
Accepted Manuscript

Validation of a low-cost laser scanner device for the assessment of three-dimensional
facial anatomy in living subjects

Daniele Gibelli, MD, PhD, Valentina Pucciarelli, BSc, PhD, Zuzana Caplova, MSc,
PhD, Annalisa Cappella, BSc, PhD, Claudia Dolci, MD, Cristina Cattaneo, BSc, MD,
MA, PhD, Chiarella Sforza, MD

PII: S1010-5182(18)30407-4

DOI: 10.1016/j.jcms.2018.06.009

Reference: YJCMS 3036

To appear in: Journal of Cranio-Maxillo-Facial Surgery

Received Date: 13 February 2018

Revised Date: 28 May 2018

Accepted Date: 5 June 2018

Please cite this article as: Gibelli D, Pucciarelli V, Caplova Z, Cappella A, Dolci C, Cattaneo C, Sforza C,
Validation of a low-cost laser scanner device for the assessment of three-dimensional facial anatomy in
living subjects, Journal of Cranio-Maxillofacial Surgery (2018), doi: 10.1016/j.jcms.2018.06.009.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jcms.2018.06.009


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Validation of a low-cost laser scanner device for the assessment of three-dimensional facial 

anatomy in living subjects 

 

Daniele Gibelli1, MD, PhD (ORCID: 0000-0002-9591-1047), Valentina Pucciarelli1, BSc, PhD 

(ORCID: 0000-0002-9165-133X), Zuzana Caplova2, MSc, PhD (ORCID: 0000-0002-3424-4092), 

Annalisa Cappella2, BSc, PhD (ORCID: 0000-0002-4527-4203), Claudia Dolci1, MD (ORCID: 

0000-0002-3060-4097), Cristina Cattaneo2, BSc, MD, MA, PhD (ORCID: 0000-0003-0086-029X), 

Chiarella Sforza1, MD (ORCID: 0000-0001-6532-6464) 

 
1 LAFAS, Laboratorio di Anatomia Funzionale dell’Apparato Stomatognatico 

Dipartimento di Scienze Biomediche per la Salute 

Università degli Studi di Milano, Milano, Italy 
2 LABANOF, Laboratorio di Antropologia e Odontologia Forense 

Dipartimento di Scienze Biomediche per la Salute 

Università degli Studi di Milano, Milano, Italy 

 

LAFAS, Laboratorio di Anatomia Funzionale dell’Apparato Stomatognatico 

Dipartimento di Scienze Biomediche per la Salute 

Università degli Studi di Milano, Milano, Italy 

Chief of the laboratory: Prof. Chiarella Sforza, MD 

 

 

 

Corresponding author: Dr Daniele Gibelli, MD, PhD 

Dipartimento di Scienze Biomediche per la Salute 

Università degli Studi di Milano 

Via Mangiagalli 31, 20133, Milano, Italy 

tel. +39-02-50315399 

e-mail address: daniele.gibelli@unimi.it  

ORCID ID: 0000-0002-9591-1047 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 1 

Summary 

 

The present study compared the reliability of a low-cost laser scanner device to an already-

validated stereophotogrammetric instrument. Fifty volunteers underwent duplicate facial 

scans through laser scanner and stereophotogrammetry. Intra- and inter-instrument 

reproducibility of linear distances, angles, facial surface area and volume was verified through 

the Bland-Altman test and calculation of absolute (TEM) and relative (rTEM) technical errors 

of measurement; rTEM was then classified as follows: <1% excellent; 1-3.9% very good; 4-

6.9% good; 7-9.9% moderate; >10% poor. The scans performed through different devices 

were registered and superimposed to calculate the root mean square (RMS) (point-to-point) 

distance between the two surfaces. The same protocol was applied to a mannequin head. In 

inter-instruments comparison, 12/26 measurements showed a “good” rTEM; 5 were “very 

good”. In intra-instrument comparison, most performances worsened, with only 10 of 26 

measurements classified as “good” and “very good”. All the measurements made on 

mannequin scans were at least “good”, and 14/26 were “very good”. Surface area was “very 

good” only in intra-instrument comparison; conversely, volumes were poorly repeatable for 

all the comparisons. On average, RMS point-to-point distances were 0.65 mm (inter-devices 

comparison), 0.56 mm (mannequin scans), 0.42 mm (intra-device comparison). In conclusion, 

the low-cost laser scan device can be reliably applied to inanimate objects, but does not meet 

the standards for three-dimensional facial acquisition on living persons. 

