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Abstract—Image-based methods for estimating the particle

size distribution (granulometry) usually analyze two-dimensional

(2D) samples of particles disposed on a conveyor belt. Such

approaches have to deal with occlusions and cannot evaluate

the thickness of each particle. Three-dimensional (3D) vision

systems can reduce the acquisition constraints and speed up the

quality control process. This paper proposes a novel 3D vision

system for analyzing the granulometry of falling particles. The

system is designed to work in real-time and to compute a partial

3D reconstruction of the particle from a single pair of two-

view images, which is then enhanced by using a neural-based

technique. The validation of the proposed approach has been

performed by considering three application scenarios for which

the system achieved satisfactory accuracy and robustness.

Index Terms—Granulometry, 3D reconstruction, image pro-

cessing, falling particles

I. INTRODUCTION

Granulometry, also known as particle size distribution, can

be defined as “a description of the size and frequency of

particles in a population” [1]. The granulometry of materials

is relevant in a wide range of applications, such as pharma-

ceutical production, food processing, paper making, textile

fabrication, coating manufacturing, or modeling geological

processes, because the properties of the final product or the

observed phenomenon depend on the shapes and sizes of the

particles [2], [3], [4], [5].

To determine the actual sizes and provide effective, au-

tomatic, inline, and contactless procedures, computer vision

systems can analyze the images of the particles while they are

transported [6]. The majority of these methods analyze images

from particles laying on a conveyor belt. This configuration

can use a simple acquisition setup, but it presents four im-

portant drawbacks. First, especially in the case of thin and flat

particles, measuring the thickness of each particle is difficult or

impossible since the objects to be analyzed are usually oriented

parallel to the conveyor surface. Second, the particles tend to

occlude or touch each other, thus, increasing the complexity of

the segmentation. Third, this configuration permits to observe

only the topmost particles because smaller particles tend to

remain at the bottom layer of material. Fourth, the particles

are usually deposed densely and are much more difficult to

detect and segment with respect to falling particles because

frequently the particles have uniform color and overlap or

touch each other [7].

A possible solution to the aforementioned problems is

to analyze the particles by performing a single two-view

acquisition while they are falling, thus being able to analyze

three-dimensional (3D) characteristics. This approach has the

following advantages. First, falling particles can present their
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Table I
NOTATIONS AND PARAMETERS USED IN THIS PAPER

Notation Description

CI Computational Intelligence
ROI Region of Interest
HSV Image color representation based on Hue (H), Satura-

tion (S), and Value (V)
YUV Image color representation based on luma (Y) and

chrominance (UV)
Sobel
operator

Discrete differentiation operator that approximates the
gradient of the image intensity function [9]

8-connected
component

Cluster of pixels in an image with the same value,
connected through each other 8-connectivity. The 8-
connectivity of a pixel p at location (x, y) includes the
locations (x + 1, y), (x − 1, y), (x, y + 1), (x, y −
1), (x + 1, y + 1), (x + 1, y − 1), (x − 1, y + 1),
(x− 1, y − 1) [9]

Cubic spline An approximation function of piecewise third-order
polynomials passing through a set of control points
[10]

| · | Cardinality of the set
a, σ(a) Mean and standard deviation of vector a

l, w, t Length, width, and thickness of the particle

l̂′, ŵ′, t̂′ Preliminary estimations of l, w, t

l̂, ŵ, t̂ Final estimations of l, w, t
CameraA ,
CameraB

Cameras used in the proposed setup

IA, IB Images captured using CameraA and CameraB
u, v Width and height of IA, IB
RA, RB ROIs of IA, IB
EA, EB Enhanced images
E′

B , R′

B EB and RB after correcting perspective distortions
r, c Row and column indexes of an image
αC Orientation difference between CameraA and

CameraB
β Yaw orientation of the particle with regard to CameraA
θ Roll orientation of the particle, defined as the angle

between the y axis and the major axis of the ellipse
fitting the particle shape in the binary image RA

H Homography matrix
ths Threshold used to binarize IA and IB
thArea Threshold used to discard 8-connected components

with insufficient area to represent a particle
thc Threshold used to detect overlapping particles
tfrontal,
tsideways

Thresholds used to determine if a particle has been
captured with a frontal or sideways orientation, by
analyzing its yaw orientation

tp Threshold used to discard outliers in the 3D point
cloud of the particle, representing the maximum dis-
tance of every point from an approximating plane
representing the 3D surface to which it pertains

thickness oriented towards the camera, thus permitting to per-

form accurate measurements. Second, it is possible to capture

particles in any orientation by exploiting the random rotations

of falling particles, thus providing the means to analyze all

the three dimensions of the particles with a single acquisition

setup. Third, falling particles are less prone to occlusions

with respect to images of material disposed on conveyor belt

[8]. Fourth, in the case of separated falling particles, it is

possible to segment them without requiring texture-specific

information, for example by using general histogram-based or

edge-based segmentation techniques.
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In industrial applications, particulate materials are often

let fall during their handling. However, the acquisition and

analysis of images in this environment is more complex

than on the conveyor belt because the particles fall faster,

with uncontrolled movements and the acquired images can

contain objects with random rotations on the three axes. A

3D acquisition system based on a two-view setup, as the one

proposed in this paper, can provide the following advantages.

First, a 3D reconstruction can compute a model invariant to

the position and orientation of the particle. Second, a metric

3D representation, achieved using a calibrated acquisition

system, permits to estimate the real size of the particle in

an unconstrained falling space.

This paper proposes a novel vision system for the granulo-

metric analysis of falling particles, which is based on two-view

acquisitions, 3D reconstruction, and Computational Intelli-

gence (CI). The main scope of this system is the granulometric

estimation of the length (l), width (w) and thickness (t) of

each single particle to subsequently obtain the characteristic

parameters of the particle size distribution, such as the mean

and standard deviation of l, w, and t. The main contributions

of the proposed system are the following: i) it can estimate

the thickness of small objects, which is not visible in particles

deposed on a conveyor belt; ii) it alleviates possible problems

due to occlusions with respect to state-of-the-art technologies,

since falling particles are better separated than those deposed

on a conveyor belt; iii) it permits to obtain a less biased

sampling, because falling particles tend to be distributed more

regularly, while on conveyor belts smaller particles tend to

remain at the bottom; iv) it can perform an inline metric

3D reconstruction and granulometric analysis of falling thin

particles using a single two-view acquisition, with a sub-pixel

estimation of the thickness; v) it is texture independent, hence

it can analyze particles of different materials; vi) it refines

the granulometric analysis by exploiting CI, which, being

conceived to work in imperfect and complex domains, such

as the production line [11], facilitates the calibration of the

system according to the application; vii) it is fast and robust,

making it suitable for inline applications; viii) it uses images

obtained using an acquisition setup composed only of two

cameras and commercial LED illuminators.

