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Abstract 

Inflammatory changes are responsible for maintenance of the atherosclerotic process and may 

underlie some of the most feared vascular complications. Among the multiple mechanisms of 

inflammation, the arterial deposition of lipids and particularly of cholesterol crystals is the one 

responsible for activation of inflammasome NLRP3, followed by the rise of circulating markers, 

mainly C-reactive protein (CRP). Elevation of lipoproteins, LDL but also VLDL and remnants, 

associates with increased inflammatory changes and coronary risk. Lipid lowering medications 

can reduce cholesterolemia and CRP: patients with elevations of both are at greatest 

cardiovascular (CV) risk and receive maximum benefit from therapy. Evaluation of the major 

drug series indicates that statins exert the largest LDL and CRP reduction, accompanied by 

reduced CV events. Other drugs, mainly active on the triglyceride/HDL axis, e.g. PPAR agonists, 

may improve CRP and the lipid pattern, especially in patients with metabolic syndrome. The 

newest most potent medications, i.e. PCSK9 antagonists, do not induce significant changes in 

inflammatory markers, but patients with the highest baseline CRP levels show the best CV risk 

reduction. Parallel evaluation of lipids and inflammatory changes clearly indicates a significant 

link, both guiding to patients at highest risk, and to the best pharmacological approach. 
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Key messages:  

1. Lipid lowering agents with “pleiotropic” effects provide a more effective approach to CV 

prevention 

2. In CANTOS study, patients achieving on-treatment hsCRP concentrations  2 mg/L had a 

higher benefit in terms of reduction in major CV events 

3. The anti-inflammatory activity of PCSK9 antagonists appears to be of a minimal extent 
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1. Introduction 

Inflammation has long been associated with the initiation and progression of atherosclerosis 

(1). Detection of elevated high sensitivity C-reactive protein (hsCRP) in sera of statin treated 

post-myocardial infarction patients with “residual inflammatory risk” (2), opened up a new 

front in the evaluation and treatment of patients with a high risk of recurrent events (3). The 

initial observations in patients with relatively normal lipoprotein levels and positively 

responding to statins, in the presence of isolated hsCRP elevations, gave the first 

demonstration of the validity of this approach in a number of clinical studies (4). Insights into 

the role of inflammation in the pathogenesis of atherosclerosis came also from a meta-analysis 

of 54 long-term prospective studies, comprehensive of 160,309 people without a history of 

vascular disease, reporting a continuous association of hsCRP levels with the risk of coronary 

heart disease, ischemic stroke and vascular mortality. The ability of hsCRP to predict risk is as 

large as that of cholesterol and blood pressure (5). When evaluating 23 studies in a meta-

analysis on 57 patient groups treated with different hypocholesterolemic agents (statins and 

non-statins) Kinlay reported a strong correlation between LDL-C reduction and lowering of 

hsCRP, confirming the concept of LDL-C lowering as a determinant  for the reduction in 

inflammation, possibly contributing to lower CV risk (6) (Figure 1). 

The present review article is aimed at evaluating the present-day status of the clinical 

approach to patients with an elevated CV risk. This initial evaluation will allow to better define a 

therapeutic approach. It has, in fact, been clearly reported in recent years that even after 

optimal treatment of patients with manifest vascular disease, the rate of recurrent events can 

be relatively high. These data suggest that even when all target values have been reached, 

many such patients will maintain a > 20% or even > 30% CV risk over 10 years and thus an area 

of substantial medical need is clearly present (7). 

 

2. Lipoproteins and CV risk 

In the development of vascular atheroma, in the presence or absence of inflammatory changes, 

lipoproteins still play a major role. 

 

2.1 Low-density lipoproteins. 

Low-density lipoproteins (LDL) represent the most significant accompanying biochemical 

variable associated with atheroma. The association between lowering of LDL-C and 

cardiovascular risk reduction was evaluated by Silverman across different statin and non-statin 
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therapies. The relative risk of major vascular events was similar for all drug classes (statins, bile 

acid sequestrants, ezetimibe, and fibrates), and the lower achieved LDL C levels (not percentage 

reductions) were associated with a reduced incidence of major CV events (8). As recently 

reported in a meta-analysis and meta-regression analysis of 34 primary and secondary 

prevention trials of intensive (136,299 patients) vs less intensive (133,989 patients) LDL 

lowering therapy (statins, ezetimibe and PCSK9 inhibitors) clear differences were detected in 

patients who benefitted most from LDL lowering. In terms of risk reduction of total and CV 

mortality, myocardial infarction (MI), revascularization, and major adverse cardiac events 

(MACE), patients with baseline LDL-C  100mg/dL and receiving the more intensive treatment 

had the greatest benefit (9, 10). 

A number of studies indicate that elevations of LDL-C are associated with the presence 

of vascular atheromas, both as witnessed by increased vascular events as well as by the 

reduction of events in the presence of cholesterol lowering medications (11). In these 

conditions the presence of a vascular inflammatory pattern can be explained by a number of 

mechanisms, the most significant being a local inflammatory stimulus exerted by the 

cholesterol crystals, potentially a trigger of the perforation of the fibrous cap (12). Cholesterol 

crystal formation is due to an imbalance between esterified and free cholesterol as well as by 

changes in HDL function (13), involved in the reverse cholesterol transport process (14). 

Monocytes and macrophages avidly phagocytose cholesterol crystals increasing secretion of IL-

1  through activation of the inflammasome NLRP3 (15). The NOD-like receptor pyrine domain-

containing protein 3, i.e. NLRP3, in phagocytes, leads in fact to phagolysosomal damage (16). 

Reduction of cholesterolemia, e.g. by drugs, will lead to reduced cholesterol crystal formation 

and, as a consequence, to reduced atheromas. Whether reduction of the inflammatory 

potential of macrophages may occur in the absence of NLRP3 activation remains an important 

question (13). It may indicate an additional pathway to that of cholesterol reduction, since 

other lipids and lipoproteins may also a carry significant risk of both atheromas and 

inflammatory changes. 

Elevated LDL thus carry a pleiotropic risk, being associated to increased generalized 

inflammation and, because of a stimulated cellular immunity, essentially on T cells during all 

stages of disease, exerting a major role in the initiation, progression and rupture of plaques. In 

the T-cell population of human plaques, CD4+ dominate over CD8+ cells with CD4+ clones 

responding to components of oxidized LDL (17); proinflammatory T helper (Th)-1 lymphocytes 
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aggravate atherogenesis with Th2 and Th17 further influencing lesion composition; conversely, 

regulatory T cells mitigate this process (18). 

In addition to effects elicited through inflammatory mediators, very recently a reduced 

expression of the epigenetic modifier enzyme ten-eleven translocation 2 (TET2), promoting 

expansion of clonal hematopoiesis, has been found to raise the atherosclerotic risk (19). TET2 

mutant cells leading to TET2 deficiency, when clonally expanded in the bone marrow, markedly 

increase the atherosclerotic plaque size; TET2 deficient macrophages, in addition, increase the 

NLRP-3 inflammasome mediated IL-1ß secretion. This model has allowed to note that the 

NLRP3 inhibitor, MC950, can suppress IL-1ß secretion in hyperlipidemic animal models, thus 

supporting a major role of TET2 deficiency (20). 

LDL-associated inflammatory changes have thus at least a three-pronged determination: 

1) increased LDL associates with extensive tissue inflammatory changes, mainly linked to 

increased hsCRP; 2) The rise of different T lymphocyte subtypes may lead to plaque 

proliferation and potentially rupture; 3) cholesterol crystal deposition, leading to a rise of the 

vascular inflammasome NLRP3, that may accelerate atherosclerosis development particularly in 

the presence of mutations of the epigenetic modifier enzyme TET2 (19, 20). 

 

2.1 Elevation of triglycerides (TG) in very low-density lipoproteins (VLDL)  

The inflammatory potential of VLDL is best detected in the postprandial state. Evaluation of 

postprandial (PP) TG-rich lipoproteins from normal to a hypertriglyceridemic condition has 

indicated a raised inflammatory response, particularly when PP-VLDL are combined with low 

dose TNF- as in the frequent case of elevated waist circumference (21). From these basic 

observations, clearly indicative of the inflammatory potential activity of VLDL and particularly 

PP-VLDL, the general agreement has been reached that the VLDL particles occurring in PP 

condition, so-called “remnant VLDL” (i.e. particles not completely catabolized by the lipoprotein 

lipase enzyme) can be responsible for both low-grade inflammation and for ischemic heart 

disease (22). These authors, in particular, reported the association of 38.7 mg/dL higher levels 

of non-fasting remnant cholesterol with 37% higher hsCRP levels. By a logistic regression 

analysis of their population studies (Copenhagen General Population Study and Copenhagen 

City Heart Study) a 38.7 mg/dl elevation of non-fasting remnant cholesterol was associated 

with a causal risk ratio for ischemic heart disease of 3.3 (95% CI, 2.1-5.2) vs 1.8 (95% CI, 2.1-5.2) 

for elevated LDL-C. 
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It should be also reported that elevated plasma TG levels are identified as independent 

predictors of CVD risk even in patients who have achieved LDL-C treatment goals with statin 

therapy (23). While elevated TGs do not exert an inflammatory stimulus per se, endothelial 

damage may occur, also because of the occurrence of intravascular TGs hydrolysis via the 

activity of lipoprotein lipase either at the endothelial surface or within the arterial intima. This 

process leads to a release of free fatty acids and monoacylglycerols which generate local 

inflammation (24). A meta-regression analysis of the effects of TG-lowering in fibrate trials 

showed that a 9 mg/dL decrease in TGs reduced coronary events by 5% , the largest risk 

reduction occurring in those with baseline TGs of at least 177 mg/dL (25). In these, a 89 mg/dL 

drop in TGs associates with a -54% reduction in coronary events (7). 

