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Abstract 

The present randomized controlled in vitro study was designed to evaluate the effects of the 

exposure of human cryopreserved oocytes to endometriotic fluid. Twenty-three women aged 36 

± 4 years donated a total of 147 vitrified supernumerary metaphase-II oocytes. Warmed 

oocytes were randomly assigned to exposure to endometriotic fluid or unexposed control.  

Thereafter oocytes were parthenogenetically activated and cultured up to five days.  The rate of 

activation on day 1 and the developmental rates on day 3 and day 5 did not significantly differ 

between the two groups. The rate of day 3 good quality parthenotes per oocyte was lower in 

exposed compared to unexposed oocytes, being 22% (13/60) and 41% (25/61), respectively.  

Moreover, in the exposed parthenotes, a significantly higher proportion of parthenotes failing 

to develop to the blastocyst stage showed cellular fragmentation (RR=0.64, 95%CI: 1.04-2.57). 

Exposure of human oocytes to endometriotic fluid has a negative effect on the morphology of 

deriving embryos/parthenotes mainly due to an excess of cellular fragmentation. 
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Introduction  

 

The American Society of Reproductive Medicine (ASRM) and the European Society of Human 

Reproduction and Embryology (ESHRE) have recently stressed the risk of reduced ovarian 

function after surgery for ovarian endometriomas in their guidelines for the management of 

endometriosis1-2. These guidelines are based on several evidences highlighting that the excision 

of the endometrioma can severely impair ovarian reserve and affect the subsequent fertility3-7.  

Accordingly, an increasing proportion of infertile women with the disease currently undergoes 

in vitro fertilization (IVF) in the presence of one or more endometriomas.  

 However, from an IVF-centered perspective, the conservative management of ovarian 

endometriomas is not without drawbacks and risks8. The presence of these cysts can make 

oocyte aspiration more difficult and the endometriotic fluid may damage oocytes, especially in 

case of direct contact after  inadvertent contamination9. In fact, even if it is generally claimed 

that these cysts should not be punctured during oocytes retrieval, unintentional aspiration of 

endometrioma content and follicular fluid contamination can occur. The incidence has been 

estimated to be 5% (95% confidence interval-CI: 3-7%)8. 

 Exposure to the content of endometriotic cysts may be harmful to the oocyte and may 

alter its subsequent developmental potential as an embryo due to the presence of several 

potentially toxic substances such as growth factors and interleukins10-12, matrix 

metalloproteinases13, catalytic iron, and lipid peroxide14. In particular, the great amount of free 

iron in endometriotic cysts, up to 10000-fold higher than in serum15, is a matter of concern 

because of the risk of local production of the highly toxic reactive oxygen species (ROS) via 

the Fenton reaction16.  

 On the other hand, experimental data supporting these potential concerns are scanty. In 

an in vitro study in the mouse model, oocyte exposure to endometrioma content did not affect 
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fertilization, cleavage and blastocyst formation but lowered the proportion of hatching/hatched 

blastocysts17. Evidence in humans is derived from retrospective and underpowered studies 

comparing embryological variables and pregnancy outcome between exposed and non-exposed 

cases18-20. Data from in vitro studies are inconsistent, as the embryological process appears 

impaired in the study by Suwajanakorn et al.18, unaffected in that by Khamsi et al.19, and even 

paradoxically improved in that by Benaglia et al.20. Pregnancy rate was reduced  in the two 

studies reporting  this outcome18,20. These conflicting results may be explained by different 

kinds of exposure to endometriotic fluid in terms of duration or relative amount of 

contamination, together with suboptimal study designs. In particular, the retrospective 

collection of data, the small sample sizes (a total of 71 exposed cases after pooling the three 

studies) and possible biases in the selection of unexposed controls, actually undermine the 

validity of human studies. 

 Given the difficulties in obtaining clear embryological data in the clinical settings and 

the debatable reliability of animal models, we designed a randomized, controlled, in vitro study 

with the objective of evaluating the effect of exposure of human cryopreserved oocytes to 

endometriotic fluid. To this aim, we used a validated experimental model of human 

parthenogenesis21-26.  