This work focuses on falling lath-, plate- and flake-shaped

particles, which are particularly challenging to measure using

vision systems. In the literature, the proportions of length,

width and thickness are in the following ranges [2]: lath:

(10− 50) : (2− 5) : 1; plate: ∼ 1 : ∼ 1 : (0.1− 0.6);
flake: ∼ 1 : ∼ 1 : < 0.1.

To the best of our knowledge, this is the first image-based

approach in the literature dealing with the 3D measurement

of falling particles. Moreover, its results in three case studies

show that it is effective, robust to different kinds of materials,

and exhibits satisfactory accuracy.

The paper is organized as follows. Section II presents the

state of the art. Section III describes the proposed approach.

Section IV and V describe the experimental results and con-

clusions, respectively. Table I presents the list of notations and

parameters used in the paper.

II. PREVIOUS WORK

Currently, the vast majority of granulometry methods based

on image processing techniques perform a two-dimensional

(2D) analysis, and only a few works perform 3D measurements

[12].

In general, 2D systems process images captured using

a single camera [13]. The work described in [14] applies

successive structural openings of the segmented image, while

the one in [15] uses clustering to segment the particles. Other

methods are based on the watershed computation [16], edge

detection or mathematical morphology processing [17], [3],

[18], fuzzy clustering [7], and analysis of images obtained

with different illumination conditions [19].

However, in uncontrolled setups, the segmentation step of

these methods can be an important source of errors in the

estimation of particle sizes [6]. These errors can be partic-

ularly relevant when a high number of occlusions occur or

when the quality of the illumination is poor. To avoid this

problem, researchers have proposed methods that do not rely

on segmentation. As illustrated in [20], the analysis of the

Fourier transform represents a good alternative. More recent

studies have applied techniques such as morphological opening

operations [21] or neural networks [6].

Approaches that only analyze 2D images have important

disadvantages with respect to methods analyzing 3D models

since they can have difficulties dealing with illumination

changes or with variations in the intensity and texture of

the materials [12]. Considering the approaches based on 2D

images, the additional information in color images with respect

to grayscale images can help in achieving a more robust seg-

mentation of the particles by considering the color difference

between the texture of the material and the background. How-

ever, single-camera setups do not permit to easily compensate

perspective distortions or easily distinguish individual particles

from overlapped particles.

3D scanners [22] have demonstrated their robustness in

measurement applications [12]. Nevertheless, this kind of

solution requires the use of complex and expensive hard-

ware. Other alternatives studied for granulometry analysis

are multi-flash imaging and shape from shading techniques

[23]. However, they require complex illumination setups. 3D

reconstruction methods based on stereo vision are simpler and

require less expensive hardware setups [24]. The work in [25]

has successfully applied a multiple view approach to separated

samples, while the system in [26] has reconstructed 3D models

of particles placed on a conveyor belt.

To increase the accuracy of the granulometric analysis, it

is possible to analyze images of particles captured as they

fall. In this way, the particles are better separated with respect

to traditional setups based on conveyor belts, since the fall

increases the speed of the particles and hence their distance

from each other. In particular, after falling few centimeters,

the speed of the particles is more than the one achievable

with most conveyor belts used for separating particles. The

work in [8] follows this approach, although it only analyzes

2D images.

To the best of our knowledge, the proposed system is the

first study on multiple view and 3D techniques for analyzing
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Figure 1. Outline of the proposed vision system. After the segmentation, the occlusion management step discards clusters of overlapping particles. Then, the

orientation of the particles is evaluated: the proposed method uses particles with a frontal orientation to estimate the length (l̂) and width (ŵ), and particles
with a sideways orientation to estimate the thickness (t̂). The main novelties of the proposed system are the innovative methods for selecting the particle
disposition (steps C and D) and for the granulometry analysis (steps E and F)

the granulometry of falling particles.

III. THE PROPOSED APPROACH

The system uses a two-view image acquisition setup, image

processing algorithms, 3D reconstruction methods, and CI

techniques to obtain the mean and standard deviation of l,
w, and t of the particles by performing the granulometric esti-

mation of each single particle. In the rest of the paper, l̂, ŵ, t̂
represent the estimated values of l, w, and t using the proposed

method. Two-view acquisitions and 3D reconstruction methods

are used since they can compute a metric representation of

the particles, invariant to their position and orientation with

respect to the camera. The metric reconstruction describes

the real size of the particles and their actual position in the

scene, expressed in millimeters and using a reference system

centered in the optical center of a reference camera [27]. The

computed 3D models are processed for estimating the particle

size measurements, which are refined using CI techniques. CI

techniques also permit to easily adapt the granulometry analy-

sis for heterogeneous materials, environments, and application

scenarios.

Once the particles are falling, the system performs the

following steps: A) acquisition, B) segmentation and prepro-

cessing, C) occlusion management, D) orientation estimation,

E) 3D edge reconstruction, F) two-view thickness estimation.

The main novelties of the proposed system are the innovative

methods for selecting the particle disposition (steps C and

D) and for the granulometry analysis (steps E and F). Fig. 1

presents the main modules and steps of the proposed vision

system.

A. Acquisition

The acquisition setup uses two calibrated cameras. In par-

ticular, the proposed implementation uses two Sony XCD-

SX90CR color CCD cameras, synchronized using a trigger

mechanism. Fig. 2 shows the schema of the setup. The cameras

are positioned horizontally, with an angle α = 85◦ with respect

to the support, and separated by a baseline ∆D = 125 mm.

It has been demonstrated in the literature that increasing

the baseline ∆D enables to reduce the error in estimating

the three-dimensional depth information. At the same time,

increasing the baseline requires to increase the camera angle

α to have the two cameras point at the same area represented

by the intersection between the fields of view. However, in-

creasing either ∆D or α reduces the accuracy of algorithms for
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Figure 2. Representation of the used acquisition setup: (a) side view; (b) top
view. The direction of the particle motion is along the y axis in the used
reference frame

searching for corresponding points in the images captured by

the two cameras [28]. The orientation angle α and the baseline

∆D are then empirically chosen as a trade-off between the

error in estimating the three-dimensional depth information

and the accuracy in searching for corresponding points.

