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Abstract 1	
  

Awareness of the several agronomic, environmental, and health benefits of quinoa has led to a 2	
  

constant increase in its production and consumption not only in South America - where it is a native 3	
  

crop – but also in Europe and the United States. However, producing wheat or gluten-free based 4	
  

products enriched with quinoa alters some quality characteristics, including sensory acceptance. 5	
  

Several anti-nutritional factors such as saponins are concentrated in the grain pericarp. These bitter 6	
  

and astringent substances may interfere with the digestion and absorption of various nutrients. 7	
  

Developing processes to decrease or modify the bitterness of quinoa can enhance palatability and 8	
  

thus consumption of quinoa. In addition to the production of sweet varieties of quinoa, other processes 9	
  

have been proposed. Some of them (i.e. washing, pearling and the combination of the two) have a 10	
  

direct effect on saponins, either by solubilisation and/or the mechanical removal of seed layers. 11	
  

Others, such as fermentation or germination, are able to mask the bitterness with aroma compounds 12	
  

and/or sugar formation. This review presents the major sources of the undesirable sensory attributes 13	
  

of quinoa, included bitterness, and various ways of counteracting the negative characteristics of 14	
  

quinoa. 15	
  

Keywords Quinoa; bitterness; saponins; washing; pearling16	
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INTRODUCTION 1	
  

Quinoa (Chenopodium quinoa Willd.) is a dicotyledonous plant belonging to the 2	
  

Chenopodiaceae family and is widespread in Latin America, particularly in South 3	
  

America where the crop had its origin 5000 years ago,1 on the present Peruvian and 4	
  

Bolivian border near Titicaca lake. In ancient times, native South American populations 5	
  

used this grain in their daily diet as their main food. In 1989, the National Academy of 6	
  

Sciences of the United States includes quinoa as one of the best sources of protein in 7	
  

the vegetal kingdom.2 Moreover, in the last few years, there has been a global re-8	
  

evaluation of this crop, in light of numerous traits that make quinoa a sustainable and 9	
  

healthy grain. In fact, the 66th session of the General Assembly to the United Nations 10	
  

declared 2013 as the International Year of Quinoa, citing the potentially significant 11	
  

contribution of quinoa in the fight against hunger and malnutrition. Indeed, quinoa is 12	
  

one of the best alternatives to the global need to increase the dietary intake of plant 13	
  

proteins with high nutritional value for greater sustainability, safety and nutritional 14	
  

benefits.3 15	
  

Awareness of the health benefits of quinoa, reflected in the growing number of gluten-16	
  

free and vegetarian/vegan dieters, might account for the on-going global expansion of 17	
  

quinoa production, that increased by 60% from 2013 to 2014 (FAO; www.fao.org). 18	
  

Moreover, the last few years have been characterized by a proliferation of research on 19	
  

quinoa from various perspectives (e.g. agriculture, environmental impact, nutrition, food 20	
  

production, etc.). A systematic review of the scientific literature of the last 10 years 21	
  

using “quinoa” as a search term resulted in the identification of about 930 scientific 22	
  

papers (Figure 1A). It is worth mentioning that the number of contributions has doubled 23	
  

in the last five years, highlighting the growing interest in this topic. Almost 50% of the 24	
  

contributions (Figure 1B) fall into the “food science/chemistry/nutrition” categories of 25	
  

research, with about 40% of them dealing with agricultural and agronomic aspects of 26	
  

quinoa. Fourteen of the articles are reviews containing “quinoa” in their titles, and a 27	
  

tentative classification according to their particular research area and topic is 28	
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summarized in Table 1. Most concern agronomic and nutritional aspects of the “golden 29	
  

grain”, while, others are dedicated to the development of food products, including 30	
  

bread, pasta, snacks and cookies, enriched with quinoa to improve their nutritional 31	
  

properties. However, in South America it’s the whole seed of quinoa that is mainly used 32	
  

and generally cooked like rice to be used in soups, salads, and stews.4 33	
  

Producing quinoa-enriched wheat- or gluten-free based products alters several quality 34	
  

attributes according to Wang and Zhu.17 Among these, sensory acceptance is the most 35	
  

critical factor in ensuring the consumption of quinoa and its successful use in food 36	
  

products. In this context, the presence of bitter compounds in quinoa limits its 37	
  

consumption, despite its numerous nutritional benefits. Developing processes to 38	
  

decrease or modify the bitterness of quinoa serve to enhance palatability. Such 39	
  

processing involves washing, pearling, and biotechnological treatments. This review 40	
  

presents the major sources of the undesirable sensory attributes of quinoa; the various 41	
  

approaches for counteracting the negative perception of quinoa consumption are also 42	
  

discussed. 43	
  

AGRONOMIC, COMPOSITIONAL AND NUTRITIONAL BENEFITS 44	
  

From a botanical and agronomic standpoint, quinoa can be characterized using the 45	
  

terms “biodiversity” and “sustainability”, two keywords of the 21st century denoting 46	
  

qualities that make this crop one of the best alternative and resistant grain with respect 47	
  

to current climate change. Its environmental adaptability and efficient water utilization 48	
  

make it an excellent substitute for traditional cereals, especially in marginal areas.5,19,20 49	
  

