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Abstract
In recent years, undifferentiated small round cell sarcomas (USRCSs) have been divided into a variety of new, rare,
sarcoma subtypes, including the group of Ewing-like sarcomas, which have the morphological appearance of Ewing
sarcomas, but carry CIC –DUX4, BCOR–CCNB3 and other gene fusions different from the classic EWSR1–ETS gene
fusion. Using high-throughput RNA-sequencing (RNA-seq) analyses, we identified a novel recurrent gene fusion,
CRTC1–SS18, in two cases of USRCS that lacked any known translocation. RNA-seq results were confirmed by
reverse transcription polymerase chain reaction, long-range polymerase chain reaction, and fluorescence in situ
hybridization. In vitro, we showed that the cells expressing the gene fusion were morphologically distinct and
had enhanced oncogenic potential as compared with control cells. Expression profile comparisons with tumours
of other sarcoma subtypes demonstrated that both cases clustered close to EWSR1–CREB1-positive tumours.
Moreover, these analyses indicated enhanced NTRK1 expression in CRTC1–SS18-positive tumours. We conclude
that the novel gene fusion identified in this study adds a new subtype to the USRCSs with unique gene signatures,
and may be of therapeutic relevance.
Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
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Introduction

Diagnosing small round blue cell tumours on biopsy has
been challenging because of their lack of specific fea-
tures in small specimens. Among undifferentiated small
round cell sarcomas (USRCSs), Ewing-like sarcoma
(ELS) shares some of the morphological features of

Ewing sarcoma (ES), but lacks the classic EWSR1–ETS
gene fusion [1,2]. ESs are mainly characterized by chro-
mosomal translocations at chromosome 22q12 that fuse
EWSR1 with one of the ETS gene family of transcription
factors, such as FLI1 or ERG, in 90–95% of ES cases.
The classic ES gene fusion protein acts as an oncopro-
tein, and plays an essential role in tumourigenesis and
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proliferation of ES cells [2]. Recent studies have identi-
fied recurrent gene fusions in ELS, namely CIC–DUX4
and BCOR–CCNB3 [3–6]. The identification of these
gene fusions suggests that other, as yet to be identi-
fied, gene fusions could be associated with this type
of tumour. Furthermore, novel gene fusions in ELS
have been reported recently in case reports, including
CIC–FOXO4, BCOR–MAML3, and ZC3H7B–BCOR
[7–9]. Identifying these genetically defined entities may
contribute towards understanding the pathogenesis and
the behaviour of these tumours.

By applying RNA sequencing (RNA-seq) technol-
ogy to investigate USRCS, we discovered a novel
CRTC1–SS18 gene fusion in two samples from two
different cancer centres. Combining both samples, we
were able to find similarities at the clinical, patholog-
ical, and molecular levels. Moreover, by cloning the
fusion gene we were able to demonstrate its oncogenic
properties, adding the CRTC1–SS18 fusion gene to the
increasing number of described oncogenes.

Materials and methods

One patient sample (case 1) was obtained from the Royal
Orthopaedic Hospital NHS Foundation Trust Tumour
Bank (with permission; REC 12/EM/0048). The other
patient sample (case 2) was obtained from resection
material sent to the Centre Léon Bérard for molecular
diagnosis. Both samples were acquired with informed
consent from the patient and or/next of kin, and ethical
approval from institutional and local research commit-
tee boards. Patient samples were anonymized and used
in accordance with the principles expressed in the Dec-
laration of Helsinki.

Immunohistochemistry
Case 1

For immunohistochemistry, 2-μm-thick sections were
cut, and antigens were retrieved in an epitope retrieval
solution of pH 8 (RE7116; Novocastra, Newcastle
upon Tyne, UK) at 68 ∘C for 17 h in a stirred water
bath. The antibody clones, dilutions and sources were
as follows: anti-CD99 (12E7, 1:25; Dako, Ely, UK),
anti-vimentin (V9, 1:100; Novocastra), anti-CD31
(JC70, 1:100; Dako), anti-CD34 (QBend10, 1:50;
Dako), anti-cytokeratin AE1/AE3 (1:100; Dako),
anti-CD45 (2B11+PD7/26; Dako) •, anti-cytokeratinQ3
MNF116 (1:50; Dako), anti-desmin (D33, 1:100;
Dako), anti-α-smooth muscle actin (SMA) (1A4, 1:200;
Dako), anti-epithelial membrane antigen (EMA) (E29,
1:100; Dako), anti-HMB45 (1:200; Dako), anti-S100
(NCL-L-S100p, 1:1000; Novocastra), anti-Wilms
tumour 1 (WT1) (C-19, 1:500; Santa Cruz, Insight
Biotechnology Limited, Wembley, UK), anti-TLE1
(M-101, 1:50; Santa Cruz), anti-ERG (Erg-1/2/3 C-1,
1:50; Santa Cruz), anti-INI1 [1:25; BD Transduction
Laboratories (BD Biosciences), Becton Dickinson