 

Keywords: facial anatomy, low-cost laser scanner, stereophotogrammetry, RMS (root mean 

square) 
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INTRODUCTION 

 

Three-dimensional facial analysis represents an important field of research of human 

anatomy, with application in several surgical and diagnostic branches of medicine, from 

dentistry to maxillofacial surgery (Farkas and Deutsch, 1996). The introduction of modern 

three-dimensional (3D) image acquisition systems, such as stereophotogrammetry and laser 

scanning, has represented a crucial improvement, widening the type of measurements to areas, 

volumes and 3D-3D surface distances, and increasing the reliability of metrical assessment 

(Winberg et al., 2006; Sawyer et al., 2009; Codari et al., 2015; Gibelli et al., 2015; Hong et 

al., 2017). In fact, both stereophotogrammetry and laser scanners have proved to be highly 

reliable (de Menezes et al., 2010; Joe et al., 2012), and have been applied to many research 

fields of facial anatomy relating to surgery, anthropology and genetics (Schwenzer-Zimmerer 

et al., 2008; Kau et al., 2010; Tartaglia et al., 2012; Sforza et al., 2013; Othman et al., 2014; 

Rosati et al., 2014; Koudelovà et al., 2015; Pucciarelli et al., 2017a, 2017b). 

With time, literature has validated several types of stereophotogrammetric and laser scanner 

devices which were found suitable for research in 3D facial anatomy (Kau et al., 2004; 

Winberg et al., 2006; de Menezes et al., 2010; Joe et al., 2012; Camison et al., 2017; Hong et 

al., 2017); however, although they reach a high reliability in assessment of different metrical 

measurements, they are affected by some limits, being the first of them the price. Although 

the technological improvement will lead to a decrease in costs in the future, the static 3D 

image acquisition devices still have a high price (Fan et al., 2017), which may not be afforded 

by all universities for research or by hospitals for diagnosis, treatment planning and follow-

up.  
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Recently, novel portable stereophotogrammetric devices have been proposed on the market, 

with the advantage of being more economical than the static models and sharing a high 

reliability in assessing measurements (Camison et al., 2017). However, their cost remains in 

the order of several thousand euros, and represents the main limit for their wide diffusion in 

different research fields.  

At the same time, other 3D image acquisition devices with an affordable price have been 

produced and made available on the market: an example is provided by the Sense® 3D 

scanner, a hand-held scanner with a spatial x/y resolution of 0.9 mm and a depth resolution of 

1.0 mm at 0.5 m (Fan et al., 2017). It costs approximately 400 euros and can acquire the point 

cloud of the head in less than 1 minute (Fan et al., 2017).  

The possible application of this type of device to facial anatomy may represent an important 

step for widening the chances of 3D analysis of faces in different clinical and surgical 

contexts. However, to our knowledge, so far the Sense® device has been applied only in one 

published study, in which it was used to scan the face of a cadaver for the assessment of 3D 

modifications due to the decomposition process (Caplova et al., 2018). No study has applied 

this type of technology to facial analysis of living people.  

In addition, the low-cost Sense® device has not been validated for the livings yet: in fact, to 

date, only one study has tested its reliability using a mannequin head and one patient acquired 

in a clinical environment (Fan et al., 2017). Results were reported as promising by the 

authors; however, no indication at all is given about the reproducibility of facial 

measurements on real subjects, and specifically on the possible limits due to involuntary head 

and facial movements.  
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Yet, this type of device is expected to be used more and more frequently in different areas of 

research, thanks to its low cost; therefore, a validation study including an adequate number of 

living subjects is mandatory. 

