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Abstract  15 

Gastritis is a widely spread inflammatory disease, mostly caused by Helicobacter pylori infection. 16 

Release of IL-8 by the stomach epithelium is a hallmark of gastritis and contributes to the 17 

amplification of the inflammatory state. Pharmacological modulation of IL-8 release is a strategy to 18 

relieve gastric inflammation and prevent more severe clinical outcomes. In search of nutraceuticals 19 

with potential anti-gastritis properties we used a bio-guided approach based on IL-8 secretion by 20 

gastric cells to characterize extracts from the fruits of different chestnut varieties. 21 



 

We found that the ability to inhibit IL-8 secretion correlated with the amount of proanthocyanidins 22 

and was associated to the not edible parts of chestnut in all the tested varieties. We also found that 23 

the anti-inflammatory activity is preserved upon mild thermal treatment and after in vitro simulated 24 

gastric digestion. 25 

By combining a robust bio-guided approach with a comprehensive analysis of the tannin fraction of 26 

chestnut extracts, we provide evidence for the potential use of chestnut-based nutraceuticals in 27 

human gastritis. The bioactive components of chestnut fruits inhibit IL-8 secretion by impairing NF-28 

κB signaling and by other mechanisms, thus opening new applications of proanthocyanidins for 29 

inflammation-based diseases. 30 
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dimethylthiazol- 2-yl-2-5-diphenyltetrazolium bromide (MTT). 36 

 37 

1. Introduction 38 

Gastritis is a very common inflammatory disease, mostly caused by Helicobacter pylori (H. pylori) 39 

infection [1]. This gram negative bacterium colonizes the gastric mucosa of over 80% of people in 40 

developing countries [2] and at least 50% of the world human population [3]. H. pylori infection 41 

induces a strong immune response in the host [4], which is characterized by the release of several 42 



 

inflammatory cytokines in the gastric mucosa, including IL-8 and TNFα [5-8]. Gastric epithelial cells 43 

exposed to cytokines, mostly TNFα and IL-1β, release IL-8, a potent chemokine, which promotes 44 

neutrophil infiltration [9-11]. IL-8 secretion is a typical hallmark in H. pylori-induced gastritis [12], 45 

and its release by gastric epithelial cells is strictly associated with the activation of NF-κB [9, 13], a 46 

transcription factor involved in a multitude of patho-physiological processes, including 47 

inflammation, cell growth, and proliferation [14-16]. 48 

Plants rich in tannins have a traditional use for treating gastric ulcer; moreover, tannins showed anti-49 

bacterial activity against H. pylori [17, 18], and inhibition of gastric IL-8 release, both in vitro and in 50 

vivo [19, 20]. Epidemiological studies indicate that dietary consumption of proanthocyanidins 51 

(condensed tannins) has beneficial effects on a variety of chronic diseases, including metabolic 52 

syndrome, atherosclerosis, and cancer [21, 22]. Moreover, proanthocyanidins have been found 53 

unchanged after in vitro simulated gastric digestion [19], and in vivo at gastric level [23, 24], thus 54 

suggesting that the biological activity may occur in situ. 55 

Chestnut tree (Castanea sativa Mill., sin. Castanea vesca Gaertn.) is a rich source of tannins, mostly in 56 

leaves, wood and bark, whereas fruits, which are a good source of essential dietary nutrients, showed 57 

lower levels of polyphenols [25]. In Italy, chestnuts from six geographical areas are regulated by 58 

Protected Geographic Indication (PGI) under European Union law and the average production of 59 

this fruit in the period 2003-2013 was close to 49,000 tons/year [26]. Despite high production of 60 

chestnut and the traditional dietary consumption in several European countries, only limited data on 61 

the tannin composition of fruits and their beneficial properties occur in the literature. Few studies 62 

performed on chestnut industrial by-products reported high content of phenols and marked 63 



 

antioxidant properties [27, 28]. Tannins were identified in fruits, although more precise details on 64 

their chemical features were not reported [29-31]. 65 

The aim of this study was to characterize the anti-inflammatory properties of chestnut bioactive 66 

compounds, taking into consideration several variables (chestnut fruit parts, chestnut varieties, 67 

harvest year, chemical and thermal stability, etc). To this end we used a bio-guided approach based 68 

on IL-8 secretion by AGS cells stimulated with TNFa, a simple but validated model of gastritis 69 

induced by H. pylori. 70 

2. Materials and Methods  71 

2.1. Materials 72 

Dulbecco’s Modified Eagle’s Medium/F12 (DMEM)/F12 (1:1), penicillin, streptomycin, L-73 

glutamine and trypsin-EDTA were from Gibco (Life Technologies Italia, Monza, Italy). Foetal bovine 74 

serum (FBS), and disposable materials for cell culture were purchased by Euroclone (Euro- clone 75 

S.p.A., Pero-Milan, Italy). Human adenocarcinoma cells (AGS, CRL-1739) were purchased from LGC 76 

Standard S.r.l., Milano, Italy.  77 

The reagent 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and curcumin 78 

were from Sigma Aldrich (Milan, Italy). All reagents used for the biological assays were HPLC grade. 79 

Human TNFα and Human IL-8 Elisa Development Kit were from Peprotech Inc. (London, UK). All 80 

chromatographic solvents were HPLC grade or LC-MS grade for MS experiments. Acetonitrile, 81 

methanol, ethanol, formic acid, hydrochloric acid, vanillin, and iron sulfate were from Sigma Aldrich 82 

(Milan, Italy). 83 

2.2. Plant material and preparation of the extracts 84 

Chestnuts from five varieties (Venégon, Paié, Russirö, Verdésa and Piliscé) of Castanea sativa 85 

Mill. were collected by the farmer consortium in the regional area of Campo dei Fiori (Varese, Italy).  86 



 