UK, Oxford, UK], anti-BCOR (C-10, 1:50; Santa
Cruz), anti-ETV4 (16, 1:50; Santa Cruz), and anti-Ki67
(MIB1, 1:200; Dako).

Case 2

Sections were cut at a thickness of 4 μm from
formalin-fixed paraffin-embedded (FFPE) tissue,
and immunostained with a VentanaBenchmark XT
automatic stainer (Ventana, Tuscon, AZ, USA). Sig-
nals were revealed with the ultraView Universal Dab
Detection kit (Ventana). The following antibodies were
used: anti-CD99 (12E7; Dako), anti-EMA (E29, 1:50;
Dako), anti-desmin (D33, 1:80; Dako), anti-cytokeratin
AE1/AE3 (AE1/AE3, 1:50; Dako), anti-caldesmon
(h-CD, 1:100; Dako), anti-myogenin (F5D, 1:100;
Dako), anti-S100 (Z0311, 1:800; Dako), anti-CD34
(QBend-10, 1:25; Dako), anti-INI1 (25, 1:50; BD
Transduction Laboratories), anti-BCOR (C-10, 1:50;
Santa Cruz), and anti-ETV4 (16, 1:50; Santa Cruz).
Immunohistochemistry for neurotrophic receptor tyro-
sine kinase 1 (NTRK1) was performed with a 32-min
incubation with the anti-NTRK1 antibody (ab76291,
clot EP1058Y, dilution 1:200; Abcam •) on a Ventana Q4

ULTRA machine with Cell Conditioning Solution 1
pretreatment for 64 min.

Fluorescence in situ hybridization (FISH) analyses
FISH analyses were performed on FFPE tissue sections
with the ZytoLight SS18 Dual Color Break Apart Probe
(#Z-2097-200; Zytovision, Bremerhaven, Germany) by
assessment of at least 100 non-overlapping intact nuclei
by two independent operators. The positive threshold for
calling the FISH assay positive was 15%.

Array-comparative genomic hybridization (aCGH)
analyses
Genomic DNA was extracted from FFPE tissue with a
QIAamp DNA micro kit (Qiagen, Hilden, Germany).
Genomic DNA and human reference DNA (Promega
•) were labelled with cyanine 5 and cyanine 3, respec- Q5
tively, by use of the Genomic DNA High-Throughput
ULS Labeling Kit (Agilent Technologies, Santa Clara,
CA, USA), and co-hybridized onto a 4x180K Sureprint
G3 Human CGH microarray (Agilent Technologies),
according to the manufacturer’s recommendations. Data
were analysed with Agilent Genomic Workbench soft-
ware v7.0 or with Cytogenomics software (v2.9.2.4;
Agilent), and expressed according to the human ref-
erence genome hg19 (GRCh37; Genome Reference
Consortium Human Reference 37). The identification
of aberrant copy number segments was based on the
ADM-2 segmentation algorithm with a threshold of 6.0.

Fresh frozen tissue RNA-seq
Total RNA was extracted from fresh frozen tissue (case
1) with a Qiagen RNeasy Mini kit (Qiagen •) accord- Q6
ing to the manufacturer’s protocol. RNA quality and
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quantity were measured with an Agilent 2100 bioana-
lyzer (Agilent Technologies). An RNA sample was sent
to Oxford Gene Technology (Begbroke, UK) for per-
formance of RNA-seq with the Illumina HiSeq 2000
platform (Illumina, San Diego, CA, USA). In brief,
cDNA libraries were prepared from 1 μg of total RNA
with the Illumina TruSeq RNA Sample Prep Kit v2.
All sequencing was paired-end (100 bp) and performed
over 100 cycles, and the read files (Fastq) were generated
from the sequencing platform via the manufacturer’s
software. Mapping and alignment were processed with
the Tuxedo suit. The human sequence genome (hg19)
was used as a reference and aligned to the sequence
reads. FusionCatcher software was used to identify gene
fusions from RNA-seq data [10]. RNA-seq data have
been deposited (SRA accession: SRP131744).

