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ABSTRACT  

ACPA-positive rheumatoid arthritis (RA) is associated with distinct HLA-DR 

alleles and immune responses to many citrullinated self-antigens. Herein we 

investigated the T cell epitope confined within -enolase326-340 in the context of 

HLA-DRB1*04:01 and assessed the corresponding CD4+ T cells in both the 

circulation and in the rheumatic joint. Comparative crystallographic analyses 

were performed for the native and citrullinated -enolase326-340 peptides in 

complex with HLA-DRB1*04:01. HLA-tetramers assembled with either the 

native or citrullinated peptide were used for ex vivo and in vitro assessment of 

enolase-specific T cells in peripheral blood, synovial fluid and synovial 

tissue by flow cytometry. The native and modified peptides take a completely 

conserved structural conformation within the peptide-binding cleft of HLA-

DRB1*04:01. The citrulline residue-327 was located N-terminally, protruding 

towards TCRs. The frequencies of T cells recognizing native eno326-340 were 

similar in synovial fluid and peripheral blood, while in contrast, the frequency 

of T cells recognizing cit-eno326-340 was significantly elevated in synovial fluid 

compared to peripheral blood (3.6-fold, p=0.0150). Additionally, citrulline-

specific T cells with a memory phenotype were also significantly increased 

(1.6-fold, p=0.0052) in synovial fluid compared to peripheral blood. The native 

T cell epitope confined within -enolase326-340 does not appear to lead to 

complete negative selection of cognate CD4+ T cells. In RA patient samples, 

only T cells recognizing the citrullinated version of -enolase326-340 were found 

at elevated frequencies implicating that neo-antigen formation is critical for 

breach of tolerance.  
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1. Introduction  

Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disease that 

can be divided in at least two subsets based on the presence of antibodies to 

citrullinated proteins (ACPAs) [1]. Importantly, such ACPA target proteins [2-5] 

also represent candidate autoantigens for CD4+ T cell responses, as further 

substantiated by the strong genetic association between ACPA-positive RA 

and the so called shared epitope HLA-DR alleles [6-8]. Indeed, previous 

studies of peripheral blood from ACPA-positive RA patients have 

demonstrated autoreactive CD4+ T cells against several citrullinated self-

proteins [9-13]

Alpha-enolase represents an interesting autoantigen in RA as the presence of 

autoantibodies against citrullinated -enolase is preferentially linked to HLA-

DRB1*04 [14], which is the most studied HLA class II allele in the context of 

RA. Although -enolase is considered a ubiquitous protein, it is citrullinated 

and overexpressed in the inflamed synovium [4], and antibodies to the 

immunodominant citrullinated B cell epitope CEP-1 are present in 

approximately half of all ACPA-positive patients [14, 15]. These citrullinated -

enolase-specific autoantibodies are highly specific for RA [4, 14] and 

significantly enriched in synovial fluid [16]. 

CD4+ T cells play an important role in RA by secreting pro-inflammatory 

cytokines and activating B cells, which contribute to the inflammatory 

perpetuation. A major technical hurdle, regarding the characterization of T 

cells that specifically recognize potential RA-specific autoantigens, is related 

to the fact that autoantigen-specific T cells are generally present in very low 

frequencies [17-21]. Through recent improvements in the field of HLA class 
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II/peptide tetramers, based on bead enrichment, it is now possible to assess 

rare antigen-specific CD4+ T cells directly ex vivo without prior in vitro 

expansion [13, 22-24].  

Furthermore, several T cell epitopes have been identified based on the notion 

that the P4 pocket of RA-associated HLA-DR alleles cannot accommodate a 

positively charged arginine side chain but can fit a neutral citrulline [25]. 

However, a growing list of citrulline-specific T cell epitopes have 

demonstrated that the citrulline can also be located in positions contributing to 

TCR contact [13, 26, 27]. We have recently scanned the entire -enolase 

protein for T cell epitopes and demonstrated the existence of several peptides 

for which the citrulline modification is not confined to the classical P4 position 

in the HLA binding cleft [26]. Since this alternative repertoire of T cell epitopes 

has been less studied, we have here focused on the -enolase peptide 

KRIAKAVNEKSCNCL, spanning residue 326 to 340 which comprises an 

arginine residue at the N-terminus. We have previously demonstrated the 

suitability of this epitope for HLA-tetramer studies aiming at characterization of 

specific autoreactive T cell populations [13]. Moreover, we have demonstrated 

in peptide competition assays that both peptide versions, native eno326-340 and 

modified cit-eno326-340 have similar binding affinities to HLA-DRB1*04:01 [26]. 