Despite its mountain origin, research indicates it can be grown from sea level to 50	
  

altitudes over 4000 meters with large yield ranges (from 0.32 to 9.83 t ha -1).21 51	
  

Moreover, the quinoa plant is able to grow under stress conditions of temperature (from 52	
  

-5 °C to 38 °C, with optimal temperatures ranging from 15 °C to 20 °C), relative 53	
  

humidity (40% - 88%), drought and water availability (from 50 mm up to 2000 mm year-54	
  

1 of precipitation), soil salinity, aridity and pH (from 4.8 to 9.5).22 Quinoa’s genetic 55	
  



5	
  

diversity, its exceptional tolerance to drought and salinity, and the crop’s ecological 56	
  

advantages have been extensively reviewed by Ruiz et al.9 57	
  

Concerning biodiversity, quinoa presents a wide genetic variability in terms of forms, 58	
  

size, color and grain composition. Originally quinoa classification was made according 59	
  

to the color of the plant and fruits, in fact seed color can range from white to grey and 60	
  

black, but varieties exhibiting a yellow, rose, red, purple or violet color are also found; 61	
  

sometimes, with several of them present on the same panicule. Betalains are the most 62	
  

relevant phytochemicals present in quinoa grains and are responsible for their color. 63	
  

They are classified into yellow betaxanthins and violet betacyanins; the joint presence 64	
  

of both types of pigments makes the orange and red shades that coexist in nature with 65	
  

the pure yellow and violet colors. The presence of betalains is correlated with high 66	
  

antioxidant and free radical scavenging activities.23,24 Violet, red and yellow quinoa 67	
  

grain extracts show remarkable antioxidant activity in comparison with the white and 68	
  

black one. The highest activity was observed in the red-violet varieties containing both 69	
  

betacyanins and betaxanthins, with remarkable activity also in the yellow varieties, 70	
  

where dopaxanthin is a significant constituent.23 71	
  

The potential health benefits of quinoa have been extensively reviewed in recent years 72	
  

(Table 1). It was reported that one serving of quinoa (about 40 g) meets an important 73	
  

part of daily requirements for essential nutrients and health-improving compounds.16 In 74	
  

particular, the high amount of lysine - the limiting amino acid in all cereals - makes 75	
  

quinoa unique among grains.13,25 It can be used not only as a highly nutritious source of 76	
  

proteins but also as source of minerals and antioxidants, such as phenolic compounds. 77	
  

High dietary fiber and stable polyunsaturated fatty acids increase its potential to treat 78	
  

obesity, hypercholesterolemia and cardiovascular disorders.11,12 Quinoa is tolerable 79	
  

and acceptable to people with celiac disease and/or gluten intolerance. Indeed, 80	
  

although several varieties (Ayacuchana, Pasankalla, LP-4B and Witulla) have celiac-81	
  

toxic prolamine epitopes,26 the maximum amount detected (2.56 mg kg-1) is 82	
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considerably lower than the level required for gluten-free products (20 mg kg-1).27 83	
  

Finally, it has been suggested that quinoa could contain a significant amount of rapidly 84	
  

digestible starch fraction,28 likely due to smaller starch granules (1.2 to 2.66 µm), 85	
  

indicating that careful formulation and processing of quinoa products would be needed 86	
  

for glycemic index management. However, to the best of our knowledge, the available 87	
  

information on enzymatic susceptibility of quinoa starch refers to pure starch or to 88	
  

uncooked samples, neglecting the role of other components and/or cooking processes 89	
  

on starch hydrolysis kinetics. In-vivo studies showed that about one cup of cooked 90	
  

quinoa (or 150 g) has a glycemic index score of 53, which is considered low.29 In-vitro 91	
  

studies on gluten-free bread demonstrated that quinoa-enriched	
   products had a 92	
  

significantly lower glycemic index than white wheat bread due to its lower content of 93	
  