 

2.2 Elevation of lipoprotein(a) 

This lipoprotein is still a disputed cause of myocardial infarction, atherosclerotic coronary and 

aortic valve stenoses (26). Elevated Lp(a) levels may not be necessarily associated with the 

development of disease, whereas a number of additional genetic variables, i.e. in particular 

small sized Lp(a), are best associated with the clinical consequences of Lp(a) elevations, in 

particular aortic valve calcification (27). The presence in Lp(a) of a cholesterol-rich LDL particle 

covalently bound to an apo (a) glycoprotein (28), allows, in fact, the transfer of associated 

cholesterol to the aortic valves, and, in addition, to other vascular atheromatous changes (29). 

Concentrations of Lp(a) are influenced by the apo(a) kringle IV2 repeat isoforms (30). 

Very recently a genome wide association metaanalysis adjusted for Lp(a) concentrations and 

apo (a) isoforms, reported a SNP increasing allele (rs186696265) both raising Lp(a) and 

increasing CAD risk (odds ratio 1.73). The apo E2 allele was also found to be a strong 

determinant of Lp(a) concentrations: each apo E2 allele can decrease Lp(a) by 3.34 mg/dL (31). 

Most interestingly, by performing a gene-based test-association study, a significant association 

of the TLR2 gene with Lp(a) was detected. Interestingly, all these genes both associate with 

raised CV risk and with tissue changes linked to inflammation. In mice, in fact, TLR2 activation 

was shown to result in a 14-fold increase in PCSK9 expression (32). 

These findings gained particular significance after the recent observation that the 

frequent splice variant G4925A associates with the smaller LP(a) isoforms, generally leading to 

enhanced cardiovascular risk (33). Surprisingly this variant does not lead to increased but rather 

to reduced CV risk from 1.39 (95% CI 1.17 and 1.66 for wild type LMW individuals) to 1.19 for 

carriers of this variant. This further observation of anomalous genetic influences on Lp(a) and 
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CV risk need as yet to be clarified by possible links with inflammatory changes due to 

competition between Lp(a) and plasminogen, thereby antagonizing the role of plasmin in 

dissolving fibrin clots and the associated inflammatory changes (34). 

Elevated Lp(a) finally associates with oxidized phospholipids (OxPL) on apolipoprotein B-

100 (OxPL-apo B) (35). The highest tertiles of both Lp(a) and OxPL-apoB are independent 

predictors of more rapid aortic stenosis progression and also of generalized arterial disease 

(36). 

 

2.3 High density lipoproteins 

On the opposite side of these rated as atherogenic lipoproteins are high density lipoproteins 

(HDL). These are definitely associated with both a reduction in CV risk and lesser inflammatory 

changes. Calabresi et al. first outlined the mechanism whereby HDL may reduce arterial 

contractility and activation of platelet binding sites, improving endothelial function. Raised 

endothelial signaling molecules, in addition, can activate guanylate cyclase in vascular smooth 

muscle cells (37). Endothelial dysfunction is a consequence of an endothelial damage: injured 

vascular endothelial cells induce the expression of cell adhesion molecules (CAMs) by 

downregulation of TNF-α-induced CAM expression and reduced IL-6 production (38). 

In animal models of atherosclerosis, overexpression of apoAI in apoE-deficient mice 

significantly reduces CAM expression on vascular endothelial and the consequent monocyte 

recruitment into be arterial wall (39). These vascular effects of HDL are of course associated to 

their direct effect on cholesterol removal from tissues, still rated as the most valid mechanistic 

approach to vascular disease reduction (40). Very recently, changes in coronary plaque lipid 

burden, as assessed by near infrared spectroscopy, were found to be associated with even a 

modest elevation in HDL-C levels in man (41), thus underlining the role of these lipoproteins in 

reducing atheroma formation. A final mediator of HDL function is symmetric dimethylarginine 

(SDMA), a still not completely understood mediator of nitric oxide (NO) synthesis. Very recently 

(42) Zewinger et al reported that the association of SDMA with HDL leads to higher mortality, 

because of a reduction of the anti-inflammatory and regenerative properties of HDL. 

 

3. Inflammatory markers; CV risk associated to inflammatory markers and their correction 

(CANTOS Study)  

Recently, perplexities have been raised on the actual biomarker role of CRP, after a study on 

genetic loci associated with hsCRP levels failed to detect a clear link between these and the the 
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occurrence of CV events, in contrast to neighboring loci such as IL-6R or the APOCI-CII gene 

cluster (43). A later Mendelian randomization study (44) from a coronary heart disease genetic 

collaboration, investigated individuals from 47 epidemiological studies in 15 countries and 

detected four genes tagging single nucleotide polymorphisms in the CRP gene. Variants of 

these genes were associated to an up to 30% per allele difference in hsCRP concentrations but 

were unrelated to other coronary risk factors. None of these alleles appeared to be additive to 

the classical risk scores for coronary heart disease. 

In spite of the altogether not informative genetic characterization, the results of the 

very recent CANTOS (Canakinumab Anti-Inflammatory Thrombosis Outcome Study) trial have 

undoubtedly shed light on the role of inflammation in atherosclerosis development. 

Canakinumab is a human monoclonal antibody against interleukin-1, approved for clinical use 

after a 48-week randomized placebo-controlled trial involving 35 patients with cryopyrin-

associated periodic syndrome (CAPS), a spectrum of autoimmune inflammatory syndromes. 

Subcutaneous administration of 150 mg canakinumab at two-monthly intervals led to a rapid 

remission of symptoms in most patients; CRP levels dropped from a baseline of 20 mg/L to 2.1 

mg/L at the end of the study (45). 

Canakinumab was generated by using transgenic mice, immunized with a recombinant 

form of human IL-1β, producing multiple high-affinity human IgG1/κ isotype mAbs (46). The 

relative molecular mass of canakinumab, based on the amino acid composition without post-

translational glycosylation, but including N-terminal pyroglutamate formation and the C-

terminal lysine residues at the heavy chains, is 145.16 kDa (47). Canakinumab binds to human 

IL-1β with high affinity and a dissociation equilibrium constant of approximately 35–40 pM (48). 

It is eliminated by intracellular catabolism following a fluid-phase or receptor-mediated 

endocytosis (49). Interestingly, although the epitope appears to be outside the IL-1β/IL-

1receptor interface, the IL-1β complexed with canakinumab does not attach to the cell surface 

receptor, thus avoiding the IL-1β-dependent signaling. 

In healthy volunteers, canakinumab shows a volume of distribution (Vd) of 5.4 L and a 

terminal half-life of 33 days. Administration of 1, 3 and 10 mg/kg canakinumab leads to a Cmax 

of 1.2, 1.2 and 1.5 pM, respectively, 42 to 56 days after the first infusion. In CAPS patients, with 

70 kg mean body weight, administration of 150 mg canakinumab led to a Cmax of 16 ± 3.5 μg/mL 

with a half-life of 26 days and Vd of 6.1 L (47, 48). In patients with systematic juvenile idiopathic 

arthritis (another therapeutic indication) clearance and Vd were 0.106 L/day and 3.2 L, 

respectively, for a body weight of 33 Kg, with an estimated half-life of 22 days (50). 
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Interleukin-1β is a major cytokine promoting inflammation in atherosclerosis. IL-1β 

belongs to a family of 11 cytokines mediating expression of numerous genes involved in the 

immune response during infection and inflammation. Pro-IL-1β undergoes proteolytic cleavage 

to produce mature IL-1β possessing biological activity. The activation of IL-1β begets many 

molecules of IL-6 leading to the overexpression of atherothrombosis mediators (51). 

The CANTOS trial, representing a proof-of-concept for the residual inflammatory risk 

hypothesis, enrolled 10,061 patients with a previous myocardial infarction and hsCRP  2 mg/l. 

Patients were randomly assigned to receive, once every 3 months, canakinumab s.c. at the 

doses of 50 mg, 150 mg and 300 mg. Being  90% of the studied population on statins, LDL-C 

levels were around 80 mg/dl; 80% had previously undergone coronary revascularization (52). 

After a median follow-up of 3.7 years, only the dose of 150 mg led to a significant reduction of 

the primary endpoint, i.e. a composite of nonfatal MI, any nonfatal stroke, or CV death (52). 

The hazard ratio (HR) for the primary endpoint was 0.85, 95%CI: 0.74-0.98, p=0.021, with a 

number-needed to treat (NNT)) of 156 during 1 year to prevent an event. Most of the 

antiatherothrombotic effects are ascribable to the  reduction of MI in 1 year (HR: 0.76) with a 

NNT of 189 (53); CV deaths were not significantly reduced (HR: 0.88). Addition of urgent 

revascularization for unstable angina to the components of the primary endpoint led to a more 

robust statistical significance, namely a -17% decrement (HR: 0.83; 95%CI: 0.73-0.95) in major 

adverse cardiac events (MACE), i.e. -24% MIs (HR: 0.76; 95%CI: 0.62-0.92) and -37% urgent 

revascularizations (HR: 0.64; 95%CI: 0.44-0.94) (52). These findings may be consequent to a 

disproportionate benefit in patients experiencing partially occlusive events, i.e. non-ST-

segment-elevation MI and unstable angina (54). Hence, a better understanding of the clinical 

features of MIs (infarct size, Q-wave vs. non–Q-wave and spontaneous or procedure-related) 

will help to assess the definite clinical benefit of canakinumab (55). By the end of the CANTOS 

Study, canakinumab reduced hsCRP by 35% without affecting, at any dose, LDL-C (Figure 1), 

HDL-C and TG levels (56) (Table 1). No reduction in the incidence of new-onset diabetes (HR 

1.02, 95% CI 0.87–1.19) was found with a similar effect of canakinumab in reducing MACE rates 

in patients with or without diabetes (57, 58). 

