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Abstract 

The Large Hadron Collider at CERN, the European Organisation for Nuclear Research, is the 

world’s highest-energy particle accelerator. Its construction (1995-2008) required frontier 

technologies and close collaboration between CERN scientists and contracting firms. The literature 

on “Big Science” projects suggests that this collaboration generated economic spillovers, 

particularly through technological learning. CERN granted us access to its procurement database, 

including suppliers of LHC from 35 countries for orders over 10,000 Swiss Francs. We gathered 

balance-sheet data for more than 350 of these companies from 1991 to 2014, which include the 

years before and after that of the first order received. The study assesses, in quantitative terms, 

whether becoming a CERN supplier induced greater R&D effort and innovative capacity, thus 

enhancing productivity and profitability. The findings – which controlled for firms’ observable 

characteristics, macroeconomic conditions, and unobserved time, country, industry and firm-level 

fixed effects – indicate a statistically significant correlation between procurement events and 

company R&D, knowledge creation and economic performance. The correlation is chiefly driven 

by high-tech orders; for companies receiving non-high-tech orders, it is weaker, or even statistically 

not significant. 
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1. Introduction   

“Big Science” projects are expensive and the ultimate social impact of discovery is hard to 

predict, especially where basic research is concerned (Martin and Tang 2007; Bornmann 2012, 

2013; Godin and Dorè 2012). It may take decades to understand how knowledge of fundamental 

features of nature could be of any practical use, and in the meantime governments are expected to 

support investment in science in hopes of highly uncertain social returns. But there also exist 

immediate benefits that are observable even during the construction of a large research 

infrastructure (Salter and Martin 2001). Some of these benefits stem from unprecedented 

technological challenges in meeting the exacting standards of cutting-edge experimental devices 

that demand close collaboration between laboratories and firms in the supply chain of machines that 

serves for scientific discovery. Such collaboration may generate learning effects that spill over from 

basic research as a positive externality to firms thanks to procurement contracts. Technological 

learning can help firms generate and process innovation and ultimately increase their growth 

opportunities (Turner, 2015). 

We have studied this effect in relation to CERN, the European Organisation for Nuclear 

Research. CERN is the world’s leading particle physics laboratory and its role and impact have 

been extensively studied by economists, from the three papers of Martin and Irvine (1984a, 1984b, 

1984c) to more recent work by the OECD (2014). CERN hosts the Large Hadron Collider (LHC), 

where the Higgs boson was discovered in 2012. The LHC, built between 1993 and 2008, consists of 

a 27-kilometer underground ring between Switzerland and France. Particle beams are collided at 

four points where detectors are located, each of which is operated by an experimental 

“collaboration”, a team involving CERN staff as well as scientists from universities and research 

institutes from various countries. In their observations, the four detectors produce enormous 

amounts of data per second that is transmitted to a series of computing nodes around the world, 

which are connected through the worldwide LHC computer grid. The LHC is indeed, like the title 

of  L.R. Evans’ book, a “marvel of technology” (Evans, 2009).              

The technological features of the LHC are extremely demanding. CERN, its collaborators, 

and firms with procurement contracts have had to closely cooperate to solve entirely new problems 

in a series of fields, including superconductivity, cryogenics, electromagnets, ultra-high vacuum, 

distributed computing, rad-resistance materials, and fast electronics (Evans 2009; Giudice, 2010). 

The large number of suppliers, the international scope of procurement, the wide range of sectors, 

and the duration of the construction process offer an ideal setting for our central research question: 

namely, how best to measure the economic impact of technological procurement on the 

performance of suppliers in Big Science.    



In fact, when the introduced innovation is so radical as to constitute a discontinuity, it may generate 

technological advances that pervade many sectors and have a protracted impact on the entire 

economic system. Such innovations, described as “General Purpose Technologies” (GPTs), have 

been investigated, among others, by Bresnam and Trajtenberg (1995), Helpman (1998), and Janovic 

and Russeau (2005). The World Wide Web, invented at CERN in 1989, in addition to being perhaps 

the most famous example of technological spillover from Big Science, is a notable example of GPT 

breakthrough. 

More in general, there is clear, albeit unsystematic, evidence that the firms working for CERN have 

learned new solutions and then developed new products for other customers outside of the scientific 

field  (see for instance Amaldi 2012; Nielsen and Anelli, 2016). Examples in the medical sector 

include hadrontherapy (Battistoni et al., 2016) and the new open source software “TIGRE” 

(Tomographic Iterative GPU-based Reconstruction) for PET scanners. As regards transportation, 

one of CERN's suppliers for ultra-high vacuum technology was able to partner with Hyperloop 

Transportation Technology, a company that is developing a very high, even ultrasonic, speed 

transport system thanks to the know-how and experience that was acquired while working on the 

LHC1. “VESPER” (Very energetic Electron facility for Space Planetary Exploration missions in 

harsh Radiative environments) found application in the aerospace industry. The potential 

applications of “KRYOLIZE”, a novel cryogenic software for sizing relief valves that protect 

against overpressure, also interest the food industry. Superconductivity, a core feature of the 

magnets developed to steer the LHC particle beams, may find application in various fields, ranging 

from medicine, with “particle therapy,”2 to aerospace, with hybrid propulsion systems, to 

agriculture, with fruit sorting machines, to energy, with Uninterruptible Power Supply (UPS) 

systems3 (see Aschauer et al. 2017). 

Three different approaches have been taken to gauging the economic effects of 

technological learning stemming from a procurement relationship with large basic research 

infrastructures (Salter and Martin 2001; Hall et al., 2010; Autio et al, 2004): case studies, surveys, 

and input-output or other aggregate statistical methods. Detailed case histories provide interesting 

qualitative insights into suppliers’ learning effects and subsequent commercial developments 

(Arenius and Boisot, 2011; OECD, 2014). Case studies on the impact of research have been used 

extensively in the U.K. as part of a unique assessment exercise including 7,000 case studies (Van 

Noorden, 2015).  
                                                           
1 https://kt.cern/success-stories/hyperloop 
2 “Particle Therapy” is a variant of radiotherapy that irradiates tumor tissue with protons and light ions (Aschauer, 2017: 15). 
3 “UPC systems are devices for energy storage that can deliberately take on and deliver power when necessary” (Aschauer, 2017: 
2). 
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Surveying stakeholders is another helpful approach. A survey of CERN suppliers (Autio, 

2014) found that collaboration with CERN was instrumental to product innovation, new R&D, 

starting a new business unit, or opening a new market, and that more than 40% of the respondent 

firms reported that after the contract they were more internationalised and had benefited from 

technological learning. The average combined value of suppliers’ sales to other clients and cost 

savings was reported to be three times the amount of the CERN order. Florio et al. (2017) report the 

findings of a recent survey of over 600 CERN suppliers, confirming lasting effects on performance, 

organisation, and behaviour.  

Finally, aggregate statistical approaches have been adopted for decades to study the effects 

of scientific programs ranging from NASA (Bezdek and Wendling, 1992) to biotechnology (Webb 

and Whyte, 2009). Typically, input-output tables of average national or regional inter-industry 

linkages and investment multipliers were used to compute the impact of research spending by an 

agency or project on GDP or productivity.   

All three approaches are informative, but none provides a true empirical measurement, 

strictly speaking, of the direct effects of procurement on suppliers: case studies, with their specific 

histories, are unavoidably heterogeneous in method, including narrative and other qualitative 

approaches; surveys of company managers provide some statistical evidence but are likely to be 

affected by self-selection as well as respondents’ judgment and memory; input-output models and 

other aggregate econometric approaches heavily depend on certain macroeconomic assumptions 

(Macilwain, 2010), in that they apply average output and employment multipliers that are used for 

the entire economy, which may or may not be relevant for contracting firms in Big Science projects.  

Our empirical strategy is  innovative: we consider  the procurement contract between a firm 

and its client, i.e. the institution that manages the research infrastructure, as an event whose effects 

can go beyond the immediate impact (i.e. the first order received) to change the firm’s performance 

over time, even net of confounding factors such as macroeconomic conditions. In this perspective, 

we apply firm-level panel microeconometrics to study the long-run effects of CERN procurement 

on suppliers’ R&D activity, knowledge production, productivity, and - ultimately - profitability. 

This approach is replicable for any other Big Science project in principle. 

CERN granted us access to the LHC procurement data from 1995 to 2008. There were 1296 

suppliers with at least one order of over SFR 10,000, for a total of 11,969 orders. Orders went to 

firms in 35 different countries including China, Japan, Russia, and the United States, but over 99% 

of the orders, based on their value, were placed with European firms, mostly in CERN member 

states, which are preferred in CERN procurement. We recorded the location, year, order value, and 

activity code of each supplier. We then classified each order on a technology intensity scale.   



 From the original list of LHC suppliers (which included other laboratories, joint ventures, 

etc.) we selected those whose core financial indicators were available in a public database 

(Amadeus or Orbis) for the 1991-2014 period, which is a sufficiently long time to empirically test 

the impact of the procurement contracts. We also wanted to identify patents that had been filed by 

the same firms by using the Patstat database. Some 360 companies satisfied these criteria, giving us 

a sample that produced from 3300 to 5800 observations, depending on which dependent variable 

was considered.   

Our hypothesis is that becoming a CERN supplier may induce more intensive effort in R&D 

and knowledge creation, leading to improvements in productivity and profitability, especially for 

high-tech suppliers. We build on the framework of Crépon et al. (1998),  augmented by the impulse 

variable, consisting in the date of the first order by CERN. 

To test the chain of consequences from the procurement event, our causal variable, to the 

sequence of R&D investments, patent filing, productivity gains and - ultimately - higher 

profitability, as a first step we built a set of single-equation empirical models where we test whether 

a CERN procurement effect is detectable at each step of  the logical chain. After controlling for firm 

characteristics, such as assets and other size variables, time and country-fixed effects (as well as 

industry ones when appropriate), and macroeconomic factors, we found that being an LHC supplier 

is correlated with yearly changes in our empirical proxies for each item in the logical chain. CERN 

orders are correlated with changes in suppliers’ intangible assets, increases in the number of patent 

filings, changes in labour productivity, and ultimately increases in longer-term revenue and 

profitability. The estimated coefficients of this “CERN effect” are statistically significant for the 

whole sample but higher for high-tech firms. As expected, in line with the intuitions implied by the 

surveys reported by Autio (2014) and Florio et al. (2017),  in most cases the coefficients are not 

significant for firms receiving orders for “off-the-shelf” products. 

As a second step, following the most recent developments of the literature (see e.g. Hall and 

Sena 2017; Van Leeuwen and Mohnen, 2017) we estimated our model as a system of simultaneous 

equations. 

The paper is structured as follows. Section 2 discusses the literature and introduces our 

conceptual framework and hypotheses. Section 3 presents the data and section 4 describes the 

empirical strategy: section 4.1 defines the single-equation regression models, while section 4.2 

introduces the system of simultaneous equations. Section 5 presents the estimation results,  while 

section 6 tests them through several robustness checks, and section 7 concludes with a discussion of 

the findings and their policy implications.  
 

 



 

2. Earlier literature and the conceptual framework 

In this section, we briefly review some relevant strands of literature. First, we recall the Arrow-

Solow mechanism of learning externality through problem-solving (2.1). Then we cite some 

evidence of spillovers from universities and public research centers to firms (2.2) and public 

procurement for innovation (2.3). Finally, drawing on these earlier studies, we formulate our own 

research question and working hypotheses (2.4).  

 

2.1 Learning spillovers: concepts and measurement 

Learning spillovers are externalities that stem from non-rivalrous and partially excludable 

knowledge creation (Griliches, 1979; Romer, 1990; Foray, 2004).  To cite Kenneth Arrow’s 

seminal thesis: “Learning is the product of experience. Learning can only take place through the 

attempt to solve a problem and therefore only takes place during activity. … [L]earning associated 

with repetition of essentially the same problem is subject to sharply diminishing returns” (Arrow, 

1962, p. 155). 