total available carbohydrates.30 However, gluten-free bread made with quinoa indicated 94	
  

higher starch digestibility compared to bread from other gluten-free grains (i.e. 95	
  

buckwheat, sorghum and teff),30 although these findings need to be confirmed by in 96	
  

vivo studies. 97	
  

SENSORY PROPERTIES AND ACCEPTABILITY OF QUINOA FOOD PRODUCTS 98	
  

As already mentioned, the boom in gluten-free, vegan and vegetarian diets reflects the 99	
  

increase in quinoa consumption even outside producer countries. In the Occident, 100	
  

quinoa seeds are mainly used in salads, whereas quinoa flour is mixed with other 101	
  

gluten-free grains for making bread, pasta, and cookies.17 The following section will 102	
  

summarize consumer perception of its sensory attributes and consumer acceptance of 103	
  

quinoa-containing foods in the past 10 years. 104	
  

Grains 105	
  

We know of only one study dealing with the sensory analysis of quinoa grains.31 The 106	
  

results of this study showed a wide range of sensorial characteristics. For example, a 107	
  

grassy aroma or a firm and crunchy texture were considered as positive qualities, 108	
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whereas attributes such as pasty, sticky and cohesive were negative. Preference 109	
  

seemed to be influenced not only by the sensory properties of the grain but also by the 110	
  

consumer’s familiarity with quinoa. Those whose diets consisted of 750 g kg-1 to 1000 g 111	
  

kg-1 of organic foods scored significantly higher for all quinoa varieties than those who 112	
  

consumed 0 to 250 g kg-1.31 113	
  

Bread 114	
  

Quinoa has been used in bread-making as a partial substitute for wheat or rice flour in 115	
  

varying amounts. Quinoa-enriched bread has typically been prepared using whole 116	
  

quinoa seeds, flakes or flour. 117	
  

Despite a slightly bitter taste, wheat-based bread with up to 200	
  g kg-1 of dehulled and 118	
  

washed quinoa seeds were judged to be fully acceptable to the taste, with a very 119	
  

pleasant aroma and flavour.32 These positive results were subsequently confirmed for 120	
  

bread with higher levels (300 and 400 g kg-1) of similarly treated quinoa seeds.33 121	
  

Using quinoa flakes in bread-making has also been investigated and no significant 122	
  

differences were revealed for appearance, colour, texture, flavour, taste, porosity and 123	
  

overall acceptability when up to 200 g kg-1 of quinoa had been added.34 124	
  

Although the positive results found using quinoa seeds and flakes as bread 125	
  

ingredients, using quinoa flour often opposed sensory problems. 126	
  

The 60 g kg-1 substitution of wheat flour with quinoa flour for bread was considered 127	
  

acceptable.35 Adding texturing ingredients, such as whey, was efficacious in 128	
  

guaranteeing the acceptability of wheat bread fortified with 150 g kg-1 quinoa flour. On 129	
  

the contrary, adding 200 g kg-1 of quinoa made the bread less acceptable, due to its 130	
  

slight bitterness.36 Another study demonstrated that acceptability significantly 131	
  

decreased for samples with 500 and 1000 g kg-1 of quinoa flour, even if the quinoa 132	
  

grains were washed before milling.37 Regarding the bread aroma profile, use of 1000 g 133	
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kg-1 quinoa flour induced the perception of a strong pea-like odour and of cooked 134	
  

potato and mould aromas, mainly responsible for moderate overall disliking.38 Using 135	
  

sourdough fermented with Lactobacillus plantarum39 or Weissella cibaria40 did not 136	
  

improve the sensory characteristics of quinoa bread, while with Lactobacillus plantarum 137	
  

T6B10 and Lactobacillus rossiae T0A16  a wheat bread with improved crust and crumb 138	
  

colour, saltiness, acid flavour and taste, and overall positive taste attributes was 139	
  

made41. Good palatability and overall acceptable taste were obtained with sourdough 140	
  

fermentation of quinoa flour, also when blended with flours from other pseudo-cereals 141	
  

(i.e. amaranth and buckwheat) and pulses (i.e. chickpea).42 142	
  

Quinoa flour can also replace rice flour in gluten-free formulations. Substitution levels 143	
  

in the range of 300 – 1000 g kg-1 increased acceptability in terms of crust and crumb 144	
  

color and appearance, in comparison with acceptance scores for 1000 g kg-1 rice flour 145	
  

reference bread.43 Overall, a substitution level equal to 300 g kg -1 of quinoa flour was 146	
  

considered suitable to avoid negative aroma and taste and guarantee an overall 147	
  

acceptability comparable to that obtained for the control rice bread.43,44 Conversely, 148	
  

other studies showed that 500 g kg-1 quinoa flour increased crumb softness and 149	
  

cohesiveness of rice-based breads, without adversely affecting sensory properties.45 150	
  

