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ABSTRACT 

Using a ‘macromolecular imprinting in polymer strategy’ and a sequence-programmable 

peptide nucleic acid (PNA) template, we electrosynthesized and electrode immobilized a 

sequence-defined octakis(2,2’-bithien-5-yl) DNA hybridizing probe.  Fabrication of this 

octamer probe in molecular cavities of the molecularly imprinted polymer (MIP) tuned this 

probe density, thus revealing appreciable and reproducible hybridization efficiency.  With 

highly sensitive and simple to operate EIS and SPR transductions under stagnant-solution and 

FIA conditions, respectively, we determined genetically relevant GCGGCGGC (G-guanine, 

C-cytosine) oligonucleotide with the 200 pM EIS limit of detection.  The chemosensor was 

selective to mismatched oligonucleotides and discriminative to Dulbecco Modified Eagle 

Medium sample interferences.   
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Several strategies have already been developed for qualitative and quantitative DNA 

determination.1-2  They include optical, mass-sensitive, and electrochemical methods.3-5  

Particularly, the latter has a great potential in the DNA sensor technology development 

because of low cost, simplicity, and ease of miniaturization.1, 6-7  However, more research 

efforts should be devoted to improve the proposed DNA sensing procedures for the point-of-

care applications.  Toward this goal, highly sensitive, selective, and rapid DNA 

determination, with simplified protocols and with as limited as possible sample preparation, is 

of paramount importance.   

 Many electrochemical systems for DNA sensing use biological recognition units capable 

of hybridizing a single-stranded DNA (ssDNA) analyte.8-11  To minimize drawbacks of the 

challenging control of the density and orientation of natural probes and time-consuming 

optimization of the solution conditions for analyte-probe hybridization,12 several nucleic acid 

analogs were designed and synthesized,13-16 and then used as the probes.17-19   

 Among them, peptide nucleic acids (PNAs) were selected, because of their sequence-

selectivity and high affinity to complementary DNA and RNA single strands.  However, 

they often need backbone and nucleobase modifications in order to pre-organize20 their 

conformation, and then increase stability and sequence selectivity in duplex formation.  

Moreover, PNA modification results from the way of its further immobilization on the 

transducer surface.  This step is crucial because it affects the sensitivity and selectivity of the 

resulting chemosensor.21-22   

 Moreover, time-consuming procedures of preparation of recognition films may hinder 

further development of DNA determination methods.  For instance, a transducer surface was 

modified with PNA by exposing a gold substrate to a thiolated-PNA solution for ~10 h.23  

A similarly long procedure was necessary for preparation of the thiolated-PNA probe 

modified electrodes by self-assembled monolayer formation.24  Moreover, the assay 
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sensitivity with these immobilization procedures was expected to be critically dependent upon 

both the probe surface density and the ionic strength of the buffer solution used.  In an 

example of the PNA covalently attached to a quinone-based electroactive polymer via the 

amide bond, an electrochemical response was straightforward.25  However, preparation of a 

PNA modified electrode was highly demanding.   

 Another parameter governing the use of the PNA is the distance between the modified 

PNA and the electrode surface.  Apparently, the length and the terminating head group of 

blocking thiol molecules influenced the sensitivity and selectivity of label-free capacitive 

DNA detection using an immobilized pyrrolidinyl PNA probe.26   

 By engaging the molecular imprinting in polymer strategy, we have recently developed a 

fast, cost-effective, and simple procedure of one-step synthesis of a new electropolymerized 

DNA analog probe.17  Moreover, the hybridizing probe was simultaneously immobilized on 

the transducer surface in this procedure.  Using this macromolecular imprinting, we improved 

the orientation of the probes, thus tuning their density, which in turn influenced the 

hybridization yield.  Furthermore, we enhanced utility of our strategy toward development of 

point-of-care devices.  For that, we coupled a readily prepared recognizing probe with highly 

sensitive electrochemical impedance spectroscopy, EIS, signal transducer offering a great 

opportunity of miniaturization.  Therefore, straightforward, rapid, and label-free DNA 

quantification was possible.   

 The present research aims at identification of genetically relevant GC-rich 

oligonucleotides, e.g., cancer biomarkers encountered in the bloodstream as a cell-free DNA.  