Four LED bars, with sizes wled = 400 mm and hled =
300 mm are placed around the cameras with distances ∆L =
90 mm and ∆S = 90 mm. The size and distances of the LED

bars are chosen to produce a uniform illumination over the

fields of view of the cameras, that permits capturing falling

particles with a shutter time sufficiently fast to avoid motion

blur.

The setup performs a synchronized two-view acquisition

when particles are entirely contained in the field of view of

both CameraA and CameraB. A photocell trigger detects the

presence of particles and enables real-time acquisitions. The

color of the background used for this work is blue, although

different background colors permitted to obtain similar results

during preliminary tests.

To reconstruct metric 3D models, it is necessary to calibrate

the cameras offline by computing their intrinsic and extrinsic
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parameters, and the homography matrix H . To do so, this work

uses the algorithms described in [27], [29].

B. Segmentation and Preprocessing

This section describes the computation of the region of

interest (ROI) of each image, defined as the region repre-

senting separated particles or separated groups of overlapping

particles. Then, the system enhances the images and applies

a rectification step. The proposed method can be divided into

three tasks: i) segmentation, ii) enhancement, iii) rectification.

Fig. 3 shows a detailed outline of the segmentation and

preprocessing step.

1) Segmentation: The proposed segmentation algorithm

can cope with several aspects that influence the visibility of

the particles, such as the background, light conditions, and

differences in orientation, thickness, or color of the evaluated

objects. In addition, the algorithm discards image regions rep-

resenting dust or small particles (e.g., chopped wood strands

with length or width less than 2 mm).

The proposed algorithm combines a color-based and an

edge-based technique. The former uses the method described

in [30] to segment the S channel of the HSV representation

of I , obtaining the binary image Sb. The latter reduces

the background noise by applying a median filter to the

luminance channel Y of the YUV representation of I . The

next step consists of applying a Sobel edge detector [9] and

binarizing the image using the empirically estimated threshold

ths, obtaining Yb. The threshold ths is estimated following

the procedure described in Section IV-A. Subsequently, Sb

and Yb are combined by using the OR operator, obtaining

the binary ROI image R. The segmentation algorithm then

discards the 8-connected components with area lower than an

empirically estimated threshold thArea. The threshold thArea

is empirically estimated following the procedure described in

Section IV-A, which evaluates the size of the particles in the

considered application to robustly discard dust and broken

particles. The segmentation algorithm is applied to IA as well

as IB , obtaining the ROIs RA and RB , respectively.

2) Enhancement: First, the proposed enhancement algo-

rithm applies a contrast stretching to I and uses the segmen-

tation mask R to discard the regions that do not belong to

the particle, obtaining E. After that, it applies the method in

[31] to correct the distortions introduced by the lenses in the

two-view images. The enhancement algorithm is applied to

IA as well as IB , obtaining the enhanced images EA and EB ,

respectively.

3) Rectification: This step rectifies EB to facilitate the 3D

reconstruction process, obtaining E′

B , so that the epipolar lines

of E′

B are horizontal and correspond to the lines parallel to

the x axis of EA [32]. The rectification procedure computes

E′

B using the homography matrix H estimated during the

calibration step. Then, the same rectification procedure is

applied to RB , obtaining R′

B .

C. Occlusion Management

The images may contain an arbitrary number of falling

particles, with random positions and orientations. Hence, it is

necessary to select the particles for which the granulometric

analysis is feasible. This work identifies two particle configu-

rations: 1) separated particles and 2) overlapping or touching

particles.

This section describes a general method based on the shape

of each 8-connected component in the segmented image R to

discard groups of particles overlapping while falling. Fig. 4

shows a detailed outline of the occlusion management step.

The proposed system determines if the images depict sepa-

rated or overlapping particles. The system only uses separated

particles for the granulometry analysis and discards overlap-

ping particles because, similarly to the case of the particles

lying on the conveyor belt, it would not be possible to robustly

separate them without using texture information specific for

the considered material. Nevertheless, in the case of falling

particles, only a fraction of the 8-connected components

represents overlapping particles.

The method analyzes the shape of each 8-connected com-

ponent i ∈ R, by calculating di = aconvex,i − ai, where

aconvex,i is the area of the convex hull of i and ai is its

actual area. All components d ∈ R such that dd > thc

are considered overlapping particles, and are discarded. The

threshold thc is empirically estimated following the procedure

described in Section IV-A and should be tuned according

to the application scenario and the shape of the particles.

Fig. 5 shows an example of the occlusion management step.

In particular, the area difference di is not normalized by the

area ai of the component i since the normalized di/ai tends to

be greater on smaller particles due to the irregularities of the

shape of the particle and would require to take into account

the characteristics of the shape of the particle to adjust the

threshold thc. In the proposed approach, since small particles

are discarded using the method described in Section III-B,

thresholding the non-proportional area difference di proved to

be effective in detecting occluded particles.

D. Orientation Estimation

The proposed system has the advantage of capturing par-

ticles in any orientation by exploiting the random rotations

of falling particles, without changing the architecture of the

setup. In this way, it is possible to analyze all three dimensions

of the particles (l, w, and t) based on the orientation of the

particle at the moment of the acquisition. When the system

detects a separated particle, it can be captured in three possible

orientations: 1a) frontal, 1b) sideways, 1c) and intermediate

orientation (not frontal or sideways orientation).

Frontal acquisitions present the surface of the particle

oriented approximately perpendicularly to the optical axis of

CameraA. The proposed system uses them to estimate the l
and w. However, t is not completely visible, especially for

thin particles. Differently, sideways samples show particles

captured with the surface oriented approximately in parallel

to the optical axis of CameraA, exposing their thinner side.

The proposed system uses them to estimate t. Samples with

intermediate orientation are discarded, because they do not

permit to robustly estimate w or t.
To distinguish the three different cases, the orientation

estimation module analyzes the orientation difference αC

between the cameras, and the widths of the segmented ROIs.
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Figure 5. Example of the output of the occlusion management algorithm
applied on raw material particles (chopped wood strands): (a) image I; (b) the
ROI image R, containing the 8-connected components describing separated
particles (components 1, 2) or separated groups of overlapping particles
(component 3)

This method is accurate and computationally efficient since

it determines the orientation of the surface of the particle

with respect to the cameras without performing a complete

3D reconstruction. Fig. 6 shows a detailed outline of the

orientation estimation step.