The present study aims to validate a low-cost laser scanner device for the assessment of living 

subjects to test its application to 3D facial anatomy. 

 

MATERIALS AND METHODS 

Sample recruitment 

A total of 50 adult subjects (10 men and 40 women) aged between 21 and 50 years (mean: 

27.8 years; SD: 6.5 years) were recruited for the facial scan. Subjects affected by 

deformations and congenital and acquired pathologies affecting the face, as well as signs of 

recent or previous facial trauma were excluded from the study. Subjects with beards were 

excluded as well, as both stereophotogrammetric and laser scanner devices cannot acquire 

areas covered by excess facial hair.  

Every participant signed an informed consent form, according to local and international 

ethical rules. The study followed guidelines by the Declaration of Helsinki (26.03.14; no. 

92/14) and was approved by the university ethical committee (26.03.14, no. 92/14). 

 

3D acquisition 

Every participant’s face was scanned through two different 3D image acquisition devices: a 

low-cost laser scanner (Sense®, 3DSystems, Rick Hill, SC, USA) and a static 

stereophotogrammetric device (Vectra-3D®: Canfield Scientific, Inc., Fairfield, NJ, USA) 

(Fig. 1). Every subject was scanned in neutral expression. A second Sense® facial capture 

was repeated after a few seconds to test the intra-device repeatability. 
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Capture modalities vary according to the type of device. For the stereophotogrammetric one, 

50 landmarks were marked on every participant’s face through a black eyeliner according to a 

standardized procedure for 3D acquisition (de Menezes et al., 2010). The volunteers had to 

keep a neutral position while sitting on a stool in front of the instrument; its three cameras 

acquired the facial surface simultaneously from three different points of view in 3.5 

milliseconds (https://www.canfieldsci.com/imaging-systems/vectra-m3-3d-imaging-system/).  

On the other hand, the Sense® device had to be moved by the operator around the subject 

while performing a continuous acquisition of the facial surface through its laser ray and 

camera. The scan lasts a few seconds, and the subject had to keep the neutral position for all 

the acquisition time. To standardize the procedure, the acquisition time was set at 10 seconds, 

sufficient to perform a complete scan of the entire facial surface. Sense® acquisition does not 

require previous eyeliner marking, as the scan is obtained without a texture. 

The entire procedure was applied also to a mannequin head, which was scanned three times 

through Vectra® and five times through Sense® devices to compare the performances of both 

devices in cases of inanimate objects. 

In addition, a box covered by graph paper was scanned with both Vectra® and Sense® 

acquisition systems to test accuracy and repeatability of linear distances, surface areas and 

volumes. Ten measurements were performed for each type and compared with the real values 

through calculation of absolute and relative technical errors of measurement (TEM/rTEM). 

 

Data elaboration 

The 3D scans obtained through both devices were elaborated through VAM® software 

(Vectra Analysis Module, Canfield Scientific, Inc., Fairfield, NJ, USA).  
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At first, 14 linear and 12 angular measurements were automatically calculated through Faces 

software, specifically developed for the automatic extraction of these measurements from 3D 

coordinates (Table 1, Fig. 2). This step requires that 17 facial landmarks be identified on the 

3D scans (Pucciarelli et al., 2017a). For the stereophotogrammetric facial models, landmarks 

were located according to the eyeliner marks; for the Sense® scans, landmarks were located 

with the only the help of the geometrical characteristics of the 3D surface. 

In a second step, a facial area of interest (FAI) was selected in each 3D facial model as the 

area included between the trichion, frontotemporale, zygion, tragion, gonion and gnathion 

landmarks; these points were manually placed and the FAI was automatically selected 

through VAM® software (Gibelli et al., 2017a, 2017b). Surface area and volume of the FAI 

were obtained. 

Finally, FAIs acquired through stereophotogrammetry and laser scanner were superimposed 

on each other to reach the least mean point-to-point distance between the entire 3D surfaces. 