Fresh fruits were maintained under vacuum at 4 °C until extraction. To obtain the extracts 2,5 87 

grams of milled whole fruit were extracted twice with 50 mL of water (aqueous extract) or 88 

ethanol/water 50:50 (hydroalcoholic extract) for 4 and 16 hours, respectively, at room temperature 89 

under dark conditions. The mixture was filtered through Supervelox filter paper in order to remove 90 

plant debris; the extracts obtained were frozen with dry ice and alcohol and placed at −80 °C 91 

overnight, then lyophilized and maintained at −20 °C. In general, the yields of the aqueous and 92 

hydroalcoholic extracts of the same variety were comparable with the exception of Verdésa, whose 93 

hydroalcoholic yield was the half of the aqueous one. 94 

Three parts of the fruits, endosperm (kernel) and the outer parts episperm (which directly covers 95 

the kernel) and pericarp (the woody part), were separated and extracted with hydroalcoholic solvent 96 

following the procedure previously described. The yield of the different parts varied according to the 97 

variety. 98 

The yields (w/w) of each extraction were calculated as percentage of the dried extract weight in 99 

respect to the weight of the fresh starting material. The yields of the extracts are reported in the 100 

supplementary materials (Table S1).  101 

Commercially available flour, produced from the endosperm of dried chestnut (variety 102 

Venégon), and relative industrial by-product, constituted by episperm and pericarp, were extracted 103 

by hydroalcoholic solvent. Before proceeding with the biological evaluation, the extracts were 104 

dissolved in sterilized distilled water and DMSO (25%) at a concentration of 30 mg/mL, then stored 105 

in aliquots at −20 °C. For the biochemical analysis, the lyophilized samples (10 mg) were dissolved in 106 

5 mL of a mixture of methanol/water (2/1). 107 

2.3. Cytotoxicity 108 

The integrity of the cell morphology before and after treatment was assessed by light microscope 109 

inspection. Cell viability was measured, after 6 h treatment, by the 3,4,5-dimethylthiazol- 2-yl-2-5-110 

diphenyltetrazolium bromide (MTT) method. This method evaluates the activity of a mitochondrial 111 



 

enzyme, which is an index of cell viability. The extracts did not show cytotoxicity at each 112 

concentration tested.  113 

2.4. Cell culture and IL-8 release measurement 114 

AGS cells were grown at 37 °C in DMEM F12 supplemented with 100 units penicillin per mL, 115 

100 mg streptomycin per mL, 2 mM L-glutamine, and 10% heat-inactivated FBS (Euroclone S.p.A, 116 

Pero, Italy), under a humidified atmosphere containing 5% CO2.  117 

Cells were grown in 24-well plates for 48 h (30 000 cells per well) before the cytokine treatment. 118 

The IL-8 secretion, induced by TNFα at 10 ng/mL, was tested after 6 h treatment in the presence of 119 

un-digested or digested extracts (0,1–100 µg/mL). Curcumin (10 µM) was used as the reference 120 

inhibitor of IL-8 secretion (80% inhibition). IL-8 was quantified using a Human Interleukin-8 ELISA 121 

Development Kit as described below. Briefly, Corning 96 well EIA/RIA plates from Sigma- Aldrich 122 

(Milan, Italy) were coated with the antibody provided in the ELISA Kit (Peprotech Inc., London, UK) 123 

overnight at 4 °C. After blocking the reaction, 200 µl of samples in duplicate were transferred into 124 

wells at room temperature for 1 h. The amount of IL-8 in the samples was detected by spectroscopy 125 

(signal read: 450 nm, 0.1 s) by the use of biotinylated and streptavidin–HRP conjugate antibodies, 126 

evaluating the 3,3′,5,5′-tetramethylbenzidine (TMB) substrate reaction. Quantification of IL-8 was 127 

done using an optimized standard curve supplied with the ELISA Kit (8.0–1000.0 pg/mL).  128 

2.5. NF-κB driven transcription 129 

To evaluate the NF-κB driven transcription, AGS cells were plated in 24-well plates (30,000 cells 130 

per well). After 48 h, cells were transiently transfected by the calcium-phosphate method with the 131 

reporter plasmid (NF-κB-LUC, 50 ng/well) containing the luciferase gene under control of three κB 132 

responsive elements. The plasmid NF-κB-LUC was a gift of Dr. N. Marx (Department of Internal 133 

medicine-Cardiology, University of Ulm, Ulm, Germany). After 16 h, the cells were treated with the 134 

stimulus (TNFα 10 ng/mL) and the extract for 6 h. Curcumin (10 µM) was used as the reference 135 

inhibitor. At the end of this time, cells were harvested and the luciferase assay was performed using 136 



 

the BriteliteTM Plus reagent (PerkinElmer Inc., Walthman, MA, USA) according to the manufacturer’s 137 

instructions. Data were expressed considering 100% of the luciferase activity related to the cytokine-138 

induced promoter activity. 139 

2.6. Total Phenol Content Assay 140 

Total polyphenol content was determined according to Folin–Ciocalteu’s method, as reported 141 

by Singleton and Rossi [32]. Freeze-dried samples (50 mg) were solubilized in 1 mL of a 50:50 142 

water:methanol solution. Aliquots of 300 µL from different samples were mixed in test tubes with 1.5 143 

mL of Folin–Ciocalteu’s reagent diluted 10 times, and 1.2 mL of 7.5% (w/v) sodium carbonate. After 144 

30 min, the absorbance was measured at 765 nm in a UV-visible spectrophotometer (Varian Cary 50 145 

SCAN, Palo Alto, CA, USA). The polyphenol content in samples was calculated using a standard 146 

curve of Gallic acid. Results were expressed as equivalents of Gallic acid in mg/g.   147 

2.7. In vitro gastric digestion 148 

According to a well-established protocol, the gastric digestion was simulated using an in vitro 149 

approach previously described [33]. Briefly, the extracts (100 mg) were incubated for 5 minutes at 37 150 

°C with 6 mL saliva juice, then 12 mL gastric juice were added to the suspension and the sample was 151 

incubated for 2 hours at 37 °C. At the end of the incubation, the digested sample was centrifuged for 152 

5 minutes at 3000g and the supernatant frozen and lyophilized. All the samples were then stored at 153 

−20 °C until use for biological assays. 154 

2.8. Evaluation of Thermal Stability 155 

Heating treatment was performed directly on 10 mg of dried extracts, placed in pyrex vials, 156 

using a stove (Tecnovetro s.r.l., Monza, Italy) at different temperatures. The extracts were placed in 157 

the stove once the selected temperature was reached. The temperature was additionally controlled 158 

by a second thermometer during the incubation time. The heating treatment at 50°C reflected the 159 

temperature reached by the fruit during the industrial drying process, while 100°C was selected as 160 