The method considers a reference system centered in the

optical center of CameraA (Fig. 7). Let w and t be respec-

tively the real width and thickness of a particle captured

by the proposed system and β its yaw orientation with

regard to CameraA. CameraA and CameraB perceive w as

wA = w cos (β) + t sin (β) and wB = w cos (β − αC) +
t sin (β − αC), respectively. Since the contribution of t in

the computation of w can be considered negligible for thin

particles, the equations can be simplified as:
{

wA = w cos (β)
wB = w cos (β − αC)

. (1)

To provide a more robust estimation, the proposed approach

computes wA(r),wB(r) for each row r by extracting the

width of the connected component in RA, R
′

B , respectively,

and solves Eq. 1 for each row. Then, it estimates β as the

average result. If β < tfrontal, the proposed system considers

that the particle has been captured with a frontal orientation,

if β > tsideways, that the particle has been captured with a

sideways orientation, and if tfrontal ≤ β ≤ tsideways, that

the particle has been captured with an intermediate orienta-
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Figure 7. The reference system used to estimate the orientation β: w is
captured by CameraA as wA = w cos (β), and by CameraB as wB =
w cos (β − αC). t is captured by CameraA as tA = t sin (β), and by
CameraB as tB = t sin (β − αC)

tion, with tfrontal < tsideways. The thresholds tfrontal and

tsideways are empirically estimated following the procedure

described in Section IV-A. Fig. 8 shows an example of a

particle captured in the frontal and sideways orientations.

E. 3D Edge Reconstruction

This section describes the proposed method for estimating

l̂ and ŵ of falling thin particles by performing the 3D recon-

struction of the edges, normalizing the resulting point cloud,

estimating the length and width from the point cloud, and

using a CI-based enhancement. The method can only operate

for particles with a frontal orientation (orientation 1a), detected

using the method described in Section III-D. The proposed

method can be divided into four tasks: i) edge matching and

3D triangulation, ii) 3D normalization, iii) length and width

estimation, iv) CI enhancement. Fig. 9 shows a detailed outline

of the 3D edge reconstruction step.

1) Edge Matching and 3D Triangulation: To estimate l̂ and

ŵ, it is not necessary to know the details of each surface of

the evaluated particle. Therefore, the proposed system does



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 6

H

S

T

U

(a)

H

P

T

U

(b)

Figure 8. Example of a particle captured in different orientations using the
proposed approach applied on the calibration parallelepipeds case study: (a)
particle captured in frontal orientation. It is possible to observe the l and w
dimensions of the particle; (b) particle captured in a sideways orientation. It
is possible to observe the l and t dimensions of the particle

not compute the 3D position of every point of the particle.

Furthermore, by only computing the 3D coordinates of the

edges of the particles, the system is fast and invariant to

differences in the textures of the considered material. In

addition, it is not needed to use complex algorithms for match

rejection [33].

To compensate the 2D rotation of the particle, the proposed

3D reconstruction algorithm rotates RA of −θ degrees, obtain-

ing RA−θ , and then estimates the angle θ of the roll rotation as

the angle between the y axis and the major axis of the ellipse

fitting the particle shape in RA. The same rotation is applied to

R′

B , obtaining R′

B−θ . To align the two images, the algorithm

resizes R′

B−θ so that the ROI spans the same number of rows

as in RA−θ.

Then, the algorithm extracts the edges of RA−θ and R′

B−θ

using the Sobel operator and a thresholding step, obtaining the

binary images BA−θ and B′

B−θ and the sets of points PA−θ

and PB−θ . After that, it computes the set P−θ of pairs of

corresponding points as follows:

|PA−θ(j)| = |PB−θ(j)| → (x, j)A, (x, j)B ∈ P−θ

(x, j)A ∈ PA−θ(j), (x, j)B ∈ PB−θ(j) ∀ 1 < j < v , (2)

where | · | represents the cardinality of a set, PA(j) ⊂ P ′

A and

PB(j) ⊂ P ′

B represent the subsets of points where y = j, v is

the vertical size of the image, and P−θ is the set of matched

pairs of points.

To obtain the coordinates of the matched points on the

images EA and E′

B , the algorithm reverses the alignment and

rotation process and obtains the set of points P .

The z coordinate of each matched pair of points is then

computed using the triangulation function [27]:

z = (fto)/(xA − xB) , (3)

where f is the focal length of CameraA and CameraB , to is

the translation between the optical centers of the two cameras

obtained using the calibration procedure, xA and xB are two

matched points ∈ P . Fig. 10b shows an example of a 3D point

cloud (x,y, z).
2) 3D Normalization: To obtain accurate measurements,

it is necessary to perform a 3D normalization that removes

outliers, compensates for the roll and pitch rotations, and

minimizes the displacement along the z axis.

The proposed normalization first applies a linear interpola-

tion to P to obtain a plane (xp,yp, zp). Since thin particles

are nearly flat, the algorithm considers as outliers the points

with distance to the plane approximating the surface which

is greater than a threshold tp, empirically estimated following

the procedure described in Section IV-A.

In addition, the normalization algorithm compensates the

rotations of the particle in the 3D space. The displacements of

the plane along the three axes can represent the catheti of two

right triangles (Fig. 10b), which permit to compute the pitch

and roll angles using trigonometric formulas. In particular, the

algorithm estimates the roll angle αroll along x and z axes

and the pitch angle αpitch along y and z axes. After that, it

compensates them using 3D rotation matrices.

Fig. 10c shows an example of the 3D normalization step.
3) Length and Width Estimation: To estimate the length

and width of a thin particle, the system first projects the

point cloud on a plane, so that it appears as a fully frontal

acquisition, obtaining the binary image F . No scaling or

warping is performed to guarantee a metric representation.

Then, the proposed algorithm for estimating l̂ and ŵ com-

putes C as the filled convex hull of F and compensates the

rotation as in Section III-E1, obtaining C−θ . To model more

accurately the size of the particle, we calculate the points

where the major axis of the fitting ellipse MajC , its minor axis

MinC , intersect with the edges of the particle, and estimate

the preliminary length l̂′ and width ŵ′.
4) CI Enhancement: The proposed system uses neural

networks, trained using the procedure described in Section

IV-F, to enhance the estimated l̂′ and ŵ′ and obtain the final

estimations l̂ and ŵ. The neural network Nl enhances l̂′, and

the neural network Nw enhances ŵ′. Nl and Nw use the

feature sets Fl and Fw, respectively.

The set Fl is composed of the following features:

Fl =
[

l̂′; l̂′ · ŵ′;Per; (l̂′ · ŵ′)/Per; l̂′/ŵ′;αroll;αpitch; θ; d0;

(hA(c));σ(hA(c)); (hB(c));σ(hB(c));MajA;MajB
]

, (4)

where Per is the perimeter of the particle, d0 is the distance

from the center of the point cloud to the axes origin, hA(c) and

hB(c) are the height values of the 8-connected components in

EA and E′

B for every column c, MajA and MajB represent

the major axis of the 8-connected components in RA and R′

B .