In our context, the key concept here is “attempt to solve a problem,” insofar as basic 

research infrastructures (RIs) pose unprecedented problems to the firms that construct them. The 

formal model initially proposed by Arrow, which posited increasing returns to cumulative gross 

investment, was instrumental in creating an endogenous theory of growth in macroeconomics, but 

the thesis of learning-by-doing ultimately depends on microeconomic, firm-level mechanisms. 

Thompson (2010) reviewed some of the empirical literature and concluded that passive learning 

was not as important as had been expected and that other mechanisms were therefore presumably at 

work. Irwin and Klenow (1994), in a study of the semiconductor industry, concluded that under 

normal market circumstances of cumulative knowledge accumulation, learning spillovers may be 

limited (see also Nemet, 2012, on wind power projects).  

Solow (1997) expanded Arrow’s original model to comprise discontinuous innovation 

arising from experience related to new investments. For a firm, solving a new problem requires 

more R&D investment and innovation. Product and process innovation then spurs productivity and 

may generate changes in output prices and profit margins through the Schumpeterian mechanism of 

temporary monopoly. Several theoretical models of innovation based on this mechanism have been 

proposed (Stokey, 1988, for one). 

Two main methods have been employed to estimate the magnitude of R&D spillovers from 

an empirical perspective. The “technological flow” approach positions firms or industries within a 

matrix of technological linkages, using either input-output or technology matrices based on patent 



data. The spillovers from the R&D activities of one firm/industry onto  others are examined (see 

among others Terleckyj, 1974 and 1980, and Scherer, 1982 and 1984). The “cost function” method 

is an econometric approach, estimating the impact of spillovers on the cost and production structure 

of the receiving firms/industries (see e.g. Bernstein, 1988, and Bernstein and Nadiri, 1991). For an 

extensive review of studies using these two alternative procedures, see Nadiri (1993).  

 

2.2 Spillovers from  research centres and universities 

According to Bernstein and Nadiri (1991), in the case of private firms’ relations with non-market 

organisations, such as universities and research centres, the learning spillovers are enhanced. As 

CERN is both a publicly funded institution and a research hub for thousands of academics through 

collaborations, a relevant strand of literature is that on the transmission of knowledge to firms in 

this context. The seminal paper of Jaffe (1989) empirically demonstrates the existence of spillovers 

from university research to business innovation that measured by corporate patents. The beneficial 

side-effects of academic research are also found in business start-ups (Bania et al., 1993) and high-

technology innovations (Anselin et al., 1997). Mansfield demonstrated that a significant portion of 

firms’ product and process innovation in the U.S. would have been impossible, or at least 

substantially delayed, in the absence of university research (Mansfield 1991, 1998). And the closer 

firms are to major academic research centres, the greater the benefits will be (Mansfield and Lee, 

1996).  More recently, Helmers and Overman (2017) have discussed the correlation between 

proximity to the Synchrotron Diamond Light Source in the U.K. and the productivity of academic 

research. Publicly funded basic research at universities does not substitute private R&D, but rather 

stimulates and enhances it (Nelson and Rosenberg, 1994). Studies showing a significant 

contribution of academic research to economic growth include Bergman (1990) and Martin (1998). 

The following different types of contribution to growth are identified by Salter and Martin (2001): 

increase in the stock of information, new instrumentation and methodologies, skilled graduates, 

professional networks, technological problem-solving, and the creation of new firms. Starting from 

this taxonomy, our focus is mainly on technological problem-solving and new instrumentation.  

 

2.3 Public procurement and innovation 

Procurement is a possible source of learning that stems from discontinuous innovation in the 

Arrow-Solow acceptation, as information between the contracting parties ex-ante is never 

symmetrical and requires a delicate balancing of risks and incentives (Bajari and Tadelis, 2001). 

Procurement itself has accordingly been described as a learning process (Newcombe, 1999), and 

public procurement, in particular, has been studied as a driver of innovation (Edquist et al., 2105; 



Edquist and Zabala-Iturriagagoitia, 2012). Edquist and Hommen (2000, pp. 5) defined public 

procurement for innovation (PPI) a situation in which “a public agency places an order for a product 

or system which does not exist at the time, but which could (probably)  be developed within a 

reasonable period. Additional or new technological work is required to fulfill the demand of the 

buyer.”  

Public procurement is also considered as an important demand-side innovation policy 

(Aschhoff and Sofka, 2009; Martin and Tang, 2007), particularly when the development of 

sophisticated products is required (Salter and Martin, 2001). For this reason, the role of PPI in 

promoting radical innovations (including General Purpose Technologies) is relevant in economic 

fields characterised by high risk that cannot be borne entirely by the private sector (Mazzuccato, 

2016). A concrete example concerns Swedish military jets (Eliasson, 2010, 2011): the development 

of a new aircraft involved a complex network of suppliers and close public-private cooperation, 

leading the aircraft industry to become a “technical university” where continuous learning occurs. 

PPI has a positive effect on firms’ R&D investment, with a demand-pull effect that is greater than 

that of other private contracts (Litchtenberg, 1988) and is a possible completion/addition/accessory 

or even an alternative to supply-side policies (Edler and Georghiou, 2007). Guerzoni and Raiteri 

(2015) show that PPI has a major impact on firms’ expenditure in innovative activities that is 

stronger than that of R&D subsidies and tax credits.  

The context of procurement contracts for large-scale research infrastructures is considered by 

Autio et al. (2003) and Purton (2015). Important insights are also offered by Salter and Martin 

(2001); for a more general discussion see Stephan (1996) and Price (1984). For qualitative case 

studies, see inter alia Fahlander (2016) on the impact of two accelerators (HIE-ISOLDE and ESS) 

on local firms, Pero (2013) on three accelerators for material science (Elettra Synchrotron in 

Trieste, ESRF synchrotron in Grenoble, and XFEL in Hamburg), and  OECD (2014) with a specific 

focus on LHC magnets, a core feature of the accelerator that is discussed in some detail by Rossi 

and Todesco (2009), and hadron therapy (Battistoni et al., 2016). 

For approaches to measuring the socio-economic impact of RIs through input-output 

modeling or other aggregate methods, see HAL Innovation Policy Economics (2013) on the 

TRIUMF particle physics laboratory in Canada, and Garcia-Montalvo and Raya (2010) on the 

ALBA synchrotron in Barcelona.  

Previous research on the economic repercussions of CERN procurement mainly drew on 

surveys of suppliers. This literature stressed industrial knowledge spillovers (Schmied, 1977; 

Bianchi-Streit et al., 1984; Autio et al., 2003; Autio et al., 2004; Autio, 2014) and considered the 

important role of CERN itself as a risk-taker in the realisation of complex scientific projects 



(Unnervik, 2009). Autio et al. (2003) was based on a survey of 154 suppliers (1997-2001), 

representing around half of CERN’s total procurement budget in those years. The main findings are 

the following: 38% of the suppliers designed new products, 13% created new R&D teams, 14% 

created a new business unit, 17% entered new markets, 42% reported increased international 

operations, 44% reported technological learning, and 36% said there was market learning. Previous 

research at CERN (Bianchi-Streit et al., 1984) related to the construction of the SPS accelerator 

(1963-1987) was also based on interviews with suppliers (160 out of 519 providing high-tech 

components). It was found that the “utility ratio” (increased revenue + cost savings)/(procurement 

value) was in the range of 3:1, meaning that each franc that was spent by CERN in procurement 

generated three francs worth of additional value to the suppliers. Aberg and Bengtson (2015, 2016), 

in two recent papers, critically examine the CERN procurement process as an innovation driver, 

based on about 100 interviews. Florio et al. (2017) update the survey methodology by means of a 

Bayesian Network Analysis of the outcomes of being a CERN supplier for over 600 firms (their 

findings are compared with ours in the concluding section). Qualitatively interesting as they may 

be, all these contributions depend on surveys of firm managers, which may be affected by 

respondents’ self-selection and possibly subjective bias. 

 

 2.4 Research question and hypotheses 

We framed our research question and working hypotheses in the light of this relevant literature. 

CERN operates as a “learning-environment” for its suppliers and poses new problems to be solved 

as well as, potentially, an Arrow-Solow discontinuity. Our aim is to conduct an empirical test, 

controlling for firm-specific and context-specific effects, of whether this environment actually 

produces measurable effects on suppliers’ innovation outcomes and economic performance – as is 

widely acknowledged by earlier studies using the qualitative, narrative, case-study and managerial 

survey approaches.  

The logic underlying this question follows the chain of events highlighted by Crépon et al. 

(1998), which singles out firms’ research activity as a determinant of innovation output, which in 

turn impacts on productivity.4 We extended this framework by introducing procurement, which we 

posit as the trigger that influences firms’ R&D, innovation, and productivity at the beginning of the 

chain and ultimately leads to gains in revenues and profitability. Thus the full sequence of events 

we tested is:  

Procurement relation increase in R&D   innovations productivity growth change in  

revenues and profitability  
                                                           
4 We thank  an anonymous reviewer for this suggestion. 



 

In other words, we applied empirical proxies to investigate the impact of procurement on 

firms’ knowledge production and innovation capacity (section 5.1) and on their economic 

performance, gauged by productivity and profitability (section 5.2).  

Within  this framework, we tested two straightforward hypotheses: 

Hypothesis 1: Receiving an order from CERN enhances suppliers’ knowledge production 

and innovation outcomes, measured through R&D effort and patents. 

Hypothesis 2: Becoming a CERN supplier increases firms’ performance in terms of 

productivity, revenue and profits,  regardless of the initial order.   

As the assets required by the RI are of varying technological intensity, a second question is 

whether the effect we are looking for is correlated with the high-tech intensity of the order, i.e. with 

the knowledge embodied, possibly through a cooperative R&D effort, formal or informal, between 

the RI and the supplier firm’s staff, as suggested by Autio et al. (2003). We expect any learning 

mechanism to be more closely correlated with the performance of firms meeting high-tech orders 

(i.e., those that require a certain degree of problem-solving, as per Arrow-Solow) and less with that 

of suppliers of off-the-shelf products.  

However, another possible explanation for the correlation between subsequent sales and 

procurement relationship involves a reputation effect. One might expect that, in terms of marketing, 

the quality of the product or the reliability of the firm can be evinced simply by having been 

selected by a prestigious customer like CERN. For example, suppliers of staples to royal houses 

(which are supposedly selective in terms of quality) advertise this fact to increase their visibility (in 

the U.K., for example, there are over 680 Royal Warrant holders “by appointment of HM The 

Queen”). If there is a pure reputation effect for CERN suppliers, we should find that not only firms 

supplying new products, but also those supplying standard ones, benefit. Accordingly, if the 

technological or market learning effect mainly works for high-tech suppliers, and reputation or 

other generic effects work for all of them, we should find a positive correlation between profits and 

procurement events in both cases, with a stronger one for high-tech suppliers, given the presumed 

cumulative effect of two drivers.  

This lead to the formulation of a further, complementary hypothesis for testing: 

Hypothesis 3: The correlation between procurement events and firms’ subsequent 

performance is stronger for suppliers of high-tech orders than for those of non-high-tech orders.  

Clearly, these three hypotheses collapse a complex story into a set of simple propositions, 

while the actual behavioral change within a firm may be more nuanced. For example, some 



innovations may stem from organisational changes and managerial adjustments spurred by the 

firm’s exposure to the CERN environment, as some managerial surveys suggest (particularly Autio 

et al, 2003, Florio et al., 2017). However, these more complex qualitative effects are best captured 

by case studies or surveys, whereas our objective is to produce a quantitative estimate of the 

average CERN effect on suppliers; for this reason, some simplifying hypotheses are necessary.   