 

boiling temperature, the same used for boiled chestnut preparation. After heating, 1-2 milligrams of 161 

the extract were weighted and solved in a mix of water and DMSO (3:1). The highest heating time 162 

(6h) at 100°C led to carbonized insoluble particles, thus the extracts were centrifuged after the 163 

addition of the solvent to remove insoluble residues. 164 

2.9. UPLC-MS/MS method for multiple classes of phenolics 165 

Phenolic compounds were determined according to a previous method [34]. Briefly, an aliquot 166 

of the extract was filtered 0.22 µm in a HPLC vial. Chromatographic analysis was performed using a 167 

Waters Acquity UPLC system (Milford, USA) with a Waters Acquity HSS T3 column (100 mmx2.1 168 

mm; 1.8 µm). The flow was 0.4 mL/min and the gradient profile was 5% B for the initial condition; 169 

from 0 to 3 min linear gradient to 20% B; from 3 to 4.3 min, isocratic 20% B; from 4.3 to 9 linear gradient 170 

to 45% B; from 9 to 11 min, linear gradient to 100% B; from 11 to 13 min wash at 100% B and then 171 

from 13.01 to 15 min back to the initial conditions (B: acetonitrile containing 0.1% formic acid; A: 172 

water containing 0.1% formic acid). Mass spectrometry detection was performed on a Waters Xevo 173 

triple-quadrupole mass spectrometer detector (Milford, USA) with an electrospray (ESI) source [34]. 174 

A total of 24 polyphenols were identified among the samples and proper calibration curves were 175 

obtained for each individual compound for precise quantification. 176 

2.10. Analysis of proanthocyanidins 177 

The assay to determine the quantity of proanthocyanidins was based on their transformation 178 

into anthocyanidins, in a warm, acid environment [35]. 0.5 mL of the initial extract and 2.5 mL of 179 

MeOH were collected in a 50 mL flask, shielded from light with aluminum foil, containing 9.5 mL 180 

absolute EtOH. 12.5 mL of FeSO4 in concentrated HCl (300 mg/L) were added to the mixture and 181 

then immediately placed in a boiling water bath and refluxed for 50 min. After 10 min at room 182 

temperature, the spectrum from 380 to 700 nm was recorded in a 10 mm cell, against a blank (water). 183 

The tangent from the minimum (450 nm) was drawn, and the absorbance between the maximum (550 184 

nm) and the tangent was measured. To subtract natural anthocyanins present in the sample, which 185 



 

can interfere with the assay, 0.5 mL of the extract was prepared under the same conditions, however, 186 

in this case the reaction was carried out in an ice bath and the absorbance obtained was then 187 

subtracted to obtain the net absorbance value. The proanthocyanidins concentration (mg/g) can 188 

conventionally be expressed as the cyanidin formed. Further information is available in the literature 189 

[35-37]. 190 

2.11. Analysis of index of vanillin 191 

The catechins and proanthocyanidins reactive to vanillin were analyzed according to the 192 

optimized and controlled vanillin-HCl method of Broadhurst and Jones [37, 38], following the 193 

conditions described by Di Stefano et al. [39]. 0.5 mL of the initial extract and 0.5 mL of MeOH were 194 

collected in a 50 mL flask, shielded from light with aluminum foil, 6 mL of vanillin (4% in methanol) 195 

were added in the flask and 3 mL of HCl. To subtract the natural interference, 0.5 mL of the extract 196 

was prepared under the same conditions, was used 6 mL of pure methanol instead of vanillin 197 

solution. The absorbance was measured at 500 nm in a 10 mm cell, against a blank reaction. 198 

Concentrations were calculated as (+)-catechin (mg/g). 199 

2.12. HPLC analysis of Procyanidins 200 

The PA subunit composition, percentage of galloylation (%G), percentage of prodelphinidins 201 

(%P), and mean degree of polymerisation (mDP), were determined after acid-catalysis in the presence 202 

of excess phloroglucinol (phloroglucinolysis) [40]. One hundred microliters of the sample were added 203 

to 900 µL of methanol and water (50/50 v/ v), filtered, and injected into the LC-MS system. One 204 

hundred microliters of sample were added to 100 µL of phloroglucinol reagent at 50 °C for 30 min 205 

and then combined with 1 mL of sodium acetate to stop the reaction. The samples were filtered and 206 

immediately analysed. 207 

2.13. Statistical Analysis 208 



 

All data are expressed as mean ± s.d.; data were analyzed by unpaired one-way analysis of 209 

variance (ANOVA) followed by Bonferroni as post-hoc test. Statistical analyses were done using 210 

GraphPad Prism 5.0 software (GraphPad Software Inc., San Diego, CA, USA). p < 0.05 was considered 211 

statistically significant. IC50 was calculated using GraphPad Prism 5.00 software.   212 

3. Results 213 

3.1. Anti-inflammatory effects of chestnut extracts in Human Gastric Epithelial (AGS) Cells 214 

The first step in the bio-guided approach used in the present study was the preparation of 215 

aqueous and hydroalcoholic extracts from freshly collected whole chestnut fruits from five varieties 216 

of Castanea sativa Mill. The yields of the extracts are reported in the supplementary materials (Table 217 

S1). None of the tested extracts displayed cytotoxic effects on AGS cells, evaluated by the MTT test 218 

(data not shown). We then assayed the potential anti-gastritis properties of chestnut fruit extracts (10 219 

µg/ml) by measuring the amount of IL-8 released by AGS cells treated with TNFa for 6 h. As shown 220 

in figure 1, only the extracts from Paié, Venégon, and Verdésa significantly prevented IL-8 release, 221 

and in all three cases the hydroalcoholic extracts exhibited higher inhibitory effect (fig. 1, panel B vs 222 

panel A).  223 

 224 

C 
Aqueous 

extracts 

Total phenols  

(GAE) mg/g ± 

s.d. 

 
Hydroalcoholic 

extracts 

Total phenols  

(GAE) mg/g ± s.d. 