Interestingly, a secondary analysis showed that, among patients allocated to 

canakinumab, those achieving on-treatment hsCRP concentrations  2 mg/L had a higher 

benefit in terms of reduction in major CV events (HR: 0.75; 95% CI: 0.66-0.85, p< 0.001), 

cardiovascular mortality (HR: 0.69; 95% CI: 0.56-0.85, p= 0.0004) and all-cause mortality (HR: 

0.69; 95% CI: 0.58-0.81, p< 0.001; Figure 2). Relative to the key prespecified secondary 
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endpoints (non-fatal MI, non-fatal stroke, hospitalization for unstable angina requiring 

unplanned revascularization, or cardiovascular death), a 26% risk reduction was observed 

among participants treated with any dose of canakinumab who achieved hsCRP levels < 2mg/L, 

(HR: 0.74; 95%CI: 0.65-0.83; P< 0.0001) (56, 59). The benefit in reaching this hsCRP threshold is 

translated into a 5-year NNT estimate for MI, stroke, coronary revascularization, or death from 

any cause of 16. Conversely, for those participants who did not achieve on-treatment hsCRP < 

2mg/dL the 5 year NNT estimate was 57 (56, 59). 

Relative to safety concerns, although no increments in all-cause mortality and new-

onset diabetes were found (52, 57), when data from the three doses of canakinumab were 

pooled, the number of deaths from infection was significantly higher in patients on 

canakinumab vs placebo (55). 

 

4. Effects of Lipid Lowering agents on Inflammation 

4.1. Statins 

The 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors (statins), can achieve a large 

reduction of plasma cholesterol and coronary artery disease (CAD). Statins inhibit the 

biosynthesis of cellular cholesterol in the liver, thus resulting in an increased expression of the 

LDL receptor and uptake of LDL cholesterol from the circulation. A meta-analysis from the 

Cholesterol Treatment Trialists’ (CTT) Collaboration from 90,000 individuals in 14 randomized 

trials of statin therapy, demonstrated a weighted mean difference of about 1.0 mmol/L in LDL 

cholesterol and a proportional reduction of (about 20%) of major vascular events (defined as 

coronary death, non-fatal myocardial infarction, coronary revascularization, or stroke) (60). 

At the pharmacokinetic level (i.e., absorption, distribution, metabolism, and excretion of 

a given drug) available statins display important differences, including half-life, systemic 

exposure, maximum plasma concentration (Cmax), bioavailability, protein binding, lipophilicity, 

metabolism, presence of active metabolites, and excretion routes (61). 

It is usually assumed that any beneficial effect of statins on coronary events is linked to 

their hypocholesterolemic properties. However, because mevalonic acid, intracellularly 

synthesized by HMG-CoA reductase, is the precursor of numerous metabolites, inhibition of 

HMG-CoA reductase has the potential to result in pleiotropic effects (62, 63); hence, effects 

other than cholesterol reduction may help  explain the anti-atherosclerotic properties of 

statins, such as improvement of endothelial function and reduction of platelet aggregation, 

increased number and activity of endothelial progenitor cells, inhibition of migration and 
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proliferation of smooth muscle cells, stabilization of coronary plaques and atheroma regression 

(64-66). 

Among all these pleiotropic effects, statins were shown to reduce CRP levels, and for 

this reason to exhibit anti-inflammatory properties. However, statins, by reducing LDL-C levels, 

decrease the number of LDL particles, that can infiltrate vessel walls, thus limiting 

atherosclerosis progression and local inflammation. The reduction of CRP could be thus related 

to the lipid lowering effect of statins. The mutual relationship between inflammation and lipid 

metabolism is also dictated by the fact that pro-inflammatory cytokines regulate the 

transcription of many genes involved in cholesterol and TG synthesis (67, 68). 

The first study showing a lowering effect of statins on hsCRP was the CARE (Cholesterol 

and Recurrent Events) trial. This study showed that the relative CV risk reduction attributable to 

statin treatment was larger in patients with elevated hsCRP (69). This observation was 

subsequently confirmed in other studies, such as the Air Force/Texas Coronary Atherosclerosis 

Prevention Study (AFCAPS/TexCAPS), REVERSAL (Reversal of Atherosclerosis with Aggressive 

Lipid Lowering), PROVE IT–TIMI 22 (Pravastatin or Atorvastatin Evaluation and Infection 

Therapy–Thrombolysis in Myocardial Infarction 22) and A to Z (Aggrastat-to-Zocor) (2, 70-72) 

(Table 1). All these led to hypothesize a dual goal for an antiatherosclerotic therapy, the largest 

clinical benefit being found in patients not only achieving LDL-C below 70 mg/dL but also hsCRP 

below 2 mg/L (73). This concept was then confirmed in the primary prevention JUPITER trial on 

18,000 patients with median LDL-C of 108 mg/dL and elevated hsCRP (>2.0 mg/L) (74). 

Rosuvastatin 20 mg reduced by half the rate of major CV events such as stroke, nonfatal 

myocardial infarction, revascularization, unstable angina or death from CV causes (74), thus 

supporting the conclusion that on-treatment levels of hsCRP are as important for predicting 

recurrent disease as on treatment levels of LDL-C. Furthermore, the largest reduction in CV 

events (-65%), occurred in patients achieving both LDL-C < 70 mg/dL and hsCRP < 2 mg/dL 

compared to those achieving only one of the two targets (-33%) (75). 

In the MIRACL (The Myocardial Ischemia Reduction with Acute Cholesterol Lowering) 

and REVERSAL trials, the effect of statins on CRP was shown to be dose dependent, with a 

higher reduction after more aggressive therapy (atorvastatin) compared to standard therapy 

(pravastatin) (6, 76) (Table 1). 

In addition to the effects of statins on hsCRP and systemic inflammation, some clinical 

evidence has suggested that statins can ameliorate the vascular inflammatory status, in 
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particular improving endothelial function in patients with cardiovascular risk or CAD (77, 78), 

with a well-defined timing and potency related effect (79). 

While there is no doubt that statins can improve systemic inflammation (reduction of 

hsCRP), whether this action is related to their lipid lowering properties is still a matter of 

discussion (43, 44, 80). The effects of statins on hsCRP are likely to be related to a general 

positive effect on other atherogenic players that determine the final anti-inflammatory action, 

and statins may elicit their pleiotropic effects independent of their lipid lowering activity. Thus, 

the reduction of LDL-C levels with a mechanism not involving HMG-CoA reductase, could 

certainly help to better define the relationship between hsCRP and LDL-C and to potentially 

clarify the direct benefit of hsCRP reduction on cardiovascular disease. 

Statins thus display significant anti-inflammatory effects, also leading to some non-lipid 

indications, e.g. for the treatment of periodontal inflammation (81), where periodontal 

responses were associated with changes in carotid inflammation. Reduction of hsCRP appears 

to be related to LDL-C lowering and may be an important determinant of CV risk reduction 

(Figure 1). 

 

4.2 Ezetimibe 

Ezetimibe is an inhibitor of the cholesterol transport protein NPC1-like 1 and reduces intestinal 

cholesterol absorption (82). When added to statin therapy, ezetimibe resulted in incremental 

lowering of LDL-C levels and improved cardiovascular outcomes (2% reduction of absolute risk) 

(83). 

Following oral administration, ezetimibe is rapidly glucuronidated in the intestines and 

the glucuronide undergoes enterohepatic recirculation which explains the long duration of 

action accounting for a half-life of 22h (84). Ezetimibe does not interact with drugs metabolized 

by CYP450 1A2, 2D6, 2C8, 2C9, or 3A4, and, in particular, does not interact with statins. 

In an experimental study on rabbits on a high fat diet and femoral atherosclerosis, 

ezetimibe treatment was associated with both reduced atheroma progressions and plaque 

stabilization: CRP levels were significantly reduced with no further reduction by the addition of 

simvastatin (85). Somewhat divergent data have been provided by the clinical studies: the 

majority of these have been, in fact, conducted in combination with statins and a small number 

as monotherapy. A pooled analysis of randomized, placebo-controlled trials of ezetimibe 10 

mg/day in patients with hypercholesterolemia, showed no significant difference on hsCRP 

levels (+5% and -1% for placebo and ezetimibe group, respectively). On the contrary, when 
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ezetimibe was added to baseline statin therapy a -10% reduction of hsCRP was observed (-1% 

vs -12% for placebo plus statin and ezetimibe plus statin, respectively) (86). A very similar effect 

was observed in the IMPROVE-IT trial, where the addition of ezetimibe to simvastatin therapy 

resulted in a further -20% reduction of LDL-C and a -14% (0.3 mg/L) reduction of hsCRP (87). 

This translated into significantly more patients meeting both of the prespecified targets of LDL-

C<70 mg/dL and hsCRP<2 mg/L in the ezetimibe/simvastatin group compared to simvastatin 

alone (-50% vs -29%) (87). Again, in the SHARP trial, that recruited patients with chronic kidney 

disease, the combination simvastatin/ezetimibe produced a -35% reduction of LDL-C vs placebo 

and a -21% reduction of hsCRP (88) (Table 1). 