 

3. The data 

Our main source of firm-level data is the CERN Procurement and Industrial Services (PI) 

Group (http://procurement.web.cern.ch/procurement-strategy-and-policy), the team in charge of 

coordinating all the supplies and services that the laboratory needs. Experimental collaborations, 

such as ATLAS and CMS, have some procurement autonomy, so their orders are not covered here, 

except when they are directly managed by CERN. The PI team regularly monitors and reports all 

supply activities to management and CERN member states (MS). The PI makes or authorises major 

purchases, with three main objectives: (i) to make sure that contracts satisfy technical and financial 

requirements; (ii) to keep costs as low as possible; and (iii) to achieve balanced industrial returns for 

member states. Ensuring a certain distribution of contracts among MS is crucial: a strong political 

push to institute a mechanism to guarantee a “fair return” on investments for all MS resulted in the 

approval of a set of procurement rules in 1993 (Åberg and Bengtson, 2015; CERN, 1993a,b). 

Depending on their type, contracts are awarded on either a “lowest compliant” or “best value for 

money” basis.  However, “lowest compliant” contracts for  over SFR 100,000 are subjected to a 

further requirement, namely the overall achievement of “well-balanced industrial return 

coefficients” for MS. A country is considered to be in line if its return coefficient – i.e. the ratio of 

its percentage of the value of all contracts in the course of the preceding four calendar years to its 

percentage contribution to the CERN budget – is above a certain threshold. CERN has various tools 

to ensure well-balanced returns, such as “limited tendering” and “alignment” (see CERN, 2015: 37-

42). The former restricts the tender to MS with very low return coefficients, while the latter gives 

priority to firms in poorly-balanced countries with less than their balanced share of contracts. 

In 2015 and 2016 the CERN PI provided us with several extracts from the full dataset of orders 

for the construction of the LHC. The considered period is 1995-2008, i.e. before the accelerator 

started operating regularly. Only orders over SFR 10,000 were included, as we wanted to exclude a 

welter of marginal suppliers for which knowledge or reputation/generic effects are unlikely.  

The original LHC procurement dataset we received contained 1296 suppliers. We were able to 

identify 1060 of them in the Orbis and Amadeus databases. Some are not recorded by Orbis because 

they are other research institutes, such as the Russian Academy of Sciences, consortia, or other 



organisations that do not publish their accounts. Furthermore, we need the accounting data for 

periods before and after the procurement event, and for some companies data dating back more than 

twenty years are not available. National laws on corporate balance-sheet disclosure also vary. For 

example, Swiss companies, which accounted for 30% of our initial sample of CERN suppliers, are 

not subject to any legal requirement to release their accounting data, and no financial data on any of 

them are available in Amadeus or any other public repository. Similarly, German firms seldom 

report information on their balance sheets. Visual inspection of procurement data and interviews to 

CERN staff suggest that firms for which financial data are not available do not differ systematically 

from those with adequate data in ORBIS. Nevertheless, by filtering the initial sample on this basis, 

we managed to create a subsample of 365 companies about which an adequately long financial 

history is available.   

Figure 1 shows the distribution over time of the orders that were assigned in the restricted 

sample, as well as the number of new suppliers and initial procurement events, which is our variable 

of interest, as it marks the starting point of firms’ collaboration with CERN for the LHC project.  

 

Fig. 1 – Yearly distribution of LHC procurement orders, first-time orders to a supplier and 

new suppliers in our sample 

 
Source: Authors’ elaboration based on CERN data. 

 

Each of these first-time orders, which are our initial events, marks the beginning of a potential 

learning process and/or reputation effect for a specific firm. This is our variable of interest, modeled 

as a simple binary code taking value 0 before and 1 after the year of the first order (further on, we 

also apply other definitions as a robustness check). The subsequent time profile is informative: the 

average number of years in which a company received at least one order is 2.2 (standard deviation 

1.87, with a minimum of 1 and a maximum of 11 years). This implies that the direct impact of the 
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orders on company profitability could not last more than 2 or 3 years, on average. However, we are 

interested in economic effects stretching beyond these initial years. The first-year events in our 

study are evenly spread between 1996 and 2007 (unlike the total orders, which peak in 2003-2005). 

Around 90 new suppliers were involved in the LHC in any of the 12 years considered.  

This empirical analysis exploits the fact that, unlike most event studies, we have not one, but 

a sequence of twelve “before-after” events. For example, a company entering the CERN 

procurement system in 2000 can potentially be observed for 10 years before the event (including 

2000), and 14 years after (as we have financial data from 1991 to 2014). For a company entering in 

one of the last groups, e.g. 2007, we have potentially 7 years of observations “after” and 18 years 

“before” the event.  

    Over 90% of the LHC suppliers in the original CERN database are located in six countries: 

France, Switzerland, Germany, Italy, the U.K. and Spain. In our final sample, the majority also 

come from these countries, with the important exception of Switzerland, which is not represented, 

for the reason cited above. In our sample, suppliers are located in 18 different countries, all in the 

European Union. France is by far the most heavily represented (53.4% of the total), followed by 

Italy (14%), the U.K. (8.2%), Spain (5.8%) and Germany (4.4%).5  

As previously pointed out, our sample only comprises CERN suppliers whose financial data 

are available in the Amadeus or Orbis databases, the former covering only European and the latter 

also non-European companies. Moreover, although our final sample consists solely of European 

firms, a few turned out to be reported in Orbis but not in Amadeus, so we decided to use both 

sources. Using these two databases, we searched for six company performance variables between 

1991 and 2014, namely: intangible assets, number of patents filed, sales per employee (proxying for 

productivity), and three profitability measures, EBIT (Earnings before Interest and Taxes), 

operating revenue, and the EBIT margin, i.e. EBIT over operating revenue.  

Two of the companies (ENEL and Electricitè de France) are evident outliers in size, as 

measured by sales, revenue, EBIT or total assets so we excluded them from the sample.6 

Table 1 shows summary statistics for explanatory and dependent variables in regressions. 

Patents obtained from Patstat comprise a much larger number of observations than financial 

variables, because Patstat has data on all 1060 companies in our original dataset, while the financial 

variables are missing from many observations. The statistics refer to companies that reported 

relevant financial information at least once. Ultimately, however, we also had to drop suppliers that 

did not report financial data both before and after the year of the initial procurement. Clearly, 
                                                           
5 The other countries are:  Finland (2.74%, 10 companies), Belgium (2.19%, 8), Sweden (1.64%, 6), the Czech Republic and the 
Netherlands (1.37%, 5), Denmark and Portugal (1.1%, 4), Austria (0.82%, 3), Poland and Slovakia (0.55%, 2), Bulgaria, Ireland and 
Russia (0.27%, 1). 
6 Including them in the econometric analysis, however, does not noticeably change the results. 



exclusions reflect the lack of different variables, and as a consequence our company samples vary 

with the dependent variable estimated.7 Here we present statistics for the entire sample, but these 

considerations also hold for each of the various analysed samples.   

As is often the case with accounting data, the nominal variables exhibit a heavily skewed 

distribution, reflecting the standard pyramid structure of the industry sector. However, the “EBIT 

margin” variable, as a ratio, is immune to this problem: the median values are not far from the 

means, revealing a rather symmetrical distribution.  

As regards patenting, 69.3% of the companies (732 out of 1060) did not file any patent during 

our sample period, which explains the low mean and nil median given in Table 1, thus justifying the 

use of count data models when “patent count” is the dependent variable, as is standard in the 

literature (see e.g. Hall et al., 1984; Aghion et al., 2013). 

The analysed macroeconomic variables are yearly GDP growth and inflation in the supplier’s 

country.8 On the demand side, GDP growth may affect our outcome variables, for faster growth 

presumably increases the demand for all goods, and hence firms’ sales and profits. Inflation 

(measured by the consumer price index)  controls for price changes that may affect the real value of 

our performance indicators (which are in nominal terms), given the long time span covered and the 

fact that all Orbis and Amadeus data are in current euros and at current exchange rates. 
 

Table 1 - Summary Statistics 

 
Mean Std. Dev. Median Observations 

Total Assets9 (‘000, €) 354,229 2,353,854 6,842 9,670 
Intangible Fixed Assets10 (‘000, €) 49,619 551,680 22 9,209 
Tangible Fixed Assets 11(‘000, €) 68,697 671,275 719 8,740 
Number of Employees 1,333 7,459 70 9,152 
Sales (‘000, €) 306,309 1,615,202 10,701 7,770 
Operating Revenues (‘000, €) 273,064 1,495,048 10,942 10,092 
EBIT (‘000, €) 15,602 134,956 313 8,616 
EBIT margin 4.67% 11.58 4.25% 8,250 
Patents 0.247 1.53 0 25,296 

 

 

                                                           
7  A company may report information both before and after the initial procurement year only in reference to some of the financial 
variables and not others. To avoid reducing the sample size excessively, we preferred to work with slightly different samples rather 
than limit ourselves to only analysing companies with no missing values in any of the outcome variables. 
8 Source of data: World Bank, http://databank.worldbank.org/data/home.aspx 
9 Orbis/Amadeus definition: “Sum of fixed assets (intangible fixed and tangible fixed) and current assets” 
10 Orbis/Amadeus definition: “All intangible assets such as formation expenses, research expenses, goodwill, development 
expenses and all other expenses with a long term effect”. 
11 Orbis/Amadeus definition: “All tangible assets such as buildings, machinery, etc”. 



 

4. The Empirical Strategy  

In the last 20 years, the CDM model has been extended and further developed in several 

directions by many authors. See Lööf et al. (2017) for a review of such development. 

The original CDM framework included a structural model where research investment 

explained innovation output, which in turn affected productivity. The proposed generalisations and 

extensions concern the nature and the measure of input and outcome variables, the inclusion of 

additional equations in the model, new estimation methods, different types of data (from cross-

sectional to panel), dynamic specifications of the model and different fields of application. 

Following the standard CDM framework, Baum et al. (2015) estimated the R&D-innovation-

productivity relationship as a Generalised Structural Equation Model. This approach enables the 

entire CDM model to be estimated as one system using a full-information maximum likelihood 

estimator, allowing coefficients to differ across sectors and taking cross-equation error correlation 

into account. The same type of estimator is employed by Raymond et al. (2015), which integrates 

dynamics into the R&D-innovation-productivity relationship including lagged values of the 

dependent variable in each of the equations composing the system. Their results show a causal 

impact of innovation on productivity and reveal strong persistence in firms’ productivity. 

One of the most significant developments of the CDM framework, namely Hall and Sena 

(2017) introduces an initial estimation step to model the firm’s decision to invest in innovation and 

the intensity of such expenditure. They also consider legal protection of intellectual property as a 

crucial external institution, modeling the relationship between appropriability mechanisms, 

innovation and firm productivity. Using a sequential 2SLS estimation procedure, they find that 

innovation, combined with the formal protection methods of intellectual property, tends to deliver 

the best productivity outcome. From a similar perspective, Van Leeuwen and Mohnen (2017) apply 

the CDM model to the field of green innovation. Using a structural approach, they investigate 

relationships linking environmental regulation, eco-investments, eco-innovation and labour 

productivity. They find a positive and significant impact of environmental regulation on eco-

investments and eco-innovations. Resource-saving eco-innovations, in turn, increase productivity. 

We test our hypotheses by following two alternative approaches. First, we considered the 

impact of CERN procurement on each of the outcome variables highlighted in the chain of logical 

implication described in section 2.4 to investigate the direct effects of procurement. This is done by 

estimating six different single-equation regression models, which are presented in section 4.1. Then, 

following the recent literature presented above, we moved to a system of simultaneous equations to 

better capture the mediated impact of procurement and the complex relations linking it to company 



economic performance. Specifically, we estimated a four-equations system where the dependent 

variables are: company R&D effort, the annual number of filed patents, productivity and economic 

performance. The details of this estimation strategy are discussed in section 4.2.  