 Paié 32.38 ± 2.71  Paié 37.10 ± 7.66 

 Piliscé 18.40 ± 0.61  Piliscé 17.43 ± 3.15 

 Russirö 13.50 ± 0.92  Russirö 7.80 ± 3.46 



 

 Venégon 45.00 ± 6.61  Venégon 42.80 ± 8.25 

 Verdésa 44.07 ± 2.38  Verdésa 96.67 ± 8.13 

Paié (Pai); Piliscé (Pil); Russirö (Rus); Venégon (Ven.); Verdésa (Ver.). Total phenols results are expressed as mg gallic 225 

acid equivalents (GAE)/g extract and are the mean ± standard deviations (s.d.) 226 

Figure 1. Effect of aqueous (A) and hydroalcoholic (B) extracts (10 µg/mL) from chestnuts of 5 different 227 

varieties on IL-8 secretion in TNFα-treated AGS cells. Amount of total phenols measured in each 228 

extract (C). 229 

The total phenol content in the extracts ranged between 7.80 and 96.67 mg, expressed as gallic 230 

acid equivalents (GAE)/g of extract. The highest content was found in Verdésa and Venégon extracts, 231 

both aqueous and hydroalcoholic, as shown in Figure 1, panel C. In general, the anti-inflammatory 232 

activity paralleled the total phenol content. Notably, in the case of Verdésa the use of the 233 

hydroalcoholic mixture was more efficient in extracting the phenolic fraction (96.67 vs 44.07 mg/g), 234 

thus suggesting a variety-specific composition of phenolic compounds exhibiting different physico-235 

chemical properties. 236 

The extracts from the most active varieties were further investigated in concentration-response 237 

experiments ranging from 0.5 to 100 µg/mL for the aqueous extracts (Figure 2A) and from 0.1 to 10 238 

µg/mL for the hydroalcoholic extracts (Figure 2B).  239 

 240 

 C 241 

 242 

 243 

IC50  
µg/mL ± s.d. 

Aqueous 
extracts 

Hydroalcoholic 
extracts 

Paié 21.01 ± 7.09 1.85 ± 1.34 

Venégon 10.22 ± 2.54 1.5 ± 0.52 

Verdésa 1.44 ± 0.32 0.75 ± 0.09 



 

Figure 2. Release of IL-8 by AGS cells treated with TNFa in the presence of aqueous (A) and 244 

hydroalcoholic (B) extracts from chestnut varieties. 245 

All the aqueous and hydroalcoholic extracts inhibited the release of IL-8 in a concentration-246 

dependent manner and, as expected, the hydroalcoholic extracts showed IC50s between 2 and 11 times 247 

lower compared to the corresponding aqueous counterparts (fig. 2C). Based on these results, the 248 

hydroalcoholic extracts were selected for further investigations. 249 

Since TNFa-induced expression of IL-8 depends on the NF-κB activation, we assayed the ability 250 

of hydroalcoholic extracts to modulate NF-κB driven transcription. AGS cells were transiently 251 

transfected with the NF-κB-luc reporter plasmid and treated for 6 h with the extracts at 10 µg/mL in 252 

the presence of TNFα (10 ng/mL). The inhibitory effects of the extracts were statistically significant 253 

only for the varieties Venégon and Verdésa. Furthermore, while the TNFa-induced release of IL-8 254 

was completely prevented by 10 µg/mL Venégon and Verdésa hydroalcoholic extracts (fig. 1B), at the 255 

same concentration the NF-κB-driven transcription was inhibited only by 50-60%. Nevertheless, these 256 

results confirm that the NF-κB pathway is a key molecular target of chestnut bioactive compounds. 257 

 258 

Figure 3. Effect hydroalcoholic extracts (10 µg/mL) from chestnuts of 5 different varieties on NF-kB 259 

driven transcription in TNFα-treated AGS cells. 260 

Since in some cases, plant extracts, as single treatment, may induce an inflammatory 261 

response we evaluated the release of IL-8 and NF-κB-driven transcription in AGS cells treated 262 

with 10 µg/ml hydroalcoholic extract from the five chestnut varieties in the absence of TNFα. We 263 



 

found no change of IL-8 secretion nor of promoter activity upon 6 h treatment with the five 264 

extracts, thus excluding inflammatory effects in untreated cells (data not shown).  265 

To get insights into the chemical entities contributing to the biological activity, we performed 266 

a detailed phytochemical characterization of the hydroalcoholic extracts from the five chestnut 267 

varieties, by UPLC-MS/MS. As reported in Table 1, we identified different classes of compounds, 268 

including condensed tannins (e.g. proanthocyanidins), flavonoids (e.g. catechins), stilbenes (e.g. 269 

resveratrol), and phenolic acids (e.g. gallic and ellagic acids). The most active varieties (Paié, 270 

Venégon, Verdésa) contained significant levels (> 20 mg/g of extract) of high molecular weight 271 

proanthocyanidins, with a mean degree of polymerization (mDP) ranging between 3.2 (Venégon) 272 

to 6.7 (Piliscé). In contrast, these compounds were undetectable, in the least active variety, 273 

Russirò, thus suggesting that this class of molecules is a major contributor to the anti-274 

inflammatory activity shown above. Considering the extraction efficiency, proanthocyanidins 275 

ranged from 0 to 1.75 mg/g of the whole fruit (Table 1, last bottom line). 276 

  LOQ 
mg 

 Paié  Piliscé  Russirö  Venégon  Verdésa 

            

               Gallic acid mg/g 0,01  1.40  0.21  0.17  1.34  0.59 

Ellagic acid mg/g 0,10  3.71  0.60  0.41  5.43  1.32 
Vanillin reaction (+) 

catechin mg/g 0,1  6.3  4.9  3.8  12.6  62.5 
Proanthocyanidin B.S. 

(HMWP) mg/g 2,0  10.1  4.8  n.d.  26.7  147.1 

Flavanol monomers µg/g   0.1  0.0  0.0  0.1  0.5 

Procyanidins dimers µg/g   0.0  0.0  0.0  0.0  0.1 

Procyanidins oligomers µg/g   2.4  0.7  0.5  3.3  13.3 

mDP %   3.8  6.7  4.6  3.2  5.2 

p-hydroxybenzoic acid µg/g 0,50  24.44  6.04  3.19  38.63  5.53 

Vanillic acid µg/g 0,10  32.82  5.13  2.97  30.73  1.01 

Caffeic acid µg/g 0,02  3.79  0.03  n.d.  5.79  n.d. 

