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SUMMARY

For a decade, The Cancer Genome Atlas (TCGA) pro-
gram collected clinicopathologic annotation data
along with multi-platform molecular profiles of more
than 11,000 human tumors across 33 different cancer
types. TCGA clinical data contain key features repre-
senting the democratized nature of the data collec-
tion process. To ensure proper use of this large clin-
ical dataset associated with genomic features, we
developed a standardized dataset named the TCGA
Pan-Cancer Clinical Data Resource (TCGA-CDR),
which includes four major clinical outcome end-
points. In addition to detailing major challenges and
statistical limitations encountered during the effort
of integrating the acquired clinical data, we present
a summary that includes endpoint usage recommen-
dations for each cancer type. These TCGA-CDR find-
ings appear to be consistent with cancer genomics
studies independent of the TCGA effort and provide
opportunities for investigating cancer biology using
clinical correlates at an unprecedented scale.

INTRODUCTION

The purpose of The Cancer Genome Atlas (TCGA) project was to

establish a coordinated team science effort to comprehensively
400 Cell 173, 400–416, April 5, 2018 ª 2018 Elsevier Inc.
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characterize the molecular events in primary cancers and to pro-

vide these data to the public for use by researchers around the

world. TCGA started in 2006 with a 3-year pilot project focusing

on glioblastoma multiforme (GBM), lung squamous cell carci-

noma (LUSC), and ovarian serious cystadenocarcinoma (OV),

followed by the execution of the full project from 2009 to 2015.

By the end of this 10-year project, TCGA network investigators

had characterized the molecular landscape of tumors from

11,160 patients across 33 cancer types and defined their many

molecular subtypes. The quantity and quality of TCGAmolecular

data have been lauded by a large number of scientists, and these

data have resulted in studies that have significantly advanced

our understanding of cancer biology, as documented in

dozens of highly cited published TCGA marker and companion

papers, including those for GBM, OV, and breast, lung, prostate,

bladder, and other individual cancers (Cancer Genome Atlas

Network, 2012, 2015; The Cancer Genome Atlas Research

Network, 2008, 2011, 2012, 2014, 2015; Cancer Genome Atlas

Research Network et al., 2017). TCGA data also make possible

studies that compare and contrast multiple cancer types with

the goal of identifying common themes that transcend the tissue

of origin and may inform precision oncology (Hoadley et al.,

2014). In addition, numerous independent investigators have

used TCGA as a resource to support their own studies and to

help interpret molecular testing of individual patients in a clinical

setting (Huo et al., 2017; Verhaak et al., 2010). However, obtain-

ing comprehensive clinical annotation was neither a primary pro-

gram objective nor a practical possibility, given the worldwide

scope and severe time constraints for sample accrual goals
creativecommons.org/licenses/by-nc-nd/4.0/).
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determined at the time of TCGA program initiation and funding.

The incomplete annotation of patient outcome and treatment

data associated with each TCGA-acquired sample, with its rela-

tively short-term clinical follow-up interval, has been noted by the

research community (Hoadley et al., 2014; Huo et al., 2017). The

limitations of the existing clinical dataset, associated with an

otherwise rich body of genomic and molecular analyses avail-

able across all TCGA tumor types, compels thorough and sys-

tematic curation and evaluation of those clinical endpoints and

other clinical features associated with each TCGA tumor so

that the scientific community can optimize the translational rele-

vance of the tumor-specific genomic and pathway conclusions

drawn from the TCGA program and its pan-cancer analyses. It

is also important to demonstrate that the conclusions drawn

from this newly curated TCGA pan-cancer clinical data resource

have translational validity with respect to both patient prognosis

and outcome parameters.

In clinical studies, 5-year or 10-year benchmark survival rates

are often calculated to convey prognostic information or to

compare treatment effects. These survival rates may be based

on progression or mortality events with or without disease

specificity. For each endpoint, it is very important to have a

sufficiently long follow-up time to capture the events of interest,

and the minimum follow-up time needed depends on both the

aggressiveness of the disease and the type of endpoint

(Tai et al., 2005).

Overall survival (OS) is an important endpoint, with the advan-

tage that there is minimal ambiguity in defining an OS event (Hu-

dis et al., 2007; Punt et al., 2007); the patient is either alive or

dead. However, using OS as an endpoint may weaken a clinical

study as deaths because of non-cancer causes do not neces-

sarily reflect tumor biology, aggressiveness, or responsiveness

to therapy. UsingOS or disease-specific survival (DSS) demands

longer follow-up times; thus, in many clinical trials, disease-free

interval (DFI) or progression-free interval (PFI) are used (Hudis

et al., 2007; Punt et al., 2007; https://wiki.nci.nih.gov/plugins/

servlet/mobile#content/view/24279961). The minimum follow-

up time for these endpoints is shorter because patients generally

develop disease recurrence or progression before dying of their

disease. Selection of a specific survival endpoint also depends

on the study goal. For example, a clinical trial testing the effect

of a drug’s ability to delay or prevent cancer progression would

use PFI as themost appropriate endpoint.With specific regard to

the analysis of available TCGA clinical data, it is important to

realize that short-term clinical follow-up intervals favor outcome

analyses in more aggressive cancer types, which are likely to

observe events within a couple of years. Studies with less

aggressive cancer types, in which patients relapse only after

many years or even decades, may not observe enough events

during their follow-up intervals to support reliable outcome de-

terminations. The intent of this analysis is to examine the relative

strengths and weaknesses of the TCGA pan-cancer clinical

outcome measures to guide future analyses and avoid pitfalls

such as insufficient follow-up intervals.

To our knowledge, there has been no systematic attempt to

analyze the TCGA clinical data and derive acceptable outcome

endpoints across all 33 TCGA cancer types involving 11,160 pa-

tients or to assess the adequacy of the clinical follow-up interval
for each survival endpoint test. Here we present curated and

filtered clinical and survival outcome data as a newly integrated

resource for the entire scientific community, describe how prob-

lems encountered while analyzing these data were resolved, and

what pitfalls researchers should be aware of when using these

data for future correlative and survival studies. Based on our

comprehensive clinical review, we also provide scoring recom-

mendations for appropriate future use and tumor-specific

endpoint selection. The resulting compendium of curated data

is now presented as the TCGA Pan-Cancer Clinical Data

Resource (TCGA-CDR) for public access and future translational

cancer research.

RESULTS

The TCGA clinical data were downloaded from the data portal

of the Genomic Data Commons (GDC), where all TCGA mo-

lecular data are also available (https://gdc-portal.nci.nih.gov/

legacy-archive/). The same TCGA barcode structure is used

for both clinical data and molecular data, enabling integrated

analysis of patient-based clinical data and sample-basedmolec-

ular data.

Cohort Characteristics
Figure 1A shows a flowchart of the methods for clinical data

integration and analysis as well as derivation and evaluation of

4 major clinical outcome endpoints. We processed 33 initial

enrollment data files and 97 follow-up data files for 11,160 pa-

tients across 33 cancer types. Table 1 shows the basic charac-

teristics of each TCGA cohort. Primary tumor samples, not met-

astatic, were typically selected in each cohort for molecular

characterization, with the exception of the skin cutaneous mela-

noma (SKCM) study, which allowed both. A very limited number

of metastatic tumors with matching primary tumors was also

studied for other cancer types. Individual patients’ detailed

data are provided in Table S1, tab TCGA-CDR, and problems

we identified when processing this dataset and the solutions

we developed are described in the STAR Methods.

Clinical Outcome Endpoints of OS, PFI, DFI, and DSS
There are many definitions of clinical outcomes used in oncology

research. After analyzing all TCGA clinical data used for this study,

we concluded that OS and PFI could be derived relatively accu-

rately using the available data. We also derived DFI reasonably

accurately, although, for most cases, DSS could only be esti-

mated. Figure 1B shows the OS Kaplan-Meier (K-M) plots for all

cases of the 33 different cancer types. Although TCGA did not

set survival analyses as a primary program objective, the resulting

survival plots for most cancer types are similar to prior indepen-

dent studies prospectively designed to evaluate these same

survival endpoints. This is perhaps best exemplified by the

TCGA outcomes for GBM, OV (Cancer Genome Atlas Research

Network, 2008, 2011), and lower-grade glioma (LGG) (Cancer

Genome Atlas Research Network et al., 2015). K-M plots for PFI,

DFI, and DSS are shown in Figures 1C–1E (see also Figure S1).

We calculatedmedian follow-up times aswell asmedian times

to event or censorship based on the observed times for these

four endpoints for each cancer type (Table 2; Table S1, tab
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Figure 1. Clinical Data Analysis

(A–E) Flowchart (A) and K-M plots of the Pan-Cancer types for OS (B), PFI (C), DFI (D), and DSS (E) respectively. The tail of each K-M curve is truncated at the point

when fewer than 10 patients remain at risk. See Figure S1 for plots of the 4 endpoints within each of the 33 tumor types and Tables S1, S2, S3 and S4 for more

detailed information regarding endpoint derivation.
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Table 1. TCGA Pan-Cancer Cohort Characteristics

Cancer Type No. of Cases Agea (Mean ± SD) Gender M/F Race White/Black/Other/NA Stageb 0/I/II/III/IV/NA Gradec 1/2/3/4/NA