A number of studies have investigated statin therapy versus statins in combination with 

ezetimibe on endothelial function as a measure of vascular inflammation (77, 89-96). Results 

were found to be inconstant: six studies found no difference in endothelial function (89, 91, 94, 

96-98), four  found statin alone be better (77, 92-94), and one study found a beneficial effect of 

combination therapy over statin alone (90). However, in many of these studies comparing 

statins vs combination therapy, markedly different lipid lowering effects were found, thus 

making comparisons difficult (77, 89-91, 94). Two cross-over studies with a reduced risk of 

confounding and bias, reached discordant conclusions, one showing an improved endothelial 

function on statin alone (93), and the other not observing any significant difference between 

the two treatments (97). 

Ezetimibe can thus provide an additive effect to that of statins both on LDL-C and on 

hsCRP-lowering (Figure 1). The mechanism of this latter effect is not fully clarified. 

 

4.3. Fibrates 

Fibrates are activators of the peroxisome proliferator-activated receptor (PPAR) system, mainly 

PPAR-α, and have shown a significant benefit in clinical trials of CV prevention, i.e. reducing the 

occurrence of nonfatal MI, particularly when restricting evaluation to patients with 

concomitant TG elevation and HDL-C reduction (99, 100). In this context, results from the long-

term (10 years) extension of the ACCORD (Action to Control Cardiovascular Risk in Diabetes) 

trial confirmed the significant preventive benefit of fenofibrate in patients with combined 

elevation of TG and reduction of HDL-C levels (101). 

Fenofibrate is rapidly hydrolysed after absorption, to fenofibric acid, the major active 

metabolite. The drug is excreted unchanged in urines either as fenofibric acid or as its 
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glucuronide conjugate. No hepatic microsomal metabolism is involved, not being fenofibric acid 

a substrate for CYP3A4 (102). 

A recent meta-analysis evaluated hsCRP changes after fibrates and reported that these 

are correlated with HDL-C rises, in particular a mean 1% elevation in HDL corresponding to a -

2.03% decrement in hsCRP (103).  Administration of fibrates led to a significant overall mean 

hsCRP reduction of -0.47 mg/L (95% CI: -0.93, -0.01), mainly ascribable to trials recruiting 

patients with baseline CRP  3 mg/L (-1.01 mg/L; 95% CI: -1.86, -0.16). The effect was lost when 

baseline hsCRP values were  3 mg/L (-0.25 mg/dL; 95% CI: -0.74, 0.25; p=0.33). These findings 

were not fully confirmed by a sub-analysis of the FIELD (Fenofibrate Intervention and Event 

Lowering in Diabetes) trial, originally designed to assess the effect of fenofibrate on CV events 

in patients with type 2 diabetes (T2D) (104). In FIELD a 5-year treatment with fenofibrate 

significantly reduced LDL-C (14.2%) but not hsCRP (+ 0.8 mg/L). These findings did not differ 

when patients were stratified for the hsCRP cut-off of 2.0 mg/L (105) (Table 1). 

 In an attempt to reduce the residual CV risk in high-risk patients with mixed 

hyperlipidemia, e.g. in T2D, the addition of a fibrate to statin therapy has been suggested (106). 

However, although a fibrate–statin combination may reduce to a greater extent total 

cholesterol (−2.2%; 95% CI: 1.9–2.5), LDL-C (−2.3%; 95% CI: 2.0–2.5), and TGs (−0.4%; 95% CI: 

0.2–0.6) compared to statin alone, a higher risk of side effects (muscular and consequently 

renal) may occur with gemfibrozil, to a lesser extent with fenofibrate and bezafibrate (61, 107). 

The DIACOR (Diabetes and Combined Lipid Therapy Regimen) trial directly evaluated a 

12-week treatment with fenofibrate, simvastatin or their combination (fenofibrate 160 mg and 

simvastatin 20 mg) in T2D patients with mixed dyslipidemia and no history of CV events. hsCRP 

levels were reduced by -18.9%, -24.9% and -27.3%, respectively, but the combination therapy 

was not more effective than either fenofibrate or simvastatin alone (108) (Table 1). Similarly, 

no additional benefit of a combination therapy on hsCRP reduction was seen in patients with 

mixed dyslipidemia receiving rosuvastatin (40 mg), as monotherapy, or as an add-on therapy to 

fenofibrate (200 mg). Rosuvastatin monotherapy led to a 56% reduction in hsCRP vs baseline, 

whereas the combination with fenofibrate, unexpectedly, did not change hsCRP levels (109). 

Confirming prior studies, instead, in patients with mixed dyslipidemia, rosuvastatin (40 mg), 

rosuvastatin (10 mg) plus fenofibrate (200 mg) or rosuvastatin (10 mg) plus omega 3 (2 g) 

resulted in a -53%, -28% and -23% reductions in hsCRP, respectively, vs baseline (110). 

In the attempt to improve the lipid profile in patients in patients with mixed 

hyperlipidemia, characterized by both hypercholesterolemia and hypertriglyceridemia, fibrate 
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co-administered with ezetimibe has been proposed. In a 48-week trial, enrolling 576 patients 

with LDL-C 130 to 220 mg/dL and TGs 200 to 500 mg/dL, the co-administration of fibrate plus 

ezetimibe was more effective than fenofibrate alone in reducing LDL-C (-22% vs -8.7%), TGs (-46 

% vs -41.8%) and non-HDL-C (-31.6% vs -19.4%). Both treatments significantly reduced hsCRP vs 

baseline, with no further benefit of adding ezetimibe to fenofibrate (-25.3% vs -21.1%) (111) 

(Table 1). 

Fibrates thus improve inflammatory changes in conditions of hyperlipidemia. Reduction 

of the major marker, hsCRP, appears to be related to the rise of HDL-C (98) and may be additive 

to the effects of statins and ezetimibe. No definitive data are available on the possible influence 

of this pleiotropic activity on the reduction of CV risk. 

 

4.4. Proprotein convertase subtilisin/kexin 9 (PCSK9) antagonists 

Proprotein convertase subtilisin/kexin 9 (PCSK9) is a liver-secreted plasma protein that, by a 

post-translational mechanism, regulates the number of cell-surface LDL receptors (LDL-R), thus 

inhibiting LDL uptake. Indeed, by binding to the epidermal growth factor–like repeat homology 

domain A of human LDL-R, PCSK9 has a dual effect (i) acting as a courier, facilitating the exit of 

LDL-R from the endoplasmic reticulum, and (ii) fostering the degradation of the LDL-R at the cell 

surface (112-114). Thus, in order to increase the number of LDL-R, inhibition of PCSK9 has been 

achieved by mean of monoclonal antibodies (mAbs). Two fully human IgG1 and IgG2 mAbs, 

alirocumab and evolocumab, respectively, have been approved in the United States and in the 

European Union in August 2015, whereas bococizumab, a humanized mAbs, has been 

discontinued in November 2016 (115, 116). Interestingly, other approaches to inhibit PCSK9 are 

being developed, i.e. antisense oligonucleotides, small-molecule inhibitors, and RNA 

interference therapies (inclisiran) (117) and a vaccine (118). 

The pharmacokinetics of PCSK9 inhibitors is closely related to the biochemical 

characteristics of monoclonal antibodies. Absolute bioavailability is 72% for evolocumab and 

85% for alirocumab, with distribution volumes of 3.3 L and 3.0–3.8 L, respectively, confirming 

the limited tissue distribution of mAbs. Effective plasma half-lives are 11-17 days for 

evolocumab (119) and 17-20 days for alirocumab (120), reduced  by statin co-administration. 

Indeed, evolocumab clearance is increased by about 20%, partially due to the statin-driven 

upregulation of PCSK9. Similarly, alirocumab exposure was reduced by about 40%, 15%, and 

35% when administered with statins, ezetimibe, and fenofibrate, respectively (121). However, 

these drug-drug interactions are not to be rated as clinically meaningful and do not require 
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dose adjustment. Proteolytic and target-mediated elimination pathways have been described: 

the first one prevails in the presence of high drug concentrations, whereas the second becomes 

prevalent at low concentrations. 

So far, the Food and Drug Administration (FDA) and the European Medicines Agency 

(EMA) approved the use evolocumab for cholesterolemia reduction in the homozygous (HoFH) 

and heterozygous forms of familial hypercholesterolemia (HeFH)), in addition to diet and 

maximum tolerated statin doses, in order to prevent CV events (122); alirocumab is instead 

indicated only for the treatment of HeFH (120). 

In addition to the most characterizing feature of mAbs activity, i.e. LDL-cholesterol 

lowering (up to 50-60%) in very high-risk patients (123, 124), especially FH (125), data from 35 

RCTs (45,539 subjects) have shown that administration of  these two mAbs is associated with a 

lower rate of MIs (Odds Ratio (OR): 0.72; 95% CI: 0.64-0.81), strokes (OR: 0.80; 95% CI: 0.67-

0.96) and coronary revascularizations (OR: 0.78; 95% CI: 0.71-0.86) not of mortality (126). These 

findings have been confirmed in a subsequent meta-analysis from 11 RCTs including 38,235 

participants, treated with evolocumab and alirocumab for at least 48-weeks (127). 

PCSK9 circulating levels have been related to a large number of CVD risk factors, i.e. LDL-

cholesterolemia (128), TGs (129), Lp(a) (130), atherogenic lipoproteins (131), arterial stiffness 

(132), and platelet activation (133). Moreover, a significant proportion of plasma PCSK9 (20–

40%) circulates bound to lipoproteins, i.e. LDL and Lp(a) but not HDL (134). 