This procedure was automatically performed by VAM® software. Once the superimposition 

was performed, RMS point-to-point distances between the two 3D scans were automatically 

calculated (Fig. 3).  

 

Statistical analysis 

Two types of comparison were performed, respectively between the stereophotogrammetric 

and laser scanner models and between the two scans from the laser scanner. 

Concordance of linear and angular measurements, facial surface area and volume of FAIs 

were assessed through a Bland-Altman test (Giavarina, 2015). In addition, the absolute and 

relative technical errors of measurement (TEM/rTEM) were calculated (Adao Perini et al., 
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2005), and evaluated according to five categories: <1% excellent; 1-3.9% very good; 4-6.9% 

good; 7-9.9% moderate; >10% poor (19). 

 

RESULTS 

 

Overall results for linear and angular measurements are reported in Tables 2-4.  

For inter-instruments comparisons, 17 of 26 measurements achieved a “very good” or a 

“good” performance, with agreement ranging between 61.1% and 92.0% (TEM between 2.2 

mm and 8.0 mm for linear distances, and between 1.8° and 6.8° for angles).  

The measurements performing the worst were forehead length (tr-n), mandibular ramus length 

(tm-gom), nasal convexity (sn-n-prn), and both angles of eye fissure (ex-en vs TH), all 

classified as “poor” rTEM values. In addition, “moderate” rTEM values were shown by four 

measurements involving the lower third of face: lower facial height (sn-pg), mouth width (chr-

chl), mandibular body length (pg-gom), and facial divergence [(tm-n) vs (gom-pg)]. No case of 

“excellent” rTEM was recorded. 

When repeated scans of the same person obtained through Sense® device were compared, in 

general the performances of most of measurements worsened: only 10 measurements among 

linear distances and angles were classified as “very good” or “good”, with a repeatability 

ranging between 69.1% and 91.6% (TEM between 2.9 mm and 5.5 mm for linear distances, 

and between 2.0° and 5.7° for angles). The rest of the measurements were classified as 

“moderate” or “poor”, being those performing worst with regard to lower facial height (sn-

pg), mandibular ramus length (tm-gom), both angles of eye fissure (ex-en vs TH), upper facial 

convexity (tr-n-tl), middle facial convexity (tr-prn-tl), lower facial convexity (tr-pg-tl), nasal 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 8 

convexity (sn-n-prn), and facial divergence [(tm-n) vs (gom-pg)]. In 16 of 26 cases, the 

performances were lower than those obtained with Vectra®-Sense®. 

On the other hand, the comparison between Vectra® and Sense® 3D models of the 

mannequin reached the highest performance, with 24 of 26 rTEMs classified as “very good” 

and “good” and two as “excellent”. In this case, concordance ranged between 63.2% and 

98.5%, whereas TEM was between 0.7 and 7.5 mm for linear distances, and between 0.6° and 

4.8° for angles. 

Repeatability of FAI surface area was “poor” for Vectra®-Sense® and “very good” for 

Sense®-Sense® comparisons: Vectra®-Sense® comparison of mannequin facial models was 

classified as “moderate”. rTEM values for FAI volume were “poor” for all the comparisons 

(Table 5).  

With regard to 3D-3D registration procedures, in the case of living subjects, the mean RMS 

distance was 0.65 mm (SD: 0.12) for Vectra®-Sense® comparison, and 0.42 mm (SD: 0.17) 

for Sense®-Sense® comparison; for the mannequin head, the same value between Vectra® 

and Sense® models was 0.56 mm (SD: 0.02 mm). 