Furthermore, it is oriented for detection of some pathogens, e.g., Pseudomonas aeruginosa, 

which have high specific GC content in their genome.  For that, we used a new cytosine-

guanine (CG) rich octakis(2,2’-bithien-5-yl)methane DNA analog probe of the defined 
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structure capable of hybridizing a complementary GC-rich (GCGGCGGC) octanucleotide 

analyte.   

 For the synthesis of this new probe, we used PNA 1 (Scheme 1) as the template, around 

which 2-(cytosin-1-yl)ethyl 4-bis(2,2'-bithien-5-yl)methylbenzoate 2 (Scheme 1) and 4-

bis(2,2’-bithien-5-yl)methylphenyl-2-guanine ethyl ether 3 (Scheme 1) functional monomers 

arranged by assuming positions governed by the complementary nucleobase pairing rule.   

 Binding nature of the designed and synthesized functional monomers with PNA was 

confirmed by isothermal titration calorimetry (ITC).  All complex stability constants 

determined by ITC titrations (Figure 1) of PNA with 3 or 2 indicated a very strong binding 

interaction (Table 1).  The determined ITC thermodynamic parameters revealed that 

functional monomers bearing complementary nucleobases presumably bound to PNA via 

Watson-Crick nucleobase pairing.  We demonstrated that nucleobase moieties of functional 

monomers were involved in recognition of binding sites of PNA (Table 1).  The 

GCGGCGGC PNA oligonucleotide, composed of three cytosine binding sites, formed a 

stable complex (Ks = 1.5×105 M-1) with three molecules of guanine functional monomer 3 

(Table 1).  From the ITC raw heat rate change with time during titration of 1 with 3 

(Figure 1a), the binding isotherm (Figure 1b) was derived (for details, see Supporting 

Information).   

 Moreover, the ITC result confirmed favorable conformational changes of the G-rich PNA 

during complex formation, which prompted complete pairing with cytosine functional 

monomer 2 in solution.  That is, there were two distinct steps in the isotherm (Figure 1d) 

derived from the ITC raw heat rate change accompanying titration of 1 with 2 (Figure 1c).  

These steps indicate consecutive attachment of three, and then two molecules of 2 to the 

PNA molecule (for details, see Supporting Information).  Because of these enthalpy-
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dominated effects, all five available guanine recognizing sites of PNA were bound by the 

cytosine moieties of 2, thus successfully forming the pre-polymerization complex.   

 Apparently, the designed and synthesized 2,2’-bithien-5-yl functional monomers bind 

the PNA template according to the complementary nucleobase Watson-Crick pairing rule, 

however, through different equilibrium states.  Astonishingly, 2 can accelerate activation of 

the PNA by inducing its conformational changes.  Structure of the PNA bound by 2 was 

slowly rearranged, thus reaching equilibrium between two dominating PNA conformations.  

This rearrangement necessary to bind all nucleobase sites of the PNA by nucleobase 

substituents of the functional monomers as well as to form a pre-polymerization complex of 

high stability (Ks=107 M-1).  Presumably, this extraordinary mechanism of PNA complex 

formation by functional monomers promote this complex oligomerization to more stable 

2,2’-bithien-5-yl DNA analog in the MIP.   

 Guided by to the ITC determined stoichiometry, we prepared a mixed solvent solution 

for electropolymerization of 0.02 mM PNA, 0.1 mM 2, 0.06 mM 3, 0.1 mM 4, and 0.1 M 

(TBA)ClO4 at the acetonitrile-to-water volume ratio of 9:1.  By taking advantage of 

electroactivity of bis(2,2-bithen-5-yl) moieties of the functional monomers, we readily 

transferred the pre-polymerization complexes from solution into the MIP film within a few 

minutes.  These films were simultaneously prepared and deposited on the electrode surface 

by potentiodynamic electropolymerization.  For the PNA-imprinted MIP film deposition on 

the Pt disk, two anodic peaks appeared during the initial positive potential scan (solid 

curve in Figure 2a).  The first peak, originally present at ~1.02 V, completely vanished in 

two last cycles.  The second peak, initially present at ~1.13 V, shifted positively in 

subsequent cycles.  Apparently, the initially deposited MIP layer played a role of the 

resistive barrier for subsequent MIP layers, thus hindering further electro-oxidation of the 

monomers present in the solution.   
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 Noticeably, none of these anodic peaks corresponded to PNA template electro-

oxidation.  Although the PNA template was rich in G, i.e., the most redox-active 

nucleobase,27 the guanine moiety stayed in its intact form during the potential cycling 