The relationship between PCSK9 and the inflammatory process is the object of intensive 

investigation. While, in fact, inflammation raises PCSK9 liver expression (135) and PCSK9 is 

positively linked to TNF-α levels (136), no significant relationship has been observed between 

PCSK9 levels and hsCRP (137). This last finding is in line with the observation that PCSK9 

antagonists do not apparently exert a significant anti-inflammatory activity in treated patients, 

at least as witnessed by a lack of reduction of hsCRP (weighed mean difference - WMD: 0.002 

mg/L; 95%CI: -0.017, 0.021; p= 0.807). This conclusion is supported by the selective evaluation 

of alirocumab (WMD: 0.15 mg/L) and evolocumab (WMD: 0.002 mg/L) (138). Notably, data 

from the ODYSSEY COMBO II trial showed that alirocumab may work better in CV patients with 

residual lipid risk (LDL-C >70 mg/dL), vs those with residual inflammatory risk (CRP > 2 mg/dL) 

(139). In this study, aimed at comparing the efficacy of alirocumab vs that of ezetimibe, this 

latter reduced, although not significantly, the hsCRP levels by -25% vs no changes in patients 

given alirocumab (140). After 52 weeks of treatment, LDL-C dramatically dropped by -49.5% in 

the alirocumab arm vs -18.3% in ezetimibe patients (140) (Table 1). 
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Interestingly, this lack of efficacy in reducing hsCRP persists independent of the 

mechanism by which PCSK9 is lowered; indeed, among patients at high risk of CV disease, 

allocated to receive a single dose of 200, 300, or 500 mg of inclisiran or a two-dose regimen of 

100, 200, or 300 mg of inclisiran, only a modest -16.7% (-50.9 to +33.3; p< 0.05) decrement in 

hsCRP levels was found in the arm (n= 59) receiving inclisiran 300 mg in the two dose regimen 

(141). 

In a head-to-head analysis of mortality differences between the FOURIER (Further 

Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk) and 

the CANTOS trials, Ridker hypothesized that the lack of efficacy of evolocumab on 

cardiovascular or all-cause mortality may be due to the different baseline hsCRP levels, 

exceeding 4mg/L in CANTOS, but less than 2mg/L in FOURIER. Baseline LDL-C concentrations 

were instead similar in the two RCTs, i.e. 82 mg/dL in CANTOS vs 89 mg/dL in FOURIER (142). A 

post hoc analysis of the FOURIER trial reaffirms the importance of inflammatory and residual 

cholesterol risks, being LDL-C and hsCRP, in this trial, independently associated with the 

primary outcome. When patients were stratified according to baseline hsCRP, i.e. <1, 1-3, and 

>3 mg/dL, absolute reductions were larger in patients with higher hsCRPs: 1.6%, 1.8%, and 2.6% 

and 0.8%, 2.0%, and 3.0%, respectively, for the primary and key secondary endpoints across 

hsCRP strata (143). Moreover, even among patients achieving an LDL-C <20 mg/dL, the highest 

CV risk associated with the hsCRP stratum: a 3-year primary event rate of 9.0%, 10.8% and 

13.1% occurred with hsCRPs of <1, 1 to 3 or >3 mg/L, respectively (143) (Table 1). 

These observations are in line with prior data analysis, reported by Catapano et al., 

observing how in RCTs with anti-PCSK9 therapies, median baseline hsCRPs were below 2 mg/dL. 

Indeed, when clinical trials with hsCRP levels > 2 mg/L are considered, hsCRP are reduced by 

any lipid-lowering agent, independent of the mechanism of action (144). 

Interestingly, the FOURIER trial highlighted how the severity and extent of coronary 

artery disease are leading features, in order to identify people who benefit the most from LDL-C 

lowering with evolocumab. Recent MI, multiple prior MIs, and residual multivessel coronary 

disease were independent predictors of CV outcomes, leading to an absolute risk reduction of 

over 3% in high risk vs. approximately 1% in low-risk groups, respectively. In patients with at 

least 1 high-risk feature there was a relative risk reduction in CV death, MI or stroke of 19% 

(HR: 0.81; 95%CI: 0.68-0.95) during the first year and of 27% (HR: 0.73; 95%CI: 0.62-0.86) 

beyond the first year (145). 
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Another controversial point is whether the reduction of CV events in clinical trials with 

PCSK9 mAbs is related to a drop in LDL-C or in hsCRP: this will be better clarified once data from 

the ODISSEY OUTCOME (Evaluation of Cardiovascular Outcomes After an Acute Coronary 

Syndrome During Treatment With Alirocumab) trial will be fully available. Administration of 

alirocumab in patients with a recent acute coronary syndrome, already on intensive or 

maximum-tolerated statin therapy, reduced MACE (including all-cause mortality and MI) by -

15%, going down to -24% in patients with baseline LDL-C  100 mg/dL, deriving the largest 

benefit (146, 147). However, in the interpretation of these findings three important points 

should be  borne in mind: among patients assigned to alirocumab (i) if at one month LDL-C 

remained at ≥50 mg/dL the dose of alirocumab was titrated in a blinded fashion to 150 mg 

every 2 weeks; (ii) if on 2 consecutive evaluations LDL-C was <25 mg/dL, then the dose of 

alirocumab was reduced from 150 to 75 mg and (iii) if LDL-C was <15 mg/dL at 2 consecutive 

visits on alirocumab 75 mg, treatment was stopped (148). 

The debate on whether or not LDL-C and hsCRP are inseparable markers of risk, was 

further addressed in a post hoc analysis of SPIRE-1 and -2 (Studies of PCSK9 Inhibition and the 

Reduction of Vascular Events) trials, with bococizumab. While this latter led to a dramatic 

reduction in LDL-C (-60.5% at 14 weeks) a monotonic increase in the incidence of   the primary 

endpoint (myocardial infarction, stroke, unstable angina requiring urgent coronary 

revascularization, and cardiovascular death) was noted. When patients were stratified 

according to on-treatment hsCRP levels, i.e. <1 (Reference value), 1-3, and >3 mg/L the Hazard 

ratios were 1, 1.16 (95%CI 0.81-1.66) and 1.62 (95%CI 1.14-2.30) (149) (Table 1). 

An improvement in endothelial function after a 2-month therapy with evolocumab has 

been also described an effect proportional to the LDL-C reduction. Indeed, a -59% drop in LDL-C 

levels corresponded to a rise in flow-mediated dilation (+40%), brachial artery diameter (peak 

values 0.39  0.09 vs 0.36  0.11 cm) and velocity time integral (peak levels 96  1 vs 85  9 

cm). This evidence is in line with previous studies reporting a positive association between 

PCSK9 and endothelial function markers, e.g. blood pressure and arterial stiffness (132, 150-

152). 

The anti-inflammatory activity of PCSK9 antagonists thus appears to be of a minimal 

extent (Figure 1); it has not been evaluated after the long-acting siRNA antagonist inclisiran 

(153). This does not exclude the possibility that individual hsCRP elevations may identify 

patients getting the largest benefit from PCSK9 antagonism. 

Acc
ep

te
d 

M
an

us
cr

ipt



 

PCSK9 antagonists display also a clear lowering effect on Lp(a) levels, compared to the 

absence of effect by statins. The Lp(a) reductions was roughly 25% (154) by as yet unclear 

mechanisms. It appears the reductions are achieved through two different mechanisms. When 

administered as monotherapy, evolocumab reduces the production rate of Lp(a), not of 

fractional catabolic rate (FCR) (155). Differently when given in combination with atorvastatin 

the FCR of Lp(a) increases significantly, without alterations of the production rate. This most 

recent study differs somewhat from previous findings. A prior study, with alirocumab vs 

placebo a reduction of plasma Lp(a) levels 18.7% (p < 0.001) was observed. This reduction 

appeared to be associated with a trend for an increase of median FCR of apo(a) (+24.6%, 

p=0.09) with no change in the production rate (156). 

The mechanism/s underlying these discordant findings may be possibly related to 

differences in Lp(a) baseline levels, age, body mass index and ethnicity. Apo(a) isoform size may 

play also a role, influencing both production and catabolism of Lp(a) particles (157). The Lp(a) 

lowering activity of PCSK9 antagoniss may be also related to the dramatic LDL-C reduction, thus 

reducing a possible competitor for the binding to the LDL-R, although targeted studies 

addressing this mechanism did not clearly indicate an involvement of the LDL-R in the uptake of 

Lp(a) (158). It may not be, of course, to be excluded that additional receptor/pathways may be 

involved in the clearance of Lp(a) (159). 

Most recently, inclisiran has been evaluated in terms of Lp(a) reduction. In this study, 

patients on maximal tolerated drug therapy received single (200, 300 and 500 mg) or two dose 

starting regimens (100, 200 or 300 mg on days 1 and 90) vs placebo. In addition to the expected 

reduction of LDL-C and apo B levels, changes of Lp(a) were indicative of a general trend to 

reduction, 80% of participants showing reduced Lp(a) levels at the end of the trial. However, 

due to the very large variability of levels, none of the difference reached statistical significance 

(153). 