4.1 Single-equation regression models 

We compared the values of six different outcome variables for each firm before and after the event, 

exploiting our time-variant sequence of events. In our setting, this approach represents a version of 

a difference-in-difference panel (see Angrist and Pishke, 2009, for a methodological discussion, 

particularly section 5.3 and appendix 5.4), given that we do not have just one before/after year, but 

twelve such breaks, each involving different firms. In our context, at the beginning of the period 

(1991), no firm is a CERN supplier for the LHC, and at the end of the period all the sample firms 

are. In the intervening years, we have a sustained sequence of events (from 1995 to 2008), with the 

firms’ status shift occurring in different years. Hence we were able to use a panel data approach, 

including (in most years) both treated and non-treated firms, where fixed effects capture unobserved 

firm-specific heterogeneity that is constant over time and year dummies capture unobserved effects 

that should affect all firms equally (e.g. business cycle, national and international economic policy, 

oil shocks). Alternative estimation strategies are discussed later. 

In this context, our general approach was to estimate the effect that receiving an order from 

CERN had, over time, on the firms’ outcome variables, controlling for firm characteristics, the 

macroeconomic situation, and time, country and firm fixed effects. Alternative specifications, with 

industry rather than firm fixed effects, were also considered. The “CERN effect” is a dummy 

variable that takes value 0 before the first year the company received an order from CERN and 1 

thereafter. 

We considered a static panel data model specification in which both performance and firm-

level control variables are taken in changes year by year, to avoid spurious regressions (see Granger 

and Newbold, 1974; Box and Jenkins, 1970). 

Specifically, the general empirical model we estimated is: 

∆𝑦𝑖𝑖 = 𝛽𝛽𝛽𝛽𝛽𝑖𝑖 + ∆𝑋′𝑖𝑖𝛾 + ∆𝑍′𝑐𝑐𝜃 + 𝜎𝑠 +  𝛿𝑡 + 𝜌𝑐 + 𝛿𝑡𝜌𝑐 + 𝑢𝑖𝑖                                             (1) 

where ∆𝑦𝑖𝑖 is the relevant outcome variable (see below) taken in first differences for firm i at 

time t. 𝐶𝐶𝐶𝐶𝑖𝑖 represents the relevant explanatory variable, the capability to deliver an order to 

CERN.  ∆𝑋′𝑖𝑖 is a vector of firm characteristics, mainly reflecting company size, which may 

influence the firm’s ability to capture technology spillovers.  

 ∆𝑍′𝑐𝑐 is a vector of macroeconomic controls, including ∆𝐺𝐺Pct, the yearly percentage change of 

GDP in the firm’s country c, and ∆𝐶PIct, the yearly percentage change in that country’s CPI. These 



variables control for country-level macroeconomic effects due to overall output and price changes. 

𝛿𝑡 denotes time-fixed effects, while 𝜎𝑠 and 𝜌𝑐 are time-invariant unobservable industry- and 

country-specific fixed effects respectively.12 Finally, 𝑢𝑖𝑖 is the random error term, which is 

clustered by country, allowing for error correlation within the same country. 

It is important to note that the resulting estimate of the consequences of procurement is 

conservative since it evaluates the impact on company outcomes from the year the first order is 

received, when it is plausible that this impact might be even greater in subsequent years, since some 

outcomes may take time to change.  

Starting from the general specification in equation (1), we estimated four different equations, 

reflecting the logical chain of events set forth in the conceptual framework (section 2.3): R&D asset 

value (2), knowledge production (3), productivity (4) and profitability (5).  

The R&D value equation takes the following specification: 

∆𝑅&𝐷𝑖𝑖 = 𝛽𝛽𝛽𝛽𝛽𝑖𝑖 + 𝑆𝑆𝑆𝑆′𝑖𝑖𝛾1 + 𝜃1∆𝐺𝐺𝐺𝑐𝑐 + 𝜃2∆𝐶𝐶𝐶𝑐𝑐 + 𝜎𝑠 +  𝛿𝑡 + 𝜌𝑐 + 𝛿𝑡𝜌𝑐 + 𝑢𝑖𝑖              (2) 

where the R&D effort (∆𝑅&𝐷𝑖𝑖) is proxied by the yearly variation of Intangible Fixed Assets per 

employee, ∆ � 𝐼𝐼
𝑒𝑒𝑒𝑒

�
𝑖𝑖

. For recent examples and a discussion on the matter/equation, see  Marin, 

2014; Leoncini et al., 2017.  𝑆𝑆𝑆𝑆𝑖𝑖 is a vector including the yearly change in number of employees 

and either the yearly change in Tangible Fixed Assets (TFA)13 or a set of dummy variables for firm 

size,14 ranging from a small to very large (reference category). 

The second step in the sequence is the estimation of a knowledge production equation: 

∆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 = 𝛽𝛽𝛽𝛽𝛽𝑖𝑖 + 𝑆𝑆𝑆𝑆′𝑖𝑖𝛾1 + 𝛾2∆ �
𝐼𝐼
𝑇𝑇
�
𝑖𝑖

+ 𝜃1∆𝐺𝐺𝐺𝑐𝑐 + 𝜎𝑠 + 𝛿𝑡 + 𝜌𝑐 + 𝑢𝑖𝑖                   (3) 

where ∆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 is the number of patents filed by company i in year t.  𝑆𝑆𝑆𝑆𝑖𝑖 is a vector including 

the yearly change in number of employees and either the change in Total Assets or the set of 

dummy variables for size in equation (2). In view of the well-documented relationship between 

R&D and patents (see e.g. Hall et al., 1984), we control for the variable ∆ �𝐼𝐼
𝑇𝑇
�
𝑖𝑖

, which represents 

the yearly change in the share of Intangible Assets in Total Assets. Since the dependent variable 

here is non-monetary, inflation was  dropped from the macroeconomic controls. 

The productivity equation takes the form: 

                                                           
12 Clearly, when models are estimated using fixed-effect regressions, vectors σs and ρc are omitted. 
13 Unlike the subsequent equations, this one does not include Total Assets, which by definition includes Intangible Assets, our dependent variable. 
14 These dummy variables are constructed starting from the “size” variable in Orbis, which classifies companies as very large, large, medium and 
small on the basis of number of employees, total assets and operating revenue.  



∆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 = 𝛽𝛽𝛽𝛽𝛽𝑖𝑖 + 𝑆𝑆𝑆𝑆′𝑖𝑖𝛾1 + 𝛾2∆𝑅&𝐷𝑖𝑖 + 𝛾3∆�
𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑒𝑒𝑒𝑒

�
𝑖𝑖

+ 𝜃1∆𝐺𝐺𝐺𝑐𝑐 + 𝜃2∆𝐶𝐶𝐶𝑐𝑐 + 𝜎𝑠 +  𝛿𝑡 + 𝜌𝑐 + 𝛿𝑡𝜌𝑐 + 𝑢𝑖𝑖          (4)                                                               

where the yearly change in sales normalised by the number of employees, ∆ �𝑠𝑠𝑠𝑠𝑠
𝑒𝑒𝑒𝑒

�
𝑖𝑖

, is used as a 

proxy for labour productivity (see e.g. Raimond et al., 2015). The vector 𝑆𝑆𝑆𝑆𝑖𝑖 includes the yearly 

change in number of employees and either the yearly change in Total Assets or the usual set of size 

dummies. 

Finally, as the last link of our chain of implications for testing, we estimated the following 

performance equation: 

∆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖
𝑗 = 𝛽𝛽𝛽𝛽𝛽𝑖𝑖 + 𝑆𝑆𝑆𝑆′𝑖𝑖𝛾1 + 𝜃1∆𝐺𝐺𝐺𝑐𝑐 + 𝜃2∆𝐶𝐶𝐶𝑐𝑐 + 𝜎𝑠 +  𝛿𝑡 + 𝜌𝑐 + 𝛿𝑡𝜌𝑐 + 𝑢𝑖𝑖                             (5) 

where the superscript j identifies the three different measures of performance that we use: j=EBIT, 

Operating Revenue and EBIT margin. The vector 𝑆𝑆𝑆𝑆𝑖𝑖 considers either the yearly change in Total 

Assets or the set of size dummies. 

In this setting, a pooled OLS regression would result in biased estimates of the vectors of the 

coefficients, owing to the potential correlation between unobservable, time-invariant firm-specific 

characteristics and the set of explanatory variables (Cameron Trivedi, 2005). Accordingly, we 

estimated the models using a fixed-effect (FE) estimator that captures the impact of time-variant 

variables. The FE estimator enables us to control for time-invariant differences between 

observations, eliminating potential bias due to the omission of fixed unobserved firm-specific 

variables such as management quality, corporate governance, reputation, and the like. Moreover, 

the results of the Hausman Test (reported below) also suggest that, given our data, the FE estimator 

tends to be the best. Nevertheless, we also ran a robustness check on it by performing RE 

regressions to control for time-invariant industry characteristics.  

A correlation matrix for the variables included in the analysis is available in the Appendix. As 

expected, larger firm size (in terms of assets and number of employees) is strongly correlated with 

higher revenues, sales and earnings. However, there appears to be no relevant problem of 

multicollinearity among the explanatory variables that were used as regressors.  

4.2 System of simultaneous equations 

Until now, we have considered each of the equations underlying the chain of logical 

implications stretching from the event of becoming a CERN supplier to an increase in company 

revenues and profitability as single regressions. This was done to better clarify the impact that 

procurement may have on each of the considered outcome variables. Indeed, this strategy allows the 



direct impact of procurement on firm innovation outputs, productivity and economic performance to 

be highlighted. 

 At this point, we went one step further by estimating our model as a system of simultaneous 

equations. The standard CDM model was augmented by means of an initial trigger provided by the 

CERN commissioned procurement. This is done by adding the (time-varying) dummy variable 

“CERN effect” to the R&D equation. In addition to productivity, earnings and profitability are 

investigated in the fourth equation of the system. 

Since there are endogenous variables on both the left and right sides of each equation, the 

system was estimated by using a 3SLS procedure (see Zellner and Theil, 1962). Moreover, the 

3SLS estimator allows for cross-correlations in the residuals of the equations in the system and is 

thus more efficient than 2SLS (see Cameron and Trivedi, 2005).  

Unlike the single-equation approach, this strategy allows better appraisal of the mediated effect 

of CERN procurement and so more precisely highlights the complex linkage between procurement 

and economic performance.  

Specifically, the system of equations we estimated is the following: 

⎩
⎪
⎨

⎪
⎧ ∆R&Dit = β1CERNit + Size′itγ1 +  θ1∆GDPct + φ1∆CPIct + σs + δt + ρc + uit

∆Patentsit = β2R&Dit + Size′itγ2 +  θ2∆GDPct + σs + δt + ρc + eit
∆Productivityit =   β3∆patentsit + Size′itγ3 +θ3∆GDPct + φ3∆CPIct + σs +  δt + ρc + εit

∆Performanceit
j = β4∆Productivityit +  Size′itγ4 + θ4∆GDPct + φ4∆CPIct + σs +  δt + ρc + ϵit

        (6) 

where the variable “Patent” is linearised using the transformation ln(1+ patents)15, thus allowing 

the “knowledge production” equation to be estimated in the framework of a linear system. 

 

5. The Results 

5.1 The CERN effect on R&D and knowledge production 

Tables 2 and 3 report the coefficient estimates of the parameters in equations (2) and (3).  