ACC 92 47.2 ± 16.3 32/60 78/1/2/11 0/9/44/19/18/2 0/0/0/0/92

BLCA 412 68.1 ± 10.6 304/108 327/23/44/18 0/2/131/141/136/2 21/0/388/0/3

BRCA 1097 58.4 ± 13.2 12/1085 757/183/62/95 0/183/621/249/20/24 0/0/0/0/1097

CESC 307 48.3 ± 13.8 0/307 211/30/30/36 0/163/70/46/21/7 18/136/120/1/32

CHOL 45 63.6 ± 12.2 20/25 38/3/3/1 0/20/11/4/10/0 1/22/20/2/0

COAD 459 66.9 ± 13.1 243/216 214/59/12/174 0/76/178/129/65/11 0/0/0/0/459

DLBC 48 56.3 ± 13.9 22/26 29/1/18/0 0/8/17/5/12/6 0/0/0/0/48

ESCA 185 62.5 ± 11.9 158/27 114/5/46/20 0/18/79/56/9/23 19/77/49/0/40

GBM 596 57.8 ± 14.4 366/230 507/51/13/25 0/0/0/0/0/596 0/0/0/596/0d

HNSC 528 60.9 ± 11.9 386/142 452/48/13/15 0/27/74/82/270/75 63/311/125/7/22

KICH 113 51.2 ± 13.9 62/51 95/12/4/2 0/54/33/19/7/0 0/0/0/0/113

KIRC 537 60.6 ± 12.2 346/191 466/56/8/7 0/269/57/125/83/3 14/230/207/78/8

KIRP 291 61.5 ± 12.1 214/77 207/61/8/15 0/173/21/52/15/30 0/0/0/0/291

LAML 200 55.0 ± 16.1 109/91 181/15/2/2 0/0/0/0/0/200 0/0/0/0/200

LGG 515 42.9 ± 13.4 285/230 475/21/9/10 0/0/0/0/0/515 0/249/265/0/1

LIHC 377 59.5 ± 13.5 255/122 187/17/163/10 0/175/87/86/5/24 55/180/124/13/5

LUAD 522 65.3 ± 10.0 242/280 393/53/9/67 0/279/124/85/26/8 0/0/0/0/522

LUSC 504 67.3 ± 8.6 373/131 351/31/9/113 0/245/163/85/7/4 0/0/0/0/504

MESO 87 63.0 ± 9.8 71/16 85/1/1/0 0/10/16/45/16/0 0/0/0/0/87

OV 587 59.7 ± 11.5 0/587 498/34/24/31 0/17/30/446/89/5 6/69/495/1/16e

PAAD 185 64.9 ± 11.1 102/83 162/7/11/5 0/21/152/4/5/3 32/97/51/2/3

PCPG 179 47.3 ± 15.1 78/101 148/20/7/4 0/0/0/0/0/179 0/0/0/0/179

PRAD 500 61.0 ± 6.8 500/0 147/7/2/344 0/0/0/0/0/500 0/0/0/0/500

READ 170 64.5 ± 11.9 92/78 82/6/1/81 0/33/51/52/25/9 0/0/0/0/170

SARC 261 60.9 ± 14.7 119/142 228/18/6/9 0/0/0/0/0/261 0/0/0/0/261

SKCMf 470 58.2 ± 15.7 290/180 447/1/12/10 7/77/140/171/23/52 0/0/0/0/470

STAD 443 65.7 ± 10.8 285/158 278/13/90/62 0/59/130/183/44/27 12/159/263/0/9

TGCT 134 32.0 ± 9.3 134/0 119/6/4/5 0/101/12/14/0/7 0/0/0/0/134

THCA 507 47.3 ± 15.8 136/371 334/27/53/93 0/285/52/113/55/2 0/0/0/0/507

THYM 124 58.2 ± 13.0 64/60 103/6/13/2 0/38/61/15/8/2 0/0/0/0/124

UCEC 548 63.9 ± 11.1 0/548 374/109/33/32 0/342/52/124/30/0 99/122/327/0/0

UCS 57 69.7 ± 9.3 0/57 44/9/3/1 0/22/5/20/10/0 0/0/0/0/57

UVM 80 61.6 ± 13.9 45/35 55/0/0/25 0/0/39/36/4/1 0/0/0/0/80

ACC, adrenocortical carcinoma; CHOL, cholangiocarcinoma; KIRC, kidney renal clear cell carcinoma; LIHC, liver hepatocellular carcinoma; READ,

rectum adenocarcinoma; TGCT, testicular germ cell tumor; THCA, thyroid carcinoma; UCS, uterine carcinosarcoma; NA, not applicable.
a51 cases are missing age at diagnosis, and 46 patients were 90 years of age or older and were capped at 90 years because of Health Insurance

Portability and Accountability Act (HIPAA) regulations.
bIncluded AJCC stage for most cancer types; clinical stages for CESC, DLBC, OV, UCEC, and UCS; andMasaoka stage for THYM. In the detailed data

file shown in Table S1, tab TCGA-CDR, all originally reported stage types were retained.
cIn BLCA, G1 was for ‘‘low grade’’ and G3 for ‘‘high grade’’ in this table; UCEC had 11 high grade, which was converted to G3 (the highest for this

disease) in this table. All original values were retained in Table S1, tab TCGA-CDR.
dGBM is grade IV by definition. In the original TCGA dataset, the grades for GBM cases were not provided.
eWe realized that OV should not have a grade IV disease but reported the data as in the original TCGA dataset.
fFor SKCM, the majority of tumors were from bulky regional lymph node metastases or distant metastases, and the patients’ initial diagnosis years of

non-metastatic diseases, including stage 0 disease, were provided (in situ; see STARMethods). No other cancer types had a stage 0 cancer diagnosis.
TCGA-CDR). The overall median follow-up time for all tumors

was 22.1 months, but these times were very different across

cancer types; GBM and acute myeloid leukemia (LAML) had

the shortest (�12 months), whereas kidney chromophobe

(KICH) had the longest (�48 months).
Recommended Use of Clinical Outcome Endpoints
Selection of the clinical outcome endpoints for a specific study

depends on the goals of the study, number of events, cohort

size, and quality of the outcome data. Methods are available to

assess the quality of survival outcome data (Maller and Zhou,
Cell 173, 400–416, April 5, 2018 403



Table 2. Median Follow-Up Times Overall and the Median Time to Event and to Censor for the Four Clinical Outcome Endpoints

Cancer

Type

Median Follow-Up

Time (Months) OS Median Time (Months) PFI Median Time (Months) DFI Median Time (Months) DSS Median Time (Months)

All To Event To Censor To Event To Censor To Event To Censor To Event To Censor

ACC 38.9 18.1 47.8 8.1 49.2 20.0 61.0 18.0 47.8

BLCA 17.6 13.5 21.0 9.7 17.8 14.8 19.1 13.6 19.4

BRCA 27.7 41.8 25.0 26.0 25.0 25.4 25.0 32.6 26.0

CESC 20.9 19.9 22.6 13.6 21.7 15.9 28.3 18.0 23.0

CHOL 21.6 18.0 30.1 7.1 22.4 7.1 25.3 18.3 28.3

COAD 22.0 13.3 24.0 12.0 22.5 16.0 29.3 11.1 24.0

DLBC 26.7 19.5 31.1 10.3 29.2 113.7 31.4 16.2 29.2

ESCA 13.1 11.5 13.2 8.8 12.6 7.4 13.2 13.5 12.9

GBM 12.0 12.6 8.5 6.1 5.9 31.5 26.3 12.7 8.4

HNSC 21.2 14.1 27.9 9.4 25.7 7.6 27.5 13.5 25.9

KICH 48.3 24.3 54.2 11.9 49.7 52.7 39.6 28.1 51.0

KIRC 39.0 26.9 47.8 13.5 43.0 29.6 45.4 23.2 46.4

KIRP 25.2 21.1 25.4 11.0 25.5 15.5 25.4 14.2 26.0

LAML 12.0 9.0 23.0 NA NA NA NA NA NA

LGG 22.1 26.7 20.7 15.3 18.7 19.6 20.1 25.5 20.7

LIHC 19.7 13.7 21.3 9.0 15.6 9.0 17.6 19.8 19.7

LUAD 21.6 20.3 22.0 14.4 20.0 15.7 22.5 19.9 21.8

LUSC 21.9 18.1 24.9 14.0 21.1 18.0 26.9 18.8 22.5

MESO 16.9 15.0 38.4 10.3 19.4 15.5 9.8 14.7 24.9

OV 33.0 35.3 27.7 14.7 14.9 17.9 26.5 35.3 28.9

PAAD 15.3 12.9 17.0 11.2 13.8 14.8 15.7 13.8 15.9

PCPG 24.8 14.9 25.2 19.9 23.8 27.3 24.5 17.5 25.0

PRAD 30.5 36.2 30.5 18.4 28.2 24.9 30.4 43.7 30.5

READ 20.0 22.0 20.0 19.0 19.0 27.8 21.0 20.0 20.0

SARC 31.1 21.3 35.9 10.1 32.7 11.2 36.5 22.6 34.9

SKCM 35.9 35.3 36.9 23.5 22.7 21.8 23.8 36.6 34.3

STAD 14.0 11.3 17.2 9.5 13.8 10.8 18.6 12.4 16.1

TGCT 41.4 18.6 41.6 9.1 35.6 14.8 31.8 16.9 41.7

THCA 31.1 33.5 31.0 16.0 30.9 16.2 31.9 33.5 31.0

THYM 41.2 28.0 41.6 25.2 41.2 30.8 42.1 54.9 41.2

UCEC 29.9 23.3 31.2 16.8 29.7 17.1 30.7 21.9 30.7

UCS 20.1 17.1 27.2 9.0 26.9 16.6 27.2 14.7 26.9

UVM 25.8 19.9 27.0 12.5 25.0 12.2 26.2 19.9 27.0
1994; Shen, 2000). We applied these methods, and others

we developed, as tests 1–3 and a supplemental check, to this

dataset of individual diseases. We provided recommendations

regarding how each outcome’s endpoints should be used within

each disease type, with concerns justified in comments (Table 3).

Survival endpoints for each cancer type that passed at least

one of the main tests as well as the supplemental check were

considered acceptable for use. Overall, we recommend use of

all four endpoints without reservation for 13 of the 33 cancer

types: bladder urothelial carcinoma (BLCA), cervical squamous

cell carcinoma (CESC), colon adenocarcinoma (COAD), esopha-

geal carcinoma (ESCA), head and neck squamous cell carci-

noma (HNSC), kidney renal papillary cell carcinoma (KIRP),

lung adenocarcinoma (LUAD), LUSC, OV, pancreatic adenocar-
404 Cell 173, 400–416, April 5, 2018
cinoma (PAAD), sarcoma (SARC), stomach adenocarcinoma

(STAD), and uterine corpus endometrial carcinoma (UCEC). In

contrast, none of the four outcome endpoints can be recommen-

ded for use in the TCGApheochromocytoma and paraganglioma

(PCPG) cases. For lymphoid neoplasm diffuse large B-cell lym-

phoma (DLBC), LAML, and thymoma (THYM), only one endpoint

can be recommended for use; for all other cancer types, either

two or three endpoints can be recommended, some with partic-

ular reservations. Generally, the most reliable of all four end-

points, PFI, could be recommended for use without reservation

in all but 4 of the 33 cancer types, the 4 exceptions being

LAML (no data), DLBC and KICH (use with caution), and PCPG

(not recommended). Thus, despite the impression held by

many that TCGA follow-up times are too short for meaningful



Table 3. Assessment and Recommended Use of the Endpoints of OS, PFI, DFI, and DSS

Type N

OS (Accurately

Defined)

PFI (Accurately

Defined)

DFI (Accurately

Defined)

DSS (Approximately

Defined)

Explanation/CautionUse Event Censored Use Event Censored Use Event Censored Use Event Censored

ACC 92 O 34 58 O 49 43 O* 14 39 O app. 30 60 number of events is

small

BLCA 412 O 181 231 O 177 235 O 32 157 O app. 124 274

BRCA 1097 O* 151 946 O 145 952 O 84 869 O App.* 83 995 need a longer follow-up

for OS and DSS

CESC 307 O 71 236 O 71 236 O 26 150 O acc. 54 249

CHOL 45 O 22 23 O 23 22 O* 10 18 O app.* 18 24 sample size is too small

for OS, DSS, DFI, and PFI

COAD 459 O 102 357 O 123 336 O 24 166 O app. 64 379

DLBC 48 X 9 39 O* 12 36 X 4 24 X 4 44 sample size and number

of events are too small,

need a longer follow-up

ESCA 185 O 77 108 O 87 98 O 23 66 O app. 51 132

GBM 596 O 491 105 O 506 90 X 2 1 O app. 445 110 number of disease-free

cases is small

HNSC 528 O 223 305 O 198 330 O 28 106 O app. 130 372

KICH 113 O* 13 100 O* 17 96 X 6 65 O app.* 10 103 number of events is too

small, need a longer

follow-up

KIRC 537 O 177 360 O 162 375 O* 15 102 O app. 110 415 number of events is small

KIRP 291 O 44 247 O 58 233 O 28 156 O app. 28 259

LAML 200 O 133 67 NA NA NA NA NA NA NA NA NA only has OS data

LGG 515 O* 125 390 O 192 323 O 20 114 O app.* 113 394 need a longer follow-up

for OS and DSS

LIHC 377 O 132 245 O 185 192 O 147 176 O app.* 80 288 need a longer

follow-up DSS

LUAD 522 O 188 334 O 213 309 O 92 217 O app. 116 370

LUSC 504 O 219 285 O 149 355 O 63 241 O app. 91 361

MESO 87 O 74 13 O 61 26 X 7 8 O app. 43 23 sample size for DFI

is small

OV 587 O 349 236 O 414 173 O 196 90 O app. 302 246

PAAD 185 O 100 85 O 110 75 O 23 46 O acc. 79 99

PCPG 179 X 6 173 X 21 158 X 4 156 X 4 175 need a longer follow-up

for OS, DSS, DFI, and PFI;

number of events is small

PRAD 500 O* 10 490 O 93 407 O 30 310 X 5 493 need a longer follow-up

for OS and DSS

READ 170 O* 26 144 O 39 131 X 7 41 O app.* 15 149 need a longer follow-up

for OS, DSS, and DFI;

number of events for DFI

is too small

SARC 261 O 99 162 O 139 122 O 67 86 O app. 81 174

SKCM 470 O 216 247 O 309 154 NA NA NA O app. 190 267 no information to

derive DFI

STAD 443 O 172 271 O 143 300 O 46 213 O app. 103 313

TGCT 134 X 4 130 O 35 99 O 27 78 X 3 131 number of events is small

for OS and DSS; need a

longer follow-up

(Continued on next page)