 

4.5 Bile acid sequestrants 

Bile acid sequestrants (BAS) bind bile acids in the intestine through anion exchange, resulting in 

decreased enterohepatic recirculation of bile acids. This promotes liver conversion of 

cholesterol to bile acids. The reduction in the hepatocyte cholesterol content enhances LDL-R 

expression, that leads to lowering of   LDL-C levels. Three BAS are currently available: 

cholestyramine, colestipol and colesevelam. Only two randomized controlled trials evaluated 

the effects of BAS on CHD risk. The Lipid Research Clinics Coronary Primary Prevention Trial 
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evaluated use of cholestyramine 24g/day versus placebo in patients  with type II 

hyperlipoproteinemia free of CHD (160). Cholestyramine determined a significant -8% LDL-C 

reduction, determining a -19% lower risk of the primary end point (CHD death and nonfatal MI) 

after 7.4 years of follow-up (160). Colestipol (5 g three times daily vs placebo) has been 

investigated for efficacy, safety, and effects on mortality in CHD patients (161). Colestipol 

significantly reduced total cholesterol (-32 mg/dL) and raised TGs (+33 mg/dL) vs placebo and 

was associated with a significant reduction in CHD deaths in men, not in women (161). 

Colesevelam hydrochloride is a newer BAS, specifically designed with a unique structure 

for the purpose of improving tolerability and reducing potential drug interactions compared to 

older BAS. Colesevelam HCl is hydrophilic, insoluble in water, and is administered orally as a 

solid tablet, containing 625 mg of the product, not hydrolyzed by digestive enzymes and not 

undergoing intestinal absorption. It is excreted exclusively in the feces. 

When given as monotherapy, six 625 mg tablets colesevelam HCl per day, reduced LDL-C 

by -15% to 21%, increased HDL-C by 3%-9%, and  TG levels by 2%-16% compared to placebo 

(162). Compared to statin alone, colesevelam HCl in combination with statins, further 

decreased LDL-C by -10% to 16%, increased HDL-C by 3%–7%, and TG levels by 5%–23% (162). 

Colesevelam HCl was the first BAS reported to reduce hsCRP when added to statins (163). The 

results derived from three clinical trials of similar design and methods, investigating the efficacy 

of adding colesevelam HCl, compared with placebo, in hypercholesterolemic patients on stable 

simvastatin, atorvastatin, or pravastatin therapy (163). Pooled analysis of the three trials 

showed that the groups receiving the BAS plus statin  had significantly larger mean reductions 

in LDL-C levels (-10.2% vs -21.0%) and  produced a further significant reduction of hsCRP (-2.0 vs 

1.3 mg/L; -23.3%) (163) (Table 1). 

Thus, the results from these trials showed that combining colesevelam HCl with either 

simvastatin, atorvastatin or pravastatin determines a significantly greater median percent 

reduction in hsCRP levels. 

A third generation BAS, colestimide (also known as colestilan, marketed only in Japan) 

was also reported to reduce hsCRP levels (164). Japanese patients with diabetes mellitus 

complicated by hyperlipidemia and metabolic syndrome were enrolled and treated with 

pitavastatin or colestimide (164). Pitavastatin and colestimide reduced LDL-C by -45.3% and -

14.4%, respectively. Pitavastatin only slightly reduced hsCRP after 24 weeks of treatment (from 

8.76 mg/L to 8.27 mg/L; -5.5%) whereas colestimide exerted a much greater reduction (from 

10.16 mg/L to 5.86 mg/L; -42.3%) (164) (Table 1). 
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 BAS, while not extensively investigated (first generation cholestyramine and colestipol 

were developed way before the inflammatory mechanism of atherosclerosis was postulated) 

appear to produce a greater anti-inflammatory activity than expected (Figure 1). While 

colesevelam significantly adds to the hsCRP reducing activity by statins, the comparative 

evaluation of colestimide with pitavstatin suggested a dramatic hsCRP lowering potential. 

 

4.6 Lomitapide and Mipomersen 

Two drugs have been developed for the treatment of extreme cholesterol elevations, i.e. 

homozygous hypercholesterolemia. One of them, mipomersen is an apolipoprotein B synthesis 

inhibitor, acting as an antisense oligonucleotide, binding to the mRNA coding for apo B100. 

Mipomersen, mainly because of the high number of side effects, related to the s.c. 

administration, has not been approved for use outside of the US.  Lomitapide is instead an 

agent affecting the microsomal triglyceride transfer protein (MTP). Inhibition of MTP prevents 

the assembly of apo B containing lipoproteins in enterocytes and liver cells. Lomitapide has 

been approved worldwide for the treatment of homozygous hypercholesterolemia. 

 

4.6.1 Lomitapide 

Lomitapide has an absolute bioavailability of approximately 7%, suggesting a significant first-

pass effect. The steady state volume of distribution is about 985–1292 L, being 99.8% plasma-

protein bound. It is extensively metabolized by CYP3A4 and co-administration with strong 

CYP3A4 inhibitors, e.g. ketoconazole or, to a more modest extent, atorvastatin, increase the 

systemic exposure of lomitapide (165). The metabolites of lomitapide are essentially devoid of 

pharmacological activity. About 52.9-59.5% of the drug are eliminated by urinary and 33.4-

35.1%   by the fecal routes; the terminal half-life is 39.7 h (166, 167). 

Lomitapide administration is mainly associated with gastrointestinal disturbances, 

generally overcome after prolonged treatment (167). Clinical studies have generally not been 

addressed to the evaluation of inflammatory/anti-inflammatory markers, but of special interest 

is the very long study on efficacy/safety in homozygous hypercholesterolemic patients (168). 

Extensive evaluation of patients over 246 weeks of treatment noted, in addition to a very 

effective LDL-cholesterol reduction (-45.5%) maintained for duration of the trial, a moderate 

rise in liver fat (from 0.7 to 10.2%) and, most interestingly, a progressive reduction of hsCRP, 

resulting in a highly significant change, i.e. -60% from baseline to week 24 (Table 1). 
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This finding is difficult to explain but certainly of high clinical interest, since the 

occurrence of cardiovascular events has been minimal in patients treated for these very long 

periods. It differentiates lomitapide from PCSK9 antagonists, having no activity on CRP levels 

(138). It may be possibly linked to the drug’s activity on the human ether-a-go-go-related gene 

(hERG) channel currents. Inhibition has been observed only at high concentration (>1.7 µM) 

relative to those achieved at clinical dosing (166). However, a similar activity on hERG channels 

is exerted by COX2 antagonists, e.g. celecoxib (169) and is certainly linked to hsCRP reduction. 

The parallel activity of lomitapide and celecoxib on hERG channels and hsCRP may thus be 

explained by a common mechanism. Pharmacological connection of hERG channel inhibition 

and drug-induced prolongation of QT intervals has not come out of clinical studies on either 

celecoxib or lomitapide. 

 

4.6.2 Mipomersen 

Mipomersen is rapidly absorbed from the injection site into the circulation, with peak plasma 

concentrations within 3–4 h. No differences in AUCs have been reported between routes of 

administration (i.v. or s.c.). Relative to i.v. administration, the estimated absolute bioavailability 

ranges from 54% to 78%. About 85% of mipomersen is bound to plasma proteins being albumin 

the prominent one. Tissue endonucleases cleave the molecule to chain-shortened metabolites 

that no longer retain pharmacological activity. Urinary excretion represents the main route of 

whole-body clearance for both parent drug and metabolites. Following s.c. administration, the 

elimination half-life is approximately 1 to 2 months (170, 171). 

Mipomersen has been evaluated in a single study, to a limited extent, as potentially 

acting on inflammation. Flaim et al (172) tested the tolerability in healthy volunteers, 

determining plasma concentrations across three dose regimens. LDL-C reductions ranged 

between -9.5 and   -21%. There were no significant changes in pro-inflammatory or anti-

inflammatory markers, except for a rise in post-dose hsCRP in the mipomersen 200 mg weekly 

group. It appears thus as unlikely that mipomersen may display any significant anti-

inflammatory actions, also considering that the major side effects are the frequent occurrence 

of flu-like symptoms and injection site reactions (173). 

In conclusion, lomitapide and mipomersen in clinical use for extreme lipid elevations 

appear to differ in terms of possible inflammatory/anti-inflammatory mechanisms. 

Mipomersen, an antisense DNA drug, leads to local inflammation and flu-like symptoms not 

associated with hsCRP reduction, but rather rises. Dramatic reductions of hsCRP have instead 

Acc
ep

te
d 

M
an

us
cr

ipt



 

been observed after long term lomitapide and appear to be of potentially high clinical interest 

in the CV preventive activity. 

 

4.7 Bempedoic acid 

Bempedoic acid is a novel synthetic lipid-lowering agent targeting ATP-citrate lyase. ATP-citrate 

lyase (ACL) is a seldom-evaluated enzyme target, uniquely positioned at the intersection of 

nutrient catabolism and fatty acid biosynthesis. The ACL reaction is primarily responsible for the 

production of extra-mitochondrial acetyl-CoA (174), serving as the carbon precursor for 

cholesterol and fatty acid biosynthesis, as well as a metabolic checkpoint used by cells to sense 

nutrient availability and to coordinate metabolic adaptations. Bempedoic acid provides thus an 

effective therapeutic modality to treat hypercholesterolemia and to potentially address 

metabolically linked disorders such as non-alcoholic fatty liver disease. By a Mendelian 

randomization study the effects of lowering LDL-C levels were found to be mediated by 

multiple independent single nucleotide polymorphisms (SNPs) in the region encoding the ACLY 

gene (175). 

The efficacy of bempedoic acid as an LDL-C lowering agent has been validated by the 

positive results of phase 3 studies, indicating a stable LDL-C reduction in the range of 25-35%, 

additional to that of statins, with minimal muscular side effects (176). Bempedoic acid is, in 

fact, a pro-drug activated to the-CoA derivative in the liver by the very-long-chain acyl-CoA 

synthase 1 (ACSVL1). The active derivative inhibits ACL in the liver, whereas no conversion 

occurs in skeletal muscle, lacking ACSVL 1 (177). Thus, different from statins, no significant 

amount of active drug reaches skeletal muscles, with consequent minimal risk of myalgia. 