FFPE RNA sequencing
RNA was extracted from FFPE tissue sections (case 1
and case 2) with Trizol reagent (Thermo Fisher Scien-
tific, Courtaboeuf, France), and subsequently extracted
with phenol/chloroform. The RNase-free DNase Set
(Qiagen, Courtabouef, France) was used to remove
DNA. The DNase was eliminated by a further Trizol
extraction. All RNAs were quantified by spectrophotom-
etry (NanoDrop; Thermo Fisher Scientific), and qual-
ity was controlled (DV200 value cutoff of >13%) by
use of a TapeStation with Hs RNA ScreenTape (Agi-
lent Technologies). One hundred nanograms of total
RNA was used to prepare a library with a TruSeq
RNA Access Library Prep Kit (Illumina). Fourteen
libraries were pooled at 4 nM with 1% PhiX as an
internal control. Sequencing was performed (75 cycles,
paired end) with a NextSeq 500/550 High Output V2
kit and an Illumina NextSeq 500 (Illumina). Align-
ments were performed with the STAR algorithm [11]
against the GRCh38 reference genome, and fusion gene
assessments were made with STAR-Fusion [12], Fusion-
Catcher [10] and FusionMap [13] tools. Expression pro-
files were extracted from fastq files with Kallisto [14],
and transformed as log2(TPM+ 2) prior to quantile
normalization with the Limma package v 3.32.2 per-
formed in the R environment v3.4.1 [15]. Only genes
with a coding sequence annotation (based on Ensembl
GRCh38p5 annotation) and with a maximum expression
value across all samples of >2 were considered for the
clustering analysis, which was performed by the use of
Ward’s distance on the 10% most variant genes based
on their interquartile range. RNA-seq data have been
deposited (SRA accession: SRP131744).

Reverse transcription polymerase chain reaction
(RT-PCR) and Sanger sequencing
cDNA was generated from total RNA with Super-
Script III (Invitrogen) and random primers (Promega).
The RT-PCR reactions were performed withy 2.5 μl
of 10X buffer, 2.5 μl of dNTPs (2.5 mM), 5 μl of 5X
GC-rich solution, 1 μl of forward primer (20 pmol), 1 μl

of reverse primer (20 pmol), and 0.1 μl of Fast Start DNA
polymerase (Roche, Burgess Hill, UK). Primer sets
used for polymerase chain reaction (PCR) amplifica-
tion were CRTC1-F (TCGAACAATCCGCGGAAATT)
and SS18-R (GTGCTGGTAAAAGAGACTGCA), and
PCR products were visualized with 2% (w/v) agarose
gel (Bioline •). The PCR products were extracted from Q7
the gel and purified with a QIAquick Gel Extraction
Kit (Qiagen •). A BigDye Terminator V3.1 kit (Applied Q8
Biosystems •) was used for the cycle sequencing reac- Q9
tion, and PCR products of CRTC1–SS18 gene fusions
were directly Sanger sequenced with an ABI 3730 DNA
analyser (Applied Biosystems).

Long-range PCR (LR-PCR)
LR-PCR was carried out with PrimeSTAR GXL DNA
polymerase (Takara Bio, Shiga, Japan). Each LR-PCR
reaction was set up with 50 ng of DNA, 1× 5X PrimeS-
TAR GXL buffer, 200 μM each dNTP, 0.2 μM forward
primer, 0.2 μM reverse primer, and 1.25 U of PrimeSTAR
GXL DNA polymerase enzyme, made up to a final vol-
ume of 50 μl with sterilized distilled water. The PCR was
carried out with the following conditions: 30 cycles of
10 s at 98 ∘C and 10 min at 60 ∘C. The LR-PCR primers
used in this study are listed in supplementary mate-
rial, Table S1. The size of the PCR product from the
gene fusion was unknown; therefore, genome walking
through both genes and a rough estimation of the prod-
uct size was carried out. The genome walking covered
the exonic and intronic regions of both genes involved
in the fusion. LR-PCR was performed on the genomic
DNA of the tumour sample. One forward primer (F3)
was anchored on exon 1 of CRTC1, and different reverse
primers spanning ∼2.5 kbp of intron 1 were used to
amplify this region and to identify the breakpoint. The
samples were electrophoresed on 0.9% agarose gels to
determine the size of the PCR product. After confirm-
ing the breakpoint of CRTC1–SS18 gene fusion at the
genomic level, LR-PCR was performed on both the
tumour sample and the corresponding normal tissue to
confirm that this fusion was somatic. The PCR product
was then extracted from the gel and sequenced.