 

Material and methods 

Patients and oocytes 

The present study was conducted between January 2016 and July 2016 at the Infertility Unit of 

the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (Milan, Italy). Oocytes used 

for the study protocol were previously cryopreserved during IVF procedures as supernumerary 

ones and subsequently donated by women after completion of their reproductive program. In 
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Italy, the obtainment of supernumerary embryos is limited by law. Therefore, when a large 

amount of good quality oocytes is available, part of them should be destined to 

cryopreservation according to clinical conditions and couples' willing. Women no longer 

interested in using their supernumerary vitrified oocytes were asked to donate them for 

research purposes through a specific informed consent. A diagnosis of endometriosis was an 

exclusion criterion. Only oocytes retrieved from women under 42 years age at 

cryoconservation were considered. The reasons for cryoconservation waiver varied, the most 

common being a successful pregnancy achieved in the fresh cycle. The study was approved by 

the local Institutional Review Board. (Comitato di Etica Milano Area B). 

 Oocytes were obtained following controlled ovarian hyperstimulation as described 

elsewhere (27). Following a 3±1 hours incubation at 37 °C in an atmosphere of 5% CO2, 

supernumerary oocytes were denuded from cumuli oophori by pipetting them out through a 

140-170 mm (internal diameter) pipette (Flexipet; Cook, Bloomington, Ind), after a brief 

exposure to 40 IU/mL of hyaluronidase in HEPES buffered gamete handling medium. 

Metaphase II-oocytes without morphological abnormalities showing a clear cytoplasm with 

fine granularity were vitrified using the cryotop method according to Kuwayama et al.28. At the 

time of the experimental protocol, donated oocytes were thawed and cultured together for 2 

hours in 1 ml of Quinns Advantage Fertilization Medium (SAGE, Trumbull, CT USA). 

Thereafter, the viability of oocytes was checked and non viable ones were discarded.  

 

Exposure to endometriotic fluid 

 Endometriotic fluid was collected during laparoscopy for ovarian endometrioma excision from 

three different patients who gave an informed consent. Once terminated the initial diagnostic 

part of the laparoscopy, the ovary carrying the endometrioma was punctured and aspirated with 

a 14-16 gauge needle. The procedure was done prior to initiate the adhesyolysis because of the 
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risk of subsequent cyst rupture and inevitable contamination of the endometrioma content with 

the peritoneal fluid.  The endometriotic fluid was stored untreated at – 20 °C (3-5 weeks). It 

appearance was “dark chocolate”.  

During the incubation of warmed oocytes, endometriotic fluid was thawed at 37 °C. Thereafter, 

it was added to one well (20% v/v) of a four-well dish containing 500 microlitres aliquotes of 

pre-equilibrated fertilization medium. For every set of experiments, after 2 hours of post-

thawing culture, a maximum of 12 intact oocytes belonging to a single patient were collected 

from the incubator and randomly separated to the fertilization medium containing 

endometriotic fluid (exposed oocytes) or to the fertilization medium (unexposed oocytes) in a 

4-well culture dish (ratio 1:1). In order to exclude selection biases based on morphological 

features of the oocytes, the procedure was performed using a stereo-microscope with minimum 

magnification power (8x). Therefore, oocyte belonging to every women were randomly 

allocated half to treatment and half to control.   

 In case of odd number of oocytes, the balance between groups was obtained with the 

following set of experiments. Oocytes were then incubated for 3 minutes at 37 °C, 5% CO2. 

Afterwards, exposed oocytes were carefully rinsed in the wells containing clean fertilization 

medium and moved to the parthenogenetic activation dish; similarly, unexposed oocytes were 

moved to the parthenogenetic activation dish. Contact between unexposed oocytes and 

endometriotic fluid was avoided using separate wells/pipettes for cases and controls.  

 

Parthenogenetic activation 

The parthenogenetic activation was conducted on exposed/unexposed oocytes using a 4-wells 

dish through sequential exposure to 5 mM ionomycin in IVF medium for 5 minutes at 37°C, 

5% CO2 in the dark followed by an incubation in 2 mM 6-dimethylaminopurine (DMAP; 

Sigma-Aldrich, Milan, Italy) in cleavage medium for three hours at 37 °C. Afterwards, oocytes 
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were washed three times in fresh cleavage medium, placed separately in 40 mL drops of the 

same medium under mineral oil and cultured in standard conditions (37°C, 5% CO2). For every 

set of experiments, exposed and unexposed oocytes were cultured in the same dish using 

different wells or drops. After 18 to 20 hours (day 1) from the activation with ionomycin, 

oocytes were checked with an invertoscope  for signs of activation.  

 The oocytes showing one enlarged pronucleus and no extrusion of the second polar 

body were considered correctly activated (parthenotes). Parthenotes deriving from exposed and 

unexposed oocytes were washed twice and kept separately in culture using 40 microliters drops 

of fresh cleavage medium in the same dish until day 5 from the activation, when 

parthenogenetic blastocysts were expected to develop. Culture media was renewed on day 3. 