Kinetic data on bempedoic have not, yet, been made available (Esperion Therapeutics, personal 

communication). 

Clinical studies have consistently shown a marked hsCRP lowering activity of bempedoic 

acid. The highest efficacy has been reported in diabetic patients (178), i.e. -41% with a similar 

LDL-C reduction on a daily dose of 120 mg. In hypercholesterolemic patients (LDL-C: 130-220 

mg/dl, stratified by baseline TGs), hsCRP reductions of 20÷26% not dose-related, were 

described (179). More recently, in patients intolerant to at least one statin with a history of 

muscle complaints, a median -42% hsCRP reduction was reported with daily doses up to 240 

mg; bempedoic acid reduced LDL-C 28.7% more than placebo (180). In the CLEAR Tranquility 

trial, enrolling 269 statin intolerant patients, treatment with bempedoic acid (180 mg) added to 

background lipid-modifying therapy that included ezetimibe reduced LDL-C and hsCRP by -
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28.5% and -31%, respectively  (181) (Table 1). The long-term safety and efficacy of bempedoic 

acid as well as the CV outcomes are being evaluated in other 3 ongoing clinical trials (182). 

Finally, data from a phase 2b study, showed that in hypercholesterolemic patients (LDL-

C, 130-220 mg/dL) with or without muscle-related intolerance to ≥2 statins, combination of 

bempedoic acid (120 or 180 mg) with ezetimibe (10 m/day) dramatically reduced LDL-C 

cholesterol up to -48% with, in addition, a maximal -40.2% reduction in hsCRP when bempedoic 

was administered as a monotherapy (183). 

 

4.8 Cholesteryl ester transfer protein inhibitors 

Cholesteryl ester transfer protein CETP is a hydrophobic glycoprotein promoting a net mass 

transfer of cholesteryl esters from the nonatherogenic HDL fraction to the potentially 

proatherogenic non-HDL, an event followed by a reciprocal transfer of TGs from LDL, VLDL to 

HDL (184). CETP inhibitors prevent neutral lipid transfers between HDLs and TG-rich 

lipoproteins, including VLDL, markedly raising HDL-C levels and, to a lesser extent,  lowering 

LDL-C, depending on their potency (185). Overall, CETP inhibitors that have reached late stage 

clinical development are categorized into CETP inhibitors (torcetrapib, evacetrapib and 

anacetrapib) and modulators (dalcetrapib) (14). Despite the beneficial influence on cholesterol 

metabolism, off-target effects and lack of reduction in CV events and mortality (with 

torcetrapib, dalcetrapib and evacetrapib) have highlighted the complex, unclear beneficial 

mechanism of CETP inhibition (186).  

In the ILLUMINATE (Investigation of Lipid Level Management to Understand its Impact in 

Atherosclerotic Events) trial, recruiting 15,067 patients at high CV risk, administration of 

torcetrapib (60 mg) on an atorvastatin background (10, 20, 40 and 80 mg), raised HDL-C by 

+70.3% with a – 27.9% reduction in LDL-C; no changes in hsCRP were found (+0.04 mg/L). The 

trial was stopped after a 18-month follow-up after the observation of increased mortality and 

morbidity risk (187) (Table 1). A similar trend in lipoprotein changes was reported in the 

ACCELERATE (Assessment of Clinical Effects of Cholesteryl Ester Transfer Protein Inhibition with 

Evacetrapib in Patients at a High Risk for Vascular Outcomes) trial with evacetrapib. Among the 

12,092 high-risk vascular patients, randomly assigned to receive evacetrapib (130 mg), HDL-C 

was impressively increased by +131.6% with a -37.1% drop in LDL-C. Levels of hsCRP were 

significantly higher (+8.6%) in the evacetrapib vs the placebo group. The trial was stopped for 

futility after a median follow-up of 26 months (188) (Table 1). 
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The only trial, i.e. the REVEAL (Randomized EValuation of the Effects of Anacetrapib 

Through Lipid-modification) study, demonstrating a significant 9% proportional reduction of 

major coronary events upon anacetrapib administration (100 mg), reported no data on hsCRP. 

In this study, a + 104% rise of HDL-C and a -41% reduction of LDL-C (as quantified by a direct 

method) were found (189). Interestingly, with a weaker CETP inhibitor, i.e. dalcetrapib in the 

dal-OUTCOMES trial – the HDL-C rise was +30%, with no change in LDL-C and a +18% increment 

of hsCRP (190) (Table 1). Re-evaluation of all of these apparently negative results by using a 

pharmacogenomic approach has very recently unearthed unexpected findings. Among carriers 

of the AA genotype of the ADCY9 (adenylate cyclase type 9) gene, administration of dalcetrapib 

significantly reduced by 39% the risk of CV events with no elevation in hsCRP (191). This 

observation is now the object of the on-going dal-GenE trial (Effect of Dalcetrapib vs Placebo on 

CV Risk in a Genetically Defined Population With a Recent ACS; NCT02525939) (Table 1). 

CETP antagonism does not appear to be related to clear-cut anti-inflammatory changes. 

Indeed, all studied antagonists had a tendency to induce hsCRP rises (Figure 1). 

 

4.9 Nicotinic acid 

Nicotinic acid (niacin or vitamin B3) is a natural compound exerting a variety of activities on 

lipids, both cholesterol and TGs, at pharmacological doses, i.e. about 1-2 g/day (192). Nicotinic 

acid (NA) exerts a powerful antilipolytic activity, resulting in reduced free fatty acid (FFA) 

release from the adipose tissue to the liver where FFAs may be resynthesized to TGs (193). 

Some Authors believe that NA may exert, similar to fibrates, an activity as a fraudulent fatty 

acid, i.e. exerting a moderate stimulation on peroxisomal proliferation as a PPARα agonist 

(194). In this way NA may activate lipoprotein lipase and, as a consequence, reduce TGs, to a 

lesser extent LDL-C, and raise HDL-C levels (195). An analog of niacin, i.e. acipimox, has a more 

prolonged antilipolytic activity (196) and by this mechanism appears to be particularly effective 

in patients with the metabolic syndrome (197). 

The profile of NA, particularly the significant positive impact on HDL-C levels, has led to 

large placebo controlled clinical studies in patients with atherosclerotic vascular disease, i.e. the 

Atherothrombotic Intervention in MetS with Low HDL/high triglycerides: Impact on Global 

Health Outcomes (AIM-HIGH) (198) and Heart Protection Study 2-Treatment of HDL to Reduce 

the Incidence of Vascular Events (HPS2-THRIVE) (199) both with extended release (ER) NA. 

These studies evaluated ER NA in combination with the anti-flushing agent laropiprant in 

patients on intensive statin therapy, plus ezetimibe when required to reach predetermined 
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LDL-C target levels. Neither of these studies resulted in a significant reduction of major 

coronary disease. It is possible that this negative finding reflects the low baseline levels of LDL-C 

(<75 mg/dl) with associated modest reductions of LDL-C levels, although both studies reported 

a significant increase of HDL-C (200).  

ER NA treatment is typically associated within the induction of insulin resistance (201). A 

likely mechanism is that the antilipolytic of NA is transient, followed by daily rises of FFA levels 

(195). The opposite case is that of acipimox, with a stable reduced lipolysis, also resulting in an 

improved lipid profile, increased affinity of LDL for their receptors (202) and reduced insulin 

resistance (197).  

A very recent evaluation of ER NA given for 8 weeks in patients with dyslipidemia and 

metabolic syndrome (203), with 300 mg/day aspirin to reduce flushing, reported increased 

insulin resistance: the HOMA index rose, in fact, from 5.80 to 7.67 (+32%, p <0.015). This 

treatment also led to significant reductions of TG (-31%) LDL-C (-17%) and Lp(a) (-21%) with 

concomitant reductions of apo B, apo CIII and apo E. There were no changes in plasma apo AI 

but HDL-C levels rose by +13.2%. 

Inflammatory markers are typically reduced by NA treatment. The cell-surface receptor 

GPR109A also known as hydroxycarboxylic acid receptor 2 (HCA2 or HCAR2) or niacin receptor 

1 (NIACR1), is activated by NA. GPR109A is a G-protein-coupled receptor expressed in adipose 

tissue and immune cells (204). GPR109A KO mice show enhanced susceptibility to experimental 

inflammatory conditions (205). Extensive animal studies have confirmed the significant anti-

inflammatory potential of NA exerted via by the GPR109A receptor (206). In the above 

reported study in MetS patients (203), NA reduced hsCRP by 40% (from 2.7+0.55 to 1.7+0.25 

mg/L) (Table 1), and similar, albeit lesser reductions, were noted for of TNF-α, PAI1 (probably 

reflecting the  reduction of TGs)  and IL-7, not IL-6. It appears that the NA mediated reduction 

of CIII appeared to be tightly linked to an entire inflammatory cluster through hsCRP. 