The results for equation (2) suggest that after becoming CERN suppliers companies increased their 

intangible investment. This is consistent with the hypothesis that technological procurement boosts 

R&D expenditure. We are aware that intangible fixed assets are an imperfect measure of R&D 

spending, but Orbis and Amadeus provide no R&D data for more than 90% of the firms, while they 

include R&D asset value in intangible fixed assets. Moreover, as we shall see below, the case for 

this proxy is further supported by the fact that this link is only found for suppliers of high tech-

                                                           
15 Taking log-transformations of patent count is a common practice in the literature investigating the determinants of patenting: see for example 
Zhao et al. (2017), Li (2012) and Aghion et. al (2013). 

https://en.wikipedia.org/wiki/Arnold_Zellner


orders (we present the results in section 5.3). Table 2 suggests that our results are robust to 

alternative specifications, which include different size controls and time-varying fixed effects.16 

Since Intangible Fixed Assets is normalised by number of employees, the coefficient of their yearly 

change (∆Employees) estimates the deviation from constant returns to firm size (see Crépon et al. 

1998). 

Table 2 – Impact of CERN procurement on R&D effort (proxied by ∆Intangible Assets/employees)  

 (1) (2) (3) (4) 
 ∆R&D ∆R&D ∆R&D ∆R&D 
CERN 0.925** 1.164*** 1.254*** 0.425*** 
 (0.332) (0.257) (0.249) (0.115) 
∆Employees (mln) -1.99*** -1.99*** -2.00*** -0.0341 
 (0.107) (0.111) (0.107) (0.0427) 
∆TFA/Employees (mln)    0.0206 
    (0.0395) 
size_very_large 0.0868 0.290 0.492  
 (0.850) (0.889) (1.006)  
size_large -0.429 -0.329 -0.181  
 (0.641) (0.581) (0.548)  
size_medium -0.242 -0.239 -0.193  
 (0.598) (0.558) (0.526)  
     
Macro controls Yes Yes Yes Yes 
Years No Yes Yes Yes 
Years*Country No No Yes Yes 
     
Cons -0.246 -0.377 -0.350 -0.522 
 (0.540) (0.857) (0.576) (0.447) 
R2 0.083 0.083 0.085 0.047 
N 3893 3893 3893 3488 
FE regressions  
Standard errors clustered by country in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 
 

The positive effect of CERN procurement also emerges in the yearly change in filed patents, which 

increases after the beginning of the procurement relationship (Table 3). The current ratio of 

intangible to total assets has a positive and highly significant coefficient, whereas with a one-year 

lag the ratio is significant in only one of our two specifications; this suggests that the increase in 

intangible assets reported in Table 2 contributes to innovation capacity. 

Interestingly, the coefficient of the CERN effect remains positive and significant at the 1% level 

even with these additional controls, meaning that the benefits of procurement presumably go 

beyond the direct impact of increased R&D activity. This suggests that technological spillovers may 

well constitute a positive externality. Part of the R&D cost of developing a new product 

commissioned by CERN is of course defrayed by CERN itself, but CERN does not patent the 

                                                           
16 In the following tables, we only report the most complete specification where both year and year*country fixed effects are included.  



inventions, allowing the supplier to do so and thus to exploit the new process/product developed in 

the course of the collaboration. 

The specifications in columns (7) and (8) include firm fixed effects among the explanatory 

variables, using the “pre-sample mean scaling” method of Blundell et al. (1999). Thanks to Patstat’s 

long data series on companies’ patenting behaviour, we were able to compute the pre-sample 

average of patents, which should reflect the “entry level innovation knowledge stock” (Blundell et 

al., 1999, p. 534), i.e. the stock of past innovations available to each company at the beginning of 

our period in 1991, which can serve as an initial condition to control for unobserved heterogeneity. 

Table 3 – Impact of CERN procurement on innovation output (proxied by patents)  

 (1) (2) (3) (4) (5) (6) (7) (8) 
 ∆Patents ∆Patents ∆Patents ∆Patents ∆Patents ∆Patents ∆Patents ∆Patents 
         
CERN 0.372* 0.558*** 0.543*** 0.794*** 0.565*** 0.790*** 0.558*** 0.802*** 
 (0.209) (0.216) (0.211) (0.196) (0.217) (0.220) (0.207) (0.194) 
∆Employees (mln) -0.0181 -0.0533 -0.0152 -0.0547 -0.0140 -0.0486 -0.0151 -0.0547 
 (0.0158) (0.0384) (0.0163) (0.0394) (0.0157) (0.0386) (0.0163) (0.0395) 
∆Total Assets (bln)  0.123  0.145  0.121  0.145 
  (0.107)  (0.113)  (0.113)  (0.113) 
size_very_large 4.373***  4.170***  4.069***  4.168***  
 (1.013)  (1.018)  (1.032)  (1.017)  
size_large 2.908***  2.738***  2.589**  2.721***  
 (1.013)  (1.018)  (1.033)  (1.018)  
size_medium 1.411  1.272  1.061  1.273  
 (1.018)  (1.024)  (1.038)  (1.023)  
∆(IA/TA)   2.188** 3.685***   2.198** 3.698*** 
   (0.953) (1.047)   (0.959) (1.050) 
∆(IA/TA)_lag1     0.354 1.813*   
     (0.937) (1.045)   
GDP_growth 0.0197 0.0289 0.0612 0.0908* 0.0651 0.0980* 0.0604 0.0904* 
 (0.0453) (0.0505) (0.0485) (0.0533) (0.0507) (0.0553) (0.0487) (0.0534) 
         
Sector Yes Yes Yes Yes Yes Yes Yes Yes 
Country Yes Yes Yes Yes Yes Yes Yes Yes 
Years Yes Yes Yes Yes Yes Yes Yes Yes 
Firm fixed effects No No No No No No Yes Yes 
         
Cons -3.938*** -0.722 -3.782*** -0.890 -20.52 -18.34 -3.773*** -0.889 
 (1.423) (1.240) (1.373) (1.275) (14.78) (12.40) (1.371) (1.275) 
N 5278 5278 4660 4660 4326 4325 4660 4660 
Negative Binomial regressions 
Column (6): fixed effects controls using the Blundell et al. (1999) pre-sample mean scaling estimator. 
Standard errors clustered by country in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 
 

5.2 CERN effect on performance: productivity, revenue and profitability 

As regards Equation 4, the Orbis/Amadeus data are unfortunately insufficient to estimate changes in 

total factor productivity by any of the usual econometric methods, which would shrink our sample 

drastically. However, a positive correlation emerges between LHC procurement and firms’ labour 

productivity, a productivity gauge commonly used in the literature (see e.g. Raimond et al., 2015). 



As Table 4 shows, this result is robust to alternative specifications. As expected, the coefficients of 

Intangible Assets and number of patents are positive and statistically significant, but even when 

they are included in the regression, the beneficial impact of procurement persists.  

 

Table 4 - Impact of CERN procurement on productivity (proxied by ∆sales/employees) 
 
 (1) (2) (3) (4) (5) (6) 
 ∆Productivity ∆Productivity ∆Productivity ∆Productivity ∆Productivity ∆Productivity 
CERN 13.65** 12.61* 12.47** 12.05** 12.34*** 11.92** 
 (6.671) (6.597) (4.299) (4.698) (4.334) (4.687) 
∆Employees (mln) -20.67*** -19.97*** -18.29*** -18.18*** -18.31*** -18.19*** 
 (1.367) (0.728) (0.884) (1.257) (0.884) (1.262) 
∆Total Assets (bln) 8.153  1.064  1.082  
 (14.95)  (13.48)  (13.50)  
size_very_large  112.1  135.6  135.7 
  (78.53)  (89.96)  (90.02) 
size_large  82.54  103.1  103.1 
  (60.94)  (67.95)  (68.00) 
size_medium  -3.868  3.237  3.249 
  (15.67)  (19.09)  (19.06) 
∆R&D   0.750** 0.761* 0.745** 0.756* 
   (0.329) (0.363) (0.331) (0.366) 
∆(Patents/Empl)     74.27** 76.00** 
     (32.03) (27.88) 
       
Macro controls Yes Yes Yes Yes Yes Yes 
Years Yes Yes Yes Yes Yes Yes 
Years*country Yes Yes Yes Yes Yes Yes 
       
Cons 14.65*** -53.41 10.01*** -59.09 11.66*** -57.94 
 (2.120) (33.73) (1.148) (35.07) (1.095) (34.89) 
R2 0.284 0.294 0.327 0.317 0.326 0.322 
N 3659 3659 3328 3328 3320 3320 
FE regressions 
Standard errors clustered by country in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 
 
 

The final link in our chain of implications is the relationship between procurement and firms’ 

revenue and profitability (Equation 5). The estimation results suggest that LHC procurement has a 

positive and highly significant impact on the change in revenue, EBIT and EBIT margin (Table 5). 

As is demonstrated in the following section, this result is mainly driven by high-tech suppliers 

whose CERN effect coefficient is always strongly significant for all performance variables, whereas 

for non-high-tech providers it is often not significant.  

If Intangible Assets and patent filings are included in the regression, their coefficients are not 

statistically significant,17 while the CERN effect is practically unaffected in both magnitude and 

significance. 

 

 
                                                           
17 This result holds whether the two variables are included jointly or separately. 



Table 5 - Impact of CERN procurement on economic outcomes: Revenue, EBIT and EBIT margin 

 (1) (2) (3) (4) (5) (6) 
 ∆OR ∆OR ∆EBIT ∆EBIT ∆EBITm ∆EBITm 
CERN 31139.1*** 45596.1** 4942.5** 5999.5** 0.854*** 0.838*** 
 (7867.5) (18373.5) (2500.5) (2365.0) (0.326) (0.325) 
∆Total Assets (bln) 340457.8***  25239.0***  -0.175  
 (15386.7)  (4747.9)  (0.353)  
size_very_large  8655.2***  295.0  1.678 
  (1945.6)  (455.9)  (1.529) 
size_large  -867.1  1440.6  1.777 
  (2750.6)  (1099.6)  (1.423) 
size_medium  -1022.1  77.91  1.780 
  (1795.0)  (431.2)  (1.467) 
       
Macroeconomic controls Yes Yes Yes Yes Yes Yes 
Years Yes Yes Yes Yes Yes Yes 
Years*country Yes Yes Yes Yes Yes Yes 
       
Cons -32100.1*** -30830.7*** -2017.2*** -2531.8*** -0.961*** -3.313** 
 (789.1) (2621.4) (92.84) (359.4) (0.0143) (1.456) 
R2 0.491 0.085 0.133 0.114 0.012 0.011 
N 5799 5799 5812 5812 5771 5771 
FE regressions  
Standard errors clustered by country in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 
 

5.3 High-tech vs. non-high-tech suppliers 

To determine whether the technological features of procurement influence company 

performance, we split our sample between high-tech and other suppliers, analysing each subgroup 

separately.  

In order to assign suppliers to one group or the other, we took advantage of the fact that in the 

original database CERN orders are classified by an “activity code” identifying each product type 

with a highly detailed 3-digit level. We used the 2-digit classification, which covers around 100 

items and was sufficiently detailed for our purposes. In some cases, we also inspected the 3-digit 

classification to better interpret the technological content.  

After a preliminary analysis of the overall distribution of order codes, we followed Florio et al. 

(2016) in identifying the specific activity codes most likely to be associated with high-tech goods 

and services for the construction of the LHC. In some instances the code descriptors were generic 

(“28-Electrical engineering,” say, or “45-Software”). To minimise classification errors, we sampled 

300 orders for a more in-depth analysis. These orders were placed with 207 different suppliers, 16% 

of all those who received at least one order for the LHC during the period under analysis. The 

orders thus sampled were then evaluated in detail by CERN experts and classified, according to 

their technological intensity, along a five-point scale designed to capture differences in both product 

specificity and closeness of the supplier’s collaboration with CERN:  

Class 1: most likely “off-the-shelf” orders of low technological intensity;  

Class 2: off-the-shelf orders with average technological intensity;  



Class 3: mostly off-the-shelf but usually high-tech and requiring some careful specification;  

Class 4: high-tech orders with moderate to high intensity of specification activity to customise 

products for the LHC;  

Class 5: products at the technological frontier, with intensive customisation and co-design 

involving CERN staff. 