This provided us with a unique opportunity to assess the contribution of the 

non-conventionally located arginine/citrulline residue of the peptide to T cell 

receptor (TCR) recognition. To achieve this, we determined the crystal 

structures of the HLA-DRB1*04:01/eno326-340 and HLA-DRB1*04:01/cit-eno326-

340 complexes at 1.33Å and 1.35Å resolution, respectively, and demonstrated 

the existence of both specific as well as cross-reactive T cells. Strikingly, only 
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cit--eno326-340 specific T cells were found to be enriched in the RA joint 

implicating their involvement in the HLA-restricted immune response driving 

joint inflammation.   
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2. Material and methods 

 

2.1 Patients and healthy control subjects 

RA patients (n=38) were recruited under the auspices of the Karolinska 

University Hospital Rheumatology clinic, the BRI rheumatic disease registry 

and the BRI immune-mediated disease registry and had an age range of 22-78 

with 84% being CCP-positive. Control subjects (n=15) were recruited from the 

BRI IMD registry and the Uppsala Bioresource and had an age range of 27-82. 

Informed consent was obtained from all patients and control subjects based on 

local ethical permits. All patients were diagnosed with RA by a rheumatologist 

in accordance with the 1987 American College of Rheumatology criteria [28]. 

All subjects had at least one copy of the HLA-DRB1*04:01 allele. Peripheral 

blood mononuclear cells (PBMC), obtained from heparinized blood and 

synovial fluid mononuclear cells (SFMC), were prepared by centrifugation over 

Ficoll-Hypaque gradients. Frozen samples were cryopreserved in liquid 

nitrogen in 10% DMSO and 90% heat-inactivated FBS. Frozen samples were 

utilized for studies carried out at KI and fresh samples were used for all 

analyses carried out at BRI. Synovial biopsies were obtained through 

ultrasound-guided arthroscopy from two HLA-DRB1*04:01 RA patients. The 

synovial tissues were digested via incubation with Collagenase A and DNAse I 

(Roche). 

 

2.2 Production of HLA-DRB1*04:01/peptide tetramers 

Recombinant HLA-DRB1*04:01/peptide complexes were produced as 

previously described [29]. All peptides were purchased at purity higher than 
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95% from GenScript, Inc. Biotinylated HLA-DRB1*04:01 monomers were 

loaded with either the influenza-hemagglutinin HA306-318, the native or the 

citrullinated versions of the -enolase peptide eno326-340 by incubation in the 

presence of n-octyl--D-glucopyranoside and Pefabloc SC (Sigma-Aldrich). 

Peptide-loaded monomers were subsequently conjugated to tetramers using 

either R-PE streptavidin (Invitrogen) or APC streptavidin (BD). 

 

2.3 In vitro detection of native and citrullinated -enolase-specific T cells using 

HLA class II tetramers  

For tetramer assays PBMCs from healthy controls or synovial biopsies (n=2) 

from DRB1*04:01 RA subjects were cultured in RPMI-1640 + 10% pooled 

human serum with 10g/ml of HA306-318, native or citrullinated eno326-340 

peptides. Interleukin-2 (IL-2) (Proleukin, Novartis) was added on day 6. After 

14 days, cells were stained according to table S1. Data was analyzed using 

FlowJo software (Treestar). 

 

2.4 Ex vivo detection of native and citrullinated -enolase-specific T cells using 

HLA class II tetramers 

PBMC and SFMC samples from RA patients were labeled according to table 

S1 as previously described [29]. Samples were run on a BD-LSRII flow 

cytometer or a Beckman Coulter Gallios, and data was analyzed using FlowJo 

software. The frequency of antigen-specific cells was calculated as the total 

number of tetramer-positive cells in the bound fraction divided by the total 

number of CD4+ T cells. A cut-off of 1/106 CD4+ T cells was applied. 
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2.5 Murine Assays 

HLA-DRB1*04:01-IE transgenic mice on a class II deficient C57Bl/6 (I-Abo/o) 

background were obtained from Taconic Biosciences (Hudson, NY, USA) and 

housed under specific pathogen-free conditions. Mice were immunized with 

100g of peptide, and splenocytes, harvested at day 14, were used for studying 

recall responses as previously reported [13]. All animal work was approved by 

the BRI Animal Care and Use Committee (ACUC). Animals were housed in the 

BRI AAALAC-accredited animal facility. 