The cleavage of parthenotes was checked daily. Using embryological criteria29, morphological 

data based on equal-sized blastomeres and pattern of fragmentation were recorded after 66 to 

68 hours of activation (day 3) while criteria for blastocyst scoring (based on the degree of 

expansion, and inner cell mass/trophectoderm development) were used on day 5. On day 3 of 

culture, parthenotes belonging to grade 1 or 2 (fragmentation less than 10% with equal size 

blastomeres) were classified as “good quality” ones. Blastulation was registered in the presence 

of blastocoel filling more than 50% of the volume of parthenote; in case of fully enlarged size 

with thin zona pellucida (or hatching) and distinguishable inner cell mass, the blastocyst was 

considered as “good quality-expanded”  (Figure 1).  

 The length (days) of viability in culture was recorded for every parthenote together with 

the cause of developmental failure: 1) fragmentation in case of few cells and >50% of 

parthenote showing fragments or 2) cleavage arrest in case of unchanged number of cells for at 

least 24 hours with no or moderate fragmentation. All morphological evaluations were made by 

a single expert biologist (AP) who was blinded to the previous exposure.     

 



Paffoni et al., 8 
 

Data analysis 

Analysis of data was performed using the Statistical Package for Social Sciences (SPSS 18.0; 

Chicago, Ill). Statistical significance was set at p <0.05. Fisher’s exact test and the unpaired 

Student t test were used where appropriate to compare the two groups. Relative risks (RRs) and 

their 95% CI for activation, cleavage and blastulation rates are reported to compare parthenotes 

deriving from exposed and unexposed oocytes. Proportions are reported as percentages. The 

95% CI of proportions were calculated using a binomial distribution model.  

 To obtain the sample size of the study, for power calculation purposes, a three-folds 

decrease in the rate of day 3 good quality parthenotes for exposed oocytes compared to 

unexposed ones was considered embryologically important. Based on our previous data21, the 

sample size was then calculated considering a good quality parthenotes rate on day 3 equal to 

37%  per oocyte in the group of unexposed oocytes, and setting type I and II errors at 0.05 and 

0.20, respectively. Based on these assumptions, the number of required intact oocytes were at 

least 55 per group. Considering a survival rate of 80% after warming, the total number of 

oocytes to be used for the study were thus 140.  

 

 

Results 

Twenty-three women aged 36 ± 4 years donated a total of 147 vitrified metaphase-II oocytes 

(range 2-17). After warming and culture, 26 oocytes (18%) showed signs of degeneration/lysis 

and were therefore discarded leaving 121 oocytes for randomization. Intact oocytes were 

treated in 13 sets of experiments. A total of 60 oocytes were randomized to the exposure group 

while 61 oocytes were randomized to the non exposure group. Endometriotic fluid from three 

patients were used for 4, 4 and 5 sets of experiments, respectively. Results are summarized in 
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Table 1. The day after treatment and activation, 42 parthenotes (70%) among exposed oocytes 

and 46 parthenotes (75%) among unexposed oocytes were observed (p=0.51). The 

developmental rates on day 3 and day 5 did not significantly differ between the two groups. 

The RRs (95%CI) of exposed oocytes for activation, cleavage on day 3 and blastulation on day 

5 were 0.93 (0.75-1.16), 0.88 (0.65-1.19) and 0.47 (0.19-1.15), respectively. 

 Conversely, data on morphology tend to support a detrimental effect of endometrioma 

fluid exposure (Table 1). The rate of day 3 good quality parthenotes was 22% (13/60) and 41% 

(25/61) in exposed and unexposed oocytes, respectively (RR=0.53; 95%CI: 0.30-0.93, 

p=0.031).  A trend was observed also in the development of good quality-expanded blastocysts 

on day 5, 5% (3/60) and 13% (8/61) of oocytes, respectively; RR=0.39, 95%CI: 0.11-1.37). 

Moreover, a significantly higher proportion of parthenotes failing to develop to the blastocyst 

stage showed cellular fragmentation in the exposed compared to unexposed parthenotes 

(RR=0.64, 95%CI: 1.04-2.57; p=0.024). 

 

Discussion  

In the present randomized in vitro study we observed,  by means of the parthenogenesis 

experimental model, that exposure of human oocytes to the content of endometriotic cysts 

negatively impacts on the first phases of in vitro embryogenesis compared to controls, with 

specific regards to the percentage of oocytes developing to good morphology embryos. In 

particular, although activation and cleavage rates were similar between exposed and unexposed 

oocytes, the chance of developing into a good quality embryo was nearly halved when oocytes 

were exposed to 20% (v/v) of endometriotic fluid in culture medium for three minutes. 