Plasmid construction
The CRTC1–SS18 expression construct was made by
PCR amplification of the entire fusion construct with
the cDNA generated from case 1 tumour RNA. This
amplicon was subcloned into the expression vector
pFlag-CMV-4 (Sigma-Aldrich •) by the use of EcoRI Q10
and XbaI restriction sites. The primers used were as
follows: forward, 5′-cg g aat tcg aag atg gcg act tcg
aac aat c-3′; and reverse, 5′-cg tctaga t tca ctg ctg gta
att tcc ata c-3′. Plasmid constructs were verified by
sequencing. Expression of this plasmid generates an
N-terminal FLAG-tagged protein. The construct plas-
mid and associated empty vector were transfected into
HEK293 cells (ATCC, Manassas, VA, USA), clones
were isolated, and expression was validated by west-
ern blotting with an anti-FLAG antibody (Cat. No.
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F1804, clone M2, 1:1000; Sigma-Aldrich). Clones were
maintained in Dulbecco’s modified Eagle’s medium
(DMEM) and 10% fetal bovine serum (FBS) supple-
mented with 1 mg/ml G418 (Life Technologies •).Q11

Cell migration assays
Suspensions containing 25 000 cells of a stable
CRTC1–SS18-expressing HEK293 clone, or a clone
containing the empty vector, suspended in serum-free
DMEM were seeded into a 24-well format Boyden
chamber cell culture insert (8-μm pore size; PET
membrane) (BD Falcon, Bedford, MA, USA). The
lower chamber contained DMEM, and 10% FBS as
an attractant. Chambers were incubated for 16 h. Cells
were fixed in methanol; cells on the upper side of the
chamber were removed, and those remaining on the
underside were stained with crystal violet. Migrated
cells were photographed, the crystal violet was solu-
bilized in 500 μl of 33% acetic acid, and the optical
density was measured at 540 nm (n= 20).

Cell invasion assays
A modified migration assay was carried out in which
50 000 cells were seeded into Boyden chambers (8-μm
pore size; PET membrane) (BD Falcon) precoated with
100 μl of Geltrex basement membrane matrix (Thermo
Fisher Scientific). Chambers were incubated for 16 h.
Invasive cells were counted by microscopy with the
observer unaware of the cell type (n= 22).

Soft agar, anchorage-independent growth assay
Anchorage-independent growth in soft agar was
assessed with the CytoSelect 96-Well Cell Transforma-
tion Assay kit (Cell Biolabs, San Diego, CA, USA),
according to the manufacturer’s instructions. In brief,
2500 cells per well were seeded in agar supplemented
with DMEM and 10% FBS. Following incubation for
8 days, the agar was solubilized and viable cells were
lysed, stained and quantified by fluorometry (excitation
492 nm, emission 520 nm; n= 8).

Results

Clinical presentation and pathological findings
of the index case, case 1
Clinical presentation

A 35-year-old man presented to the Royal Orthopaedic
Hospital with a rapidly growing lump on his right thigh.
Magnetic resonance imaging revealed a heterogeneous
mass within the sartorius muscle, and the findings were
in keeping with a soft tissue sarcoma. A diagnosis
of USRCS was made on the biopsy material of the
tumour, which did not carry the chimeric gene fusions
associated with ES (EWSR1–FLI1 or EWSR1–ERG),
mesenchymal chondrosarcoma (EWS–NR4A3 and

TAF2N–NR4A3), DSRCT (EWS–WT1), or synovial
sarcoma (SS) (SS18–SSX). The tumour was also neg-
ative for CIC–DUX4 and BCOR–CCNB3. In view
of this diagnosis, the patient received four cycles of
vincristine, ifosfamide, doxorubicin and etoposide.
Radiologically, there was no response to chemotherapy,
and the mass was excised. The patient developed bilat-
eral lung metastases 18 months after diagnosis, and died
of disease 92 months later.