We defined high-tech codes as Classes 3, 4 and 5 and then divided the LHC suppliers into two 

broad groups, according to their opportunity to deliver high-tech orders in the initial procurement 

event. According to the activity code assigned to the first order, 63% of our sample companies are 

part of the high-tech category, with a very slight over-representation of around 2 percentage points 

in relation to the original CERN data (61%). There is some risk of misclassification, in that non-

high-tech companies may have gained the ability, over time, to satisfy high-tech orders, and that 

many companies received more than one order, which are not necessarily all coded alike. However, 

the data indicate that the first order is generally a good predictor of the technological intensity of 

subsequent ones.  

As noted earlier,  longer term profits and profit margins respond to procurement only for high-

tech suppliers, which seems to confirm that the determinants of the benefits generated by LHC 

procurement include specific learning spillovers and innovation (see Table 6). For operating 

revenue, however, the difference between the two groups is more nuanced. By applying a stricter 

definition of high-tech orders (see section 6.3), the results for all performance variables are 

qualitatively confirmed. 

Equations (2), (3) and (4) have also been estimated separately for high-tech and non-high-tech 

suppliers. The main results are briefly reported here. Equation (2) indicates that the increase in 

Intangible Assets after the procurement relationship is established occurs at high-tech companies 

only. The correlation between LHC procurement and number of patents (Equation 3) is positive and 

statistically significant in both groups. Finally, as regards productivity (Equation 4), while a 

positive and significant correlation between the CERN effect and sales per employee is obtained, 

when the two subsamples are regressed separately the correlation is no longer significant, probably 

owing to the considerable reduction in sample size. 

 
Table 6 – Revenues and Profitability: High tech vs. non high-tech companies 

 HT NHT HT NHT HT NHT 
 (1) (2) (3) (4) (5) (6) 
 ∆OR ∆OR ∆EBIT ∆EBIT ∆EBITm ∆EBITm 
CERN 36974.5*** 16512.8** 8631.3** -2034.0 0.552** 1.339 
 (7926.7) (6839.0) (3766.0) (2841.5) (0.241) (0.995) 
∆Total Assets (bln) 330974.6*** 962831.1* 23722.3*** 98216.5*** -0.233 1.862 
 (16063.6) (465746.7) (4588.8) (5953.9) (0.390) (2.110) 



       
Macro controls Yes Yes Yes Yes Yes Yes 
Years  Yes Yes Yes Yes Yes Yes 
Years*country Yes Yes Yes Yes Yes Yes 
       
Cons -41.82 -36200.6 -1695.0*** 7511.4*** 0.0562*** 5.105*** 
 (387.6) (27493.2) (156.7) (1298.2) (0.00984) (0.313) 
R2 0.017 0.019 0.581 0.511 0.131 0.276 
N 3703 2096 3706 2106 3687 2084 
FE regressions 
Standard errors clustered by country in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 
 

5.4 Estimating the model as a system of simultaneous equations 

The present section illustrates the results that were obtained when our model was estimated as 

a system of simultaneous equations. The findings are consistent with those previously obtained 

from the single-regressions estimation, pointing out to the role of procurement in triggering the 

logical chain of implications that we aimed to test (Tables 7-9). Specifically, the coefficients 

obtained from the estimation of the system (6) highlight the direct “CERN effect” on R&D 

investments as well as its mediated impact on company innovation output, productivity and 

economic performance. 

It is important to note that the reduction in sample size with respect to the single-equation 

estimation is due to the fact that we are now considering all four outcome variables simultaneously, 

so the total number of missing observations increases (see footnote 6, section 3). 

For high-tech companies, the estimates clearly show that the impact of procurement on 

innovativeness comes by way of R&D, which in turn affects productivity, whose rise finally 

enhances the economic outcomes. 

For non-high-tech companies, by contrast, there is no positive influence of procurement on 

R&D and innovation output, suggesting that the significant association of productivity with 

revenues and profits that shows up in the final estimation stage is not driven by technological spill-

overs that boost technical know-how, but instead by such factors as market penetration and 

reputational gains.  

 

Table 7 – 3SLS estimation of the model in which the economic performance gauge is revenues  

 (1) (2) (3) 
 FULL SAMPLE HIGH-TECH NON-HIGH-TECH 
∆R&D     
    
CERN 0.675*** 1.276*** -0.258 
 (0.050) (0.129) (0.387) 
∆Employees (mln) -0.0788 -0.0372 -0.125 
 (0.067) (0.085) (0.111) 
∆Tangible Assets (bln) -6.035*** -1.698*** 8.680 
 (0.484) (0.312) (12.270) 
    
Macroeconomic controls Yes Yes Yes 



Country FE Yes Yes Yes 
Time FE Yes Yes Yes 
Sector FE Yes Yes Yes 
    
Cons -1.544 -25.79*** -1.158 
 (3.673) (4.090) (5.639) 
∆Patents    
    
∆R&D 7.532*** 4.006*** -0.109*** 
 (0.462) (0.330) (0.035) 
∆Employees (mln) 1.185*** 0.685*** -0.0163* 
 (0.099) (0.086) (0.009) 
∆Total Assets (bln) -4.347*** -2.203*** 0.513*** 
 (0.308) (0.221) (0.141) 
    
Macroeconomics controls Yes Yes Yes 
Country FE Yes Yes Yes 
Time FE Yes Yes Yes 
Sector FE Yes Yes Yes 
    
Cons 9.256*** 105.0*** -0.400 
 (3.467) (9.057) (0.372) 
∆Productivity    
    
∆Patents 2881.1*** 2550.3*** 2866.6*** 
 (732.3) (731.4) (440.0) 
∆Employees (mln) -0.0482*** -0.0356*** -0.0511*** 
 (0.0133) (0.0117) (0.0128) 
∆Total Assets (bln) -20.57 -24.38 -118.7 
 (42.31) (42.36) (117.9) 
    
Macroeconomic controls Yes Yes Yes 
Country FE Yes Yes Yes 
Time FE Yes Yes Yes 
Sector FE Yes Yes Yes 
    
Cons 63.54 -250.3 835.5** 
 (638.6) (803.4) (369.1) 
∆Revenues    
    
∆Productivity 348.3*** 392.7*** 3640.0*** 
 (42.28) (43.51) (816.5) 
∆Employees (mln) 69999.1*** 101865.1*** 136178.2*** 
 (2337.6) (3877.3) (22295.2) 
∆Total Assets (mln) 226.306*** 167.882*** 292.450** 
 (7.676) (9.360) (131.453) 
     
Macroeconomics controls Yes Yes Yes 
Country FE Yes Yes Yes 
Time FE Yes Yes Yes 
Sector FE Yes Yes Yes 
    
Cons -39025.0 -64861.4 -96391.0 
 (101588.8) (139192.6) (261069.1) 
N 2850 1876 974 
Standard errors in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 
 

Table 8 – 3SLS estimation of the model in which the economic performance gauge is EBIT 

 (1) (2) (3) 
 FULL SAMPLE HIGH-TECH NON-HIGH-TECH 
∆R&D    
    
CERN 0.668*** 1.256*** -0.250 
 (0.050) (0.129) (0.398) 
∆Employees (mln) -0.0787 -0.0370 -0.125 
 (0.067) (0.085) (0.111) 
∆Tangible Assets (bln) -5.950*** -1.664*** 11.23 
 (0.482) (0.312) (12.37) 
    
Macroeconomic controls Yes Yes Yes 
Country FE Yes Yes Yes 
Time FE Yes Yes Yes 
Sector FE Yes Yes Yes 



    
Cons -1.540 -25.79*** -1.089 
 (3.671) (4.090) (5.636) 
∆Patents    
    
∆R&D 7.446*** 3.956*** -0.102*** 
 (0.459) (0.330) (0.034) 
∆Employees (mln) 1.171*** 0.675*** -0.0152* 
 (0.099) (0.086) (0.009) 
∆Total Assets (bln) -4.290*** -2.170*** 0.506*** 
 (0.306) (0.220) (0.140) 
    
Macroeconomics controls Yes Yes Yes 
Country FE Yes Yes Yes 
Time FE Yes Yes Yes 
Sector FE Yes Yes Yes 
    
cons 9.142*** 103.7*** -0.384 
 (3.466) (9.051) (0.362) 
∆Productivity    
    
∆Patents 2848.6*** 2535.5*** 2815.7*** 
 (731.7) (731.2) (443.9) 
∆Employees (mln) -0.0491*** -0.0369*** -0.0510*** 
 (0.013) (0.012) (0.013) 
∆Total Assets (bln) -15.52 -19.94 -113.0 
 (42.28) (42.35) (118.8) 
    
Macroeconomic controls Yes Yes Yes 
Country FE Yes Yes Yes 
Time FE Yes Yes Yes 
Sector FE Yes Yes Yes 
    
cons 57.26 -258.1 801.7** 
 (638.3) (803.4) (371.3) 
∆Revenues    
    
∆Productivity 209.6*** 221.2*** 211.7*** 
 (25.68) (30.16) (73.97) 
∆Employees (mln) 8739.2*** 16710.0*** 5434.3*** 
 (1415.5) (2678.4) (2015.8) 
∆Total Assets (mln) 21310.4*** 8888.5 62310.0*** 
 (4663.1) (6481.9) (11839.7) 
    
Macroeconomics controls Yes Yes Yes 
Country FE Yes Yes Yes 
Time FE Yes Yes Yes 
Sector FE Yes Yes Yes 
    
Cons -1949.1 -11787.3 -9095.6 
 (61762.9) (96571.7) (23364.0) 
N 2852 1876 976 
Standard errors in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 
 

Table 9 – 3SLS estimation of the model in which the economic performance gauge is EBIT margin 

 (1) (2) (3) 
 FULL SAMPLE HIGH-TECH NON-HIGH-TECH 
∆R&D    
    
CERN 0.723*** 1.346*** -0.365 
 (0.053) (0.138) (0.401) 
∆Employees (mln) -0.0788 -0.0374 -0.124 
 (0.067) (0.085) (0.112) 
∆Tangible Assets (bln) -5.945*** -1.660*** 9.342 
 (0.477) (0.319) (12.36) 
    
Macroeconomic controls Yes Yes Yes 
Country FE Yes Yes Yes 
Time FE Yes Yes Yes 
Sector FE Yes Yes Yes 
    
cons -1.588 -25.89*** -1.103 
 (3.677) (4.094) (5.651) 



∆Patents    
    
∆R&D 7.288*** 3.781*** -0.107*** 
 (0.443) (0.314) (0.035) 
∆Employees (mln) 1.141*** 0.641*** -0.0159* 
 (0.096) (0.081) (0.009) 
∆Total Assets (bln) -4.191*** -2.068*** 0.511*** 
 (0.295) (0.209) (0.141) 
    
Macroeconomics controls Yes Yes Yes 
Country FE Yes Yes Yes 
Time FE Yes Yes Yes 
Sector FE Yes Yes Yes 
    
cons 9.193*** 99.65*** -0.396 
 (3.399) (8.651) (0.367) 
∆Productivity    
    
∆Patents 2871.3*** 2515.0*** 2824.3*** 
 (735.2) (732.7) (434.0) 
∆Employees (mln) -0.0484*** -0.0354*** -0.0509*** 
 (0.013) (0.012) (0.013) 
∆Total Assets (bln) -19.13 -22.95 -116.2 
 (42.45) (42.47) (116.2) 
    
Macroeconomic controls Yes Yes Yes 
Country FE Yes Yes Yes 
Time FE Yes Yes Yes 
Sector FE Yes Yes Yes 
    
cons 65.24 -244.3 816.2** 
 (640.6) (805.4) (364.2) 
∆Revenues    
    
∆Productivity 0.0027 0.0034* -0.0030 
 (0.002) (0.002) (0.016) 
∆Employees (mln) 0.0881 0.347** -0.183 
 (0.099) (0.159) (0.445) 
∆Total Assets (mln) -0.270 -0.677* 0.774 
 (0.324) (0.382) (2.614) 
    
Macroeconomics controls Yes Yes Yes 
Country FE Yes Yes Yes 
Time FE Yes Yes Yes 
Sector FE Yes Yes Yes 
    
Cons -2.430 -2.446 1.802 
 (4.282) (5.685) (5.124) 
N 2839 1869 970 
Standard errors in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 
 

 

6. Robustness checks 

6.1 Alternative estimation methods 

Although the Hausman test suggested the use of an FE estimator for most of our regressions18, 

we also estimated equations (2), (4) and (5) using a Random Effect (RE) estimator, to check for 

robustness to alternative estimation techniques. The latter method also allows the use not only of 

time-varying but also of time-invariant controls such as industry and country-fixed effects, which 

                                                           
18 The Hausman Test always rejects the null (RE consistent and efficient) in revenue and productivity regressions and in most of the specifications of 
EBIT and EBIT margin regressions. It never rejects the null in knowledge production regressions. As FE is the preferred model in most cases, for 
more uniformed expositions we first presented the results of all FE regressions and then, as a robustness check, the RE estimates.  



may influence firm R&D investment and economic performance. As regards innovation equation 

(3), we tested robustness by using Poisson instead of Negative Binomial regression.  