As expected, the removal of bran components largely decreased bitterness and off-151	
  

flavour in white quinoa breads, compared to whole quinoa samples.46 Indeed, as 152	
  

mentioned elsewhere, saponins – which are responsible for quinoa bitterness – are 153	
  

mainly located in the bran. Therefore, only addition of 100 g kg-1 of quinoa bran to rice 154	
  

and corn bran resulted in improved appearance, and reduced crumb firmness, without 155	
  

compromising taste, whereas higher quantities (200, 300 and 400 g kg-1) increased 156	
  

bitterness and off-flavours.47 157	
  

Pasta 158	
  

Information regarding the effect of quinoa on the sensory properties of pasta products 159	
  

is scarce. Corn-based pasta with 100 g kg-1 of quinoa flour was moderately liked, so 160	
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that 70% of consumers declared they would probably or certainly buy the product.48 A 161	
  

similar quinoa enrichment resulted in a product with lower firmness but similar 162	
  

adhesiveness and bulkiness than the control (1000 g kg-1 amaranth).49 A higher 163	
  

percentage of quinoa (250 g kg-1) in a gluten-free formulation received lower liking 164	
  

scores than wheat noodles, for the attributes evaluated before (i.e. surface 165	
  

smoothness, appearance, and colour) or after (i.e. taste, odour, colour and overall 166	
  

acceptability) cooking.50 However, the acceptability of the quinoa-based product was 167	
  

high when containing chick-pea or soy flour compared to other gluten-free 168	
  

formulations.51 169	
  

Cookies 170	
  

Several studies reported the impact of quinoa on cookie acceptability, however with 171	
  

contrasting results, whether for wheat-based or gluten-free products. As expected, low 172	
  

quinoa enrichment levels (< 100 g kg-1) did not affect the sensory acceptability of 173	
  

cookies made primarily from wheat flour, but a slightly higher substitution level (150 g 174	
  

kg-1) reduced flavour, taste and overall acceptability.52 However, quinoa cookies were 175	
  

still acceptable, and similar results were observed by Pagamunici et al.53 In gluten-free 176	
  

formulations, the presence of quinoa positively affected overall acceptance and 177	
  

purchase intention.54 178	
  

BITTER COMPOUNDS IN QUINOA 179	
  

Various compounds with diverse structures (i.e. amino acids and peptides, esters and 180	
  

lactones, phenols and polyphenols, flavonoids and terpenes) are responsible for 181	
  

bitterness in foods and multiple mechanisms have been described for the perception of 182	
  

bitterness.55 The most common bitter compounds in quinoa and the key mechanisms 183	
  

leading to bitterness are summarized in Table 2 and described in the following section. 184	
  

The bitterness of quinoa has always been associated with the presence of saponins in 185	
  

quantities higher than 1.1 mg g-1, corresponding to the amount proposed by Koziol56 as 186	
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the threshold for human perception of bitterness. Very little work has focused on the 187	
  

role of polyphenols and other compounds on the bitter taste or aftertaste of quinoa 188	
  

seeds and its products. 189	
  

Saponins 190	
  

Saponins are a class of natural compounds produced by some plants for protection 191	
  

against harmful microorganisms, birds and insects.66 Saponins are present in legumes 192	
  

(such as soybeans, broad beans, chickpeas, peas, etc.)67,68 and some vegetables (as 193	
  

spinach, lettuce, cauliflower, mustard, asparagus).69,70 Regarding grains, only oats67 194	
  

and quinoa exhibit detectable amounts of saponins.71 In quinoa, these compounds are 195	
  

mainly located in the husk and the quantity therein – which is greatly influenced by the 196	
  

environment, climate conditions and genotype5,72,73 - varies from 0.1 mg g-1 to about 50 197	
  

mg g-1.74 Indeed, “bitter” varieties (with a saponin content higher than 1.1 mg g-1), are 198	
  

more resistant to pests than “sweet” varieties.5,75 As will be extensively discussed later 199	
  

on in this paper, the bitter taste is recognizable in samples having an amount of 200	
  

saponin greater than 1.1 mg g-1.56 201	
  

Saponin molecules are characterized by the presence of a non-polar aglycone (or 202	
  

sapogenin), bonded to one or more carbohydrate chains.58,76 Quinoa contains only 203	
  