Cell 173, 400–416, April 5, 2018 405



Table 3. Continued

Type N

OS (Accurately

Defined)

PFI (Accurately

Defined)

DFI (Accurately

Defined)

DSS (Approximately

Defined)

Explanation/CautionUse Event Censored Use Event Censored Use Event Censored Use Event Censored

THCA 507 O* 16 491 O 52 455 O 26 332 X 7 494 number of events is small

for OS and DSS; need a

longer follow-up

THYM 124 X 9 115 O 22 102 NA NA NA X 4 120 number of events is too

small for OS and DSS;

need a longer follow-up;

no information to

derive DFI

UCEC 548 O 91 457 O 124 424 O 57 369 O app. 60 486

UCS 57 O 35 22 O 37 20 O* 10 17 O app. 31 24 sample size is small

UVM 80 O 23 57 O 30 50 NA NA NA O acc. 21 59 no information to

derive DFI

O, recommended for use (passed at least passed one of the 3 tests in step 1 and the supplemental checks in step 2 as described in the STARMethods);

X, not recommended for use; *, caution, see the explanation/caution column; app., approximate; acc., accurate.
endpoint analyses, in fact, they are sufficiently long for many

endpoint determinations in the more aggressive tumor types

and for determination of PFI in most tumor types, where disease

progression events occur well before death events. The Cumula-

tive event plots of OS, DSS, DFI, and PFI for each of 33 tumor

types are provided in Figure S2.

Validation and Application Examples
In breast cancer studies, patients with estrogen receptor-

negative (ER�) tumors have worse clinical survival outcomes

compared with those with ER-positive (ER+) tumors. To evaluate

the derived clinical endpoints, we compared the survival of pa-

tients with these two types of tumors using OS, PFI, DFI, and

DSS, respectively (Figures 2A–2D; plots truncated at 10-year

follow-up time, but analyses were conducted using the whole

dataset following Huo et al., 2017). Univariate analyses showed

that TCGA breast cancer patients with ER+ tumors had

better survival than patients with ER� tumors when using PFI

(p = 0.005) and DFI (p = 0.001) as clinical endpoints, but there

was no sufficient evidence of a difference when using OS as

the endpoint (p = 0.097). We also noticed that there was a signif-

icant difference in (approximated) DSS (p = 0.009), demon-

strating the potential value of this estimated endpoint. As noted

in Table 3, althoughwe caution against using breast invasive car-

cinoma (BRCA) data to determine OS and DSS, the above find-

ings validate our recommended use of PFI and DFI as suitable

endpoints for specific types of breast cancer molecular studies.

We also examined the survival outcome endpoints of a more

aggressive cancer type, GBM. The TCGA GBM median OS

was 12.6 months, which falls between the previously reported

12.1 months with standard care and 14.6 months with standard

care plus temozolomide (Stupp et al., 2005). Themedian PFI was

6.1 months, which falls between the reported 5.0 months with

standard care and 6.9 months with standard care plus temozo-

lomide (Stupp et al., 2005). Thus, the event time for OS and

PFI derived from this TCGA dataset is consistent with the litera-

ture, an observation previously noted for OS in the initial GBM

marker paper when only 185 cases were analyzed (Cancer
406 Cell 173, 400–416, April 5, 2018
Genome Atlas Research Network, 2008). This example again

confirms the validity of OS and PFI as recommended clinical

endpoints for correlation with GBM molecular studies.

We validate the curated TCGA-CDR data by using Cox propor-

tional hazards regression models to determine the hazard ratio

(HR) for patientswith high-stage (III, IV) disease relative to patients

with low-stage (I, II) disease for each of the four endpoints. Tumor-

specific American Joint Committee on Cancer (AJCC) pathology

stages (Amin et al., 2017) were employed following the then-

current version used at each tissue source site (TSS). Because

the definition of DFI was not consistent with that of other out-

comes (i.e., cases with a follow-up of less than 90 days were

excluded, so were de novo stage IV cases), we compared the

logHRs of the stage-based measurements using the three other

endpoints (OS, PFI, and DSS) for the 14 cancer types in which

these outcome endpoints were recommended for use (Table 3).

Subsequent statistical analyses using only diseases satisfying

the Cox proportional hazards assumption (Grambsch and

Therneau, 1994) were performed (Figures 2E–2G; Table S1, tab

Figure 2EFG_AdditionalInfo). Our results showed that the high-

stage HR was significantly larger than unity for most of the

14 cancer types and across the three recommended endpoints,

with the exception of mesothelioma (MESO), PAAD, and uveal

melanoma (UVM), which were not significantly different for high-

versus low-stage disease for either OS, PFI, or DSS. K-M plots

for these analyses are provided in Figure S3. Using paired

Wilcoxon signed-rank test, the logHRs were significantly different

when measured by PFI versus DSS (p = 0.0008) or PFI versus OS

(p = 0.039), indicating evidence of a systematic difference in HR

between the progression and survival endpoints. There was not

significant evidence of a systematic difference between OS

versus DSS (p = 0.106). Using Pearson correlation coefficients

weighted by the inversemean of two standard errors of the logHR

values, we observed very strong positive associations between

logHR estimates for all three outcomes: the correlation coefficient

was 0.96 (95% confidence interval [CI]: 0.77–0.99) between PFI

and OS, 0.95 (95% CI: 0.76–0.99) between PFI and DSS, and

0.90 (95% CI: 0.61–0.98) between OS and DSS. Notably, these



Figure 2. Validation and Application Examples

(A–D) Clinical survival outcomes of breast cancer patients with ER+ or ER� tumors using (A) OS, (B) PFI, (C) DFI, and (D) DSS as the endpoint, respectively. Plots

were truncated at 10 years, but the analyses were conducted using all of the data.

(E–G) Pairwise plots comparing natural logHRs for event development measured by three different clinical endpoints (OS, DSS, and PFI), with natural logHRs

calculated for high-stage (III, IV) disease relative to low-stage (I, II) disease: (E) PFI versus OS, (F) PFI versus DSS, and (G) OS versus DSS. Here 14 diseases for

which these three endpoints are recommended for use are analyzed. The blue diagonal lines illustrate equal logHRs measured by each endpoint pair. Error bars

represents the standard errors of logHR. Red error bars show models that did not satisfy the PHs assumption.
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Table 4. NTE Development from Patients Who Were Never Disease-Free Compared with Those Who Were Once Disease-Free

Type No.

Disease-Freea With Disease

HRb 95% CIbNo.c Event (n) No.c Event (n)

ACC 92 52 13 11 10 14.48 5.59–37.5*

BLCA 412 177 32 49 40 9.68 5.98–15.67*

BRCA 1097 890 80 31 4 1.81 0.66–4.95

CESC 307 172 26 16 7 4.7 2.02–10.94*

CHOL 45 23 7 4 2 2.31 0.48–11.19

COAD 459 187 22 24 15 10.13 5.19–19.74*

DLBC 48 27 4 6 3 21.99 2.25–215.2*

ESCA 185 78 17 13 10 3.84 1.75–8.41*

GBM 596 3 2 17 14 6.62 0.83–52.61**

HNSC 528 132 28 9 7 9.47 4.01–22.41*

KICH 113 68 6 5 2 15.61 2.17–112.59*

KIRC 537 112 15 9 4 2.86 0.94–8.73

KIRP 291 175 24 7 4 5.96 2.04–17.45*

LGG 515 124 20 292 136 3.12 1.95–5*

LIHC 377 277 131 16 11 1.8 0.97–3.34

LUAD 522 296 90 85 59 3.96 2.83–5.53*

LUSC 504 289 63 41 28 6.68 4.25–10.51*

MESO 87 14 7 9 7 1.64 0.57–4.71

OV 587 284 196 91 79 3.78 2.86–5*

PAAD 185 65 22 54 46 4.47 2.65–7.55*

PCPG 179 140 4 9 7 21.13 5.85–76.29*

PRAD 500 338 28 96 50 8.47 5.32–13.49*

READ 170 47 7 5 4 7.28 1.91–27.78*

SARC 261 146 61 69 40 1.92 1.28–2.86*

STAD 443 236 42 64 49 8.78 5.7–13.53*

TGCT 134 100 23 17 3 0.5 0.15–1.7

THCA 507 351 25 42 7 2.46 1.06–5.69*

UCEC 548 404 55 21 13 6.95 3.78–12.76*

UCS 57 25 10 11 11 20.91 5.58–78.29*

Pan-cancer 11,160 5,232 1,060 1,123 672 4.47 4.06–4.93*

*, FDR-adjusted q value < 0.05; **, model with a nominal p value from log rank test < 0.05. Italic HR and 95% CI indicate models we recommend for

additional testing of PHs assumptions (c.f. Table S1, tab Table4_PHAssumptionTests).
aTo overcome immortal time bias, we restricted the patient set to those surviving at least 3 months. This provides a proxy for the time required for a

patient to complete treatment and be identified as disease-free.
bHR and 95% CI were calculated from Cox PHs regression models, using disease-free as reference.
cItalic and underscored, number of patients at risk < 10.
correlations support the potential clinical use of earlier-determined

PFI as a proxy for later-determined OS and DSS endpoints

(Shi and Sargent, 2009).

Apart from integration with the molecular data, there are many

ways to use the pan-cancer data in this TCGA-CDR. As one

application of the TCGA-CDR, we looked to seewhether the like-

lihood of developing a new tumor event (NTE) differed between

patients who were disease-free relative to those not disease-

free following primary therapy. Twenty-nine cancer types in our

TCGA-CDR had the information for addressing this question.

For this analysis, we included patients who survived at least

3 months from diagnosis to approximate the time patients

required to complete primary therapy and achieve a disease
408 Cell 173, 400–416, April 5, 2018
free state (i.e., to prevent immortal time bias in the disease-

free group; Anderson et al., 1983; Giobbie-Hurder et al., 2013).