For the most part, our results are confirmed in both coefficient magnitude and statistical 

significance (see Tables A1-A4 in the Appendix). The sole exception is specification (4) of the 

knowledge equation (Table A1, Appendix), where if the Tangible Fixed Assets variable (normalised 

by the number of employees) is used as a size control, the positive coefficient of the CERN effect 

loses its statistical significance. 

We also estimated equations (2), (4) and (5) by simple pooled OLS regressions, with and 

without firm-fixed effects. The results (not reported here for reasons of space) confirm that after 

becoming LHC suppliers companies exhibit, on average, increases in intangible assets and gains in 

both productivity and profitability. 

As to the innovation equation (3), Table A2 in the Appendix shows again that the findings are 

not affected by the estimation method.  

 
6.2 Dynamics 

For regression models (2)-(4), we also tested dynamic specifications with lagged outcome 

variables as an additional control. This procedure accounts for possible time trends that might 

persist even after controlling for macroeconomic variables and is generally advisable when effect 

persistency may be hypothesised (see e.g. Verbeek, 2012, p. 396). We are aware, however, that in 

the absence of proper instruments, the inclusion of a lagged dependent variable as a regressor may 

pose problems of endogeneity due to its correlation with the random error term. Once again, 

however, the results were qualitatively consistent with those of the static models, with only 

marginal changes in coefficient magnitudes, suggesting that the shift to dynamic specifications does 

not give rise to substantial endogeneity issues in our setting. The estimates are reported in Tables 

A5 and A6 in the Appendix. Past changes in profit margin, EBIT, intangible assets and productivity 

are inversely and very significantly correlated with their current values, suggesting a smoothing 

process over time. On the other hand, past changes in revenue and patent filings are positively 

correlated with their current values, suggesting inertia in firms’ revenue and propensity to innovate. 

6.3 Alternative classification of high-tech orders and alternative definition of high-tech suppliers 

To check the robustness of the estimates in Table 6, we applied a stricter standard to classify 

orders as “high-tech”, namely a technology intensity score of at least 4. Only 22.3% of the sample is 

now qualified as “high-tech,” but despite this drastic alteration of the proportions of high- and low-

tech groups, the results are only marginally affected. LHC procurement is found to have a positive 

and significant impact on high-tech suppliers’ EBIT, revenue and EBIT margin. Coefficient 



magnitudes are considerably greater than when orders with a technology intensity score of 3 are 

included. This result can be read as indicating that the more technologically complex the received 

order is, the higher the return to the supplier. However, as concerns the stricter definition, we also 

found a significant impact on the revenue of non-high-tech suppliers (perhaps a reputation effect). 

We applied another, more restrictive, classification of companies in the high-tech group: only 

firms whose high-tech orders make up more than 50% of their total received orders may be 

considered high-tech companies. According to this new definition, 58% of our sample suppliers are 

classified as high-tech. All of our results are confirmed in magnitude and significance level, both 

for the entire sample and for the high-tech subsample (the impact on revenue and EBIT is slightly 

greater, that on EBIT margin smaller). For the non-high-tech group, revenue and EBIT are not 

affected in a statistically significant way, while the effect on EBIT margin becomes significant at 

the 10% level (p-value=0.052). 

 

7.  Discussion and concluding remarks  

There are various reasons why one organisation may need another to supply an input, rather 

than producing it internally: time constraints,  lack of production capacity, lack of know-how, need 

to master the production process beyond prototyping, uncertainty concerning actual production 

costs, strategic focus on certain markets, and so on. Therefore, the procurement relationship may or 

may not create learning opportunities for the supplier. If the customer wants to buy a standard, “off-

the-shelf” product in relatively limited quantities, the learning opportunity is negligible, as there is 

no need to design or adopt any new technology. But where the customer requires substantial quality 

improvement to the supplier’s product or a massive increase in quantity, the Arrow–Solow 

mechanism, as discussed in section 2.1, would lead to a possible learning process, hence increased 

R&D, innovation, productivity and  profitability. 

A basic research infrastructure project typically requires two sets of tangible assets: those 

needed for the infrastructure itself – say, a particle accelerator – and those needed to exploit 

experimental data, such as detectors and information technology. In either case, the entity that 

manages the research infrastructure may need external firms to supply such assets. After 

construction, there may still be procurement relationships for operation and maintenance. The 

literature cited in section 2.3 makes it abundantly clear that procurement by large-scale research 

infrastructures (“Big Science”) can generate learning effects and innovation. The mechanism is 

similar, but not identical, to that found in high-tech industries such as the production of airframes 

(see Eliasson 2010, 2011) mentioned by Arrow (1962) and discussed in greater detail by Solow 



(1997). Some aspects of the discontinuity are closer to Pisano’s “learning-before-doing” concept 

(1996).  

The main specificity here is that in most cases the procurement contract between research 

infrastructure and supplier involves organisations with different fundamental objectives: profit 

maximisation, certainly, for the supplier, but not for basic research organisations like CERN, 

NASA, the European Space Agency and several other institutions. While the latter need to be cost-

effective, given their budget constraints, their fundamental objective is to maximise knowledge 

without gaining a profit. Hence the owners of these structures do not have the usual incentive to 

appropriate the rents from invention and innovation. For example, they tend not to protect their 

discoveries by patenting, even when this is practicable and would be profitable. As a consequence, 

in the procurement relationship, these institutions will generally pay a reasonable price to the firm 

for the input and will usually not seek compensation for any knowledge spillover that may occur. 

Moreover, as by definition the research institution wants to discover something previously 

unknown, it is likely that at least a part of the necessary tangible and intangible assets will consist in 

entirely new products or substantial improvements to existing ones, or else will have to be produced 

on an unprecedented scale or with enormously greater precision. Thus, in this context, there is a 

twofold mechanism for positive externality: the nature of the assets required by the research 

infrastructure and its disinterest in appropriating any rent that may arise from learning. The 

suppliers, instead, being profit maximisers, will take advantage of the asymmetry of objectives and 

seek to gain a profit from what they have been able to learn in the longer term.  

To test this thesis, we investigated the impact of procurement by means of a very large-scale 

research infrastructure, CERN’s Large Hadron Collider, on the companies involved in the supply 

chain. Specifically, we wanted to assess whether procurement may enhance economic performance 

by triggering a chain of events: becoming a CERN supplier increases R&D effort and innovative 

capacity, which in turn boosts labour productivity, ultimately increasing revenue and profitability. 

We found a positive and statistically significant correlation over time between procurement 

events and each of the outcome variables we considered, while controlling for observable firm 

characteristics and macroeconomic conditions, as well as for unobserved time, country, industry 

and firm-level fixed effects. After becoming suppliers, companies generally experienced a rise in 

intangible assets per employee (our proxy for R&D effort) and in annual patent filings (our proxy 

for innovation). Labour productivity, proxied by sales per employee, also increased, as did 

revenues, EBIT and EBIT margin. The results are confirmed both by estimating single-equation 

regression models and a system of simultaneous equations.  



These findings are consistent with the qualitative insights of Autio et al. (2003) and Florio et 

al. (2017). The latter reports the results of the broadest and most recent survey of CERN suppliers. 

Three types of outcome stem from suppliers’ cooperation with CERN: innovation (development of 

new products, services and technologies), learning (acquisition of technical know-how, 

improvement in the quality of products and services, changes in production processes) and market 

penetration (acquisition of new customers and market benefits due to reputational gains). These 

outcomes represent “intermediate outputs” which in turn impact on suppliers’ economic 

performance. Our findings on suppliers’ development activities and profits were broadly consistent 

with those results, but our approach is entirely novel. This is the first attempt to measure the 

procurement effect of Big Science quantitatively by using publicly available company reports rather 

than surveys, thus precluding subjective bias of the respondents. Moreover, unlike case studies and 

surveys, our method is replicable whenever the research infrastructure discloses the identity of its 

suppliers, the dates in which the orders are made, and the kind of product requested. And as far as 

we know, our paper offers the first empirical analysis of the effect that procurement by a basic 

research infrastructure may have on the number of patents filed by suppliers, along the lines of 

some of the literature on the effects of university research (section 2.2).   

Two potentially relevant issues are not dealt with in our study. First of all, we did not look at 

the survival of supplier firms: some companies may have gone bankrupt during the period 

considered and were therefore not included in the sample. The same goes for suppliers’ 

attractiveness of entry. Second, the availability of financial information in the Orbis/Amadeus 

databases determined the size and the composition of our sample, which as a result might not be 

randomly selected. Since our dataset does not allow taking these issues into account, they have been 

left for future research. 

Our findings indicate the existence of important learning spillovers from large-scale basic 

research infrastructures to their technology suppliers and suggest that the learning process that is 

generated by procurement is likely to lead to product and process innovation and ultimately higher 

profitability for high-tech firms. Generic reputational effects would appear to be less substantial, as 

there is no - or at best modest in some models - correlation over time between procurement events 

and non-high-tech suppliers’ revenue, profit or profit margin. If the data had indicated an equally 

significant “CERN effect” for firms involved in non-high-tech procurement, our findings could 

have been interpreted as reflecting, above all, a generic signaling or reputational effect, thus 

increasing market opportunities or permitting the firm to charge higher prices. Of course, we cannot 

rule out reputational effects or other marketing drivers for high-tech firms as well: advertising their 

capability to handle the demanding requirements of LHC technology could well constitute a 



persuasive marketing argument. This combination of innovation and reputational effects is, after all, 

exactly what previous narratives and surveys would have suggested.  

These findings carry two implications for science policy. First, it would be helpful if 

publicly funded institutions that operate research infrastructures made the information on their 

procurement available for independent inquiry, as CERN did for us. Matching these data with the 

long-term economic and financial data of the firms in the supply chain and with their patent filings 

would appear to be both feasible and fruitful.  

Second, governments and funding agencies should realise that an appreciable part of 

taxpayers’ money is returned to society in the form of increased profits for high-tech firms, 

particularly for innovative SMEs (Libaers et al., 2010): around 75% of CERN suppliers in our 

sample include fewer than 250 employees. Obviously, this consideration abstracts from potential 

issues related to competition in supplier markets, such as concentration and market power, which 

should be investigated in further research. 