triterpene saponins,77-79 which can be classified according to the number of 204	
  

carbohydrate chains linked to aglycone.58 The saccharide chains of saponins assure 205	
  

high hydrophilic properties, whereas the sapogenins (formed only by the triterpene 206	
  

fraction) exhibit lipophilic traits. Hence, the amphiphilic properties of saponins assure 207	
  

high solubility both in polar and non-polar solvents. 208	
  

Detailed information about the chemical and structural characteristics of quinoa 209	
  

saponins are presented in comprehensive reviews.58,76,80 210	
  

Although the majority of studies report around 20 saponins in quinoa,78,79 Madl et al.78 211	
  

refer to 87 triterpene saponins. More recently, Jarvis et al.73 identified 43 different 212	
  

saponins in a variety used as a reference. 213	
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Several studies have focused on the chemical and biological properties of 214	
  

saponins,58,76,81 highlighting their complexity and controversial biological role. Indeed, 215	
  

quinoa extracts containing saponins have been exploited in numerous traditional and 216	
  

industrial applications for their foaming and bioactive properties but, usually, saponins 217	
  

in foods have traditionally been considered as anti-nutritional factors, as stated by 218	
  

Güçlü-Ustündağ and Mazza.76 However, the consequences of long term consumption 219	
  

of saponins for human health are still unknown.82 220	
  

The anti-nutritional properties of saponins have been investigated in several 221	
  

studies.14,83, The main negative effects associated with consumption of foods rich in 222	
  

saponins are the decrease in mineral and vitamin bioavailability,84-86 the damage to 223	
  

small intestine mucous cells due to the alteration of their membrane permeability, and 224	
  

the decrease in food conversion efficiency.82 The chemical structure of quinoa 225	
  

saponins strictly influences their biological activities,58 e.g. the carbohydrate chain 226	
  

attached at C3 of the terpenic fraction is usually critical for both membrane 227	
  

permeabilization and antifungal properties58,79 and their toxicity depends on the saponin 228	
  

type and on the sensitivity of the recipient organism, 83 229	
  

Nowadays, saponins are considered bioactive, health-promoting compounds, with 230	
  

many interesting nutritional characteristics as a result of their hypocholesterolemic, 231	
  

analgesic, antiallergic and antioxidant activities.76,79 In any case, as already mentioned, 232	
  

the bitter taste associated with saponins greatly limits the use of quinoa as food. 233	
  

Phenolic compounds 234	
  

Phenolic compounds constitute a group of important components to bitterness in cereal 235	
  

products.60 Free phenolic compounds are the most flavour-active because they adhere 236	
  

to taste receptors.60 However, studies on bread and crackers suggest that the bound 237	
  

fraction of phenolic acids may also contribute to taste and flavour properties of 238	
  

wholegrain products.59 In this context, the authors hypothesized that during mastication 239	
  

the bound phenolic acids might be freed by salivary enzymes, allowing them to interact 240	
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with taste receptors and other compounds inside the mouth.59 Moreover, it has been 241	
  

shown that lower-molecular-weight phenolic compounds tend to be bitter, whereas 242	
  

higher-molecular-weight polymers are more likely to be responsible for food 243	
  

astringency.87 In addition, the impact of free phenolic compounds on flavour is greater 244	
  

than that of bound compounds.57 245	
  

Phenolic compounds are mainly located in the outer layers of the grain, and therefore 246	
  

highly found in wholegrain and bran content.88-90 Various strategies have been 247	
  

proposed to increase the bioaccessibility and bioavailability of phenolic compounds, in 248	
  

baked products because of the health benefits associated with them.91-93 A 249	
  

comprehensive review of phytochemicals in quinoa grains and their potential health 250	
  

benefits have been proposed by Tang and Tsao.11 Quinoa contained lower levels of 251	
  

phenolic acids compared with common cereals like wheat and rye, but they were of the 252	
  

same magnitude (250–600 mg kg -1) as in other cereals.94,95 The majority of phenolic 253	
  

compounds found in quinoa were phenolic acids consisting of vanillic acid, ferulic acid 254	
  

and their derivatives (303-597 mg kg-1), along with flavonoids quercetin, kaempferol 255	
  

and their glycosides (36.2-72.6 mg kg-1);95 also tannins have been reported with 256	
  

concentrations of up to 5.3 g kg-1.41,96 257	
  

The perceived bitterness of rye results from pinoresinol and syringic acid in particular,60 258	
  

whereas ferulic acid was identified as the most abundant phenolic acid in wheat bread 259	
  

crust and crumb.97 On the contrary, phenolic compounds responsible for bitter taste 260	
  