Similarly, the set Fw is composed of the following features:

Fw =
[

ŵ′; l̂′·ŵ′;Per; (l̂′·ŵ′)/Per; l̂′/ŵ′;αroll;αpitch; θ; d0;

(wA(c));σ(wA(c)); (wB(c));σ(wB(c));MinA;MinB

]

, (5)

where wA(c) and wB(c) are the width of the 8-connected

components in EA and E′

B for every column c, MinA and

MinB are the minor axis of the 8-connected components in

RA and R′

B .

F. Two-view Thickness Estimation

This section describes the proposed method for estimating t̂
of a falling thin particle. The method analyzes the aligned im-

ages column-wise to determine which columns better describe

the thickness information of the particle. It can only work with

particles captured with sideways orientation (orientation 1b),

detected using the method described in Section III-D.

The proposed method for estimating t̂ can be divided

into six steps: i) alignment, ii) image projection, iii) sub-

pixel thickness analysis, iv) edge matching and 3D triangu-

lation, v) orientation-based thickness normalization, vi) CI
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Figure 9. Outline of the 3D edge reconstruction step. The step can be divided into four tasks: 1) edge matching and 3D triangulation, 2) 3D normalization,
3) length and width estimation, 4) CI enhancement

(a) (b)

(c)

Figure 10. Example of a raw material particle (chopped wood strand) and its
3D point cloud: (a) the particle; (b) the 3D point cloud of the edges. The roll
and pitch angles αroll, αpitch can be estimated from the fitting plane; (c)
the point cloud after compensating for the roll and pitch rotations. The point
cloud only contains the 3D coordinates of the edges, since the reconstruction
of the surface is not necessary to determine l and w

enhancement. Fig. 11 shows a detailed outline of the two-view

thickness estimation step.

1) Alignment: The alignment algorithm uses an ad-hoc

procedure to rotate the particle along the y axis of E and

enhance the details of the thickness, without introducing

artifacts due to interpolation.

The algorithm performs the alignment both on the left and

the right border to choose the one that better enhances the

thickness.

To align E to the left border, for each row r of R, the

algorithm computes the minimum column coordinate minc(r)
belonging to the ROI, and performs a left shift of s(r) =
minc(r) pixels, obtaining the image Lleft. Similarly, for each

row r of R the algorithm computes the maximum column

coordinate maxc(r) and performs a right shift of s(r) = u−
maxc(r) pixels, where u is the horizontal size of the image,

obtaining the image Lright.

2) Image Projection: The proposed algorithm projects the

image Lleft on the y axis by computing the projection vector

gleft(c) as the mean value of each column c in Lleft. It applies

the same process to Lright to obtain the right projection

vector gright(c). To enhance the visibility of the thickness,

the final projection vector g(c) is considered as gleft if

maxc(gleft(c)) > maxc(gright(c)), otherwise it is considered

as gright. If the particle is captured sideways (orientation 1b),

the majority of the incident light is reflected by the thickness,

and the projection exhibits a distinct peak in the corresponding

columns. On the other hand, in the case of particles captured

with a frontal orientation (orientation 1a), the light is reflected

more uniformly by its surface, and no distinct peak is present

(Fig. 12).

If a rightward alignment is chosen, the algorithm flips

g horizontally. Then, it extracts from g the local maxima

m = [m1,m2, . . . ,mn], and selects the peak mmax ∈ m in

the most leftward position, corresponding to the region of L
where the thickness is visible. Spurious peaks can be caused

by reflections in the central part of the particle and do not

correspond to the region of the image in which the thickness

is visible. After that, the algorithm extracts the position lmax

of mmax, which corresponds to the center of the thickness of

the particle in the aligned image LA.

Subsequently, the proposed algorithm applies for each row r
a reverse shift of −s(r) pixels on the position lmax to recover

the coordinates C(x, y)(r) of the center of the thickness in

the original image E.

3) Sub-pixel Thickness Analysis: The system performs an

effective sub-pixel analysis in the projected images, by apply-

ing a cubic smoothing spline [10] to g, obtaining a smooth

representation Gs with a higher resolution. Then, it calculates

the global maximum of the intensity ms,max from Gs and

extracts the points in its neighborhood that fulfill G(r)s >
hmax − (pmax/2), where hmax and pmax are the height and

prominence of the peak ms,max, obtaining G′

s ⊂ Gs. The

matrix G′

s is the projection corresponding to the region of L
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Figure 11. Outline of the two-view thickness estimation step. The step can be divided into six tasks: 1) alignment, 2) image projection, 3) sub-pixel thickness
analysis, 4) edge matching and 3D triangulation, 5) orientation-based thickness normalization, 6) CI enhancement

(a) (b) (c)

(d) (e) (f)

Figure 12. Examples of projections calculated for a calibration parallelepiped:
(a) image of a particle EA, captured sideways; (b) image Lright aligned along
the y axis; (c) the corresponding projection vector gright(c) calculated as
the mean value of each column of Lright; (d,e,f): corresponding images
obtained with a particle captured frontally. In the case of a particle captured
sideways there is a more distinct peak in the projection in correspondence of
the columns of Lright where the thickness is visible

with greater visibility of the thinnest face of the particle.

To estimate which points in G′

s correspond to the edges

of the thinnest face of the particle, the algorithm for sub-

pixel thickness analysis chooses the edges of the thickness

by analyzing the derivative of G′

s. Based on whether L
was obtained, with a leftward (L = Lleft) or rightward

(L = Lright) alignment, the left and right position el, er of

the edge are defined as:

el =

{

u− argminx (d(G
′

s)/dx) if L = Lleft

argminx (G
′

s) if L = Lright

er =

{

argminx (d(G
′

s)/dx) if L = Lleft

u− argminx (G
′

s) if L = Lright
. (6)

Subsequently, the proposed algorithm applies for each row

r a reverse shift of −s(r) on the el, er positions to recover

the Tl, Tr coordinates in E of the left and right edge of the

thickness, respectively (Fig. 13).

The alignment, projection, and sub-pixel analysis

steps are applied to EA, RA and to E′

B, R
′

B , obtaining

CA(x, y)(r), CB (x, y)(r), TA,l, TA,r, and TB,l, TB,r.