The findings of numerous studies of NA and analogs have not provided consistent 

results. In a comparative evaluation of NA and fenofibrate, the former was more effective at 

lowering hsCRP but fenofibrate led to more a beneficial lipoprotein profile (207). Acipimox may 

possibly have a different profile: this drug reduces neutrophil migration, with no effect on 

monocytes (197).  
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5. Conclusions 

Analysis of results from the more recent clinical trials conducted with the PCSK9 inhibitor 

evolocumab (FOURIER) and with the IL-1 antagonist canakinumab (CANTOS) confirmed the 

pioneer hypothesis by Ridker et al, i.e. that the largest CV event reduction can be obtained 

when treating patients with both LDL-C > 70 mg/dl and hsCRP >2 mg/L (3). Overall, the 

observation that canakinumab has no effects on diabetes and LDL cholesterolemia indicates 

that benefits on major CV events are due to inhibition of inflammation (57). However, it should 

be reminded that of the two other RCTs addressing the issue of inflammation and CV risk, CIRT 

(Cardiovascular Inflammation Reduction Trial) has been ended in May 2018 after recruiting 

4,786 patients; the COLCOT (Colchicine Cardiovascular Outcomes Trial) is still ongoing. Results 

of CIRT are expected in November 2018. This study evaluated patients with prior MI and either 

type 2 diabetes or MetS, treated with low-dose methotrexate or placebo, primary endpoints 

being nonfatal MI, nonfatal stroke, and cardiovascular death (208). The COLCOT (Colchicine 

Cardiovascular Outcomes Trial) study instead aimed at evaluating whether long-term colchicine 

reduces rates of CV events in post-MI patients (209, 210). 

The new biological agents thus contribute to dichotomizing the pharmacological action 

of statins, evolocumab lowering only the LDL-C levels and canakinumab reducing only systemic 

inflammation. The results of the two most recent trials (FOURIER and CANTOS) add, however, 

an extra-layer of complexity on the relationship between lipids, inflammation and CVD risk. 

Indeed, in the FOURIER trial, baseline hsCRP and achieved LDL-C were both factors 

independently associated with major adverse CV events, reaffirming the concept of raised 

inflammatory markers (in particular hsCRP) and residual CV risk (143). 

Inflammation and cholesterolemia have thus different pathophysiological roles on 

atherosclerosis and CV risk (211). Lipid lowering agents with “pleiotropic” effects, i.e. statins, 

fibrates and, possibly, bempedoic acid, provide a potentially more effective approach to CV 

prevention. Looking back at 1997 when Maseri defined CRP as the “hidden side of the moon” 

(212), as a consequence of the never-ending debate relative to the direct causal role of 

inflammation in CVD, hsCRP appears to be of value in identifying high risk individuals, thus, 

guiding, in particular, lipid lowering therapy. Indeed, in the ASCOT (Anglo Scandinavian Cardiac 

Outcomes Trial) there was a 25% greater relative risk reduction among subjects with on-

treatment hsCRP < 1.83 mg/dL, a finding consistent across CARE, PROVE IT, REVERSAL, A to Z, 

and JUPITER trials (213). 
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The most recent observations with the newer PCSK9 antagonist, alirocumab, require a 

more definite answer as to which patients will benefit the most from a profound LDL-C 

reduction. A recent meta-analysis evaluating threshold LDL-C levels for achieving CV risk 

reduction concluded, in fact, that patients with baseline LDL-C  100mg/dL receiving a more 

intensive treatment are those benefitting the most (9). Evaluations of MACEs in the ODYSSEY 

trial did not show a clear benefit in patients with LDL-C <100 mg/dL. In the future, the effects of 

PCSK9 antagonism by RNA interference (inclisiran) will provide further, more stable cholesterol 

reductions and indications on their possible links with vascular inflammation. These 

pharmacological aspects of lipid lowering treatments will need to be more extensively 

addressed, both because of the present uncertainty on, e.g., statin treatment in elderlies (214) 

and because of the exposure of many patients to a growing number of drugs. 
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Tables and figures 

 

Figure 1. Pharmacological changes of LDL-C and CRP. Modified from Kinlay S et al. (6). 

CETP, Cholesteryl ester transfer protein; PCSK9, Proprotein convertase subtilisin/kexin 9;  

 

Figure 2. Hazard ratios for major CV events, cardiovascular mortality and all-cause mortality 

were stratified according to on-treatment hsCRP concentrations at 3 months. 
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 Clinical study hsCRP (mg/L) LDL-C (mg/dL) 

  Pre post Δ pre post Δ 

Monoclonal 
antibody anti IL-

1 

 
      

Canakinumab (52) CANTOS 4.3 2.0 -37% vs placebo 82.4 84.7 
+3.1% vs 
placebo 

        

Statins        

Pravastatin (215, 
216) 

CARE 2.3 1.9 
-17.4% vs 
baseline 

139.2 98.0 
-32% vs 
baseline 

Pravastatin (217) PRINCE 2.4 2.0 
-16.6% vs 
baseline 

142.9 97.5 
-31.8% vs 
baseline 

Lovastatin (2, 218) AFCAPS/TexCAPS 1.6 1.3 
-14.8% vs 
baseline 

156.0 115.0 
-27% vs 
baseline 

Atorvastatin (219, 
220) 

MIRACL 11.5 2.9 -75.0% vs placebo 135.0 72.0 -40% vs placebo 

Pravastatin (76) REVERSAL 3.0 2.9 -5.2% vs baseline 150.2 110.4 
-25.2% vs 
baseline 

Atorvastatin (76) REVERSAL 3.0 1.8 
-36.4% vs 
baseline 

150.2 78.9 
-46.3% vs 
baseline 

Pravastatin (73, 
221) 

PROVE IT–TIMI 
22 

11.9 2.1 
-82.4% vs 
baseline 

106.0 95.0 
-10.4% vs 
baseline 

Atorvastatin (73, 
221) 

PROVE IT–TIMI 
22 

12.2 1.3 
-89.3% vs 
baseline 

106.0 62.0 
-41.5% vs 
baseline 

Simvastatin (222) 
A-to-Z Trial 

2.01 0.17 
-91.5% vs 
baseline 

112.0 62.0 
-44.6% vs 
baseline 

Rosuvastatin (74) JUPITER 4.2 2.2 
-47.6% vs 
baseline 

108.0 55.0 
-49.1% vs 
baseline 

Simvastatin (223) 
Heart Protection 

Study 
3.07 2.24 -27% vs baseline 127.9 95.9 

-25% vs 
baseline 

Atorvastatin (224) ASCOT 2.4 1.8 
-25.8% vs 
baseline 

136.8 85.6 
-38.7% vs 
baseline 

Atorvastatin (225) CARDS 1.3 1.2 -9.8% vs baseline 121.0 60.0 
-50.4% vs 
baseline 

        

Ezetimibe        

Ezetimibe + 
atorvastatin (226) 

 
2.19 1.98 

-10% vs 
atorvastatin 

101.8 89.5 
-12.1% vs 

atorvastatin 

Ezetimibe + 
rosuvastatin (227) 

EXPLORER 1.7 1.2 
-17.8% vs 

rosuvastatin 
81.5 56.9 

-30.2% vs 
rosuvastatin 

Ezetimibe + 
Simvastatin (88) 

SHARP 1.1 0.99 -21% vs placebo 106.0 68.9 -35% vs placebo 

Ezetimibe + 
Simvastatin (87) 

IMPROVE-IT 1.9 1.6 
-14% vs 

simvastatin 
67.7 49.9 

-20% vs 
simvastatin 

        

Fibrates        

Fenofibrate (105) FIELD 1.8 2.5 +38.9 % vs 120 103 -14.2% vs  
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baseline  baseline 

Fenofibrate + 
Simvastatin (108) 

DIACOR 2.2 2.1  
-15.9% vs 
baseline 

136.9 92.0 
-29.1 % vs 
baseline 

Fenofibrate + 
Ezetimibe (111) 

 
2.5 1.9 

-25.3% vs 
baseline 

159.7 124.6 
-22.0% vs 
baseline 

        

Monoclonal 
antibody anti 

PCSK9 

 
      

Evolocumab (143, 
228) 

FOURIER 1.7 1.4  0% vs placebo 92.0 30.0 -59% vs placebo 

Bococizumab (149) SPIRE-1 and -2 1.88 1.84 +6.6% vs placebo§ 96.5 34.7 
-60.5%vs 
placebo§ 

Alirocumab (140) 
ODYSSEY 
COMBOII 

3.58 3.51 -2% vs baseline 108.0 53.3 
-49.5% vs 
baseline 

        

Bile acid 
sequestrants 

       

Colesevelam HCl + 
statins (163) 

 2.0 1.3 -23.3% vs statins 132.6 111.3 -21% vs statins 

Colestimide (164)  10.16 5.86 -42.3% 151.2 127.3 
-14.4% vs 
baseline 

        

MTP inhibitor        

Lomitapide (168) 
 

NCT00943306 
2.0 1.1 

-45% vs  
baseline# 

356.0 189.0 
-45.5 % vs 
baseline# 

        

Bempedoic acid        

Bempedoic acid + 
ezetimibe (181) 

CLEAR Tranquility 2.2  
-31% vs  
placebo 

129.8  
-28.5% vs  
placebo  

        

CETP inhibitor        

Torcetrapib (187) ILLUMINATE 1.30 1.34 +1% vs placebo 79.7 60.5 -24% vs placebo 

Dalcetrapib (190, 
191) 

dal-OUTCOMES 1.5 1.6 +18% vs placebo  76.4 76.4 no changes 

dal-OUTCOMES 
(analyzed for 

carriers of ADCY9 
AA genotype) 

1.71 1.61 -1.0 % vs placebo 76.0 - - 

Evacetrapib (188) ACCELERATE 1.52 1.65 +8.6% vs baseline 81.6 54.7 
-37.1% vs 
placebo 

        

Nicotinic acid        

Niacin (203) NCT01216956 2.7 1.6 -40% vs baseline 125 103 
-17% vs 
baseline 

        
#Data available at week 126; § Data available at week 14; -, not available  
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