Pathological findings

Grossly, an intramuscular, well-circumscribed greyish
white fleshy tumour with haemorrhagic and necrotic foci
measuring 7× 65× 53 mm was observed (Figure 1A).
Histologically, the tumour consisted of solid sheets and
nests of small round cells surrounded by desmoplastic
stroma reminiscent of desmoplastic small round cell
tumour (DSRCT). The tumour cells had scant amounts
of eosinophilic cytoplasm and small, irregularly shaped
round nuclei with stippled chromatin. Some had
prominent grooves and small nucleoli. Focal areas of
necrosis and mitotic figures were identified (seven per
10 high-power fields). Rosette formation and glandu-
lar differentiation were not identified (Figure 1B,C).
Immunohistochemically, the tumour cells were dif-
fusely positive for vimentin and CD99 (Figure 1D). The
tumour cells did not stain for CD31, CD34, AE1/AE3,
CD45, CK(MNF116), desmin, EMA, HMB45, SMA,
S100, HMB45, WT1, TLE1, ERG, ETV4, BCOR,
or CCNB3. INI1 expression was retained. The Ki67
labelling index was up to 20%.

RNA-seq analysis and confirmation of gene fusion
RNA-seq analysis of the index case (case 1) revealed
a novel gene fusion involving CRTC1 and SS18 in the
tumour sample. Two alternative splicing fusion tran-
scripts were detected that linked exon 1 of CRTC1 with
exon 2 or exon 3 of SS18 (Figure 2A,B; supplementary
material, Figure S1). A balanced translocation resulted
in SS18 being fused with exon 1 of CRTC1, generating
an in-frame fusion protein (Figures 2A,B and 4A). The
CRTC1–SS18 fusion transcripts were confirmed by
RT-PCR and Sanger sequencing (Figure 2B; supple-
mentary material, Figure S2A). In order to map the
fusion breakpoints at the genomic level, LR-PCR was
carried out to reveal the genomic sequence around the
breakpoints (supplementary material, Figure S2B–D
and Table S1). The CRTC1 breakpoint was found to be
8 bp from the 3′-end of exon 1 (cDNA fusion point),
and the SS18 breakpoint was 4457 bp before the 5′-end
of exon 1 (Figure 2C).

Clinical presentation and pathological findings
of case 2
Clinical presentation

RNA sequencing revealed a second case of an
CRTC1–SS18-positive USRCS (case 2): a 42-year-old
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Figure 1. Macroscopy and microscopy images of case 1. (A) The macroscopic image shows a fairly well-circumscribed fleshy tumour with
foci of necrosis and haemorrhage. (B) The microscopic image (low power) shows the tumour to be composed of solid sheets and nests
surrounded by desmoplastic stroma. (C) The high-power view of the tumour shows small cells with scant cytoplasm. (D) Membranous
staining with CD99, mimicking ES.

woman who presented to the CHU Gui de Chauliac
(Montpellier, France) with a mass from the popliteal
fossa, later diagnosed as an undifferentiated small
cell sarcoma. The patient underwent radiotherapy and
chemotherapy prior to the surgical removal of the
tumour. A tumour fragment was sent to the Centre Léon
Bérard’s department of pathology for a second opinion
and molecular diagnosis.

Pathological findings

An intramuscular mass, well circumscribed by a dif-
fuse calcified matrix, measuring 110× 75× 70 mm
was observed. The tumour consisted of bundles and
nests of cells embedded in a focally myxoid fibrous
stroma (Figure 3A). There were areas of necrosis.
Cytologically, the tumour was composed of oval
to epithelioid cells (Figure 3B). The cells were of
medium size with abundant eosinophilic cytoplasm and
ovoid and vesicular nuclei with nucleoli (Figure 3C).
Immunohistochemically, the tumour cells were positive
for CD99 and negative for keratins, EMA, desmin,
caldesmon, myogenin, S100, CD34, ETV4, and BCOR.
INI1 expression was retained. NTRK1 was diffusely
positive.

RNA-seq performed on the FFPE material showed an
in-frame fusion between exon 1 of CRTC1 and exon 2
of SS18. In this case, the translocation was unbalanced,
as demonstrated by FISH (Figures 2A and 4A). It is of
note that the cell morphology was similar in the tumour
biopsy acquired before treatment, which also harboured
the CRTC1–SS18 fusion gene.