 

2.6 Production and isolation of HLA-DRB1*04:01/eno326-340 and HLA-

DRB1*04:01/cit-eno326-340 complexes 

The extracellular domains of the HLA-DRB1*04:01 - and -chains with an 

acidic and basic leucine zipper, respectively, as well as C-terminal hexa-

histidine tags were cloned into the pET28a vector and expressed separately in 

E. coli BL21 (DE3) STAR cells (Novagen). Inclusion bodies were dissolved in 

8M urea, 50mM Tris-HCl (pH8) and purified on a HiTrapQ-HP anion exchange 

column (GE Healthcare). The purified - and -chains were diluted to a final 

concentration of 2mg/ml each in a refolding solution containing 50mM Tris-

Citrate buffer pH7.5, 25%(w/v) glycerol, 0.01% Pluronic F-68 and 5μM 

corresponding peptide. The mixture was incubated for 72h at RT and 

centrifuged 20min at 40,000g. The supernatant was concentrated on a 10kDa 

cut-off Vivaspin Turbo 15 (Sartorius) and run through size-exclusion 

chromatography on a Superdex200-10/300 GL column (GE Healthcare). The 

monomeric HLA-DRB1*04:01/eno326-340 and HLA-DRB1*04:01/cit-eno326-340 

complexes were concentrated to 1mg/ml in 25mM Tris-HCl (pH8) and 
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subjected to thrombin cleavage in order to remove the leucine zippers. The 

HLA/peptide complexes were thereafter separated from leucine zippers using 

a HiTrap Chelating HP column (GE Healthcare). The flow-through from IMAC 

was pooled, concentrated using a Vivaspin (Sartorius) to 2-3mg/ml and further 

purified on a Superdex200-10/300 GL column. Fractions containing monomeric 

HLA/peptide complexes were concentrated to a final concentration of 6-8mg/ml 

and used in crystallization trials. 

 

2.7 Crystallization and structure determination 

Crystals of the HLA-DRB1*04:01/eno326-340 and HLA-DRB1*04:01/cit-eno326-340 

complexes were grown using the hanging-drop vapor diffusion method at 20°C. 

Protein solution and a mother liquor of 10% (vol/vol) MPD, 15% (vol/vol) 

PEG3350 and 100mM MES buffer pH6.5 were mixed at a 1:1 ratio. Rod-like 

crystals typically grew within five to fifteen days. Crystals were flash frozen in 

liquid nitrogen without additional cryoprotection. X-ray diffraction data from a 

single crystal for each data set were collected at the automatic ID30A-1 

(MASSIF-1) beam line [30] at the European Synchrotron Research Facility and 

processed using the programs XDS [31] and XDSAPP [32]. The crystals diffract 

up to 1.33Å and 1.35Å for HLA-DRB1*04:01/eno326-340 and HLA-

DRB1*04:01/cit-eno326-340, respectively. The crystal structures were determined 

by molecular replacement method using the program Phaser [33] with the 

three-dimensional structure of HLA-DRB1*04:01 (PDB ID:4MCY) [34] without 

peptide as a search model. The models were subsequently refined using 

Refmac5 and iterations of manual rebuilding using COOT [35] (Table 1). The 

structures were validated using MOLPROBITY [36]. The atomic coordinates 
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and structure factors for the crystal structures of the HLA-DRB1*04:01 in 

complex with eno326-340 and cit-eno326-340 have been deposited to the Protein 

Data Bank under accession codes 5NI9 and 5NIG, respectively. 

 

2.8 Statistics 

Statistical tests used for this paper include Wilcoxon matched pairs ranked test 

and Mann-Whitney tests. Analyses were performed using Prism software 

(version 5.0 or higher). Values <0.05 were considered as significant and 

marked with an asterisk. Two asterisks denote values <0.01. 
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3. Results 

 

3.1 The crystal structures of HLA-DRB1*04:01 in complex with eno326-340 and 

cit-eno326-340 reveal conserved peptide binding registry and conformation 

 

The crystal structures of HLA-DRB1*04:01/eno326-340 and HLA-DRB1*04:01/cit-

eno326-340 complexes were refined to 1.33Å and 1.35Å resolution, respectively 

(figure 1 and suppl table 2). The electron-density maps characteristic for such 

high-resolution structures allow for unambiguous modeling of the peptides in 

the HLA binding cleft. In both structures, the HLA-DRB1*04:01 binding groove 

is fully occupied by the peptides in canonical orientations with residues p328I, 

p331A, p333N and p336S anchoring in pockets P1, P4, P6 and P9, respectively 

(figure 1B-C). The arginine/citrulline-327 occupies position P-1 in the HLA 

groove preceding the main anchor residue p328I buried in pocket P1. The side 

chains of the arginine/citrulline-327 are solvent-exposed, extending towards the 

TCRs (figure 1A). In addition to p327R/Cit, four other residues p330K, p332V, 

p335K and p338N all extend towards the solvent ready for interactions with 

TCRs (suppl figure 1).  

Modification of the arginine residue p327R to citrulline does not alter the binding 

register nor the conformation of the cit-eno326-340 peptide (figure 1A). However, 

the electrostatic surface potentials of the HLA-DRB1*04:01/eno326-340 and HLA-

DRB1*04:01/cit-eno326-340 complexes are significantly different (figure 1C) due 

to the removal of the positive charge upon modification of arginine to citrulline. 

