutathionylation mechanism. Some GRXs, such as Chlamydomonas GRX3, can also
follow a mechanism in which the mixed-disulfide in GRX is resolved by a second non active
site Cys resulting yielding an oxidized GRX. In chloroplasts, GRX3 is believed to be reduced
via the FDX-FTR system. To see this illustration in color, the reader is referred to the online

version of this article at www.liebertpub.com/ars.
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FIGURE 16. Spectroscopic and biochemical features of roGFP-based redox sensors
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(A) Ribbon representation of roGFP with chromophore and Cys residues involved in the
disulfide bond formation represented as ball-and-sticks. The change in the oxidation state
of the Cys residues affects the spectral properties of the fluorescent protein by inducing a
change in its absorption profile. The gray and black lines correspond to the absorption
spectrum of the roGFP2 in the oxidized and reduced form, respectively. Adapted from
(348) (B) Redox equilibration mechanism of GRX1-roGFP2 sensor. As depicted, each
individual reaction step of dithiol-disulfide exchange cascade is fully reversible. To see this

illustration in color, the reader is referred to the online version of this article at
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FIGURE 17. Proposed model for the in vivo role of the chloroplast redox network in light-

dependent regulation of photosynthesis, growth, vegetative development and stress
responses

Two different TRX systems coordinately participate to ensure light-responsive control of
chloroplast functions by reducing regulatory dithiols in various target enzymes (171). The
FDX-TRX system is reduced by electrons provided by PSI in the light, whereas NTRC
consists of an NTR and TRX domain providing a separate reduction system that depends on
NADPH. Joint operation of these two different reduction systems has been found to be
crucial for the regulation of photosynthetic performance, biosynthetic activities and
growth in acclimation to varying light conditions (69,108,371,382,383,498,501,563). The
photosynthetic light reactions also produce O, and ROS/NO providing a feedback loop to
oxidize the regulatory thiols of TRX target proteins via 2-Cys PRX and the atypical TRXs
ACHT1/4 (111,133) and TRXL2 (561) , while they also serve as retrograde signals to the
nucleus regulating leaf development (14) and stress responses (119,123,134). NTRC is the
major system to provide electrons for reduction of 2-Cys PRXs (419,563), thereby
diminishing the oxidation loop (371,382) and maintaining the reducing capacity of the pool
of FDX-TRXs (408) allowing increased reduction of targets of the FDX-TRX system to
promote photosynthesis and growth (408), while it modulates ROS (H,0,) dependent
retrograde signals to promote early plant development (382), abiotic stress (257) and

immune responses (234). ROS levels and related immune and developmental responses
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were also found to be affected by chloroplast GPX-like (75), however the TRXs involved in

their reduction have not been identified yet. In addition to ROS there are also more direct
0O, and NO sensing and signaling pathways via cysteine oxidases that lead to proteasomal
degradation of transcription factors via the N-end rule pathway affecting leaf development
and stress responses at the transcriptional level (180,394,451). The individual specificities
of TRXs f1, f2, m1, m2, m4 and x for the different photosynthetic target processes, as well
as the role of TRXs m3, y1, y2 and z are not shown in this figure for clarity (see text for
further information). Reduction signals are indicated with green lines whereas oxidation
signals are indicated with red lines. Dotted lines indicate pathways of minor importance.
Abbreviations: FDX, ferredoxin; FNR, FDX:NADPH reductase; FTR, ferredoxin:thioredoxin
reductase; NO, nitric oxide; OPPP, oxidative pentose phosphate pathway; PET,
photosynthetic electron transport chain; PRX, peroxiredoxin; PS, photosystem; ROS,
reactive oxygen species; TRX, thioredoxin; TRXL2, TRX-like2. To see this illustration in color,

the reader is referred to the online version of this article at www.liebertpub.com/ars.