4) Edge Matching and 3D Triangulation: Using the pro-

cedure described in Section III-E1, the proposed algorithm

matches the points CA with the points CB and apply Eq. 3 to

compute the 3D point cloud C3D(x, y, z)(r).

6ß 6å

Figure 13. Example of the edges of the thinnest face of the particle Tl, Tr

computed using the proposed approach for estimating t̂, applied on the
calibration parallelepipeds case study

5) Orientation-based Thickness Normalization: In the case

of particles captured with a sideways orientation, the 3D

normalization procedure described in Section III-E may not

be reliable, since only a small portion of the particle is visible

and it is possible that the left and right borders of the strand

are not visible as separated lines in both the images.

The proposed normalization algorithm follows the method

described in Section III-D to determine the orientation β of the

particle with respect to the cameras. After calculating β, the

actual thickness t would be captured by the CameraA as tA =
t sin (β), and by CameraB as tB = t sin (β − αC) (Fig. 7).

The algorithm computes tA by considering the distance from

the coordinates of the edges TA,l, TA,r. Similarly, it computes

tB using TB,l, TB,r. Then, to estimate the thickness test, we

use the computed β, tA, and tB in the following equation

system:
{

tA = test sin (β)
tB = test sin (β − αC)

∀r . (7)

To provide a more robust estimation, Eq. 7 is solved for

each row r in RA and RB using tA(r), tB(r). The obtained

values test(r) represent the estimated thickness of the particle

expressed in pixels. To account for the distance of the particle

with respect to CameraA, the proposed method normalizes

the values as tnorm(r) = test(r)/d0(r), where d0(r) is

computed by considering the distance of the points in C3D(r)
from the origin of the axes. The average value tnorm is

considered as the preliminary estimated thickness t̂′.

6) CI Enhancement: The proposed system enhances the

estimated thickness t̂′ using CI techniques as in Section III-E4.

The final enhanced thickness t̂ of each thin particle is obtained

by applying the neural network Nt on the extracted feature set

Ft.
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The set Ft contains the following features:

Ft =
[

t̂′, σ(tnorm), (tA), σ(tA), (tB), σ(tB),

(test), σ(test), (β(r)), σ(β(r)),
]

. (8)

IV. EXPERIMENTAL STUDY

This section describes the parameters, the collected datasets,

and the performed experiments. The experimental study con-

sidered three case studies designed in laboratory conditions

to simulate real inline factory applications with high numbers

of falling particles and presence of dust. First, we evaluated

the accuracy of the proposed approach to estimate l̂, ŵ, and t̂
of the single particles. Second, we assessed the capability of

the proposed system to correctly detect when a particle can

be processed (single particle) or not (clusters of overlapping

particles). Third, we analyzed the effect of the orientation esti-

mation module. Fourth, we evaluated the performance impact

of the CI in enhancing the accuracy of the granulometric

estimation. Finally, we analyzed the working range of the

proposed method and the sensitivity of the used parameters.

A. Parameters Used in the Proposed Approach

DatasetCalibration contains a subset of the images collected for

each case study that served as testbed to empirically tune the

parameters of the proposed system. The parameters used in the

segmentation step are ths = 0.018 and thArea = 1000, while

the parameter used in the occlusion management step is thc =
10, 000. The parameters used in the orientation estimation step

are tfrontal = 20◦, tsideways = 60◦. The parameter used in

the 3D normalization step is tp = 2 mm.

The threshold ths took the value that permitted the best

separation of the multimodal distributions in the images con-

sidered in the case studies. The parameter thArea took the

value permitting to robustly discard dust and broken particles

in the databases considered in the study. This value can be

tuned according to preferences and the application scenario.

The parameter thc took the value corresponding to the best

performance in detecting occluded particles, after applying the

experimental procedure described in Section IV-D. The tested

values were in the range [0, u × v], with step tstep = 1000,

where u and v represent the width and height of image

IA. Similarly, tfrontal and tsideways took the values that

minimized the error of the proposed system, after applying

the experimental procedure described in Section IV-E. The

tested values range from 0◦ to 90◦ with step tstep = 10. The

parameter tp took the value that in most cases discarded all

the outliers, while removing only a small percentage of the

real points in the point cloud (x,y, z). This parameter avoids

the presence of outliers, which would influence the resulting

granulometry estimation in most cases. On the other hand,

removing some of the real points would still allow to perform

a correct estimation.

B. Collected Datasets: Three Case Studies

The system captured particles falling without constraints

in front of the cameras. To simulate a random falling phe-

nomenon, for each acquisition the particles fell from different

starting positions.

(a) (b) (c)

Figure 14. Examples of particles used in the different case studies: (a)
calibration particles; (b) raw particles; (c) manufactured particles

1) Case Study I: Calibration Parallelepipeds: This case

study is a testbed to validate the measurement accuracy of

the proposed approach. Specifically, it consists of the anal-

ysis of images acquired from thin metal particles made of

aluminum with known l, w, and t. In particular, the particles

are parallelepipeds with regular sides and smooth texture. Fig.

14a shows examples of these particles. The set is composed

of 9 particles with size reported in Table II. This case study

includes the following database:

• CSI-A contains 200 pairs of images per particle, 100
frontal and 100 sideways, for a total of 1800 two-

view acquisitions. This database permits to validate the

accuracy of our approach in estimating the particle size.

A human supervisor measured the particles using calipers,

following the standard measurement procedure [34].

2) Case Study II: Raw Materials: The second case study

intends to evaluate the accuracy in estimating the size of

raw materials with irregular shape and color. In particular,

the particles are chopped pieces of wood, known as strands

(Fig. 14b), used in the production of Oriented Strand Boards

(OSB). OSBs are engineered wood panels widely adopted in

manufacturing, construction, and logistics. The granulometry

of the strands has a great effect on the quality, cost and

environmental impact of the produced panels [35]. This case

study includes two image databases:

• CSII-A is composed of two typologies of particles, repre-

sentative of different working conditions in a real plant.

The database contains pairs of images from 100 particles

compliant with the reference size provided by the man-

ufacturing industry, having an average l × w × t size of

115×20×0.70mm, a minimum size of 78×11×0.3mm,

and a maximum size of 126×47×1.55mm. In addition,

it includes pairs of images from 100 particles non-

compliant with the reference size (e.g., due to strand-

ing errors or wearing of the transport systems), with

an average l × w × t size of 91 × 9 × 0.65 mm, a

minimum size of 46 × 3 × 0.2 mm, and a maximum

size of 122 × 34 × 1.85 mm. To simulate as much as

possible a random falling phenomenon, and to be able

to compute l̂, ŵ, and t̂ of each strand, the particles fell

from three types of starting positions: i) frontal starting

position, ii) sideways starting position, and iii) starting

position intermediate between the frontal and sideways

positions. Each particle was acquired separately 8 times

for each starting position, for a total of 4800 two-view

acquisitions. Database CSII-A is designed to test the

accuracy of the granulometric analysis of our approach.