have not been adequately determined in whole grain foods.98 To the best of our 261	
  

knowledge, no information is available regarding quinoa seeds. Thus, further efforts 262	
  

should be directed to identifying the major phenolic compounds responsible for the 263	
  

bitterness of quinoa seeds. 264	
  

Peptides 265	
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Bitter peptides occur to a varying extent after protein hydrolysis.64 Although small 266	
  

molecular weight peptides are deemed responsible for the bitter taste in rye,65 the 267	
  

amino acid composition of peptides has been considered to be a more important 268	
  

determinant of bitterness than peptide size.99 The role of peptides and amino acids in 269	
  

the perceived flavour of cereal products, including quinoa, remains, however, largely 270	
  

unknown.57 271	
  

APPROACHES TO DECREASE BITTERNESS IN QUINOA 272	
  

Attempts to introduce quinoa as an ingredient in food products all over the world have 273	
  

proved difficult because of the presence of saponins which are responsible for lowering 274	
  

product acceptability due to their bitter taste and/or aftertaste. To this end, several 275	
  

strategies have been proposed to remove saponins or to hide their bitterness. The 276	
  

effects of the main processing together with their advantages and disadvantages are 277	
  

summarized in Table 3 and discussed in the following sections. 278	
  

Washing 279	
  

Washing is the most common way to remove saponins from the seeds at the 280	
  

household level, due to the high water solubility of these compounds. American pre-281	
  

Hispanic populations, such as the Incas, Cañaris and others used to wash quinoa in 282	
  

rivers and lakes.100 Traditionally, in rural areas, washing is done by hand in water - 283	
  

placed in rudimentary tanks101,102 - which sometimes could be alkaline to enhance 284	
  

saponin extraction4,102 or in river water.102 The large amount of water used and 285	
  

contaminated with saponins constitutes a health hazard for cold-blooded animals103 286	
  

and creates economic and ecological concerns. Moreover, wet seeds need to be dried 287	
  

immediately to inhibit their high germinating power72,104 as well as mold growth.105 288	
  

Washing is also used on a commercial scale by using tanks equipped with rotating 289	
  

blades for turbulence washing.106 Heat treatment in a tunnel completes the drying 290	
  

process. 291	
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Quispe-Fuentes et al.101 have proposed an efficient, industrial scale mathematical 292	
  

model to reduce cost, energy waste and optimize water flow rate when leaching 293	
  

saponins from quinoa seeds by means of a continuous washing process. Saponins 294	
  

leach out very rapidly at the beginning of the washing process and the total 295	
  

concentration of saponins inside quinoa seeds tend to have an asymptotic value. High 296	
  

temperatures accelerate saponin leaching, in fact leaching at 70 °C was more effective 297	
  

than at 20 °C.101 However, since starch gelatinization begins at 50 ºC for most quinoa 298	
  

varieties,28 this treatment could cause the quinoa perisperm to swell, thus facilitating 299	
  

embryo separation. 300	
  

Another consideration is that valuable nutrients including vitamins and minerals may 301	
  

also be lost during these washing procedures.85 302	
  

Pearling 303	
  

Dry polishing techniques (i.e. pearling) apply abrasion to separate the external layers 304	
  

and allow the intact seeds to be recovered and processed in successive stages. 305	
  

Pearling is a well-established technology in the processing of covered cereals, such as 306	
  

rice and barley.107 Nowadays, pearling is also used on wheat to reduce microbial 307	
  

contamination, as most of the microorganisms present can be found on the surface of 308	
  

the kernel.108 More recently, pearling has proven to be an effective way to recover the 309	
  

phenolic compounds in the external layers of grains.93 310	
  

As regards quinoa seeds, the pearling process has been successfully used to 311	
  

decrease the amount of saponins, located in the external layers of the seed.100,109 An 312	
  

abrasion degree of 30% reduced saponin levels by more than 70%, compared with the 313	
  

initial content in whole quinoa, reaching a level below 1.1 mg g -1 for several varieties, 314	
  

which is the threshold for the detection of bitterness and astringency in quinoa based 315	
  

products.56 316	
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Pearling is a more environmental-friendly process compared to washing because no 317	
  

water is needed, no thermal treatment to dry the seeds is required, and no 318	
  

environmental contamination is produced.109 Other advantages of the abrasion process 319	
  

include the reduction of time and energy consumption. Pearled by-products – which 320	
  

comprise from 8% to 12% of the grain weight and contain from 200 to 300 g kg -1 of 321	
  

saponins74 – can be used for medical purposes, detergents, and pesticides. 322	
  

On the other hand, as the degree of abrasion increases, the content of fiber and 323	
  

phenolic compounds decreases.32,109 However, the loss of phenolic compounds in 324	
  

quinoa after pearling is lower than in cereals. Gómez-Caravaca et al.109 found that after 325	
  

intense pearling (30%) in order to obtain a sweet product, the quantity of freed and 326	
  

bound phenolic compounds decreased by 35%. Fiber and mineral content, especially 327	
  

calcium, sodium, potassium and manganese, also decreased after pearling.34,96,110 328	
  