With respect to measurements on the experimental model covered by graph paper, the 

Vectra® system gave excellent results in regard to linear distances (TEM: 0.3 mm; rTEM: 

0.9%) and very good in the case of surface areas (TEM: 0.2 cm2; rTEM: 1.1%) and volumes 

(TEM: 0.8 cm3; TEM: 2.9%). The same values were worse for measurements performed on 

the Sense® 3D model, although linear distances and surface areas were still acceptable, being 

classified respectively as “very good” (TEM: 0.6 mm; rTEM: 1.6%) and “good” (TEM: 0.5 

cm2; rTEM: 3.1%). On the other side, volumes gave a “poor” repeatability (TEM: 3.4 cm3; 

rTEM: 13.8%). 
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DISCUSSION 

Three-dimensional image acquisition systems are gaining a growing importance in several 

fields of research: this phenomenon has already been acknowledged in the literature, as 

several authors have tested the reliability of stereophotogrammetric and laser scanner devices 

in facial anatomy (Kau et al., 2004; Winberg et al., 2006; de Menezes et al., 2010; Joe et al., 

2012; Hong et al., 2017; Camison et al., 2017). 

The introduction of low-cost devices may represent a push towards more diffuse application 

of 3D image acquisition technologies, especially in contexts in which the high costs of the 

fixed and already validated devices cannot be afforded. For this reason, the validation of these 

instruments, often designed for different purposes, is a crucial task in the actual field of facial 

anatomy.  

The present study was designed to test the performances of Sense® laser scanner in all the 

declination of facial assessment, including not only linear and angular measurements, but also 

surfaces and volumes, which are acquiring a growing importance in research and clinics 

(Sforza et al., 2014a, 2014b; Gibelli et al., 2015; Ozer et al., 2016). In addition, 3D-3D point-

to-point distances, calculated after registration of 3D models, were also tested, as they have 

had several applications in the literature (Camison et al., 2017; Gibelli et al., 2017a, 2017b; 

Pucciarelli et al., 2018). 

The inter-instrument comparison verified that only 17 of 26 linear and angular measurements 

showed an acceptable repeatability between Vectra® and Sense® scans; as a reference, we 

can consider the same values recorded in the Vectra® intra-device comparison, in which 17 of 

26 measurements were classified as “excellent”, 7 of 26 as “very good” and 2 as “good” 

(Gibelli et al., 2018). The performances worsened in the Sense®-Sense® intra-device 

comparison, in which only 10 of 26 measurements could be classified as at least “good”. 
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The results can be adequately justified only considering the different measurement protocol of 

the two devices: while the stereophotogrammetric device performs three simultaneous 

captures of 3.5 milliseconds, the laser scanner performs a unique capture lasting several 

seconds. During both acquisitions, the subject must stay still. However, involuntary head and 

facial movements cannot be fully controlled, and they increase with acquisition time; 

therefore, the longer the scan, the greater the muscular contractions modifying the final 3D 

facial model. Indeed, the measurements with low repeatability concerned mainly the oral and 

orbital area, where involuntary movements are reported to be most evident (de Menezes et al., 

2010). Clearly the performances are expected to change modifying the acquisition time of 

Sense® device: for example, decreasing the capture time could lead to a lower influence of 

facial mobility. In the present study, a conventional time of 10 seconds was arbitrarily chosen 

for each capture, as it was the adequate time for a complete facial acquisition; however, 

further studies at different acquisition times are needed to determine which is the best capture 

time for this type of device. 

Another relevant difference that may have had an impact on the present results concerns 

texture. The Vectra® device reproduces a texture model, which obviously helps in detecting 

landmarks that have been previously marked on the face (de Menezes et al., 2010). On the 

other hand, the Sense® device does not provide texture information; therefore, facial 

landmarks must be identified on the face with the help of only the 3D surface (Fig. 1) 

(Marmulla et al., 2003; Kovacs et al., 2006). In the present study, landmarks had already been 

marked on the skin prior to digitization through Vectra® device: in fact, labeling landmarks 

prior to acquisition improves the precision of the subsequent measurement procedures 

(Weinberg et al., 2004). Differences in position between previously marked landmarks and 

the same reference points detected merely on the 3D surface may explain the error 
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encountered in inter-device comparison. In addition, the same variables are expected to 

increase in intra-device comparison, as both 3D scans suffer the same limitations in landmark 

detection, with consequent increase in TEM and rTEM values and reduction of repeatability.  