(dashed curve in Figure 2a).  Apparently, the herein recorded anodic peaks originated from 

electro-oxidation of thiophene moieties of functional monomers 2 and 3, and the cross-

linking monomer 4.  This is because these peaks were also present in multi-cycle 

potentiodynamic curves of all cycles corresponding to electropolymerization of 2 and 3 in 

the PNA absence (Figure 2b), which led to deposition of a control non-imprinted (NIP) 

film.   

 After the electropolymerization, the PNA template was extracted from the resulting 

MIP film (see Supporting Information) in order to vacate imprinted cavities and make them 

available for the GCGGCGGC DNA analyte molecules.  This extraction was confirmed by 

the XPS (Table S1), DPV (Figure S1), and EIS (Figure S2 in Supporting Information) 

measurements.   

 The PNA-templated, and then extracted MIP films as well as the NIP film were imaged 

with AFM in order to unravel their morphology and determine their thickness (Table S2 in 

Supporting Information).   

 The PNA-extracted MIP film was treated as a porous membrane, which contained a 

matrix formed by the conducting polymer and pores filled with the electrolyte.  Two partially 

superimposed semicircles in the complex plane plot (Figure S2 in Supporting Information) 

represented a porous structure of the MIP film and redox reaction of the marker, similarly as 

postulated previously.28-29  For experimental data interpretation, see Supporting Information.   

 After extraction of the PNA template from the MIP, empty molecularly imprinted 

cavities with the C and G sites of the defined sequence were generated, thus resembling an 

ssDNA.  These cavities were capable of binding the GCGGCGGC DNA analyte with high 
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affinity and selectivity, as confirmed by the EIS (Figure 3) and SPR (Figure S3 in 

Supporting Information) determinations.   

 Figure 3a presents Nyquist plots for the MIP chemosensor immersed for 5 min in 

GCGGCGGC DNA analyte solutions of different concentrations.  The experimental data 

were fitted with electric parameters of the equivalent circuit (Figure S2 in Supporting 

Information) and charge transfer resistance, Rct, values were determined.  The Rct was 

dependent upon the extent of the analyte occupation of the MIP cavities, as demonstrated 

by the Rct dependence on the GCGGCGGC DNA analyte concentration in solution (inset in 

Figure 3a).  The chemosensor response was proportional to the analyte concentration in the 

3.0-to-80.0 nM range (line 1 in inset to Figure 3a).  The linear regression equation and the 

correlation coefficient of the calibration plot (line 1 in inset to Figure 3a) was 

(Rct,f ‒ Rct,i) [Ω] = 780(±9.0) [Ω] + 55.53(±0.28) [Ω nM-1] canalyte [nM] and 0.99, 

respectively, where Rct,i and Rct,f is the charge-transfer resistance of the MIP film before 

and after oligonucleotide analyte injection, respectively.  The sensitivity and LOD at S/N=3 

was 53(±0.002) Ω nM-1 and 200 pM, respectively.  Apparently, the MIP chemosensor was 

~3.0 times more selective to the GCGGCGGC DNA analyte than to the two-nucleobase 

mismatches, GCGATGGC DNA and GCTGCTGC PNA (lines 2’ and 3’ in Figure 3b), and 

~3.8 times more sensitive than to its three-nucleobase mismatch, GCGATCGC DNA 

(line 4’ in Figure 3b).  Moreover, the GCGGCGGC DNA analyte was determined using the 

NIP film (line 2 in inset to Figure 3a).  Sensitivity of this film to the analyte, 15(±0.70) Ω 

nM-1, was nearly four times lower than that of the MIP film, thus indicating that the 

apparent imprinting factor was, IF ≈ 4.0. 