Moreover, although not statistically significant, a reduction in terms of length in culture and 

blastulation rate was observed for exposed oocytes.  
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 Our results partially diverge from data derived from the heterogeneous available 

studies18-20. Two of these studies actually failed to identify detrimental effects during the in 

vitro phases19,20. Of note, in the clinical setting all efforts are made to limit the exposure of 

oocytes to endometriotic fluid. In case of contamination of follicular fluid during aspiration, 

oocytes are promptly and accurately washed and the needle is flushed with clean culture 

medium8. Moreover, the contamination is often quantitatively reduced with endometriotic fluid 

highly diluted into follicular content. As a consequence, the exposure of oocytes to potentially 

toxic substances is kept to a minimum both in time and quantity. In our experimental model, on 

the contrary, time and endometriotic fluid concentration were settled to fixed values in order to 

resemble a substantial exposure of oocytes. It is therefore plausible that the embryological 

parameters are affected in a dose-dependent manner with earlier effects on cleaving embryos 

discernible at higher doses only. 

 On the other hand, our results tend to be in line with those reported in the experimental 

study in mouse17, overall showing that the detrimental effects of endometrioma fluid exposure 

cannot be observed immediately but tend to become evident when extending the embryo 

culture. In our study, an excess of fragmentation was the main visible effect of endometriotic 

fluid on parthenotes, as seen both in the lower percentage of grade 1 and 2 parthenotes deriving 

from exposed oocytes, and in the higher proportion of parthenotes failing to develop to 

blastocyst for massive fragmentation.  

 The fragmentation at the cleavage stage as a non-immediate effect of oocyte exposure 

to a toxic substance deserves particular consideration. Blastomere cytofragmentation is very 

common in humans with more than 80% of  embryos produced by in vitro fertilization 

exhibiting some degree of cellular fragmentation30. Although fragmented embryos can produce 

full term pregnancies and healthy babies, cytofragmentation is associated with lower embryo 
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viability and developmental potential31. Therefore, embryo fragmentation in in vitro produced 

embryos is a fundamental aspect of embryo grading systems29,32. Cellular fragments could 

impair the developmental potential of embryos by inducing cell death of surrounding 

blastomeres30 or altering the blastomeres’ division planes33. Morphological features of 

cytofragmentation appear to be a robust indicator of apoptosis, supporting the possible 

involvement of programmed cell death in early human embryo arrest and demise30,34.  

 Aside from apoptosis, the disruption of the correct control of the contractile 

apparatus/actin metabolism can represent an alternative mechanism of fragmentation directly 

exerted on the cytoskeleton35. Beyond the ooplasmic or genetic origin of embrionic 

fragmentation, it has been showed that fragmentation may reflect cellular responses to 

suboptimal culture conditions36-39 and, of note, this propensity is programmed very early, at the 

one-cell stage40,41. Our experimental model, although not designed to explore the mechanisms 

of cell death or fragmentation, supports the hypothesis that environmental factors in the very 

early stages of development can modulate the predisposition of an oocyte to arrest by 

cytofragmentation after fertilization with an exclusive effect on the maternal cellular 

armamentarium.     

 The study design is the main strength of the present study. In fact, oocytes were 

randomly allocated to the treatment groups with a donor based stratification. This design is 

particularly favorable in order to exclude possible and important confounding factors linked to 

clinical parameters of the donors. From every single women a comparable number of oocytes 

was allocated to case and control groups thus excluding the need for statistical adjustment to 

rule out possible biases related to oocyte quality.  

 However, some limitations of our study have to be acknowledged. Firstly, our study 
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actually evaluates a fixed experimental model that cannot mimic all the variability of every 

possible clinical conditions; therefore caution is needed when extrapolating our results to the 

IVF routine. Secondly, our control group is represented by non exposed oocytes; the exposure 

to a control medium would have been methodologically more rigorous. However, we preferred 

the use of unexposed oocytes in order to create a condition more similar to the real one. 