Genomic and transcript profiles
aCGH analyses revealed that case 1 had a diploid
genome and a balanced CRTC1–SS18 translocation,
whereas case 2 had a tetraploid genome with an unbal-
anced CRTC1–SS18 translocation (see Figure 4B for
specific chromosomal gains and losses for each case).
To enable comparison of both samples, RNA-seq of
case 1 was also performed on an FFPE sample, in the
same pipeline as case 2. Hierarchical clustering analysis
(of RNA-seq data) demonstrated that both samples clus-
tered together and close to the EWSR1–CREB1-positive
tumours but not with ESs or ELSs (Figure 4C). Also,
CRCT1–SS18-positive samples did not cluster with the
recently described cutaneous melanocytomas harbour-
ing a CRTC1–TRIM11 fusion gene [16]. Furthermore,
RNA-seq data revealed enhanced NTRK1 expression
in the two cases with the CRTC1–SS18 gene fusion
as compared with other sarcomas with known translo-
cations such as EWSR1–CREB1, BCOR–CCNB3,
CIC–DUX4, and EWSR1–FLI1 (Figure 4D), and this
was confirmed at the protein level by immunohisto-
chemistry (supplementary material, Figure S3).

Functional analysis of the CRTC1–SS18 gene fusion
product
To determine whether the product of the CRTC1–SS18
gene fusion identified had any potential oncogenic
activity, the fusion gene from case 1 was cloned
into a tagged mammalian expression vector, and
human HEK293 clones expressing the construct were
generated; a fusion protein of the predicted size
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Figure 2. •RNA-seq identification of the CRTC1–SS18 gene fusion. (A) The genomic intron–exon structure of CRTC1 (blue) and SS18 (red). Q12
CRTC1(exon 1)–SS18(exon 2) gene fusion was found in case 1 and case 2, whereas CRTC1(exon 1)–SS18(exon 3) alternative splicing gene
fusion was found only in case 1. (B) A Sanger sequencing chromatogram of the RT-PCR product confirmed the CRTC1(exon 1)–SS18(exon
2) fusion junction and the CRTC1(exon 1)–SS18(exon 3) fusion junction in case 1. (C) Schematic of the exon–intron structure of the
CRTC1–SS18 gene fusion at the DNA level. The intergenic breakpoints for both genes are shown, and were confirmed by Sanger sequencing
of the LR-PCR product in case 1.

(∼57 kDa) was observed (supplementary material,
Figure S4). The CRTC1–SS18-positive clone were
morphologically distinct from control clones, showing
extended pseudopodia and pronounced intracytoplas-
mic vacuoles (Figure 5A). We proceeded to assess the
anchorage-independent growth potential of these cells
(hallmark of transformation). CRTC1–SS18-expressing
HEK293 cells were seeded into semisolid agar, in
96-well microtitre plates, and incubated for 8 days.
The number of viable cells was then determined with
a commercial fluorescence assay. Following this rela-
tively short period of incubation, the assay indicated
that there were 3.7 times the number of viable cells
expressing CRTC1–SS18 as control HEK293 cells
transfected with an empty plasmid. This increase

in the number of viable cells was statistically sig-
nificant (Figure 5B). As expression of this fusion
protein appeared to increase anchorage-independent
growth, we continued to assess these cells for other
hallmarks of malignancy. We carried out assays to
determine the migratory and invasive potential of the
CRTC1–SS18-expressing cells. In a Boyden chamber
assay, in which cells are encouraged to pass through
8-μm pores, significantly more HEK293 cells express-
ing CRTC1–SS18 migrated than control cells; this was
determined both visually and with a colourimetric assay
(Figure 5C). In a similar assay, in which the membranes
of the chambers are coated in a basement membrane
matrix to model the invasive potential of these cells, 2.6
times more CRTC1–SS18-expressing cells than control
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Figure 3. Microscopy images of case 2. (A) Haematoxylin and eosin
(HE) (low-power objective, ×10): sheets and nests of cells in
desmoplastic stroma. (B) HE (×20): nest of epithelioid cells. (C)
HE (objective ×40): cells were of medium size with abundant
eosinophilic cytoplasm and ovoid and vesicular nuclei with nucleoli.

cells invaded through the membrane in a 16-h period
(Figure 5D).

Discussion

ELS or USRCS is a subtype of small blue round cell
tumour that has a morphological appearance close to that
of ES but lacks the characteristic EWSR1–ETS gene
fusion. Recently, some of these USRCSs have been
shown to carry gene fusions involving CIC–DUX4,
CIC–FOXO4, BCOR–CCNB3, BCOR–MAML3, and
ZC3H7B–BCOR [3–8]. In this study, we have identi-
fied, by RNA-seq, a novel recurrent CRTC1–SS18
gene fusion in two USRCSs that were negative
for known gene fusions in this sarcoma type. The
CREB-regulated transcription coactivator 1 (CRTC1)
gene belongs to a family of highly conserved cAMP
response element-binding protein (CREB) coactivators
[17,18]. CRTC1 has already been implicated in other
translocations, such as the CRTC1–MAML2 fusion
in mucoepidermoid carcinoma of salivary, bronchial

and thyroid glands [19–22], and the CRTC1–TRIM1
fusion in cutaneous melanocytomas [16]. The SS18
protein (NBAF chromatin remodelling complex sub-
unit SS18) functions as a transcriptional coactivator,
and interacts directly with members of the SWI–SNF
chromatin remodelling complex [23]. The SS18–SSX
fusion is a result of the chromosomal translocation
t(X;18)(p11;q11) in almost all cases of SS, which
account for approximately 10–20% of all soft tissue
sarcomas [24–26].