 Further, the GCGGCGGC DNA analyte binding by the PNA-extracted MIP film was 

monitored by SPR spectroscopy under FIA conditions (Figure S3a in Supporting 

Information).  From the ratio of slopes of the SPR calibration plots for the MIP (line 1 in 
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Figure S3b in Supporting Information) and the NIP film (line 4 in Figure S3b in 

Supporting Information), the imprinting factor was calculated.  It was, IF=11, thus largely 

exceeding the IF determined for the EIS chemosensor, above.  This is presumably because 

SPR signals are not exclusively mass change governed but also they can conformationally be 

induced.30  We assumed that the SPR recorded signals corresponded to conformational 

changes of the resulted 2,2’-bithien-5-yl DNA analog and the DNA analyte upon 

hybridization.  From the SPR and ITC studies it follows, that the MIP cavities enhanced 

conformational GCGGCGGC DNA changes required for its hybridization with 

complementary octakis(2,2’-bithien-5-yl) DNA analog.  The MIP acted as a receptor of the 

DNA analyte catalyzing its conformational restructuring before hybridization with the MIP 

cavity.  Moreover, this MIP exhibited enzyme-like behavior.  However, it was 

simultaneously invulnerable to the surrounding conditions, such as pH, temperature, and 

mass-transfer of substrates.  From the ITC measurements it follows that the conformational 

change in the GC-rich DNA leads to two plausible MIP-bound DNA conformers that are in 

equilibrium with the MIP cavity.  Furthermore, a slow structural conformation change in 

the DNA analyte occurring upon binding to the MIP cavity may be required for biological 

activity.  Subsequently, this restructuring allows protein anchoring in the MIP film.   

 The real-time SPR measurement of the analyte-analog hybridization revealed a relatively 

fast kinetics (ka=104 M-1s-1, kd=10-3 s-1) of analyte binding to the MIP cavity and a high 

stability constant (Ks≈107 M-1) of the (analyte)-[octakis(2,2’-bithien-5-yl) DNA analog] 

complex (Table 1 and Figure S4 in Supporting Information).  Moreover, the SPR 

measurement provided data for calculation of hybridization efficiency, which was as high as 

~90%.  In comparison to octamers of nucleic acid analogs, the MIP cavity bound the 

complementary DNA analyte much faster and stronger and, importantly, at room 

temperature. 
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 Vulnerability of DNA determination to the matrix effect of complex matrices is an 

important criterion of usefulness of a DNA determination procedure.  Therefore, we 

studied the performance of our MIP chemosensor in a complex Dulbecco Modified Eagle 

Medium (DMEM) resembling low-molecular-weight blood plasma. Toward that, first, the 

EIS measurements were performed for the analyte of known concentration added to 

DMEM.  Then, this EIS signal was compared to that for the analyte of the same 

concentration dissolved in PBS (pH=7.4).  From the ratio of these two EIS signals, the 

matrix effect was determined (Table 2).  Advantageously, the MIP chemosensor appeared 

to be independent of the matrix effect. 

 To conclude, we developed a simple, fast, and catalyst-free procedure of synthesis of a 

stable octakisbithiophene CG-rich oligonucleotide analog for oligonucleotide 

chemosensing via molecular imprinting.  For pre-polymerization complex formation, we 

chose PNA as the template because it was able to change favorably its conformation under 

complexation conditions with specially designed and synthesized bis(2,2’-bithienyl-5-

yl)methane functional monomers, bearing either G or C moiety, for mimicking natural G 

and C nucleobase pairing.  The combination of electrochemical and mass transduction 

techniques with the synthesis of a new DNA analog allowed fabricating the chemosensor 

for determination of genetically relevant oligonucleotide.  In GC-rich regions, with the 

hydrogen bond strength higher than that of the AT-rich region, a point mutation might only 

cause a very slight change in the thermodynamics and local conformation of the duplex, 

making it very difficult to detect.  Our ITC measurements confirmed higher stability of the 

G-C pairs of the functional monomers with PNA than that of the A-T pairs.17  

Nevertheless, we still successfully and independently from matrix effects discriminated 

GC-rich analyte from two- and three-nucleobase mismatches with the appreciably low 

LOD.   
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Table 1.  Thermodynamic parameters determined from ITC of GCGGCGGC PNA 1 titration with 
cytosine 2 or guanine 3 functional monomer.  The binding parameters of PNA-(functional monomer) 
interactions were determined by ITC data fitting with a theoretical isotherm of (a) the multiple and (b) 
independent binding sites model.   
 