Using LUSC as an example, there were 289 disease-free cases

and 41 never disease-free cases with a 21.8% and 68.2% NTE

rate, respectively. Using the Cox proportional hazards regres-

sion model, the risk of developing an NTE in LUSC patients

who never became disease-free was significantly higher than

that of those who were disease-free (HR = 6.68, 95% CI =

4.25–10.51, false discovery rate [FDR] adjusted q value < 0.05).

Similar results were observed in another 21 cancer types

(Table 4). Of the remaining 7, we did not see these differences

but caution that majority had few patients at risk. We also as-

sessed whether each model satisfied the proportional hazards



Table 5. Comparing Outcomes from the Top Two TSSs that Provided Most Cases (at Least 50) of Each Cancer Type Studied

Type Site

OS PFI DFI DSS

No. Event HRa 95% CIa No. Event HRa 95% CIa No. Event HRa 95% CIa No. Event HRa 95% CIa

BLCA first 52 18 0.58 0.36–0.96* 52 20 0.67 0.42–1.08 25 4 0.61 0.21–1.77 51 12 0.57 0.31–1.05

second 51 34 1.16 0.79–1.7 51 25 0.92 0.6–1.42 19 2 0.31 0.07–1.32 46 22 1.13 0.7–1.82

others 308 128 309 125 145 26 300 89

BRCA first 150 48 2.83 1.97–4.06** 150 23 0.93 0.59–1.47 111 3 0.23 0.07–0.74* 140 21 2.13 1.27–3.56**

second 102 15 1.08 0.62–1.87 102 16 0.9 0.53–1.53 83 9 0.8 0.4–1.61 102 10 1.17 0.59–2.3

others 844 88 844 94 758 72 835 52

CESC first 64 29 1.97 1.12–3.47** 64 19 1.35 0.75–2.42 31 8 1.56 0.65–3.75 62 18 1.65 0.85–3.2

second 54 20 2.27 1.23–4.19** 54 23 2.12 1.23–3.66** 30 4 0.86 0.28–2.62 54 18 2.39 1.24–4.62**

others 189 22 189 26 115 14 187 18

COAD first 173 31 1.01 0.65–1.58 173 42 1.02 0.69–1.51 84 8 0.65 0.27–1.61 173 28 1.52 0.89–2.58

second 52 11 0.91 0.47–1.76 52 18 1.14 0.67–1.93 27 3 0.7 0.2–2.51 52 6 0.82 0.34–1.98

others 233 60 233 63 79 13 217 30

GBM first 155 128 1.03 0.83–1.27 155 138 1.21 0.98–1.48 NA NA NA NA 152 124 1.04 0.84–1.3

second 93 87 0.83 0.65–1.05 93 90 0.84 0.66–1.07 NA NA NA NA 90 84 0.83 0.65–1.07

others 348 276 348 278 3 2 313 237

HNSC first 135 98 1.85 1.37–2.51** 135 59 1.02 0.74–1.42 21 4 0.44 0.12–1.55 121 48 1.6 1.08–2.37*

second 74 35 1.56 1.05–2.3* 74 25 0.99 0.65–1.51 13 4 1.37 0.46–4.08 73 21 1.37 0.83–2.24

others 318 90 318 105 99 20 307 61

KIRC first 142 39 1.2 0.81–1.79 141 30 0.85 0.55–1.3 NA NA NA NA 141 22 1.03 0.62–1.73

second 107 70 2.72 1.94–3.79** 107 59 2.3 1.63–3.26** 29 6 1.14 0.39–3.34 102 45 2.88 1.89–4.38**

others 288 68 287 71 88 9 282 43

LGG first 104 9 0.65 0.33–1.31 104 18 0.73 0.45–1.21 44 3 0.40 0.12–1.36 104 7 0.53 0.24–1.16

second 86 44 1.73 1.17–2.54** 86 59 2.00 1.46–2.75** NA NA NA NA 81 39 1.78 1.18–2.68**

others 324 72 324 115 90 17 321 67

OV first 111 77 0.59 0.45–0.78** 111 92 0.94 0.74–1.2 63 51 1 0.72–1.41 107 67 0.58 0.44–0.78**

second 99 72 1.28 0.98–1.68 99 69 1.31 1–1.71* 60 44 1.77 1.24–2.53** 94 67 1.4 1.06–1.87*

others 372 199 372 252 163 101 344 167

PRAD first 97 0 NA NA 97 13 0.58 0.32–1.04 85 3 0.27 0.08–0.9* 97 0 NA #N/A

second 65 0 NA NA 65 6 0.71 0.33–1.56 43 1 0.26 0.03–1.9 65 0 NA #N/A

others 338 10 338 67 212 26 336 5

SKCM first 92 55 0.73 0.53–1* 92 73 0.94 0.71–1.23 NA NA NA NA 89 48 0.71 0.51–1*

second 68 28 0.54 0.36–0.82** 68 59 1.51 1.12–2.03** NA NA NA NA 67 24 0.53 0.34–0.83**

others 295 131 296 176 NA NA 293 116

(Continued on next page)
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assumptions (Table S1, tab Table4_PHAssumptionTests). Two

did not meet the assumptions because of causes that remain

to be studied with time-dependent or multivariable models.

The K-M plots for these analyses are provided in Figure S4.

The above two study examples, comparing outcome differ-

ences between high- and low-stage disease and between pa-

tients rendered disease-free or not, demonstrated consistency

with our known understanding of the effect of these factors on

patient outcomes and, therefore, not only further validate the

TCGA-CDR findings but also illustrate how this large clinicopath-

ologic resource can be used to conduct translational cancer

research at an unprecedented scale.

TCGA cases were collected from hundreds of sites worldwide,

including some tissue bank networks with limited clinical infor-

mation. There were also differences in the number of retrospec-

tively and prospectively collected samples by site. To address

whether clinical data were comparable from site to site, multiple

factors, including the completeness of the data, tumor charac-

teristics, and patient characteristics, need to be taken into ac-

count. For each disease, we compared the top two TSSs (i.e.,

the two TSSs that provided the largest number of cases for

each disease) against all other submitting sites for the same dis-

ease and for each of the four outcome endpoints (Table 5). Addi-

tionally, we tested for satisfaction of proportional hazards

assumption (Table S1, tab Table5_PHAssumptionTest), and

models not satisfying the assumption were flagged. The detailed

K-M plots for each of the 33 disease sets are shown in Figure S5.

We observed that, for a highly aggressive tumor like GBM,

these top two TSSs (#1 and #2) had similar OS, PFI, andDSS out-

comes compared with the disease population from other TSSs,

whereas events evaluated by the not-recommended endpoint

DFI were too few to be analyzed. For a less aggressive tumor

type like BRCA, we recommended use of PFI and DFI without

reservation but suggested caution when assessing either OS

or DSS. For TSS #1, their clinical data generated worse OS

and DSS outcomes and showed no observed difference in their

PFI relative to the other sites. However, this same TSS generated

a nominally better DFI outcome, having accrued only 3 DFI

events. Such nominally inconsistent results suggest that

the outcome data from this site need to be further evaluated.

TSS #2, on the other hand, consistently generated outcomes

comparable with those from other sites across all 4 endpoints.

This simple outcome comparison test suggests that TSS-spe-

cific information might need to be taken into account when

analyzing the entire body of TCGA clinical data for specific out-

comes. Because endpoint-confounding factors from different

TSS populations might include patient age, tumor stage/grade,

and treatment, TSSs might serve as a proxy for these as well

as other unmeasured differences, including incomplete clinical

annotation. For this purpose, we have included the key to trans-

late the TSS element of the patient barcode in Table S1, tab

TSS_Info.

DISCUSSION

This TCGA-CDR (Table S1, tab TCGA-CDR) was created as the

result of a systematic review of TCGA pan-cancer clinical data

where we calculated, assimilated, and evaluated four commonly



used clinical outcome endpoints (OS, PFI, DFI, and DSS; Fig-

ure 1) for each of the 33 different TCGA cancer types analyzed

by the network over the past decade (Table 1). In this effort,

we processed and merged data for 10 data elements from the

initial patient enrollment data file and subsequent follow-up

data files. Another 11 commonly used clinical data elements

were also extracted from the initial patient enrollment data file,

with quality assessed for inclusion in the TCGA-CDR. A flag for

case redaction status was also included; e.g., when the subject

withdrew consent or in the cases of genotype mismatch. To

accomplish this pan-cancer effort and also address the many

data-cleaning issues requiring resolution before finalizing this

new scientific resource, we consulted with various TCGA Anal-

ysis Working Group (AWG) experts and worked closely with

TCGA Biospecimen Core Resource (BCR) personnel who origi-

nally collected and curated the data elements for each AWG.

Beyond resolving these problematic issues, the quality of each

clinical endpoint was independently evaluated to offer recom-

mendations about their use in future studies (Table 3).

Despite the relatively short follow-up time across all TCGA

clinical data (Table 2), a limited number of AWG marker papers

contained survival analyses employing a few specific endpoints,

including GBM, where only OS was used in the initial analysis

(Cancer Genome Atlas Research Network, 2008), OV (Cancer

Genome Atlas Research Network, 2011) and LGG (Cancer

Genome Atlas Research Network et al., 2015), where OS was

also used, and UCEC, where PFI was used (Cancer Genome

Atlas Research Network et al., 2013). For future GBM studies,

we can now recommend the use of OS, PFI, and DSS (as an

approximation) with confidence, and for UCEC and OV studies,

we can now confidently recommend the use of all four clinical

endpoints, including DSS, as an approximation (Table 3). In

several TCGA studies, survival analyses were not reported, for

example in prostate adenocarcinoma (PRAD) and BRCA (Cancer

Genome Atlas Network, 2012; Cancer Genome Atlas Research

Network, 2015). For both PRAD and BRCA, we can now recom-

mend use of PFI and DFI but advise caution when interpreting

OS or DSS for BRCA and do not recommend using OS or DSS

for PRAD (Table 3). Of note, DFI was effectively used in more

recent BRCA racial disparity studies (Huo et al., 2017; Keenan

et al., 2015).

Although OS is the most accurately derived endpoint from

the TCGA clinical data as curated in the TCGA-CDR, our

assessment shows that OS is an appropriate endpoint for

many but not all cancer types. For aggressive TCGA cancer

types like GBM, where the median OS event time was

12.6 months, and the median follow-up of 12 months allowed

capturing events in 82.4% of the cases, OS is an appropriate

clinical endpoint. Likewise, OV cases in the TCGA cohort with

their median OS event time of 35.3 months and an event rate

of 59.5% (349 of 587 cases) proved to be sufficiently aggressive

to support this as an appropriate clinical endpoint (Cancer

Genome Atlas Research Network, 2011). However, for less

aggressive cancer types like BRCA, appropriate use of OS

depends on BRCA subtype. There are 4 primary intrinsic

subtypes of BRCA (Perou et al., 2000), including the most

aggressive basal-like subtype, which commonly recurs within

a few years, in contrast to the least aggressive Luminal A
subtype, which may require 10 years or more to recur. Hence,

given a relatively short follow-up time, OS may be a suitable

endpoint for the basal-like subtype but not for the Luminal A

subtype. For an even less aggressive TCGA cancer type like

PRAD, where there were only 10 OS events out 500 cases,

OS is clearly not a suitable study endpoint (Table 3).