Ferulic acid µg/g 0,01  64.32  2.76  2.24  95.65  1.43 

Sinapic acid µg/g 2,00  213.43  n.d.  3.37  81.87  28.03 

t-coutaric acid µg/g 0,05  8.09  12.36  15.66  6.43  1.01 

t-resveratrol µg/g 2,00  12.98  3.18  2.42  14.49  9.91 

t-piceide µg/g 1,00  9.09  1.59  1.44  7.29  8.80 

Phlorizin µg/g 0,10  n.d.  0.57  1.38  n.d.  25.45 

Luteolin µg/g 0,20  1.28  n.d.  n.d.  0.58  n.d. 

Naringenin µg/g 0,20  16.57  0.99  n.d.  17.20  1.63 

Catechin µg/g 5,00  92.50  12.38  6.02  306.05  272.39 



 

 277 

Table 1. 278 

Phytochemical 279 

characterization of the hydroalcoholic extracts from the five chestnut varieties  280 

In summary, we found that chestnuts contain bioactive compounds that inhibit the TNFa-281 

induced secretion of IL-8 by gastric cells, by interfering, at least in part, with the NF-κB pathway. 282 

The content in bioactive compounds with anti-inflammatory properties varied among the five 283 

varieties and the hydroalcoholic mixture resulted the most efficient solvent to extract active 284 

molecules. The ability to inhibit IL-8 secretion correlated with the amount of proanthocyanidins 285 

in the tested extracts. 286 

3.2. Contribution of the fruit parts to the biological activity 287 

 To investigate the contribution of the various parts of the fruit to the biological activity, 288 

hydroalcoholic extracts from the edible (endosperm) and not edible (pericarp and episperm) parts 289 

were prepared separately, as described in section 2.2. In the biological assays, we tested the varieties 290 

that resulted more active, i.e. Paié, Venégon and Verdésa (fig. 1 and 2). 291 

The extracts obtained from endosperm, the edible part, were not active on IL-8 release till the 292 

maximum concentration tested (100 µg/mL) (Figure 4A). On the contrary, the hydroalcoholic extracts 293 

from pericarp and episperm showed a concentration dependent inhibitory activity (Figure 4B and 294 

4C, respectively). 295 

Gallocatechin µg/g 100,00  549.40  121.10  n.d.  611.47  493.53 

Procyanidin B1 µg/g 20,00  n.d.  n.d.  n.d.  n.d.  89.43 

Procyanidin B3 (as B1) µg/g 20,00  n.d.  n.d.  n.d.  n.d.  86.51 

Taxifolin µg/g 0,50  n.d.  n.d.  n.d.  n.d.  0.80 

Quercetin-3-Rha µg/g 0,20  n.d.  n.d.  n.d.  0.31  n.d. 

Kaempferol-3-Glc µg/g 0,20  n.d.  n.d.  n.d.  n.d.  n.d. 

Isorhamnetin-3-Glc µg/g 0,10  1.92  0.49  0.30  3.49  1.25 
Isorhamnetin-3- 

rutinoside µg/g 0,20  n.d.  n.d.  n.d.  n.d.  n.d. 
Quercetin-3- 
glucuronide µg/g 0,20  0.64  n.d.  n.d.  0.35  n.d. 

Quercetin-3-Glc + 
quercetin-3-Gal µg/g 0,10  0.52  n.d.  n.d.  2.09  0.10 

Proanthocyanidins  
in the whole fruit mg/g 2,0  0.13  0.04  n.d.  0.21  1.75 



 

 296 

D 297 

 298 

 299 

Figure 4. Hydroalcoholic extracts from pericarp (B) and episperm (C) inhibit IL-8 secretion in TNFα-300 

treated AGS cells, while extract from endosperm (A) is inactive at the concentrations tested 301 

The two varieties active on NF-κB signaling, Venégon and Verdésa (fig. 3), were further 302 

investigated; the corresponding hydroalcoholic extracts, either from pericarp (Figure 5B) and 303 

episperm (Figure 5C), impaired the NF-κB driven transcription challenged by TNFα in a 304 

concentration dependent manner. The hydroalcoholic extracts from endosperm displayed no activity 305 

at any of the tested concentrations (Figure 5A). 306 

IC50  
µg/mL ± s.d. Pericarp Episperm 

Paié 0.28 ± 0.10 0.42 ± 0.12 

Venégon 0.15 ± 0.08 0.14 ± 0.04 

Verdésa 0.37 ± 0.08 0.22 ± 0.04 



 

 307 

D 308 

 309 

 310 

Figure 5. Effect of hydroalcoholic extracts (10 µg/mL) of the fruit parts from Venégon and Verdésa 311 

varietes on NF-kB driven transcription in TNFα-treated AGS cells 312 

IC50  
µg/mL ± s.d. Pericarp Episperm 

Venégon 1.97 ± 0.94 1.5 ± 1.15 

Verdésa 1.1 ± 0.81 2.04 ± 1.12 
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 325 

Table 2. Phytochemical characterization of the hydroalcoholic extracts of the fruit parts from the five chestnut varieties 326 

  LOQ 
mg 

 Paié  Piliscé Russirö  Venégon          Verdésa 

   End. Epi. Per. End. Epi. Per.  End. Epi. Per.  End. Epi. Per.  End. Epi. Per. 

                        Gallic acid mg/g 0,01  n.d. 3.42 1.98 0.03 1.38 0.89  0.01 1.04 0.74  n.d. 2.65 1.74  0.09 0.49 0.82 
Ellagic acid mg/g 0,10  1.17 1.66 18.19 0.79 4.24 20.97  0.24 4.27 23.61  0.53 3.73 15.54  0.52 1.03 4.97 

Vanillin reaction (+) 
catechin mg/g 0,1  6.4 387.5 90.4 9.3 114.7 45.9  3.5 7.9 15.8  5.5 303.8 50.6  0.1 676.0 281.9 

Proanthocyanidin B.S. 
(HMWP) mg/g 2,0  n.d. 687.3 145.1 n.d. 235.7 76.6  n.d. 4.2 25.6  n.d. 651.4 150.2  n.d. 921.0 378.9 