Conceivably, in some distant future scientists and engineers may find some practical application for 

the Higgs boson; however, market responses to investments in science are observable on a much 

shorter horizon (a decade or so for the median order during the construction of the LHC). These 

responses are mediated by high-tech firms involved in the procurement process, and in principle, 

the economic impact can be quantified. Obviously, there are other important channels for the 

propagation of the social benefits of Big Science, such as human capital and cultural effects (Martin 

and Irvine, 2001; Florio et al., 2016) or technology transfer (Nielsen and Anelli, 2016). We do not 

claim that all large-scale research infrastructure projects can be justified by means of technological 

procurement spillovers alone, but it is worthwhile to record their benefits systematically and 

measure them against investment costs. 
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Appendix 
 
Correlation matrix 
 

 

CERN Empl. Total 
Assets 

Tang. 
Fixed 

Assets 

Int. 
Fixed 

Assets 

Patents Sales Rev. EBIT EBIT 
margin 

GDP  
growth 

CPI 

             CERN 1.000 
           Employees 0.120 1.000 

          Total Assets 0.115 0.890 1.000 
         Tang. Fix. Assets 0.032 0.244 0.388 1.000 

        Intang. Fix. Assets 0.046 0.268 0.430 0.723 1.000 
       Patents 0.057 0.449 0.390 0.101 0.063 1.000 

      Sales 0.124 0.960 0.932 0.365 0.380 0.450 1.000 
     Revenues 0.124 0.962 0.931 0.366 0.380 0.452 0.998 1.000 

    EBIT 0.084 0.570 0.676 0.549 0.398 0.041 0.668 0.669 1.000 
   EBIT margin 0.012 -0.006 0.003 0.039 0.015 0.020 0.006 0.005 0.105 1.000 

  GDP growth 0.221 0.047 0.058 0.051 0.102 -0.031 0.059 0.059 0.057 0.058 1.000 
 CPI 0.017 -0.042 -0.037 -0.005 -0.007 -0.012 -0.041 -0.041 -0.028 -0.031 -0.241 1.000 

 
 
Table A1 – Impact of CERN procurement on R&D effort, RE regressions 
 (1) (2) (3) (4) 
 ∆R&D ∆R&D ∆R&D ∆R&D 
CERN 0.575*** 0.741*** 0.898*** 0.0749 
 (0.147) (0.216) (0.189) (0.162) 
∆Employees (mln) -1.93*** -1.93*** -1.95*** -0.0114 
 (0.126) (0.130) (0.125) (0.0308) 
∆TFA/Employees (mln)    0.0321 
    (0.0449) 
size_very_large 1.026** 1.020*** 1.129***  
 (0.416) (0.341) (0.368)  
size_large 0.342 0.348 0.242  
 (0.692) (0.630) (0.645)  
size_medium 0.137 0.136 0.0599  
 (0.736) (0.701) (0.800)  
     
Sector Yes Yes Yes Yes 
Country Yes Yes Yes Yes 
Macro controls Yes Yes Yes Yes 
Years No Yes Yes Yes 
Years*Country No No Yes Yes 
     
Cons -1.010* -0.882 -2.609*** -2.777*** 
 (0.563) (0.601) (0.705) (0.246) 
R2 0.085 0.085 0.094 0.020 
N 3893 3893 3893 3488 
Standard errors clustered by country in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 



 

Table A2 – Impact of CERN procurement on innovation output, Poisson Regressions 
 (1) (2) (3) (4) (5) (6) (7) (8) 
 ∆Patents ∆Patents ∆Patents ∆Patents ∆Patents ∆Patents ∆Patents ∆Patents 
         
CERN 0.305 0.493** 0.485** 0.689*** 0.494** 0.726*** 0.482** 0.685*** 
 (0.239) (0.248) (0.211) (0.220) (0.224) (0.238) (0.211) (0.219) 
∆Employees (mln) -0.0447 -0.0803** -0.0460 -0.0874** -0.0435 -0.0811* -0.0463 -0.0876** 
 (0.0289) (0.0404) (0.0294) (0.0401) (0.0296) (0.0430) (0.0294) (0.0440) 
∆Total Assets (bln)  0.129  0.150  0.111  0.150 
  (0.146)  (0.191)  (0.213)  (0.190) 
size_very_large 4.424***  4.243***  4.144***  4.250***  
 (1.004)  (1.004)  (1.008)  (1.004)  
size_large 2.983***  2.801***  2.663***  2.812***  
 (1.003)  (1.004)  (1.009)  (1.005)  
size_medium 1.458  1.344  1.151  1.347  
 (1.010)  (1.011)  (1.016)  (1.004)  
∆(IA/TA)   2.498*** 3.852***   2.500*** 3.857*** 
   (0.568) (0.766)   (0.564) (0.764) 
∆(IA/TA)_lag1     0.533 1.261   
     (1.334) (1.864)   
GDP_growth 0.0357 0.0763 0.0780 0.122** 0.0741 0.123** 0.0792 0.123** 
 (0.0538) (0.0486) (0.0544) (0.0482) (0.0573) (0.0498) (0.0541) (0.0481) 
         
Sector Yes Yes Yes Yes Yes Yes Yes Yes 
Country Yes Yes Yes Yes Yes Yes Yes Yes 
Years Yes Yes Yes Yes Yes Yes Yes Yes 
Firm fixed effects No No No No No No Yes Yes 
         
Cons -3.924*** -1.043 -3.727*** -1.231 -20.73 -17.94 -3.737*** -1.233 
 (1.452) (1.089) (1.431) (1.090) (24.25) (16.87) (1.433) (1.091) 
N 5278 5278 4660 4660 4326 4325 4660 4660 
Column (6): fixed effects controls using the Blundell et al. (1999) pre-sample mean scaling estimator. 
Standard errors clustered by country in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 
 

Table A3  – Impact of CERN procurement on productivity, RE regressions 
 (1) (2) (3) (4) (5) (6) 
 ∆Productivity ∆Productivity ∆Productivity ∆Productivity ∆Productivity ∆Productivity 
CERN 8.321 5.716 13.11*** 9.932*** 13.02*** 9.773*** 
 (5.776) (5.137) (2.057) (3.570) (2.009) (3.568) 
∆Employees (mln) -20.62*** -19.91*** -17.67*** -17.63*** -17.69*** -17.66*** 
 (1.440) (0.789) (1.177) (1.369) (1.175) (1.379) 
∆Total Assets (bln) 8.607  1.905  1.930  
 (15.00)  (12.82)  (12.85)  
size_very_large  27.56*  15.05**  16.06*** 
  (14.07)  (6.563)  (5.906) 
size_large  35.90*  22.32***  23.17*** 
  (20.26)  (7.445)  (7.247) 
size_medium  -17.83  -13.97  -13.24 
  (19.41)  (18.81)  (18.56) 
∆R&D   0.784** 0.775* 0.776** 0.767* 
   (0.378) (0.422) (0.382) (0.427) 
∆(Patents/Empl)     88.86*** 91.68*** 
     (24.65) (25.57) 
       
Macro controls Yes Yes Yes Yes Yes Yes 
Sector  Yes Yes Yes Yes Yes Yes 
Country Yes Yes Yes Yes Yes Yes 
Years Yes Yes Yes Yes Yes Yes 
Years*country Yes Yes Yes Yes Yes Yes 
       
Cons -73.31*** -103.0*** -60.08*** -88.77*** -69.22*** -97.77*** 



 (8.725) (24.30) (7.813) (17.67) (8.971) (17.54) 
R2 0.338 0.339 0.379 0.381 0.379 0.381 
N 3659 3659 3328 3328 3320 3320 
Standard errors clustered by country in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 
 
 
Table A4 – Impact of CERN procurement on economic outcomes: Revenues, EBIT and EBIT 
margin, RE regressions 
 (1) (2) (3) (4) (5) (6) 
 ∆OR ∆OR ∆EBIT ∆EBIT ∆EBITm ∆EBITm 
CERN 29860.7*** 47589.1** 3387.9* 5012.0*** 0.442* 0.421* 
 (9280.5) (21057.3) (1782.5) (1864.0) (0.257) (0.256) 
∆Total Assets (bln) 356622.2***  25152.1***  -0.190  
 (14886.6)  (4759.2)  (0.329)  
size_very_large  24026.0***  560.9  1.389 
  (6050.8)  (1754.3)  (0.955) 
size_large  -563.3  2791.8  1.428* 
  (3284.9)  (2540.4)  (0.842) 
size_medium  -1561.6  1021.5  1.567 
  (2291.5)  (703.9)  (0.977) 
       
Macro controls Yes Yes Yes Yes Yes Yes 
Sector  Yes Yes Yes Yes Yes Yes 
Country Yes Yes Yes Yes Yes Yes 
Years Yes Yes Yes Yes Yes Yes 
Years*country Yes Yes Yes Yes Yes Yes 
       
Cons -95195.8*** -116777.5*** 44025.1*** 44341.3*** -9.838*** -11.18*** 
 (14861.4) (26325.2) (1505.7) (2863.4) (0.900) (0.916) 
R2 0.540 0.121 0.146 0.127 0.098 0.099 
N 5799 5799 5812 5812 5771 5771 
Standard errors clustered by country in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 
 
 
 
Table A5 - Impact of CERN procurement on R&D, innovation outcome and productivity, dynamic 
specifications 
 (1) (2) (3) 
 ∆R&D ∆Patents ∆Productivity 
CERN 0.501*** 0.533*** 16.03* 
 (0.166) (0.091) (7.558) 
∆R&D_lag1 -0.174***   
 (0.017)   
∆Patents_lag1  0.129***  
  (0.007)  
∆Productivity_lag1   -0.475*** 
   (0.137) 
    
Firm-level controls Yes Yes Yes 
Macro controls Yes Yes Yes 
Country (§) Yes (§) 
Sector (§) Yes (§) 
Years Yes Yes Yes 
Years*Country Yes No Yes 
    
Cons -0.776*** -40.93*** 73.17*** 
 (0.1000) (14.49) (1.707) 
R2 0.010 n.a. 0.157 
N 2899 5488 2790 
Columns (1) and (3): FE regressions 
(§) Country and sector fixed effects omitted in FE regressions 



Column (2): Negative Binomial Regression 
Standard errors clustered by country in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 
 
 
Table A6 – Impact of CERN procurement on Revenues, EBIT and EBIT margin, dynamic specifications 
 FULL SAMPLE HIGH-TECH NON HIGH-TECH 
 (1) (2) (3) (1) (2) (3) (1) (2) (3) 

 ∆OR ∆EBIT ∆EBITm ∆OR ∆EBIT ∆EBITm ∆OR ∆EBIT ∆EBITm 

CERN 28720.5*** 4019.3** 1.064*** 34596.3*** 6656.8** 0.945*** 14937.4* -1758.9 1.179** 
 (6982.3) (1838.5) (0.228) (6579.5) (2369.7) (0.252) (7606.7) (2674.5) (0.444) 
∆EBITm_lag1   -0.367***   -0.364***   -0.370*** 
   (0.0275)   (0.0448)   (0.0314) 

∆OR_lag1 0.103***   0.0875***   0.155   
 (0.0182)   (0.0202)   (0.161)   
∆EBIT_lag1  -0.155***   -0.159***   -0.0895  
  (0.0494)   (0.0499)   (0.213)  

∆Total Assets 
(bln) 

337462*** 26191.3*** -0.0993 328555*** 24664.7*** -0.180 927069.6* 99755.1*** 2.300 

 (14777.4) (5017.1) (0.238) (15337.9) (4747.6) (0.269) (478396.3) (14560.2) (2.765) 
          
Macro controls Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Years Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Years*Country Yes Yes Yes Yes Yes Yes Yes Yes Yes 
          
Cons -23480*** -3081.5*** 0.0632* -9470.6*** -1510.2*** 1.016*** -6459.5** 1136.0*** -1.996*** 

 (432.9) (170.9) (0.0330) (479.4) (88.51) (0.0861) (2321.4) (204.2) (0.100) 
R2 0.491 0.117 0.080 0.599 0.136 0.040 0.540 0.538 0.179 

N 5340 5359 5295 3406 3415 3382 1934 1944 1913 

FE regressions 
Standard errors clustered by country in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 
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