In recommending survival endpoint choices within the TCGA-

CDR, our analysis emphasizes strengths and limitations behind

each of the four different endpoint calculations. For OS, events

are clearly defined by the time of patient death. However, for

much of the TCGA clinical data, DSS had to be approximated

because of lack of absolute verification of the cause of death.

Given the relatively short clinical follow-up records for most of

the TCGA cohorts, PFI and DFI might generally be considered

better clinical endpoint choices than OS and DSS because

patients normally develop disease recurrence before death

and, therefore, more endpoint events are recorded during the

follow-up period. PFI in particular was derived with high confi-

dence and is a recommended clinical endpoint choice for 27 of

the 33 pan-cancer types. In five others, its use is recommended

with caution, and for one (LAML), outcome data are lacking and

PFI is not available. Unlike PFI, calculation of DFI requires that

patients be documented as free of disease at a specific point

in time following their initial diagnosis; because this explicit point

in time was not available in the TCGA clinical dataset, here DFI

event time (or censoring) had to be calculated from the day of

initial diagnosis for cases where there was evidence that primary

treatment (e.g., surgical excision) rendered the patient disease-

free. In analysis (Table 4), we used 90 days past diagnosis as

an approximate duration of the common pan-cancer primary

treatment interval. More precise estimates of treatment duration

may be available per cancer type. Among the 4 endpoints, PFI is

generally considered a more informative endpoint for TCGA

pan-cancer studies; however, DFI is also an excellent endpoint

and should be considered suitable for further research into

many TCGA cancer types.

For clinical survival endpoint analyses, all clinical data we have

processed can be used as recommended. But for integrative

analysis with molecular/genomic data, caution is warranted in

two respects. First, our recommendations are based on baseline

survival models. The inclusion ofmolecular subgroups as predic-

tors begins to partition the sample sets, potentially compro-

mising the statistical significance of apparent outcome differ-

ences (Peduzzi et al., 1995). Therefore, conclusions drawn

from cross-correlating TCGA molecular data or tumor sub-

groups with TCGA-CDR outcome data should be further vali-

dated on independent tumor datasets. Second, in general, we

recommend use of only molecular data from primary tumors

because thematching clinical data, including important temporal

information, were collected relatively completely for patients at

the time of initial diagnosis. In particular, skin cutaneous mela-

noma (SKCM) is unique among the TCGA tumor types because,

among 470 tumors, only 103 were primary tumors, whereas 296

were regional lymph node metastases, and 68 were distant

metastases. This is in stark contrast to other TCGA cancer types

where few metastatic tumors were collected. Very few SKCM

metastatic tumors had a matching primary tumor, in contrast

to other TCGA cancer types where the few metastatic tumors
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all hadmatching primary samples. Thus, for SKCMoutcome cor-

relations, we recommend using only the limited number of pri-

mary cases, although the SKCM nodal metastases for stage III

cases could be studied as a discrete group.

The curated clinical endpoint results as presented in the

TCGA-CDR are consistent with independent outcome reports

from other comparable cancer cohorts. For example, the OS

and PFI event times we derived for GBM are consistent with

those in the literature (Stupp et al., 2005). We compared

the TCGA-CDR-determined breast cancer outcomes with well-

established survival differences reported between patients

with ER+ and ER� tumors (Ren et al., 2014; Saphner et al.,

1996; Yu et al., 2012). As expected, patients with ER+ tumors

had significantly better outcome differences using PFI, DFI,

and DSS as the end points.

Data from the TCGA-CDR not only enable investigators to

generate results consistent with those from independent studies

but also invite exploration into biologically relevant questions

across multiple cancer types at an unprecedented scale. For

example, we demonstrate that TCGA patients who were never

disease-free after initial diagnosis show significantly higher odds

of developing an NTE compared with those who were once

disease-free after treatment (Table 4). This finding also highlights

the importance of selecting the most appropriate outcome

variables (Anderson et al., 1983, 2008). Although it may not be

an intuitively surprising observation that patients never made

free of disease are likelier to develop early tumor progression

and die than those rendered free of disease after diagnosis (Bachy

et al., 2010; Schnitt, 2003), the sheer volume of available TCGA

clinical data enabled us to statistically confirm this expectation

with sufficient power evenwhen conditioning on a landmark event

such as end of treatment (here approximated at 3 months).

The relationship of clinical endpoints that may act as surro-

gates for overall survival are of great importance to therapeutic

trials (Chibaudel et al., 2011; Oxnard et al., 2012; Shi and Sar-

gent, 2009). Differences in interpretation (e.g., disease-specific

cause of death, evidence of progression) and accuracy of mea-

surement (e.g., time of event versus time of detection) influence

this decision (Blumenthal et al., 2015; Johnson et al., 2003). This

is particularly true for cancers like BRCA and PRAD, in which we

see that OS may not be an appropriate endpoint without suffi-

cient follow-up time. When we compared survival for patients

with high-stage versus low-stage disease, we confirmed a signif-

icantly worse outcome for those with high-stage disease (Fig-

ure S3; Table S1, tab Figure 2EFG_AdditionalInfo) and demon-

strated that their logHRs measured for OS, PFI, and DSS are

strongly and significantly correlated (Figures 2E–2G). This obser-

vation validates the common practice of clinical trials to choose

intermediate endpoints like disease progression or recurrence

events when comparing interventions for less aggressive can-

cers, where overall or disease-specific survival outcomes might

otherwise require decades of follow-up observations.

Previous TCGA studies have reported important clinical

findings of translational significance on interim smaller cohorts.

For example, in the OV marker paper (Cancer Genome Atlas

Research Network, 2011), OS data were used to generate a

193-gene transcriptional signature for survival prediction, and

its predictive power was validated using several other indepen-
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dent datasets. In the LGG marker paper (Cancer Genome Atlas

Research Network, 2015), analysis of OS showed that

patients diagnosed with an IDH1 and IDH2 (two very similar

genes, hereafter referred to collectively as IDH) mutation with

or without 1p/19q codeletion had substantially longer OS than

did patients who had wild-type IDH, proving that IDH-1p/19q

status represents a more robust survival predictor than LGG

histologic subtype. Indeed, the clinical and molecular work of

this paper factored into evidence used by the World Health

Organization (WHO) to support their 2016 diagnostic update

for glioma (Louis et al., 2016). Importantly, in this TCGA-CDR,

the number of cases for OV, LGG, and others have significantly

increased and now have longer follow-up times, which provides

greater statistical power for future outcome analyses of these or

other TCGA cancer types.

As for all clinical datasets, using TCGA data for outcome

analyses requires picking relevant endpoints, determining

appropriate statistical methods, and carefully validating models.

In providing this newly curated TCGA-CDR database, we have

considered and wish to point out three important issues that

should be noted by future users of this resource: potential

confounding factors, competing outcome risks (Fine and Gray,

1999), and model assumptions.

Confounding Factors
When confounding factors are present but excluded from the

model, bias can manifest as either over- or underestimation of a

true effect. For example, in breast cancer racial disparity studies,

major gene expression differences have been observed between

black and white patients, but, after adjusting for molecular sub-

types, such differences can be significantly reduced or nullified

(Huo et al., 2017; Keenan et al., 2015). Treatment effects are

also potential confounders (see below) that should be considered

when available and adjusted for appropriately. In certain cases, a

proxy for standard of care, such as age, treating hospital, and year

of diagnosis, can alleviate some of the bias when treatment is

unknown. For modeling decisions in this regard, we encourage

the use of the reporting recommendations for tumor marker prog-

nostic studies (REMARK) (Altman et al., 2012; McShane et al.,

2005). Similar to Consolidated Standards of Reporting Trials

(CONSORT) guidelines for reporting randomized clinical trials

(Schulz et al., 2010), REMARK seeks to improve the transparency

and reproducibility of prognostic marker studies.

Competing Outcome Risks
In our determination of DSS, DFI, and PFI endpoints, patients

who died without experiencing the event of interest and were

also disease-free were censored. In this way, we assumed that

if a patient had not died of other causes, then (s)he might have

eventually died of the index cancer. However, there may be sit-

uations in which this assumption is not desirable, such as if we

were to want to estimate the effect of a predictor, say treatment,

on the risk of non-index cancer death, say development of sec-

ondary cancer or cardiovascular disease. We looked for this po-

tential confounding effect of non-index cancer death in our appli-

cation example of cancer stages (Figures 2E–2G) and compared

results across cancer types of three different endpoints but

concluded that, for this example, the effect of competing risk



was minimal (STAR Methods). However, to enable modeling

of competing risk by future users of this resource, we derived

additional endpoints to indicate non-index death (Table S1, tab

ExtraEndpoints).

Model Assumptions
When applying the Cox proportional hazards (PH) model in

particular, the PH assumption must be examined (Grambsch

and Therneau, 1994). In the disease and outcome examples

we discussed, we emphasize that most of our models satisfied

the Cox PH assumption with only few exceptions, but these

exceptions deserve further exploration to try to discern why

(e.g., aging effects, decreasing influence over time) they violated

the PH assumption so that more accurate estimates of the HRs

can be made.

Despite thorough efforts to clean the data and resolve issues,

there remain important use limitations with these curated data

that must be appreciated by all who access this TCGA clinical

data compendium. First and foremost, because TCGA was

designed primarily for molecular studies, clinical data collection

was secondary, and reporting for a number of data fields was

not required by the program. Initial case selection criteria were

for untreated primary cases with appropriately banked tissues

from multiple institutions, and such cases, thus, do not consti-

tute a consecutive series. In TCGA, TSSs were required to

provide initial clinical information as samples were accrued

and 1 year later additional follow-up clinical information where

possible. For prospectively collected samples, the follow-up

time could be as short as only 1 year. In addition, the follow-up

data were not collected uniformly for each of the different tumor

types/studies. Although there were technical difficulties that pre-

vented some sites from supplying follow-up clinical data, a num-

ber of AWGs were very proactive in working with TSSs and the

BCR to ensure that this follow-up information was as accurate

and up-to-date as possible. Having participants from the TSSs

in these AWGs greatly improved the overall quality of the result-

ing clinical data for these TCGA cancer types. Some rules for

clinical data collection had to be changed over time, which

was unavoidable for a multi-national project that improved its

execution over its 10-year time frame. With additional follow-

up data collection, the value of this TCGA clinical dataset would

grow. Although TCGA funding has ended, we encourage the

development of coordinated efforts to follow up on patients

who were alive at last follow-up.

Following from the above, TCGA-CDR does not contain can-

cer treatment history (for the reasons we provide in the STAR

Methods). Some treatment information is available for 32 of the

33 TCGA cancer types, although this was not TCGA-required

data annotation for samples accruing from each TSS, so not all

cases will be annotated. To complete treatment annotations on

more 11,000 TCGA cancer cases representing 33 different can-

cer types and then to assess the completeness, accuracy, and

outcome effect of these annotated treatment data would require

a major undertaking that is beyond the scope and means of this

current resource curation. There are different therapies for

different cancer types and subtypes, and even within one cancer

type or subtype there are multiple treatment regimens. For these

reasons, we feel that analyzing therapy within the context of a
particular tumor type (and/or subtype) may be more appropriate

than pan-cancer generalizations. When patients were treated

with specific therapies, the benefits of such treatments can be

effectively assessed by endpoints such as DFI and PFI.