Pearling and washing can be performed separately or combined to enhance the effects 329	
  

on saponin removal, and lower the negative impact of each individual process (Table 330	
  

3).	
  331	
  

Other methods 332	
  

Other methods have been proposed such as the combination of washing and heat 333	
  

treatments in different conditions (i.e. toasting, cooking at atmospheric pressure, 334	
  

cooking under pressure).111 However, none of them resulted in a higher loss of saponin 335	
  

content than just washing.111 336	
  

Bioprocessing 337	
  

Sourdough fermentation is a biotechnological process that transforms complex 338	
  

molecules into simpler ones through the enzymatic activity of microorganisms, such as 339	
  

yeasts and lactic acid bacteria. The positive effects of grain fermentation include the 340	
  

degradation of anti-nutritional compounds, such as phytates, and the formation of 341	
  



16	
  

bioactive and/or antifungal compounds.112,113 Moreover, sourdough fermentation 342	
  

improves the sensory quality of products, due to the production of organic acids and 343	
  

the development of new aromatic compounds.113 In particular, adding quinoa 344	
  

sourdough to wheat enhances the sensory traits of wheat bread, resulting in higher 345	
  

acidity, a salty taste and less sweetness.41 However, it is not clear if this new sensory 346	
  

profile masks the bitterness of quinoa. 347	
  

Sprouting (or germination) is a natural process that decreases the anti-nutrient 348	
  

compounds in cereals, pseudocereals and pulses while substantially increasing 349	
  

micronutrient bioavailability and improving sensory properties.114,115 Germinated grains 350	
  

are characterized by a sweet taste, due to the formation of simple sugars, that may 351	
  

mask the bitter taste in whole wheat bread.116 However, no information about the effect 352	
  

of germination on quinoa saponins and, consequently, on its bitter taste or aftertaste 353	
  

has been reported. Nevertheless, the effectiveness of germination in decreasing 354	
  

saponin content in bitter quinoa varieties might be a hoped-for result, given the 355	
  

precedent of the positive results observed in sprouted chickpeas117 and huazontle118 356	
  

(Chenopodium berlandieri spp.), closely related to quinoa. 357	
  

Breeding 358	
  

Several bio-technological approaches have been proposed to decrease the amount of 359	
  

saponins. Although effective, they are costly and impact negatively on the environment. 360	
  

Therefore, the possibility of selecting “sweet” genotypes with low saponin content for 361	
  

direct consumption without any grain pre-treatments are being explored: this approach 362	
  

would facilitate the expansion of quinoa production and utilization, above all, beyond 363	
  

the Andean regions.119 364	
  

Quinoa, in fact, is still an under-utilized crop and breeding efforts to improve its 365	
  

agronomic traits (length of growing season; crop yield) are required to expand its 366	
  

production worldwide, especially at higher latitudes where some lines are characterized 367	
  

by poor yields.120 There is a general consensus that development of sweet cultivars 368	
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with little or no saponin is one of the most important breeding objectives for the 369	
  

future,121,122 not only to improve crops in South American countries but also in 370	
  

Mediterranean environments.123 However, breeding this trait into quinoa varieties is still 371	
  

a challenge due to the difficulty of measuring saponin levels prior to anthesis and fixing 372	
  

appropriate alleles.124 Jarvis et al.73 recently sequenced the genome of a Chilean 373	
  

coastal variety of quinoa along with the genomes of additional Chenopodium species to 374	
  

characterize the genetic diversity of quinoa. They also proposed the pathway for 375	
  

saponin biosynthesis, indicating the enzymes involved in each step and the genes 376	
  

encoding each enzyme. Interestingly, these scientists discovered that only one key 377	
  

gene is implicated in the regulation of saponin production. The authors suggest using 378	
  

the identified genetic markers to develop non-bitter or sweet commercial quinoa 379	
  

varieties with lower saponin levels by means of the marker assisted selection. These 380	
  

findings would provide the scientific bases for accelerating the genetic improvement of 381	
  

quinoa, to enhance global food security for a growing world population. 382	
  

CONCLUSIONS 383	
  

The presence of bitter compounds - mainly saponins - highly affect sensory 384	
  

acceptance of quinoa; consequently, the consumption of this pseudocereal as whole 385	
  

grain and/or as a valuable nutritive ingredient in composite flours for wheat or gluten-386	
  

free products has to carefully consider this aspect. Presently, decreasing or modifying 387	
  

the bitterness of quinoa is achieved applying washing and/or mechanical pearling. 388	
  