Flavanol monomers µg/g   0.0 1.7 0.9 0.0 0.6 0.3  0.0 0.1 0.1  0.0 1.6 0.6  0.0 1.3 2.6 
Procyanidins dimers µg/g   0.0 0.4 0.2 0.0 0.0 0.3  0.0 0.0 0.0  0.0 0.5 0.6  0.0 0.2 3.5 
Procyanidins oligomers µg/g   0.7 11.1 211.1 0.7 53.1 7.5  0.1 0.7 2.2  0.7 13.4 188.6  0.1 352.4 112.8 

mDP %   1.0 2.3 11.8 1.3 9.1 3.3  1.0 1.7 1.8  1.3 2.9 8.2  1.5 13.2 5.0 
p-hydroxybenzoic acid µg/g 0,50  14.39 38.13 85.80 11.98 29.52 37.76  13.13 69.38 60.82  33.77 30.61 62.71  0.80 3.97 12.22 

Vanillic acid µg/g 0,10  37.95 25.39 60.54 4.55 21.11 22.19  2.57 7.54 11.35  21.57 16.29 45.27  0.92 0.83 3.98 
Caffeic acid µg/g 0,02  1.08 2.48 6.47 0.05 0.18 0.07  n.d. n.d. n.d.  0.76 9.56 1.83  0.58 0.02 n.d. 
Ferulic acid µg/g 0,01  25.08 11.76 2.59 1.56 2.07 0.27  0.01 0.25 0.35  21.52 47.47 11.14  8.43 1.85 1.58 
Sinapic acid µg/g 2,00  61.86 127.46 n.d. n.d. n.d. n.d.  n.d. n.d. n.d.  56.90 143.20 n.d.  53.43 n.d. n.d. 

t-coutaric acid µg/g 0,05  41.36 37.42 3.65 5.19 n.d. n.d.  5.50 1.41 n.d.  47.51 26.78 37.79  8.05 6.65 41.60 
t-resveratrol µg/g 2,00  n.d. 89.37 46.02 n.d. 16.60 12.84  n.d. n.d. 5.03  n.d. 38.17 30.54  n.d. 36.94 48.50 

t-piceide µg/g 1,00  5.77 25.80 20.82 n.d. 8.02 4.86  n.d. 2.33 3.02  7.38 21.05 16.96  n.d. 3.03 8.87 
Phlorizin µg/g 0,10  n.d. 17.91 34.69 n.d. 1.23 7.78  n.d. 0.12 0.55  n.d. 16.09 53.13  0.52 22.48 13.88 
Luteolin µg/g 0,20  n.d. 1.34 11.00 n.d. 0.28 5.79  n.d. n.d. 2.26  0.28 0.40 7.44  n.d. 0.35 9.31 

Naringenin µg/g 0,20  5.75 74.68 47.06 n.d. 3.29 5.19  n.d. n.d. 0.55  5.14 39.98 54.54  1.09 14.09 20.62 
Catechin µg/g 5,00  n.d. 1533.04 2231.3

6 
n.d. 170.38 213.67  n.d. 11.73 154.43  22.95 1974.71 1648.55  n.d. 286.76 1942.00 

Gallocatechin µg/g 100,00  n.d. 1642.02 613.70 n.d. 547.02 356.55  141.87 216.17 n.d.  n.d. 1228.70 571.09  n.d. 611.34 486.20 
Procyanidin B1 µg/g 20,00  n.d. 249.47 1056.2

2 
n.d. n.d. 104.56  n.d. n.d. 59.62  n.d. 507.95 941.71  n.d. 62.12 827.09 

Procyanidin B3 (as B1) µg/g 20,00  n.d. 287.11 336.46 n.d. n.d. 81.10  n.d. n.d. 52.88  n.d. 1193.32 319.10  n.d. 69.82 378.94 
Taxifolin µg/g 0,50  n.d. 18.44 18.08 n.d. n.d. 2.10  n.d. n.d. 1.02  n.d. 19.67 17.71  n.d. 1.18 13.17 

Quercetin-3-Rha µg/g 0,20  n.d. 0.75 3.02 n.d. n.d. n.d.  n.d. n.d. n.d.  n.d. 0.86 7.48  n.d. n.d. 4.50 
Kaempferol-3-Glc µg/g 0,20  n.d. n.d. 2.97 n.d. n.d. 1.03  n.d. n.d. n.d.  n.d. n.d. 1.40  0.43 n.d. 0.47 

Isorhamnetin-3-Glc µg/g 0,10  n.d. 3.94 102.86 n.d. n.d. 8.48  n.d. n.d. 0.97  n.d. 1.94 135.92  n.d. 0.20 47.24 
Isorhamnetin-3- 

rutinoside µg/g 0,20  n.d. 0.97 5.82 n.d. n.d. n.d.  n.d. n.d. n.d.  n.d. 1.37 4.48  n.d. n.d. 0.83 
Quercetin-3- 
glucuronide µg/g 0,20  15.03 0.69 41.21 n.d. n.d. n.d.  n.d. n.d. n.d.  0.63 0.28 5.58  n.d. n.d. 0.63 

Quercetin-3-Glc + 
quercetin-3-Gal µg/g 0,10  5.25 1.47 23.77 n.d. 0.14 0.53  n.d. n.d. 0.69  0.43 0.75 10.55  0.29 0.20 4.42 



The finding that none of the extracts from the edible part (endosperm) of the most active 327 

varieties displayed biological activity (fig. 4A and 5A) prompted us to investigate in more detail 328 

the phytochemical composition of the various extracts. As reported in Table 2, high molecular 329 

weight proanthocyanidins, the putative bioactive fraction, were enriched (>650 mg/g) in the 330 

extracts obtained from the episperm of Paiè, Venégon and Verdésa. The same applies to the 331 

extracts prepared from the pericarp, with concentration ranging from 145.1 mg/g (Paié) to 378.9 332 

mg/g (Verdésa). The variety Verdesa resulted the richest source of high molecular weight 333 

proanthocyanidins, which accounted to about 90% of the episperm extract. Russirò, the variety 334 

exhibiting the lowest anti-inflammatory activity (fig. 1B), resulted almost devoid of 335 

proantocyanidins in any part. The anti-inflammatory activity resulted unrelated to the mean 336 

degree of polymerization (mDP) of proanthocyanydins. In fact, for example, the extracts from 337 

both pericarp and episperm of Venégon fruits displayed IC50 of about 0.15 µg/mL (Fig. 4D), while 338 

the mDP accounted to 8.2 and 2.9, respectively. 339 

 The results shown above indicate that the biological activity is associated to the not edible 340 

parts of chestnut (pericarp and endosperm) in all the tested varieties. The phytochemical analysis 341 

confirmed that the hydroalcoholic extracts exhibiting the highest anti-inflammatory activity were 342 

richest in high molecular weight proanthocyanidins; the observation corroborates the hypothesis 343 

that these compounds confer to chestnut extracts the ability to prevent IL-8 secretion. 344 