A second use limitation of this curated TCGA-CDR is that

TCGA samples were accrued both retrospectively and prospec-

tively, and patients were clinically followed up according to local

clinic schedules that might be disease- and site-specific for the

recording of disease recurrence and patient vital status; thus,

there was no TCGA-specified clinical follow-up plan, given the

program’s primary emphasis on tumor molecular characteriza-

tion. Last, almost all TCGA-acquired tumor samples and, there-

fore, the genomic and molecular data derived from them, come

from single sections of primary tumors in newly diagnosed pa-

tients; the resulting genomic and molecular data do not explicitly

capture any spatial or temporal aspects of tumor heterogeneity

that could potentially represent another patient outcome vari-

able. This limitation, though, is not unique to TCGA but true to

any static primary tumor study.

In summary, this work represents the first ever comprehensive

effort to systematically process TCGA pan-cancer clinical data.

We assembled and integrated all of the acquired clinical data files,

reviewed and carefully analyzed dozens of different data elements

important to cancer research, resolved over 1,000 quality as-

sessed (QA) issues, and generated four commonly used clinical

outcome endpoints for each of the 11,160 tumor cases: OS,

PFI, DFI, and DSS. Using well established and newly developed

analysis methods for each tumor type, we quality-scored all

four outcome determinations and further provided tumor-

specific recommendations for their use in future studies. We

also show that the resulting TCGA-CDRyields outcome endpoints

consistent with independent non-TCGA study findings for

different tumor types and demonstrate how this resource offers

new opportunities to produce biologically insightful observations

at unprecedented clinical scale. In recognizing the limitations

inherent within the TCGA-CDR and providing critical guidance

and recommendations for its appropriate use, it has become

abundantly clear that future large-scale molecular studies of

human diseases must also systematically collect clinicopatho-

logic, treatment, and outcome event data adhering to the highest

clinical research standards. Its limitations notwithstanding, TCGA-

CDR presents a standardized dataset with a transparent deriva-

tion of four clinical outcome endpoints and resolution of quality

concerns, enabling translational studies at both pan-cancer and

individual disease levels. Adoption of this dataset by future studies

will improve comparability of the results between studies to afford

better interpretation and support reproducibility.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

The TCGA clinical data of 11,160 patients across 33 tumor types were analyzed.
Commonly used clinical data elements were quality assessed (QA), integrated and processed with the help from disease experts and

TCGA Biospecimen Core Resource. Clinical outcome endpoints of overall survival (OS), progression-free interval (PFI), disease-free

interval (DFI), and disease-specific survival (DSS) were derived. Each qualifying end point was subjected to multi-step assessment,

and led to varying endpoint recommendations per tumor type. Validation and Application of the TCGA CDR data were performed by

examples.

METHOD DETAILS

Clinical data
The TCGA clinical data were downloaded from the data portal of Genomic Data Commons (GDC, https://gdc-portal.nci.nih.gov/

legacy-archive/), by selecting ‘‘Biotab’’ as the Data Format, ‘‘Clinical Data’’ as the Data Type, and ‘‘Clinical’’ as the Platform. From

the total of 225 files of TCGA clinical data, 130 initial enrollment and follow-up files were used in this paper. Other files for radiation

orpharmaceutical treatmentswerenot used.Note that all TCGAmolecular data arealso available fromGDC.ThesameTCGAbarcode

structure is used for both clinical data andmolecular data, with the first portions of the barcode standing for TSS, patient, and sample

followed by tissue aliquots and other information important for molecular studies. This barcode structure enables integration of

patient-based clinical data with sample-based molecular data.

TCGA network collected tumors from 161 tissue source sites (TSSs) across the world, acquiring tumors from 11,160 patients of

33 different cancer types (see Abbreviations); these tumors were originally diagnosed from 1978 to 2013 with the median diagnosis

year of 2009. With the exception of SKCM (see Results), it was dominantly primary tumors that were included in this pan-cancer

collection. Clinical data collection started in 2007. Each TSS completed the initial enrollment data form when a case passed

pathology and molecular qualification metrics at the BCR. Follow-up data was then provided one year or later after specimen

submission; thus, the follow-up date is generally unique to each case. A prospectively constituted Disease Working Group (DWG)

represented each TCGA cancer type and determined the specific clinical data fields to be collected for study by each AWG. While

these working groups could add unlimited questions to the data forms, they were limited in the number of fields that would be

contractually required by the submitting sites, which was usually around 5-10 fields. For example, the breast cancer DWG prioritized

ER, PR and HER2 status over grade for collection. During this clinical data collection process, the TCGA program made a handful of

site visits to TSSs to ensure that data collectionwas being completed correctly. During these visits, source documents were reviewed

and compared to the information submitted to TCGA. The BCR also spoke very frequently with TSSs during the years when they were

submitting clinical data. The BCR had internal applications that validated and tracked the data following established QA rules that are

based on logical relationships between data elements. Data fields and individual data entries were later reviewed by each AWG for
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acceptance or censorship from use in the primary TCGA marker paper. Due to these individualized DWG and AWG processes, the

datasets for each of the 33 TCGA studies are unique but there are shared data elements common to all cancer types. Across all TCGA

studies, hundreds of data elements were included in the initial enrollment forms and subsequent follow-up forms.

In this studywe did not analyze cancer treatment data but wewould like to provide some information about TCGA treatment history

data status here. Treatment data are available for 32 of the 33 cancer types although not for all the cases, because they were not

required data fields when the data were collected. We did not include these data in this TCGA-CDR as we understand that the

treatment history may not be complete and may not show an accurate overview of treatment for the following reasons known to

us: (1) Not all TSSs were where the treatment was performed thus treatment history for patients in those TSSs may not be available;

(2) Prospectively enrolled patients only had updates 1 year after sample collection so treatment information would likely be

incomplete; (3) There is tremendous heterogeneity within treatment data for patients accepted for TCGA studies from all around

theworld. We believe that it will be amajor undertaking to assess the completeness, accuracy, and value of the treatment data, which

demands the establishment of a different AWG to include oncologists and additional disease domain experts. For example, there are

different therapies for different cancer types and subtypes, and even within one cancer type or subtype there are multiple treatment

regimens. For these reasonswe feel that analyzing therapywithin the context of a particular tumor type (and/or subtype) may bemore

appropriate than pan-cancer generalizations. When patients were treated with specific therapies the benefits of such treatments can

be effectively assessed by endpoints such as DFI and PFI.

Handling of special cases and problems in clinical data files
In processing the clinical data, we encountered over 1000 cases with apparent or real problems.

1) There were 7 Stage 0 cases which seemed to be an error since TCGA studies were focusing on invasive cancers but Stage 0

cancers are in situ.However all of these Stage 0 cases were from the SKCM study, where patients’ clinical data were referring

to the time of diagnosis. For all these Stage 0 cases, it was the subsequently developed distant metastasis tumors that were

used in molecular profiling. Of the 470 tumors used in the SKCM study, only 103 were primary tumors, and 296 were regional

lymph node metastases. The remaining 68 were distant metastases, and those metastatic tumors did not have a matching

primary tumor.

2) There were 483 cases of patients who died ‘‘With Tumor’’ but without a defined ‘‘New NTE,’’ and they were not de novo

Stage IV. This left us unsure whether these patients really died of tumor, and if so were the new tumors new primary tumors

or recurrent tumors of any type. In a previous breast cancer study (Huo et al., 2017) there were 17 such cases, and the authors

decided to exclude them from the breast cancer-free interval endpoint analysis (equivalent to DFI here) after reviewing each of

them by checking into the original clinical database at BCR. For the current study, after a careful vetting we decided to also

exclude these 483 patients from DFI and but included them in OS, PFI and DSS.

3) There were 62 patients who were ‘‘Dead’’ with ‘‘Tumor Free,’’ but there was a defined ‘‘New NTE.’’ This apparent data

inconsistency would affect derivation of DSS but not the other 3 endpoints. This apparent data inconsistency might be

what really had happened, as the patient might have developed a new NTE but then treated again to enter a ‘‘Tumor

Free’’ status, and subsequently died. In this scenario the case should be censored. Equally, there could be an error in vital

status or tumor status, yet we have no evidence which scenario is true. Thus we considered all 62 cases as censored for

DSS. In contrast, the DFI endpoint is defined at the time of the NTE.

4) There were10 patients who were ‘‘Dead’’ with ‘‘Tumor Free,’’ but the exact cancer type was given as ‘‘Cause of Death.’’

Sieving through the BCR records, we found that three patients had no residual tumor (R0) after surgery, but died 66, 113,

and 436 days respectively after diagnosis. Two patients had an ‘‘unknown’’ tumor status in the xml file, but there were notions

that they had progressive diseases. One other patient had additional update 2 years later with tumor status ‘‘unknown’’ but

the information was not updated in the final xml file. For the remaining 4 patients, there was no explanation found. Combining

these additional lines of evidence with the caution we provided before regarding the field of ‘‘Tumor Status,’’ we resolved

these conflicts based on the field of ‘‘Cause of Death,’’ with a caveat that clinically sometimes it is difficult to pinpoint

specifically what causes someone to die and or if a symptom or illness is related to the cancer.

5) There were 797 of the 3346 ‘‘New NTE’’ that did not have a new tumor type specified. In the strict definition of PFI, the

progression should be referring to the progression of the initial primary tumor and thus these cases would have been

excluded. However, during data analysis the PanCanAtlas Pan-Immune AWG decided to adopt a more relaxed definition

of PFI to include any new tumor as an event so these 797 were included in PFI. We assessed that the rate of a positive

response in the ‘‘new primary tumor in other organ’’ field among all 797 new NTEs is very small, thus these 797 cases can

be included in PFI analysis to minimize selection bias.

6) There were 6 cases showing a negative value ranging from�1 to�64 in the field ‘‘last_contact_days_to,’’ suggesting that the

patient was last contacted before diagnosis. There were also 6 cases with an AJCCStage IV showing a negative value ranging

from �4 to �359 in ‘‘new_tumor_event_dx_days_to,’’ suggesting that their new NTEs were reported before the patient was

diagnosed with cancer. We carefully reviewed the original data, and found different reasons for those negative values but

concluded that the solution to those cases were to set the value of these fields to ‘‘0.’’
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7) There were 46 patients whose ages were 90, and who have equal values in ‘‘birth_days_to.’’ This artificial set of ages is

because of the de-identification requirement specified in Health Insurance Portability and Accountability Act of 1996. Users

need to be cautious that patients shown at an age of 90 are actually 90 years of age or older.

8) Priority of data files: When there is inconstancy between follow-up time from files of different recording dates, should the data

from a later follow-up file take the priority? The answer is no. The recording dates for follow-up forms are administrative only

and may not correlate with patient history. Therefore, we decided that the record with a longer follow-up time would be

preferred when determining event times.

9) Therewas one patient whose vital status in the enrollment data filewas ‘‘Alive’’ with a days_to_last_followup, yet in a follow-up

file the vital status was ‘‘Dead’’ but without ‘‘days_to_death.’’ We choose to use the data in the enrollment data file since the

timing of the subsequent death could not be determined.