Moreover, differences in locating facial landmarks may explain the low performance of facial 

area and volume in Vectra®-Sense® comparisons, as they affect the definition of FAI as well. 

As reference, Vectra® intradevice rTEM for facial area and volume were respectively 0.8% 

and 2.2% (30). 

On the other hand, the repeatability of most of measurements increased passing from living 

people to inanimate mannequins, where the influence of head and facial movements is 

excluded; in this case, no measurement reached a rTEM classification lower than “good”, 

with TEMs up to 5.6 mm for linear distances and 6.3° for angles. These results suggest that 

the best scenario for using Sense® is one involving either inanimate objects or deceased 

persons, as already proposed by the scanty literature so far available on this device (Fan et al., 

2017; Caplova et al., 2018).  

With regard to RMS point-to-point distance, the smallest value was shown by Sense®-

Sense® comparison, with 0.42 mm, whereas it was higher in the Vectra®-Sense® comparison 

(0.65 mm). The mannequin Vectra®-Sense® comparison yielded intermediate values (0.56 

mm). In a recent investigation comparing static and portable stereophotogrammetric 

instruments, Camison et al. found a mean RMS of 0.43 mm (Camison et al., 2017). The 

present results seem to suggest that Sense® provides valid scans to perform 3D-3D 

registration and calculation of RMS point-to-point distances; however, caution should be 

taken when the superimposed models come from different devices because of the obvious 

differences in acquisition procedures. 
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One limitation of the present investigation is the location of data collection: all procedures 

were made in a research laboratory. Other locations, both indoor and outdoor, may have 

increased environmental noise, with a possible increment in involuntary movements. Another 

limitation is sample composition: we measured only cooperative adult subjects, who were 

expected to maintain the requested head and face positions with limited involuntary 

movements. Therefore, results may change in young and/or uncooperative persons (Kau et al., 

2004; Pucciarelli et al., 2017a, 2017b).  

 

CONCLUSION 

 

In conclusion, the present article first validated the use of the low-cost Sense® laser scanner 

in the field of 3D facial imaging. Results suggest that the device does not meet the standards 

for 3D facial acquisition according to the specific needs and standards of cephalometry. On 

the other hand, it provides a reliable acquisition of facial surface for the assessment of linear 

and angular measurements in the case of inanimate objects or subjects. This characteristic 

justifies its application to the acquisition of faces from cadavers, as already done (Caplova et 

al., 2018), as it is portable and does not require space, whereas the static 

stereophotogrammetric instrument must be used in a fixed location with a dedicated set. 

Another practical advantage is represented by the cost, as the laser scan cost is about 1.4% of 

that of the stereophotogrammetric device. 

These indications may provide an important first step for improving awareness among 

researchers of the advantages and disadvantages of different 3D image acquisition devices 

and cautions towards their incorrect use. 

In conclusion, the present article first validated the use of the low-cost Sense® laser scanner 
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in the field of 3D facial imaging. Results suggest that the device does not meet the standards 

for 3D facial acquisition in living persons according to specific needs  
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Fig. 1. Example of a facial scan through stereophotogrammetric Vectra-3D (a) and laser 

scanner Sense® devices (b). 

 

Fig. 2. Detail of 17 facial landmarks used for the automatic calculation of distances and 

angles (z); tr: trichion; n: nasion; prn: pronasale; sn: subnasale; pg: pogonion; ex: 

exocanthion; en: endocanthion; ch: cheilion; t: tragus; zy: zygion; go: gonion 

 

Fig. 3. Phases of registration and superimposition of two 3D models. (a) Facial area of 

interest (FAI) from stereophotogrammetric Vectra-3D device; (b) FAI from Sense® device; 

(c) registration of two FAIs according to the least point-to-point distance between the two 

models; (d) measurement of point-to-point distance between the two 3D models, represented 

through different color degrees.  
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Linear distances Angular measurements 