These two cases of CRTC1–SS18-positive sarcoma
are regarded as a distinct entity from all other ELSs,
DSRCTs and poorly differentiated SSs described in
the literature. Poorly differentiated SS is character-
ized by high cellularity, polygonal to small round
cell morphology, frequent mitoses, and necrosis.
These poorly differentiated SSs may be distinguished
by the expression of high molecular weight cytok-
eratins and CD99, and having the characteristic
t(X;18)(p11:2;q11:2) translocation. However, these two
cases of CRTC1–SS18-positive sarcoma had a distinct
morphology relative to that seen in poorly differentiated
SS, and lacked the characteristic t(X;18)(p11:2;q11:2)
translocation. Only one other ELS tumour with a
CIC–FOXO4 gene fusion has been described with
desmoplastic stroma that showed immunoreactivity for
CD99 and focal WT1. This tumour occurred in the
neck of an elderly male. DSRCT commonly arises in
the abdominal cavity in children and young adults, and
is characterized histologically by nests of small round
cells surrounded by desmoplastic stroma, immunohis-
tochemically by positive staining for keratins, desmin,
and WT1, and genetically by the presence of a recur-
rent translocation, i.e. t(11;22)(p13;q12). However,
the tumours that we describe here occurred in lower
limbs of adult patients, and the tumour cells were
larger than cells of DSRCT, with more cytoplasm, and
showed immunoreactivity for CD99 but did not carry
the EWS–WT1 gene fusion.

Morphologically, the two tumours that we present
here shared features: large fibrous stroma, and small to
medium cells with eosinophilic cytoplasm and vesicular
nuclei. Expression profile analyses confirmed that our
CRTC1–SS18-positive sarcomas were not related to
ES or ELS, but rather to EWSR1–CREB1-positive
tumours. It is of note that CRTC1–TRIM11-positive
cutaneous melanocytomas were also found to resemble
EWSR1–CREB1-positive clear cell sarcomas [16], but
hierarchical clustering clearly separated both types
of CRTC1-fused tumours. Finally, we also present
here evidence, at both the RNA level and the protein
level, that NTRK1 is expressed at higher levels in
CRTC1–SS18-positive sarcomas than in other related
tumours. We could not find any fusion involving NTRK1
in these tumours, explaining its elevated level Never-
theless, NTRK1 expression may be useful as a marker
for differential diagnosis, but most importantly may be
used as a therapeutic target. In addition, we demonstrate
that the cells expressing the CRTC1–SS18 gene fusion
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Figure 4. Genomic and transcript profiles of CRTC1–SS18-positive sarcomas. (A) FISH analysis with an SS18 break-apart probe, showing
multiple copies of chromosome 18 carrying SS18. Most cells were tetrasomic or greater for the SS18 locus on chromosome 19. In case 1,
the translocation was balanced (presence of red dots), whereas in case 2 the translocation was unbalanced (the red signal is lost while the
green signal remains). (B) aCGH profiles. Case 1 had a diploid genome with the loss of chromosomes 1, 3p, and 9, and parts of 11q, 17p, 18,
and 22, together with gains on chromosomes 3q, 5, 6, 7, 9, 10, 11, 16, 17, 20, and 21. The region around SS18 on chromosome 18 was focally
gained, whereas the CRTC1 locus was normal, which is in accordance with a balanced translocation. Case 2 had a tetraploid genome with
the loss of one copy of chromosomes 1, 3, 13, 14, 17, 21, and 22, and with homozygous deletion of chromosome region 17q22, impacting
on MBTD1, UTP18, and CA10. The 5′ region of SS18 (on the minus strand) and the 3′ region of CRTC1 (on the plus strand) were lost,
in accordance with an unbalanced translocation. (C) Hierarchical clustering of RNA-seq data placed the two CRTC1–SS18-positive cases
close to EWSR1–CREB1-positive tumours. (D) NTRK1 expression from RNA-seq data. AFH/PPMS, angiomatoid fibrous histiocytoma/primary
pulmonary myxoid sarcoma; CCCS, cutaneous clear cell sarcoma; CM-CT , cutaneous melanocytoma with CRTC1–TRIM11 fusion; BCR,
BCOR-rearranged sarcoma; CD4, CIC–DUX4-positive sarcoma; EwS, Ewing sarcoma.

were morphologically distinctive from control cells and
had enhanced oncogenic potential.