10) There was one patient with OV showing a tumor with grade 4. Grade 4 is not a valid value for OV. However since this is the final

data in the TCGA dataset and we have no evidence to support re-grading of the tumor, we left it as grade 4.
Choice of time zero for time-to-event calculations
In TCGA-CDR, we chose the date of diagnosis as time zero for time-to-event calculations for the following reasons. First, TCGA

focused on untreated primary tumors. Of all the 33 cancer types, only SKCM contained a significant portion of the samples that

represented either local or distant metastatic tumors for which there were no matching primary tumors. All other cancer types

had no more than a few metastatic tumors which were all accompanied with matching primary tumors. There were a few tumors

identified after submission as having prior treatment, most were for prior or other malignancies. Based on treatment type TCGA

determined if the case was acceptable or unacceptable for use in molecular studies. Only 42 (0.3%) patients with neoadjuvant

treatment made it into TCGA and were marked with a notification by the TCGA program office.

For any ‘‘primary’’ tumors, the tissue sample was removed from the patient at or close to the time of diagnosis. A field of ‘‘days_to_

sample_procurement’’ is available in the tumor-sample data file for each disease by going to the link of https://portal.gdc.cancer.gov/

legacy-archive/search/f to search in the ‘‘File’’ tab using a disease-specific file name, for example for BRCA the search term will be

‘‘nationwidechildrens.org_ssf_tumor_samples_brca.txt.’’ For any other disease the abbreviated disease name will be used in the

place of BRCA in the search term. Formetastatic tumors, the values in the field of ‘‘days_to_sample_procurement’’ are relatively large

but for primary tumors, the values in this field are small. For example for BRCA, the mean was 34 days, and the median was 21 days.

Within such a small number of dayswe do not feel that tumorswould have developed somuch as to impact the clinical outcomes, and

that using date of diagnosis as time zero would be a good approximation for the date of sample procurement.

Finally, in TCGA data collection, dates were requested which were later processed to derive temporal reference to time zero for

compliance with HIPAA regulations. The date of diagnosis was chosen as time zero by TCGA, because this date was available for

all patients but other dates, for example the date of sample procurement was not. In fact, date of sample procurement was not a

required field. In addition, since dates are protected health information (PHI), some TSSs did not provide exact dates but only the

month and year. For these cases TCGA BCR used the 15th day of the month to represent the date. This best possible solution

introduced a variation from 0 to 16 days for any such date which is in the same range of the days_to_sample_procurement for breast

cancer. Thus, we concluded that date of diagnosis is the preferred choice for time zero in TCGA-CDR, when compared to date of

sampling.

Definitions and derivation of clinical survival outcome endpoints
There are many definitions of clinical outcomes used in oncology research. After assessing all TCGA clinical datasets, four clinical

survival outcome endpoints were chosen for this pan-cancer clinical endpoints analysis: Overall Survival (OS), Progression-Free

Interval (PFI), Disease-Free Interval (DFI), and Disease-Specific Survival (DSS), defined as follows.

OS is the period from the date of diagnosis until the date of death from any cause. The censored time is fromdate of initial diagnosis

until the date of last contact (largest number of days) from all the clinical data files (including both enrollment and follow-up forms).

Withminor exceptions as described in Handling of Special Cases and Problems in Clinical Data Files, derivation of OS outcomeswas

not problematic, as there exists minimal ambiguity in the databases about a patient’s status at different time points: alive or dead.

PFI is the period from the date of diagnosis until the date of the first occurrence of a new tumor event (NTE), which includes pro-

gression of the disease, locoregional recurrence, distant metastasis, new primary tumor, or death with tumor. Patients whowere alive

without these event types, or died without tumor were censored (Hudis et al., 2007; Website). The event time is the shortest period

from the date of initial diagnosis to the date of an event. The censored time is from the date of initial diagnosis to the date of last con-

tact or the date of death without disease. PFI could be calculated for 31 of the 33 tumors, but not for acute myeloid leukemia (LAML)

and lymphoid neoplasm diffuse large B cell lymphoma (DLBC). This endpoint is a commonly used surrogate endpoint for a future

death outcome which otherwise takes a longer follow-up time to document and, unlike DFI, described below, it is associated with

less ambiguity in that it is not necessary to first know whether a patient ever achieved disease-free status following their initial diag-

nosis and treatment. Nonetheless, several issues were encountered that needed resolution (c.f. Table S1 Tab TCGA-CDR_Notes).

Among these, we needed to resolve the question of an NTE not clearly specified by tumor type, and to do this we adopted a

more inclusive definition considering all NTEs in our calculation of PFI. However, in Table S1 Tab ExtraEndpoints, we provide two
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more restrictive definitions of PFI (PFI.1 and PFI.2) so that users can choose the most appropriate PFI parameter for their

research needs.

We would like to point out that the value of ‘‘Progression of Disease’’ was only reported in cancer types of OV, GBM, and UCS, for

34, 256, and 6 cases respectively. The definition of ‘‘Progression of Disease’’ was not as clear as the definitions for other PFI events,

but they generally would be defined by clear radiographic evidence of new or progressive disease. OV and GBM were TCGA pilot

study cancer types and that as the clinical data forms evolved and continued to be improved, the value of ‘‘Progression of Disease’’

was essentially eliminated from the data forms. At the launch of the full-scale TCGA study it had been replaced with more explicit

conditions of new NTEs.

Importantly, in our definition of PFI, ‘‘death with tumor’’ was considered an event whether an NTEwas reported or not. There were a

total of 2478 patients whowere ‘‘Dead’’ and ‘‘With Tumor.’’ For 1830 patients there was a defined NTE, but for 648 patients there was

no recordedNTE. Since NTEwas not a required field, these 648 patientsmay represent cases where anNTEwas not recorded or that

the disease rapidly progressed and the patient died without an NTE diagnosed. Counting the deaths without an NTE as PFI events

would be expected to bias the outcome analysis due to overestimation of event times if the patient had developed an NTE prior to

death but it was not reported to TCGA. To address whether these 648 patients represent under-reported NTEs and should be

excluded from PFI studies we compared their overall survival time to patients who also diedwith tumor but who had an NTE reported.

Because censored cases are excluded from this comparison and survival times tend to follow a log-normal distribution, we

compared groups using the Wilcoxon rank-sum test (Table S2). Of the 31 cancer types that had available data for this analysis,

14 showed a shorter median event time for cases not having an NTE, of which 2 had significantly different survival distribution.

The remaining 17 showed the opposite finding, of which 3 had significantly different survival distributions. Thus, in summary,

only 5 cancer types (COAD,GBM, HNSC, KIRC, SKCM) had a significantly different survival-time distribution between the two groups

of patients, with both over- and under-estimation observed. We therefore accept that there is not evidence for systematic bias by the

assumption that in patients who were reported as dead with tumor be counted as PFI events and we retain these cases in analyses

going forward.

DFI is another commonly used surrogate signifying future cancer mortality in many clinical studies. DFI defined here is the period

from the date of diagnosis (due to the reason given below) until the date of the first new tumor progression event subsequent to the

determination of a patient’s disease-free status after their initial diagnosis and treatment. Such a new event can be either locoregional

recurrence, distant metastasis, development of a new primary tumor in the same organ, or death from advancing of the same

tumor (Hudis et al., 2007; Punt et al., 2007). Patients who developed a new primary tumor in another organ, or were alive without

locoregional recurrence, without distant metastasis or development of another primary tumor in the same organ, or who were

dead and tumor free were censored. The event time is the shortest time from initial diagnosis date to the date of an event. The

censored time is from initial diagnosis date to the last contact date or the date of death.

This outcome endpoint was the most difficult to derive from available TCGA clinical data files in the absence of unspecified cer-

tainty about whether a patient was ever disease-free after their diagnosis. Consequently, 1095 stage IV TCGA patients were excluded

from this endpoint analysis as recommended in other studies (Huo et al., 2017; Keenan et al., 2015) (Table S1 Tab TCGA-CDR), and

given an NA (not applicable) for DFI. For other cases, the data field of ‘‘Tumor Status’’ in the initial enrollment data file could not be

counted on, as it was unclear to us whether the clinical sites completing this field consistently followed a specific time point when the

data formwas completed, or if this indication was referring to the fact that the patient was once disease-free after the initial surgery or

after the first course of treatment. We found cases supporting all possible scenarios. In certain cases, the evidence supported the

situation that the patient had more than one-round of disease-free and recurrent cycles. After reviewing all the data elements we

determined that the fields of ‘‘treatment_outcome_first_course,’’ ‘‘residual_tumor,’’ and ‘‘margin_status’’ could be used to arrive

at this determination, and these fields were populated for 29 out of 33 cancer types (Table S4). Disease-free was defined as true,

if the field ‘‘treatment_outcome_first_course’’ is ‘‘Complete Remission/Response,’’ the field ‘‘residual_tumor’’ is R0, or the field

‘‘margin_status’’ is negative. For SARC, the only disease that presented data of both ‘‘margin_status’’ and ‘‘residual_tumor,’’ where

cases having both values were highly consistent, we choose ‘‘residual_tumor’’ to resolve conflicts as there were more cases having

a value for ‘‘residual_tumor’’ than for ‘‘margin_status.’’ Also, in clinical practice the time to assess the ‘‘residual_tumor’’ is when

first course of treatment was done. If the cases were never disease-free, they are given an NA (not applicable) for DFI. Cases of

‘‘dead with tumor’’ but without a new NTE were also excluded (given DFI of NA) as otherwise those cases would artificially prolong

the time of recurrence and bias the results. LAML had only OS data, and SKCM, thymoma (THYM), and uveal melanoma (UVM) didn’t

have any of the information of ‘‘treatment_outcome_first_course,’’ ‘‘residual_tumor,’’ and ‘‘margin_status,’’ and their DFI were not

available. Thus finally we were able to derive DFI for 5,521 cases (1,118 events and 4,403 censored) from 29 of the 33 tumor types

(Table S4; Table S1 Tab TCGA-CDR).

We recognize that for DFI the time interval should start from the time when the patient was first determined to be disease-free, but

such information was not available in the TCGA clinical dataset so we used the time of diagnosis as a surrogate. In statistical analysis

using DFI, we restricted the patient set to those surviving at least 90 days to provide a proxy for the time required for a patient to

complete treatment and be identified as disease free, to avoid immortal-time bias (Anderson et al., 1983; Giobbie-Hurder et al., 2013).

While OS is easy to define, it lacks specificity about cause of death and includesmany non-cancer deaths. DSS, on the other hand,

defined here as death from the diagnosed cancer type, has much greater relevance to cancer biology and therapeutic impact. A DSS

event is death from the disease, and the event time is from the date of initial diagnosis until the date of death from the disease. The
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censored time is from the date of initial diagnosis until the date of last contact or until the date of death from another cause.Within the

TCGA dataset, however, derivation of DSS was complicated since only 6 of the 33 cancer types included a clinical form data field,

‘‘Cause of Death’’ (Table S3). Three of these cancer types, cervical squamous cell carcinoma and endocervical adenocarcinoma

(CESC), pancreatic adenocarcinoma (PAAD), and UVM, had relatively high quality data for DSS analysis. Testicular germ cell tumors

(TGCT) and prostate adenocarcinoma (PRAD) had few DSS and overall deaths. While, stomach adenocarcinoma (STAD) had over

50% of death events of unknown cause. For other cancer types, combining the fields of ‘‘tumor_status’’ with ‘‘vital status’’ allowed

us to derive a surrogate for DSS, by approximating ‘‘Dead’’ and ‘‘With Tumor’’ as a DSS event, which in most cases was likely true.