• CSII-B contains images of groups of particles. The
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Table II
ACCURACY OF THE PROPOSED SYSTEM FOR THE ESTIMATION OF l̂, ŵ,
AND t̂, APPLIED TO DATABASE CSI-A (CASE STUDY I: CALIBRATION

PARALLELEPIPEDS). IN TOTAL, 1800 PAIRS OF IMAGES ARE USED

Real size [mm] Estimation error (meanstd) [mm]

l w t l̂ ŵ t̂

25.12 7.61 1.51 0.881.62 2.164.55 0.060.06
50.27 7.57 1.51 0.120.09 1.341.30 0.040.02
100.10 7.58 1.54 0.120.37 0.180.19 0.020.01
25.21 15.79 2.01 0.230.36 0.290.66 0.010.02
50.26 15.65 2.00 0.170.21 0.290.28 0.010.01
100.18 15.63 2.00 0.110.14 0.190.21 0.010.01
40.06 25.21 3.04 0.701.72 4.941.93 0.010.02
50.11 39.96 2.97 0.110.09 2.081.25 0.020.05
100.43 39.95 2.97 0.060.05 0.050.15 0.010.02

database is composed of 200 images, with a variable

number of particles of different sizes in each image,

captured with heterogeneous positions and orientations.

This database is used to study the accuracy of the occlu-

sion detection step (Section III-C). A human supervisor

labeled each 8-connected component, indicating if it

represents a separated particle or overlapping particles.

A total of 271 connected components are present in the

database.

For each database, a human supervisor measured the par-

ticles using calipers, following the standard measurement

procedure [34]. However, a measurement uncertainty up to

3 mm is present in l and w. The uncertainty is due to the

procedure interpretation, to irregularities of the strand, and to

their non-rigid structure. For similar reasons, measurements of

t present a measurement uncertainty up to 0.05 mm.

3) Case Study III: Manufactured Products: This case study

intends to analyze the performance of the proposed system

with particles that should have a certified size, but which may

show variations due to the production process. Specifically,

this case study analyzes metal plate brackets (Fig. 14c), which

constitute a good example of final manufactured products. This

case study includes the following database:

• CSIII contains 21 objects, with 24 pairs of images per

object. The images have been captured with the three

types of starting positions, 8 times for each position, for

a total of 504 two-view acquisitions. The particles have

an average l×w×t size of 83×27×2.04mm, a minimum

size of 40× 15× 1.5 mm, and a maximum size of 120×
40× 2.79 mm.

A human supervisor measured the particles using calipers,

following the standard measurement procedure [34].

C. Accuracy of the Granulometric Estimation

1) Case Study I: Table II shows the accuracy of the

proposed system for the granulometric estimation for the

database CSI-A. In particular, the table shows the mean and

the standard deviation of the estimation error for each particle

in the database CSI-A. The obtained results are satisfactory

and demonstrate the applicability of the proposed system for

many real application conditions. With regard to l̂ and ŵ, in

the majority of cases, the mean and standard deviation of the

error are < 1 mm. Considering t̂, in the majority of cases the

mean and standard deviation of the error are < 0.05 mm.

Table III
ACCURACY OF THE PROPOSED SYSTEM FOR DATABASE CSII-A (CASE

STUDY II: RAW MATERIALS)

DB N. imgs Estimation error (meanstd) [mm]

l̂ ŵ t̂
CSII-A 4800 0.980.82 0.801.30 0.100.09

Table IV
ACCURACY OF THE PROPOSED SYSTEM FOR DATABASE CSIII (CASE

STUDY III: MANUFACTURED PRODUCTS)

DB N. imgs Estimation error (meanstd) [mm]

l̂ ŵ t̂
CSIII 504 0.400.71 0.110.24 0.070.09

2) Case Study II: Table III shows the average error and the

corresponding standard deviation for all the particles of the

database CSII-A. The obtained errors are slightly higher but

comparable with respect to the ones obtained in the case study

I, also showing that the proposed system detected particles

with an error ≈ 1 ± 1 mm for l̂ and ŵ, and with an error

≈ 0.1 ± 0.1 mm for t̂. These results are satisfactory for real

production conditions. Most probably, the error increase with

respect to case study I is mainly due to the uncertainty in the

reference measurements performed using a caliper.

3) Case Study III: Table IV shows the average error and

the corresponding standard deviation on all the particles of

the database CSIII. Results show that the proposed system

detected particles with an error ≈ 0.4 ± 0.7 mm in the

estimation of l̂, with an error ≈ 0.1±0.2mm in the estimation

of ŵ, and with an error ≈ 0.1± 0.1 mm in the estimation of

t̂. Also in this case, the proposed system showed sufficient

accuracy for being used in a wide set of real application

conditions.

D. Accuracy of the Occlusion Management

The test described in this section uses the database CSII-B to

estimate the accuracy the occlusion management module. Ta-

ble V presents the obtained confusion matrix. It shows that the

proposed method can differentiate occluded and non-occluded

particles with an accuracy of 96.31%, and illustrates that the

system is capable of performing granulometric estimation also

in the case of multiple particles falling at the same time.

It could also be possible to detect occluded particles by

thresholding the normalized area difference di/ai using the

threshold thc in the range [0, 1]. We evaluated this configu-

ration by varying thc with step 0.05. In this case, the best

obtained classification accuracy was slightly inferior, 89.29%,

obtained by using thc = 0.65.

E. Accuracy of the Orientation Estimation

The test described in this section uses the databases CSI-A,

CSII-A, and CSIII to analyze the accuracy of the orientation

detection module. Table VI presents the estimation error of

the whole system when the orientation detection is turned

on/off, without the CI enhancement step. This table shows

that, in all cases, the use of the orientation detection increases

the accuracy of the granulometric estimation. Furthermore, the

orientation detection was crucial to obtain a reliable estimation

of t̂.
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Table V
ACCURACY OF THE OCCLUSION DETECTION MODULE.

DB N. imgs Predicted

CSII-B 200
Separated Occluded

Real
Separated 15.49% 1.84%
Occluded 1.84% 80.81%

Table VI
ERROR OF THE PROPOSED SYSTEM OBTAINED WITH AND WITHOUT THE

ORIENTATION DETECTION MODULE (WITHOUT CI ENHANCEMENT)

DB
Error w/out orientation detect. Error w. orientation detect.