Complex stability constant, Ks 

M-1  

∆H  

kJ mol-1 

∆G  

kJ mol-1 

∆S  

J mol-1 K-1 

Number of 
nucleobase binding 
sites of PNA bound 

to functional 
monomer 

Ks,1 (GCGGCGGC-2)a = 107 -102.0 -40.6 -206.0 
1st step:  
three guanine moieties 

Ks,2 (GCGGCGGC-2)a = 9.0×105 -34.3 -34.0 -1.0 2nd step:  
next two guanine moieties 

Ks (GCGGCGGC-3)b = 1.5×105 -3.7 -29.5 86.7 Three cytosine moieties 

a 75 µM 1 was titrated with 4.0 mM 2 in DMSO.   
b 30 µM 1 was titrated with 0.70 mM 3 in DMSO.   
 

Table 2.  The EIS determined matrix effect for the GCGGCGGC DNA in Dulbecco Modified Eagle 
Medium (DMEM). 

Sample 
No. 

cGCGGCGGC in DMEM, 
determined, nM 

cGCGGCGGC in PBS (pH = 7.4), 
determined, nM  

Matrix effect, % 

1. 2.68 2.99 89.63 

2. 7.56 7.93 95.33 

3. 38.82 33.81 114.81 

4. 54.61 52.13 104.76 

5. 71.10 69.77 101.90 

Average 101.29 
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Scheme 1.  Structural formulas of C-term-GCGGCGGC-N-term single-stranded PNA 1, 2-
(cytosin-1-yl)ethyl 4-bis(2,2'-bithien-5-yl)methylbenzoate 2 and 4-bis(2,2’-bithien-5-
yl)methylphenyl-2-guanine ethyl ether 3 functional monomers as well as the 2,4,5,2’,4’,5’-
hexa(thiophene-2-yl)-3,3’-bithiophene 4 cross-linking monomer.   
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Figure 1.  The ITC raw heat rate change with time after consecutive addition of 8-µL aliquots of 
(a) 0.70 mM guanine functional monomer 3 and (c) 4.0 mM cytosine functional monomer 2 in DMSO 
to (a) 30 µM and (c) 75 µM PNA 1 in DMSO at 3-min intervals.  The binding isotherms for these 
titrations are represented by curves of the least-square fit of (b) an independent and (d) a multiple 
binding sites model to the data acquired.  
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Figure 2.  (a, dash curve) The potentiodynamic curve for 0.05 mM PNA 1 and 0.1 M (TBA)ClO4 in 
the acetonitrile-water, 9:1 (v/v), solution recorded at the 1-mm diameter Pt disk electrode.  (a, solid 
curves) The multi-cycle potentiodynamic curve for simultaneous electropolymerization and deposition 
on the Pt disk electrode of the PNA-templated MIP film from the 0.02 mM 1, 0.1 mM 2, 0.06 mM 3, 
and 0.1 mM 4 in 0.1 M (TBA)ClO4 acetonitrile-water, 9:1 (v/v) solution.  The potential scan rate was 
50 mV s-1.  (b) Multi-cyclic potentiodynamic curve for simultaneous electropolymerization and 
deposition of the NIP film from 0.1 mM 2, 0.06 mM 3 and 0.1 mM 4 in the 0.1 M (TBA)ClO4 
acetonitrile-water, 9:1 (v/v), solution.   
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Figure 3.  (a) Nyquist plots of impedance spectra for the 1-mm Pt disk electrode coated with the MIP 
film immersed for 5 min in solutions of the GCGGCGGC DNA analyte of different concentrations.  
Measurements were performed for the 0.1 M mM PBS (pH=7.4), 0.1 M [Fe(CN)6]

4- and 0.1 M 
[Fe(CN)6]

3- at the applied potential equal to the open circuit potential.  The inset shows calibration 
plots for the GCGGCGGC DNA analyte at (1) the PNA-extracted MIP and (2) NIP film.  
(b) Calibration plots constructed using the data obtained by fitting electric parameters of the equivalent 
circuit to experimental data, for (1’) the GCGGCGGC DNA analyte, (2’) two-nucleobase mismatched 
GCGATGGC DNA oligonucleotide, (3’) two-nucleobase mismatched GCTGCTGC PNA 
oligonucleotide, and (4’) three-nucleobase mismatched GCGATCGC PNA. 
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