Thirdly, endometriotic fluids from three different patients were used; even though we did not 

observed differences in the main outcome based on the donor of the endometriotic fluid (data 

not shown), we cannot exclude that its composition may vary in a patient-specific manner 

implying possible different biological effects. Lastly, as an experimental approach, the use of 

vitrified oocytes for parthenogenetic activation may seem far from the typical IVF setting, 

where fresh oocytes are inseminated with spermatozoa. However, it should be mentioned that, 

with the present vitrification protocol, warmed oocytes have been demonstrated to perform 

similarly to corresponding fresh ones42 and that parthenotes, whose chance to develop in vitro 

is mainly dependent on oocyte quality, show no significant differences in embryonic 

development compared to fertilized oocytes21. It also has to be recognized that the exposure of 

denuded oocytes could overestimate the toxic effect of endometriotic fluid since the interaction 

between the oocyte and surrounding cumulus cells complex can be protective from external 

(environmental) factors43.  

 Our results have some potential clinical implications. Even if robust inferences for 

clinical practice cannot be drawn, because our findings were obtained in an experimental and 

artificial context, we believe that our study should be interpreted as a proof of concept. Up to 

now, the common dogma that ovarian endometriomas should not be punctured or aspirated 

during oocytes retrieval lacked scientific support8. Detrimental effects were presumed but not 

demonstrated. In this context, the present study should be viewed as the first contribution that 
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justifies the common cautious attitude to do all the efforts to avoid puncturing and aspirating 

endometriomas during oocytes retrieval. Moreover, our results highlight the importance of 

limiting as much as possible the exposure of aspirated oocytes to endometriotic fluid when an 

accidental contamination occurs. This goal can be achieved through immediate control of 

follicular fluids during oocyte aspiration in women affected by ovarian endometrioma and with 

prompt interruption of the aspiration, rapid flushing of needle and washing of oocytes with 

fresh culture medium in case of contamination20. In order to reduce the risk of cross-

contamination one may also consider to change test tube for each follicle during oocyte 

retrieval. Moreover, in case of contamination, we suggest to culture exposed and unexposed 

oocytes separately and to favor the transfer of embryos derived from uncontaminated follicular 

fluids.   

 In conclusion, our experimental model shows that the exposure of human oocytes to 

endometriotic fluid can have a negative effect on the morphology of deriving 

embryos/parthenotes mainly due to an excess of cellular fragmentation. A definitive 

demonstration that this effect can lead to reduced chances of pregnancy in IVF clinical practice 

is lacking, but can be presumed. On these bases, we support the common clinical attitude 

aimed at avoiding endometrioma puncture during oocytes retrieval and at reducing as much as 

possible the exposure of the oocytes when accidental contamination occurs. 
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Table 1.  Embryological development in exposed and unexposed oocytes  

    

Variables Exposed Unexposed p 

    

Metaphase-II oocytes 60 61  

Day 1    

Parthenotes 42 (70%) 46 (75%) 0.51 

Day 3    

Parthenotes (cleavage rate) 33 (55%) 38 (62%) 0.42 

Good quality parthenotes 13 (22%) 25 (41%) 0.031 

Number of blastomeres 6.8 ± 2.9 6.6 ± 3.0 0.81 

Day 5    

Parthenogenetic blastocysts (Blastulation rate) 6 (10%) 13 (21%) 0.13 

Good quality-expanded blastocyst 3 (5%) 8 (13%) 0.21 

Total lenght in culture (days) 2.6 ± 1.2 3.0 ± 1.3 0.09 
        

    

Data is reported as number (percentage) or mean ± SD. P values were calculated using the Fisher's exact 

test or the Student's t-test 
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Table 2.  Baseline characteristics of oocyte donors (n=23) 
  

Characteristics Women 

  

Age (years) 35.7 ± 3.7 

BMI (Kg/m2) 22.4 ± 1.8 
Previous pregnancies 1 (4%) 
Previous IVF cycles 7 (30%) 
Duration of infertility (years) 3.3 ± 2.0 
Cause of infertility  

Male factor 7 (30%) 
Tubal factor 3 (13%) 
Unexplained 6 (26%) 
Ovulatory 2 (9%) 
Mixed 5 (22%) 

Current smoking 4 (17%) 
Abnormal karyotype 0 (0%) 
Embryological parameters in the IVF cycle 

Fertilization rate  68% 
Cleavage rate/zygote  91% 

  

Data are reported as percentage, mean ± SD or number (%). 
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Figure 1: Parthenotes at various stages of development. a) a parthenote on day 1, showing 

one pronucleus and one polar body; b-c) “good quality” parthenotes on day 2 and day 3; d) 

poor quality parthenote on day 3 showing uneven sized blastomeres; e) a parthenote on day 3 

failing to develop to the blastocyst stage for massive fragmentation. f) good quality hatched 

parthenogenetic blastocysts on day 5 

 