Abbreviation Definition Abbreviation Definition 

tr-n Forehead length 

exr-exr vs TH 

Right inclination of the 

eye fissure versus the 

true horizontal plane n-pg Total facial height 

exl-exl vs TH 

Left inclination of the 

eye fissure versus the 

true horizontal plane 

n-sn Nasal height 

sn-pg 
Lower facial 

height 

exr-exl 
Intercanthal 

distance 
tr-n-tl Upper facial convexity 

zyr-zyl Facial width tr-prn-tl Middle facial convexity 

tr-tl 
Middle facial 

width 
tr-pg-tl Lower facial convexity 

chr-chl Mouth width 

gor-pg-gol Mandibular convexity 
gor-gol 

Lower facial 

width 

tm-n 
Upper facial 

depth 
n-sn-pg 

Facial convexity 

(excluding nose) 

tm-sn Midfacial depth n-prn-pg 
Facial convexity 

(including nose) 

tm-pg 
Lower facial 

depth 
sn-n-prn Nasal convexity 

pg-gom 
Mandibular body 

length 
tr-gor-pg Right gonial angle 

tm-gom 
Mandibular 

ramus length 

tl-gol-pg Left gonial angle 

(tm-n) vs (gom-

pg) 

Facial divergence 

(midfacial to mandibular 

plane angle) 

 

Table 1. Abbreviations and definitions for the analysed linear and angular measurements. 

 

<<TABLE 1 FOOTNOTE>>r = right, l = left, m = mid-landmark; TH = true horizontal plane. 
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 Abbreviation 
Vectra-

Sense 

Sense-

Sense 

Vectra-Sense 

(mannequin) 

Linear 

distances 

Vertical 

distances 

tr-n 28.8 57.7 71.1 

n-pg 79.8 79.6 90.8 

n-sn 77.4 65.9 87.7 

sn-pg 62.9 58.3 73.5 

tm-gom 38.4 14.7 92.6 

Horizontal 

distances 

exr-exl 77.8 84.1 96.1 

zyr-zyl 88.6 57.8 94.0 

tr-tl 90.0 88.0 98.5 

chr-chl 59.5 55.6 80.7 

gor-gol 61.1 79.4 94.9 

Sagittal 

distances 

tm-n 71.8 69.1 87.0 

tm-sn 68.7 63.9 94.8 

tm-pg 72.0 55.6 92.3 

pg-gom 56.6 60.9 72.9 

Angles 

Frontal 

plane 

exr-exr vs TH -53.1 -19.8 75.9 

exl-exl vs TH -29.2 -14.8 84.1 

Horizontal 

plane 

tr-n-tl 74.3 46.2 89.7 

tr-prn-tl 76.9 46.6 95.6 

tr-pg-tl 69.0 47.4 92.2 

gor-pg-gol 64.1 77.3 65.5 

Sagittal 

plane 

n-sn-pg 86.1 89.6 93.6 

n-prn-pg 92.0 91.6 96.3 

sn-n-prn 47.2 31.7 78.5 

tr-gor-pg 74.7 73.7 83.2 

tl-gol-pg 68.6 78.4 79.1 

(tm-n) vs (gom-pg) 53.0 30.8 63.2 

Table 2. Repeatability according to Bland-Altman test for linear distances and angles.  

 

<<TABLE 2 FOOTNOTE>>All values are expressed as percentages (%). r = right, l = left, m = 

mid-landmark; TH = true horizontal plane. 
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 Abbreviation 
Vectra-

Sense 

Sense-

Sense 

Vectra-Sense 

(mannequin) 

Linear 

distances 

(mm) 