Although they are widely used, these processes present critical aspects, namely low 389	
  

environment-sustainability, energy and specific equipment requirements, that force 390	
  

researchers to find other approaches. Besides the breeding studies that might select 391	
  

new “sweet” varieties with low or no saponin content and with high adaptability to 392	
  

different climatic environments, bio-technological and not-expensive processes have to 393	
  

be developed. Indeed, germination could not only enhance important nutritional traits of 394	
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grains, but also represent a valid tool for decreasing bitterness in quinoa, due to sugar 395	
  

formation.  396	
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Figure 1. Papers on quinoa (A) and the related distribution in the main research areas 769	
  

(B) (source: Web of Science; 2008-2017; updated to August 31th, 2017). 770	
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Table 1. Topics of the main reviews published on quinoa (source: Web of Science; 772	
  

2008-2017; updated to August 31th, 2017) 773	
  

Research area Topic References 

Agriculture/Agronomy 

Breeding Zurita-Silva et al.5 
Structure Burrieza et al.6 

Cultivation Bazile et al.7 

Sustainability Choukr-Allah et al.8 
Ruiz et al.9 

Nutrition/Health 
benefits 

Weight gain Simnadis et al.10 
Lipid profile Simnadis et al.10 

Antioxidant activities Simnadis et al.10 
Tang & Tsao11 

Anti-inflammatory activities Tang & Tsao11 
Anti-obesity and anti-

diabetic activities 
Tang & Tsao11 

Navruz-Varli & Sanlier12 
Cardiovascular disease 

and other chronic diseases 
Tang & Tsao11 

Navruz-Varli & Sanlier12 
Celiac disease safety Tang & Tsao11 

Food Science and 
Technology 

Compositional, nutritional 
and functional aspects 

Navruz-Varli & Sanlier12 
Maradini-Filho et al.13 
Vega-Galvez et al.14 

Jancurová et al.15 

Product development Graf et al.16 
Wang & Zhu17 

Protein functionality Janssen et al.18 
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Table 2. Hypothesis of key mechanisms leading to bitterness in quinoa (adapted from 776	
  
Heiniö et al.57) 777	
  

Compound Mechanism References 

Saponins Molecule properties Kuljanabhagavad & Wink58 

Phenolic compounds 
Release of unbound 

flavour-active phenolic 
compounds 

Challacombe et al.59 
Heiniö et al.60 

Kobue-Lekalake et al.61 
Soares et al.62 

Peptides/aminoacids 

Proteolysis of the albumins 
and proteolysis of 

globulins forming bitter 
peptides  

Jiang & Peterson63 
Brijs et al.64 

Heiniö et al.65 
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Table 3. Approaches to decrease bitterness in quinoa 780	
  

Approach Type of effect Advantages Disadvantages 

Washing 
Direct effect: saponin 
solubilisation from the 

seed layers 

Low investment 
Efficiency 

Drying cost 
Water contamination 

Possibility of grain germination 

Pearling 
Direct effect: Mechanical 
removal of seed layers 
which contain saponins 

No drying costs 
No water need and 

contamination 

Limited efficiency 
Loss in bioactive compounds 

Pearling and 
washing 

Direct effect: Mechanical 
removal of seed layers 
which contain saponins 

and saponin solubilisation 
from the seed layers 

Low washing and drying time 
cost 

Low water need  
Low amount of broken seeds 

High efficiency 

Water contamination 
Loss in bioactive compounds 

Fermentation 

Indirect effect: masking of 
bitterness by aroma 

compounds and sugar 
formation 

Widespread knowledge 
Side advantages (nutritional, 

technological and sensory 
characteristics) 

No/limited equipment costs 

Refreshment required 
Time-consuming 

Germination 
Indirect effect: masking of 

bitterness by sugar 
formation 

Widespread knowledge 
Side advantages (nutritional, 

technological and sensory 
characteristics) 

No/limited equipment costs 

Standardization 
Possibility of mold growth 

Breeding 
Direct effect: 

Development of sweet 
cultivars 

Low environmental impact Limited number of varieties 
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