3.3. Effect of extrinsic variables on the biological activity of chestnut varieties 345 

Chestnuts are widely used in food industry for sweets and flour production, through procedures 346 

that require heating. Therefore, we evaluated the anti-inflammatory property of hydroalcoholic 347 

extracts from Verdésa and Venégon chestnuts upon exposure to mild (50°C) and high (100°C) 348 

temperature, as described in section 2.2. As shown in Figure 6A, when heated at 50°C up to 6 h, both 349 

extracts maintained the inhibitory activity on IL-8 secretion. However, both extracts exhibited 350 

reduced activity upon exposure at 100°C in a time dependent manner; of note, the inhibitory effect 351 

was almost completely lost after 2 h of incubation at 100°C (Figure 6B). 352 



 

 353 

Figure 6. Heating treatment of dried hydroalcoholic extracts from chestnuts varieties: (A) the extracts 354 

inhibit IL-8 secretion in TNFα-treated AGS cells after heating at 50 °C for 6h. (B) time and temperature 355 

dependent loss of IL-8 inhibition in TNFα-treated AGS cells during heating at 100 °C 356 

The results shown so far refer to extracts prepared from fruits harvested in the year 2015. It is 357 

known that the quali-quantitative composition in bioactive compounds of medicinal and edible 358 

plants varies depending on multiple variables, including the harvest year; therefore, it is conceivable 359 

that the extent of the associated biological activities may vary as well. Given the low availability of 360 

fruits of the Verdésa variety, we focused on Venégon chestnuts. Hence, additional hydroalcoholic 361 

extracts from the whole fruit of Venégon were prepared from chestnuts collected in 2016 and 2017. 362 

The inhibitory activities (IC50s) exerted by Venégon (2015) and Venégon (2016) were comparable, 363 

while the extract of Venégon (2017) was less effective (Figure 7A). Although we did observe different 364 

degree of activity depending on the harvest year, most likely due to the amount of bioactive 365 

proanthocyanidins, the calculated IC50s were in all cases below 10 µg/mL (fig. 6B). 366 

ini 367 
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 369 

Figure 7. Inhibition of IL-8 secretion by extracts from chestnuts harvested in different years in TNF-a-370 

treated AGS cells 371 

 372 

A critical issue in nutraceuticals and botanicals is their fate in the gastro-intestinal tract, 373 

including chemical stability and absorption, which affect the biological activities. Chemical stability 374 

in the stomach environment is certainly highly relevant for extracts and compounds acting directly 375 

on gastric cells. To this end we investigated whether the prevention of IL-8 secretion could be 376 

maintained under the acidic conditions of the stomach and the action of digestive enzymes. The 377 

hydroalcoholic extract of the whole fruit of the Venégon variety (harvest year 2015) was subjected to 378 

in vitro simulated gastric digestion, as described in section 2.7. The simulated digestion only slightly 379 

affected the biological activity of the extract (fig. 8A), increasing the IC50 from 1.50 ± 0.52 to 4.13 ± 380 

1.83 µg/mL (± s.d.), as reported in Figure 8B. 381 

 382 

        B 383 

 384 

Figure 8. IL-8 secretion in TNFα-treated AGS cells in the presence of chestnut extract subjected to in 385 

vitro simulated gastric digestion (A) 386 

IC50  
µg/mL ± s.d. 2015 2016 2017 

Venégon 1.5 ± 0.52 1.34 ± 0.8 6.05 ± 0.92 

IC50  
µg/mL ± s.d. 2015 2015 

digested 

Venégon 1.5 ± 0.52 4.13 ± 1.83 

A 



 

The results shown above indicate that, taking into account critical variables (thermal treatment, 387 

harvest year, gastric digestive environment), Venégon chestnut resulted a valuable source of 388 

bioactive compounds with potential anti-inflammatory activities at the gastric level. 389 

3.4. Biological activity of industrial chestnut flour and related by-product 390 

To verify the practical application of our results, we investigated the biological activity of 391 

hydroalcoholic extracts from finished products (flour) and by-product obtained by industrial 392 

processing of Venégon chestnuts (harvest year 2015). The extract prepared from by-product, 393 

consisting of the not edible parts (pericarp and episperm) and resulting from mechanical peeling, 394 

displayed inhibitory activity on IL-8 secretion (Figure 9A), in line with the results shown in figure 4B 395 

and C; the calculated IC50 was 0.20 ± 0.04 µg/mL (± s.d.), highly similar to that reported in figure 4D. 396 

These results indicate that the mechanical peeling procedure does not alter the potential biological 397 

activity of the not edible chestnut parts. The in vitro gastric digestion did not affect the biological 398 

activity of the extract, as shown in Figure 9B, which still exhibited an IC50 of 0.15 ± 0.02 µg/mL (± s.d.), 399 

consistent with the findings reported in fig. 8A. On the contrary, the extract prepared from industrial 400 

flour, mainly constituted of endosperm, showed absence of activity (Figure 9C), confirming the 401 

results reported in figure 4A. Thus, our data suggest that chestnut-based products prepared 402 

exclusively from endosperm lack anti-inflammatory activity, while industrial by-product may 403 

represent a valuable source of bioactive material. 404 

In the view of improving the nutraceutical properties of chestnut flour, we prepared a 405 

hydroalcoholic extract starting from a mixture of flour and episperm, maintaining the ratio found in 406 

the fruits (22:3, for endosperm and episperm, respectively). We used flour, and episperm from 407 

Venégon fruits harvested in 2015. The extract prepared from flour enriched with episperm (final 408 

concentration 12%, w:w) showed inhibitory activity with an IC50 of 16.35 ± 5.22 µg/mL (± s.d.), as 409 

shown in Figure 9D. 410 



 

 411 

Figure 9. Hydroalcoholic extracts from chestnuts by-products (var. Venégon) inhibit IL-8 secretion in 412 

TNFα-treated AGS before (A) and after (B) a simulated gastric digestion; extract from chestnut flour 413 