(meanstd) [mm]

l̂ ŵ t̂ l̂ ŵ t̂
CSI-A 3.331.18 2.382.70 8.502.78 3.050.80 1.060.97 0.490.45
CSII-A 7.473.20 1.331.36 7.242.64 6.423.22 1.651.48 1.771.89
CSIII 4.992.17 2.191.80 4.652.88 3.930.76 0.970.93 0.400.31

F. Performance of the CI Enhancement

This section analyzes the impact of CI models to reduce the

error of the proposed approach. To obtain a fair comparison,

the experimental procedure used a 10-fold cross-validation

procedure [36], using 8/10 of the data for training, 1/10 for

validation, and 1/10 for testing. The testing subset contains

a disjoint set of particles with respect to the training and

validation subsets, resulting in the CI model being tested on

a particle that was not used for its training nor its validation.

This work considers CI models based on Feedforward Neural

Networks with one input layer, one hidden layer with tan-

sigmoidal nodes, and one output layer with a linear node,

which can be considered as universal approximators [37].

The training algorithm is the Levenberg-Marquardt back-

propagation algorithm, using at most 150 epochs. The number

of neurons in the hidden layer is the one that resulted in the

lowest estimation error, after trying different values. For each

database and for each particle dimension (l/w/t), the system

uses a separated neural network.

Table VII presents the results obtained both with and

without the use of CI enhancement for the databases CSI-A,

CSII-A, and CSIII. The results show that, for each considered

database, the CI module decreased the estimation error. The

neural networks trained for database CSI-A have hidden layers

with 30, 20, and 80 nodes for the l, w, and t dimensions,

respectively, while the neural networks trained for database

CSII-A have have hidden layers with 20, 80, and 70 nodes.

The neural networks trained for database CSIII have hidden

layers with 20, 10, and 60 nodes.

Fig. 15 depicts the improvement in the correlation between

the estimated granulometry and the real size of the particle,

with error bounds computed at a 95% confidence interval, for

l, w, and t separately. The presented results show that the

correlation always increased with the CI enhancement.

G. Working Range and Sensitivity Analysis

The experimental procedure to estimate the smallest object

measurable by the proposed system analyzes the acquisitions

of a set of spheres with a diameter ranging from 3 to 11mm.

In particular, all the spheres with diameter ≥ 11 mm were

correctly detected.

A similar procedure analyzed the images captured from a set

of strands smaller than the average size, with l ranging from

Table VII
ERROR OF THE PROPOSED SYSTEM OBTAINED WITH AND WITHOUT THE

CI ENHANCEMENT. A 10-FOLD CROSS-VALIDATION PROCEDURE WAS

USED TO TEST THE ACCURACY OF THE CI MODEL

DB
Error w/out CI Error w. CI

(meanstd) [mm]

l̂ ŵ t̂ l̂ ŵ t̂
CSI-A 3.050.80 1.060.97 0.490.45 0.090.13 0.931.41 0.010.01
CSII-A 6.423.22 1.651.48 1.771.89 0.980.82 0.801.30 0.100.09
CSIII 3.930.76 0.970.93 0.400.31 0.400.71 0.110.24 0.070.09

(a) (b)

(c) (d)

(e) (f)

Figure 15. Improvement in the correlation between the estimated and the real
size of the particle, with the use of CI enhancement, on aggregated data from
databases CSI-A, CSII-A, CSIII: correlation between the estimated and real
l, w, and t, without CI (a,c,e) and with CI enhancement (b,d,f). A 10-fold
cross-validation was used to test the accuracy of the CI model. The label
reports the correlation coefficient r with the corresponding lower and upper
bounds rlow, rhigh computed for a 95% confidence interval. Results show

the relevant improvement in estimating t̂ using CI techniques

13 to 29 mm and with w ranging from 2 to 7 mm, and the

strands with w ≥ 6mm were correctly detected, as long as the

surface of the strand is visible in the cameras. The upper limit

of the working range is represented by the acquisition volume,

which in the used setup (Fig. 2) is equal to ws × hs × ds =
400 × 225 × 500 mm. Nevertheless, the use of optics with

different focal lengths in the acquisition setup would allow

the proposed system to analyze particles with different size

ranges.

The experimental study also included a sensitivity analysis

on the parameters of the proposed approach for the database

CSI-A. The obtained results demonstrated that the approach

is robust to small variations of the parameters. We varied

by ±20% the value of the parameter thArea, obtaining no

variation in the mean estimation error of l̂, and variations

≤ 0.01 mm and ≤ 0.04 mm for ŵ and t̂, respectively.

This analysis showed that the most important parameters are

the thresholds thfrontal, thsideways, used to decide whether

the images should be processed to estimate l, w, or t. The

sensitivity analysis considered variations of ±20%, and in

the worst case, differences in the mean estimation error were
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≤ 0.1mm, ≤ 0.3 mm, ≤ 0.7 mm for l, w, and t, respectively.

Furthermore, the sensitivity analysis considered variations of

±20% for the parameter thc used in the occlusion management

step, obtaining in the worst case a classification error of 6%,

and showing that the approach would still be able to correctly

detect the vast majority of occluded strands.

V. CONCLUSIONS

This paper proposed a novel vision system for the inline

particle size measurement of falling thin particles, applied

with positive results to three case studies, including calibration

particles with precise size, raw materials used in the wood

engineering industry, and manufactured metal plates. The case

studies were designed in laboratory conditions simulating real

inline factory conditions, with high numbers of falling particles

and presence of dust.

The proposed system is able to compute the length (l),
width (w), and thickness (t) of the particles falling with

uncontrolled position and orientation. The only requirement

is that the particles fall in the fields of view of the cameras.

The proposed system obtained estimation errors of ≤ 1 mm

(1%), ≤ 1 mm (5%), and ≤ 0.1 mm (4%) in estimating l̂, ŵ,

and t̂ of the particles, respectively. The system was able to

correctly classify and discard overlapping particles, with 4%
classification error, and to correctly estimate the orientation of

the particles to analyze the corresponding size.

The proposed computational chain is general and the use

of optics with different focal lengths in the acquisition setup

would allow the proposed system to analyze particles with

different size ranges.

The performed tests showed that the system can be success-

fully applied for the inline monitoring of the granulometry

of falling particles, instead of relying on offline sampling-

based techniques, which are time-consuming, suffer from a

measurement delay, and may not represent the current working

point of the plant.
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