Vertical 

distances 

tr-n 9.6 6.6 3.5 

n-pg 4.1 4.0 3.3 

n-sn 2.2 4.2 1.3 

sn-pg 4.4 5.9 3.0 

tm-gom 5.4 7.9 0.7 

Horizontal 

distances 

exr-exl 3.9 2.9 3.8 

zyr-zyl 2.8 10.0 7.5 

tr-tl 2.6 3.0 6.0 

chr-chl 3.6 4.6 2.9 

gor-gol 8.0 4.2 2.3 

Sagittal 

distances 

tm-n 5.8 5.5 4.0 

tm-sn 5.5 6.6 2.7 

tm-pg 5.5 9.1 2.7 

pg-gom 6.5 6.0 3.2 

Angles 

(°) 

Frontal 

plane 

exr-exr vs TH 3.6 3.1 0.6 

exl-exl vs TH 3.2 3.8 1.1 

Horizontal 

plane 

tr-n-tl 4.3 8.2 1.3 

tr-prn-tl 3.4 7.3 1.4 

tr-pg-tl 3.6 6.7 1.7 

gor-pg-gol 5.1 4.1 4.8 

Sagittal 

plane 

n-sn-pg 5.0 4.0 1.5 

n-prn-pg 1.8 2.0 0.7 

sn-n-prn 2.6 2.5 0.9 

tr-gor-pg 5.4 5.7 3.5 

tl-gol-pg 6.8 4.6 4.1 

(tm-n) vs (gom-pg) 3.8 5.8 2.2 

Table 3. TEM value for linear distances and angles. 

 

<<TABLE 3 FOOTNOTE>>All values are expressed as percentages (%). r = right, l = left, m = 

mid-landmark; TH = true horizontal plane. 
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 Abbreviation 
Vectra-

Sense 

Sense-

Sense 

Vectra-Sense 

(mannequin) 

Linear 

distances 

Vertical 

distances 

tr-n 13.9 9.5 4.3 

n-pg 3.8 3.7 3.1 

n-sn 4.2 7.6 2.5 

sn-pg 8.0 10.8 5.6 

tm-gom 10.7 14.8 1.3 

Horizontal 

distances 

exr-exl 4.3 3.2 3.9 

zyr-zyl 2.8 7.4 5.6 

tr-tl 1.9 2.1 5.0 

chr-chl 7.3 9.6 5.1 

gor-gol 6.7 3.6 1.9 

Sagittal 

distances 

tm-n 6.6 6.3 5.0 

tm-sn 6.0 7.2 2.9 

tm-pg 5.1 8.3 2.3 

pg-gom 8.5 7.8 3.9 

Angles 

Frontal 

plane 

exr-exr vs TH 25.1 22.7 4.3 

exl-exl vs TH 22.2 26.3 6.0 

Horizontal 

plane 

tr-n-tl 5.6 10.6 1.5 

tr-prn-tl 5.1 10.7 2.1 

tr-pg-tl 5.4 10.4 2.8 

gor-pg-gol 6.8 5.5 6.3 

Sagittal 

plane 

n-sn-pg 3.1 2.5 0.9 

n-prn-pg 1.4 1.6 0.5 

sn-n-prn 12.1 12.3 4.2 

tr-gor-pg 4.4 4.8 2.9 

tl-gol-pg 5.6 3.8 3.6 

(tm-n) vs (gom-pg) 8.9 13.8 5.8 

Table 4. rTEM value for linear distances and angles. 

 

<<TABLE 4 FOOTNOTE>>All values are expressed as percentages (%). r = right, l = left, m = 

mid-landmark; TH = true horizontal plane; rTEM = relative technical error of measurement. In 
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in black poor rTEM values. 
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  Vectra-Sense Sense-Sense 
Vectra-Sense 

(mannequin) 

Surface areas 

BA (%) 12.8 79.1 85.3 

TEM (cm2) 50.9 11.9 26.6 

rTEM (%) 15.4 3.6 7.8 

Volumes 

BA (%) 77.0 20 12.0 

TEM (cm3) 233.4 201.8 134.5 

rTEM (%) 28.4 19.9 16.0 

 

Table 5. Agreement according to Bland-Altman test and TEM and rTEM values for surface areas 

and volumes. 

 

<<TABLE 5 FOOTNOTE>>rTEM = relative technical error of measurement. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 