In summary, we have presented two cases of USRCS
with a novel CRTC1–SS18 gene fusion. It would be
beneficial to screen more samples to determine the fre-
quency of CRTC1–SS18 gene fusion in other USRCSs.
The severe clinical phenotype (lung metastasis at an
early age) of case 1 (case 2 has 6 months of follow-up),
the novel CRTC1–SS18 gene fusion and the expres-
sion profile data indicate that these tumours may be

classified as a new type of USRCS. Except for spo-
radic and unique cases, to our knowledge the two
USRCSs in this study are the only cases of a sar-
coma type other than SS involving SS18 as a recurrent
gene fusion partner. The discovery of this new fusion
should enable better classification and study of these
rare sarcomas. CRTC1–SS18-positive sarcoma should
be considered in the differential diagnosis of USRCS,
DSRCT and poorly differentiated tumours that show
SS18 split signals with FISH. Elevated levels of NTRK1
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Figure 5. Biological analysis of the CRTC1–SS18 gene fusion. (A) Morphological analysis of CRTC1–SS18-expressing cells. CRTC1–SS18
fusion-positive clones were morphologically distinct from control HEK293 cells; the cytoplasmic component was small, with pronounced
vacuoles and extended, thin pseudopodia (both images taken under phase contrast at ×200 magnification). (B) Expression of the
CRTC1–SS18 fusion protein in HEK293 cells significantly increased anchorage-independent growth potential. The number of viable,
colony-forming cells present, following incubation in soft agar, was increased 2.1-fold in HEK293 cells expressing CRTC1–SS18 as compared
with HEK293 cells transfected with a control plasmid. Viable cells were determined with a fluorometric assay. p < 0.0001, t = 8.61, degrees
of freedom (d.f.)= 14. Error bars represent standard error of the mean (SEM) (n = 8). (C) Expression of the CRTC1–SS18 fusion protein
in HEK293 cells significantly increased cell migration. The number of HEK293 cells expressing CRTC1–SS18 that migrated through 8-μm
pores in a Boyden chamber assay in 16 h was significantly increased as compared with HEK293 cells transfected with a control plasmid.
This was apparent by inspection by microscopy (at ×4 objective magnification) and by a colourimetric assay. p < 0.0001, t = 6.2.2, d.f. =
38. Error bars show SEM (n = 20). (D) Expression of the CRTC1–SS18 fusion protein in HEK293 cells significantly increased cell invasive
potential. The number of HEK293 cells expressing CRTC1–SS18 that invaded through 8-μm pores coated in a basement membrane matrix
in 16 h was significantly increased as compared with HEK293 cells transfected with a control plasmid. Invasive cells were counted at ×40
objective magnification; the mean number of invasive cells was 2.6 times greater for CRTC1–SS18-expressing cells than for control cells.
p < 0.0001, t = 6.108, d.f. = 42. Error bars show SEM (n = 22). OD, optical density.
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in CRTC1–SS18-positive sarcomas may be of therapeu-
tic importance and amenable to treatment with tyrosine
kinase inhibitors [27]. Considered all together, for the
field of rare to ultra-rare sarcomas, this study offers a
nice example of the need to assess samples from differ-
ent cancer centres to identify recurrent fusions and to be
able to characterize new sarcoma subtypes. Further col-
laboration between groups is therefore required to depict
the whole landscape of small round cell sarcomas.
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SUPPLEMENTARY MATERIAL ONLINE
Supplementary figure legends

Figure S1. Read coverage for CRTC1(Ex1)-SS18(Ex2) and CRTC1-SS18(Ex3) identified in Case 1 using RNA-seq data

Figure S2. RT-PCR validation of CRTC1-SS18 fusions and Long-Range PCR to determine genomic break points

Figure S3. Immunostaining of NTRK1 (Case 2), showing strong positivity; scale bar= 100 μm

Figure S4. Validation of CRTC1-SS18 expression in stably-transfected HEK293 clones

Table S1. The sequence of primers used for long range PCR
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