(C) inhibits IL-8 secretion only after enrichment with episperm (12% of final weight) (D). 414 

In conclusion, we demonstrated that chestnut flour is devoid of any anti-inflammatory 415 

activity while industrial by-product retains the ability to inhibit IL-8 secretion. These findings 416 

provide experimental evidence in support of the potential use of chestnut-derived material for 417 

the preparation of nutraceuticals and functional foods, e.g. “fortified” flour. 418 

4. Discussion 419 

Castanea sativa Mill. is a rich source of polyphenols due to its high tannin content, and its fruits 420 

are widely used in food industry for sweets and flour production [61]. Nevertheless, a detailed 421 

phytochemical profile of chestnut fruits, in relation to their biological activities, has not been 422 

investigated in depth. 423 



 

By means of a validated bio-guided approach, coupled to a thorough phytochemical analysis, 424 

we were able to isolate the bioactive fraction of chestnut fruits exhibiting anti-inflammatory activity 425 

in gastric cells. This approach was instrumental for the selection of the most appropriate extraction 426 

system (hydroalcoholic mixture vs water), thus resulting more informative than the simple 427 

measurement of the phenolic content. 428 

Proanthocyanidins represent an emerging class of anti-inflammatory compounds and our study 429 

further supports their pharmacological potential in the field of gastric inflammation. The detailed 430 

phytochemical characterization of various chestnut varieties and fruit parts, coupled to the robust 431 

biological assay, allowed us to assign the anti-inflammatory activity to this class of compounds, to 432 

identify the most active varieties and the contribution of the fruit parts. Thus, chestnut fruit, 433 

especially the inner and outer skins, can be included in the list of natural sources of 434 

proanthocyanidins. Moreover, the amount of proanthocyanidins could represent an index to titrate 435 

tannin enriched nutraceuticals. 436 

Although our data clearly show that the edible part of chestnut fruits was not active, the by-437 

product resulted highly enriched in proanthocyanidins and, consequently, with significant anti-438 

inflammatory activity (IC50 < 1 µg/ml). These findings contribute to assessing the health beneficial 439 

value of chestnut-based foods and nutraceuticals, and to the potential valorization of chestnut 440 

processing wastes. 441 

Another outcome of our study is the valorization of Castanea sativa Mill. varieties that combine 442 

appreciated organoleptic properties with high nutraceutical value, such as the Venégon and Verdésa 443 

varieties. Future efforts should be aimed at promoting preservation and cultivation of these varieties, 444 

optimizing the use and manipulation of by-product, with the aim to develop chestnut-based 445 

nutraceuticals and functional foods, with no negative effects on their palatability and taste. These 446 

aspects will be investigated in the near future. 447 



 

Our study also provides hints that may result useful for optimizing the processing of chestnut-448 

based products and the treatment of wastes. Elevated temperatures (>100°C) are often used to 449 

facilitate the peeling procedure, to prepare chestnut-based foods (e.g. cakes, pasta, etc.), or to increase 450 

the extraction efficiency in preparing chestnut-derived ingredients. Our data demonstrate that 451 

prolonged exposure (>1 h) at 100°C leads to complete loss of anti-inflammatory activity while upon 452 

treatment at 50°C the biological activity is fully preserved. 453 

Key steps that may influence the biological activities associated to nutraceuticals are their 454 

chemical modifications that may occur during the digestive process and the absorption rate by the 455 

gastro-intestinal tract. In the case of gastric inflammation, absorption may be less relevant since 456 

bioactive compounds can act directly on gastric cells, but resistance to acid environment and enzymes 457 

is a crucial issue. By using an in vitro simulated digestion system, we could demonstrate that chestnut 458 

extracts maintain the ability to prevent IL-8 secretion, thus providing evidence in support of their 459 

potential use in vivo. Moreover, taking into consideration the amount of proanthocyanidins that could 460 

be added to chestnut-based foods (e.g. flour, flakes, etc.), the calculated IC50 reported in the present 461 

study, the approximate gastric volume (30-40 mL), it is conceivable that concentrations sufficient to 462 

obtain anti-inflammatory effects could be easily reached in vivo. 463 

5. Conclusion 464 

Overall, by combining a robust bio-guided approach with a comprehensive analysis of the tannic 465 

fraction of chestnut extracts, we provided evidence for the potential use of chestnut-based 466 

nutraceuticals in human gastritis. The bioactive components of chestnut fruits inhibit IL-8 secretion 467 

most likely by means of multiple mechanisms, including impairment of NF-κB signaling, thus 468 

confirming the importance of this pathway as a general target in the field of anti-inflammatory agents; 469 

on the other hand, the discovery of additional targets would open new applications for inflammation-470 

based diseases. 471 



 

The finding that the anti-inflammatory activity is maintained upon treatment in acidic 472 

conditions and with digestive enzymes, further corroborates the applicability of our observations in 473 

human gastritis. Finally, our study also offers hints useful for the valorization of specific chestnut 474 

varieties and for setting up the most appropriate conditions for the preparation of chestnut-based 475 

nutraceuticals with intact biological activities. 476 
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Supplementary material 600 

Fruit variety and  
part used Solvent for extraction Yield (% w/w) 

Paié      

Whole fruit Water 10.3 
Water/ethanol 8 

Pericarp  3.3 
Episperm Water/ethanol 16 

Endosperm  9.6 

Piliscé      

Whole fruit Water 12.19 
Water/ethanol 12.97 

Pericarp  3.48 
Episperm Water/ethanol 5.16 

Endosperm  15.28 

Russirö     

Whole fruit Water 11.1 
Water/ethanol 11.96 

Pericarp  3.48 
Episperm Water/ethanol 0.64 

Endosperm  6.52 

Venégon    

Whole fruit Water 11.4 
Water/ethanol 12.6 

Pericarp  6 
Episperm Water/ethanol 21 

Endosperm  14.5 

Verdésa      

Whole fruit Water 16.3 
Water/ethanol 8.4 

Pericarp  3.92 
Episperm Water/ethanol 27.9 

Endosperm  16.5 
Aqueous extracts (Water); hydroalcoholic extracts 50:50, ethanol:water (Water/ethanol) 601 

Table S1. Extraction yields expressed as percentage (w/w) in respect to the starting material. 602 