Note that the initial patient enrollment form data entry ‘‘Tumor Status’’ should not be considered as a standardized data field as it

was poorly defined in early versions of the data form. The quality of the information in this field was improved by merging with the

information from the follow-up data files, which yielded a new ‘‘tumor_status’’ field shown in Table S1 Tab TCGA-CDR, which we

considered suitable for use in deriving this endpoint. But, we caution that this surrogate uni-directionally augments the number of

events, as a patient with a tumor who died of other causes (e.g., a car accident or heart attack) would be counted as a DSS event.

Thus our derived DSS only approximates the true DSS.

Wewould also like to point out that there is another often used endpoint, PFS. The definition of PFS is not standard and often relies

on the clinical study at hand. In our definition of PFI, the events included deaths with tumor, but do not include deaths from other

causes. We hold the opinion that for cancer studies, deaths with tumor are more relevant thus we choose to use our definition

here which we term as PFI to tell its difference from commonly used term of PFSwhich, in some definitions, contains death from other

causes. For convenience of users who prefer to use this definition of PFS, we included this endpoint in Table S1 Tab ExtraEndpoints.

Assessment of clinical endpoints of OS, PFI, DFI, DSS
Time-to-event studies must have sufficient follow-up to capture enough events and thereby ensure there is sufficient power to

perform appropriate statistical tests (Clark et al., 2003). To test the sufficiency of the follow-up time for each endpoint, three tests

and one supplemental check were applied in a two-step process. In Step 1, testing methods for sufficient follow-up developed

by Maller and Zhou (Maller and Zhou, 1994) (Test 1), and by Shen (Shen, 2000) (Test 2) were used, employing a threshold of

0.05 for calculated statistic as significance. Test 1 is based on the concept that a plot of the K-M empirical distribution function tends

to level off near its right extreme if the follow-up is sufficient. Thus, the step function of K-M should not jump at censored observations,

and it should stay constant or flat on the interval from the largest failure/event time to the largest follow-up time. Themagnitude of the

interval is manifested by the information of the censored observations in the interval which is relevant to testing the hypothesis that

the right extreme of failure/event distribution is less than or equal to the right extreme of the censoring distribution. If the observed

value of the interval is ‘‘large,’’ then the hypothesis is accepted so the study has a sufficient follow-up time. Under certain circum-

stances, however, this test may accept a hypothesis with a type I error larger than the nominal value of 0.05. Test 2 adopts the

same concept as Test 1 but improved the control of the type I error. It uses the ratio of the largest follow-up time versus the largest

failure/event time rather than the distance of the interval to perform the test. If the ratio is ‘‘large,’’ then the hypothesis is accepted.

Both tests, however, have the weakness that when applied to rapidly progressing diseases such as GBM, the test results are not

always stable. To address this weakness, we proposed Test 3, requiring an event rate R 30% for all the cases to complement

Test 1 and Test 2.

In Step 2, we developed a Supplemental Check that was composed of three checkpoints: (1) a visual inspection of the cumulative

event plot where the plot should reach a plateau (Figure S2); (2) median event time should be less than median censored time, to

ensure relatively long follow-up time for events to occur but this condition is not necessary for diseases with an event rate > 50%

such as GBMand ovarian cancer (OV); and (3) the number of events should be greater than 20 based on the ‘‘one in ten rule’’ in model

building which means that one predictive variable can be studied for every 10 events (Harrell et al., 1996; Peduzzi et al., 1996). Thus,

to approve an endpoint for use, the data should pass at least one of the 3 tests in Step 1, and pass all the checkpoints in the Step 2,

the Supplemental Check. Data passing at least one of the three tests in Step 1 but failed to pass all three checkpoints in Step 2 yet

had at least 10 events are recommended for use with caution. Otherwise the data are not recommended for use. The endpoints

assessment method is illustrated in the flowchart Figure 1A.

The 4 survival end-points were tested for each of the 33 tumor types. For OS, among the 33 tumors, 7 tumor types passed both

Test 1 and Test 2 in Step 1, which are adrenocortical carcinoma (ACC), BLCA, KIRP, rectum adenocarcinoma (READ), SARC, UCEC,

and UVM, and further passed the Supplemental Check in Step 2 except for READwhichmay need a longer follow-up. 15 tumor types

passed Test 1 (Maller and Zhou 1994), which are BRCA, CESC, COAD, ESCA, KICH, kidney renal clear cell carcinoma (KIRC), LGG,

LUAD, OV, PCPG, PRAD, STAD, thyroid carcinoma (THCA), THYM, and uterine carcinosarcoma (UCS). Given that Test 1 is very con-

servative, we followed the Supplemental Check in Step 2 and confirmed that BRCA, LGG, PCPG, PRAD, and THCA did need a longer

follow-up time to capture more OS events. GBM, HNSC, LUSC, MESO, PAAD, SKCM did not pass Tests 1 and 2 in Step 1, but

passed Test 3, and further passed the Supplemental Check in Step 2, thus these 5 tumor types were approved as having a sufficient

follow-up time for OS. Other diseases that did not pass the tests either needed a longer follow-up time or a larger sample size for more

events. Thus OS of 21 tumor types was recommended for use without reservation, OS of 7 tumor types was recommended for use

with caution, and for the remaining 5 tumor types OS was not an endpoint recommended for use.

For PFI, among the 33 tumors, LAML did not have the data. 19 tumor types passed Tests 1 and 2 in Step 1, which were BRCA,

CESC, cholangiocarcinoma (CHOL), COAD, ESCA, KICH, KIRP, liver hepatocellular carcinoma (LIHC), LUAD, OV, PAAD, PRAD,
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SARC, STAD, TGCT, THCA, THYM, UCEC, and UVM). They further passed the Supplemental Check in Step 2 except for BRCA and

KICH; KICH had 17 events, and BRCA had a median time to event of 26 months and a median time to censor of 25 months. Since

these two median times were so close plus all other conditions were met, we considered the follow-up time for PFI of BRCA as

sufficient. 7 tumor types (DLBC, GBM, HNSC, LGG, LUSC, MESO, READ) passed Test 2, and 2 tumor types (ACC, and UCS) passed

Test 1, and all of them passed the Supplemental Check in Step 2 except DLBC that had 12 events. 3 tumor types (BLCA, KIRC, and

SKCM) did not pass Tests 1 or 2 but passed Test 3, and they further passed the Supplemental Check in Step 2. Thus, LAML did not

have the PFI data; KIRC, DLBC and PCPG were recommended for use with caution, either because the sample size was too small

or that a longer follow-up was needed to capture 20 events, and we also marked CHOL and UCS for use with caution because the

sample sizes were small. The rest of the 27 tumor types were recommended for use without reservation.

The sufficiency of follow-up for DSS was similar to that of OS, and the sufficiency of follow-up for DFI was similar to that of PFI,

except that the numbers of events were smaller.

Competing risk
The assumption of censoring in the above definitions of PFI, DFI, and DSS is that if the patient had not died theywould have eventually

experienced the event of interest. For instance, if a patient had not died of a heart attack he would have eventually died of his cancer.

In this example death from a heart-attack is a competing risk for death from cancer. Or similarly, death from a heart attack is a

competing risk for developing progression of cancer. Survival analysis models are available to account for thesemultiple event types

and should be considered (Fine and Gray, 1999). The effect of a predictor on the outcome of interest may differ by outcome type.

Modeling with competing risks may uncover these differences or reduce biases in the risk estimation from incorrect censoring as-

sumptions. In the CDR a competing risks status variable is created for DSS, DFI, and PFI to assist with these analyses (Table S1

Tab ExtraEndpoints). In these status variables, ‘‘1’’ indicates that the event of interest occurred, ‘‘2’’ indicates that a competing event

occurred, and ‘‘0’’ indicates that the patient did not experience an event during follow-up. For this paper, the influence of competing

risks on the predictors under studywas assessed and appeared to beminimal. For the high/low stage comparisons of Figures 2E-2G,

considering this competing risk and found that the logHR was in the same direction, with the same significance, and similar magni-

tude. The difference in the two logHRs was very small and in both directions (Table S1 Tab Figure 2EFG_AdditionalInfo).

In deriving these endpoints, 11 data elements from the main or follow-up clinical data tables were used. We added another field to

indicate whether the case was flagged for redaction based on the TCGA sample annotations.

Other clinical data fields processed
In addition to endpoint-related data fields, we also processed 10 commonly used data fields across cancer types wherever possible

as it would be extremely difficult, inefficient, and beyond the scope of this pan-cancer effort, for us to process all clinical data fields

given the different specific requirements for different cancer types. In these 10 common fields, quality assurance was performed by

checking the data range and the logical relationships between data fields, and by comparison with previously derived data versions

being used by other TCGA AWGs (Huo et al., 2017; Cancer Genome Atlas Network, 2012).

QUANTIFICATION AND STATISTICAL ANALYSIS

Cox proportional hazards (PH) regression model was used to calculate the Hazard Ratio (HR), the 95% confidence interval (95%CI),

and p values, with the PH assumption assessed by a test of Schoenfeld residuals. The K-M method was used to create the survival

plots and the log-rank test was used to compare the difference of survival curves. Wilcoxon rank-sum test was used for testing the

difference between the distributions of un-censored survival time. Competing risks regression was used to estimate the competing

risk of the endpoints per tumor type. For all tests, a two-tailed p value < 0.05 was considered statistically significant. In situations of

multiple tests, the false discovery rate (FDR) was calculated using the Benjamini & Hochberg method. All analyses were performed

using R 3.2.2.

DATA AND SOFTWARE AVAILABILITY

The TCGA clinical data were downloaded from the data portal of Genomic Data Commons (GDC, https://gdc-portal.nci.nih.gov/

legacy-archive/). From the total of 225 files of TCGA clinical data, 130 initial enrollment and follow-up files were used, and a total

of 11,160 patients across 33 tumor types were analyzed in this paper. An Integrated TCGA Pan-Cancer Clinical Data Resource

(TCGA-CDR) was created and available in Table S1.
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Supplemental Figures

Figure S1. K-M Plots of OS, DSS, DFI, and PFI for 33 Tumor Types (OS, Blue; DSS, Red; DFI, Green; PFI, Pink), Related to Figure 1



Figure S2. Cumulative Event Plot of OS, DSS, DFI, and PFI for 33 Tumor Types (OS, Blue; DSS, Red; DFI, Green; PFI, Pink), Related to Figure 1



Figure S3. K-M Plots Comparing the Outcomes for Patients Diagnosed with Higher Stages (III and IV, Orange) versus Lower Stages (I and II,

Blue), Related to Figure 2

(A–D) OS (A), PFI (B), DFI (C), and DSS (D). Only converge models were shown here.



Figure S4. K-MPlots of newNTEDevelopment fromPatientsWhoWere Never Disease-Free (Orange) Comparedwith ThoseWhoWere Once

Disease-Free (Blue), Related to Table 4

Results of 29 cancer types are shown here as for the rest 4 of the 33 cancer types therewas no newNTE information. The plot for all cancers combined is shown as

the last figure.



Figure S5. K-M Plots Comparing the Survival Data from the Top Two TSSs (#1 in Blue and #2 in Orange) with Those from All Other Sites

(Green) for Each Cancer Type, Related to Table 5

(A–D) Plots were made using endpoints of OS (A), PFI (B), DFI (C), and DSS (D). Statistical analysis results for diseases with both top sites supplying at least

50 cases are shown in Table 5.
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