Such a change in the charge distribution on the interacting surface of a peptide-

HLA complex is likely to affect TCR binding to this complex. Thus, citrullination 
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of peptide eno326-340 creates a potential neo-antigen that could interact with an 

entirely different (autoreactive) T cell repertoire that focuses on the N-terminal 

section of the cit-eno326-340 peptide. Conversely, nearly identical conformations 

of the entire peptide section stretching from p328I to p338N in both eno326-340 

and cit-eno326-340 structures (figure 1A) enable for cross-reactivity of TCRs that 

focus on the central sections of HLA-DRB1*04:01/eno326-340 and HLA-

DRB1*04:01/cit-eno326-340. 

The crystal structures of HLA-DRB1*04:01/eno326-340 and HLA-DRB1*04:01/cit-

eno326-340 complexes revealed two interesting additional features. First, residue 

p334E forms two interactions with “shared epitope” residues in HLA-

DRB1*04:01, including a salt bridge with K71B and a water-mediated hydrogen 

bond with Q70B (suppl figure 2). These interactions possibly compensate for 

the relatively weak binding of the non-optimal peptide anchor residues p331A 

and p336S to pockets P4 and P9, respectively. Secondly, the two crystal 

structures are to our knowledge the first to describe the presence of a disulfide 

bridge between peptide cysteine residues. It is not clear if the disulfide bridge 

between p337C and p339C has any functional consequence although a 

mutated version of the eno326-340 peptide, with both cysteine residues replaced 

to serine, displays one order of magnitude lower affinity towards HLA-

DRB1*04:01 compared to native eno326-340 (supplementary figure 3). 

 

3.2 Use of peptide-HLA-DRB1*04:01 tetramers for visualization of antigen-

specific CD4+ T cells in vitro and ex vivo 
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Before utilizing peptide-HLA tetramers for ex vivo assessment of autoreactive 

T cells in RA patient samples, we first validated our reagents by use of 

peripheral blood from healthy blood donors carrying the same HLA-DR allele. 

As shown in figure 2A, both influenza-HA- and -eno326-340-specific T cells can 

be readily visualized following 2 weeks in vitro propagation with the 

corresponding peptide. The HLA tetramers were also successfully used for 

direct ex vivo staining, i.e. without any prior in vitro cell manipulation. As 

exemplified in figure 2B, influenza-HA specific T cells could, as expected, be 

detected in RA synovial fluid. In this particular example, the antigen-specific 

cells could be enumerated to 20 per million CD4+ T cells, and based on the 

phenotypic markers, the proportion of tetramer-positive cells being of memory 

CD45RO+ phenotype could be determined (here 85%), as well as additional 

phenotypic markers (0% CD25+ and 100% CD28+). 

 

3.3 CD4+ T cells recognizing the native -enolase326-340 peptide in complex with 

HLA-DRB1*04:01 are part of the normal T cell repertoire but mostly display a 

naïve phenotype 

 

We next continued with ex vivo staining using HLA tetramers assembled with 

either the positive control influenza-HA peptide or with the native arginine-

containing eno326-340 peptide. Both T cell specificities were found to be part of 

the peripheral T cell repertoire of both healthy donors and RA patients carrying 

the HLA-DRB1*04:01 allele (figure 2C, D). For HA, all healthy controls and all 

RA subjects displayed influenza-specific T cells with an average of 26 per 

million CD4+ cells in each group. In contrast, -eno326-340-specific T cells were 
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more rare and only detected in around 66% of RA patients with an average of 

4 per million CD4+, and 2 per million in healthy individuals. When it comes to 

the phenotype of this autoantigen-specific T cell population, it was distinctly 

different from HA-specific T cells which in both healthy subjects and RA patients 

were primarily (80%) CD45RO+ memory. The T cells recognizing the native 

version of eno326-340 were mostly naïve with only 20% memory in peripheral 

blood of both healthy donors and RA patients (figure 2E). 

 

3.4 CD4+ T cells recognizing the citrullinated -enolase326-340 peptide in 

complex with HLA-DRB1*04:01 are rare in healthy subjects, but enriched in the 

RA joint 

 

We next turned our attention to T cells specific for the modified peptide eno326-

340 carrying a citrulline in aa-position 327. Such T cells were only present in 

peripheral blood of three out of the eleven studied healthy controls (27%), 

implicating that this population is not commonly part of the normal T cell 

repertoire (figure 3A) and when found, T cells were at frequencies of 3-4 per 

million CD4+ (figure 3B). A similar frequency was found also in peripheral blood 

of RA patients, but now the autoreactive T cells were detected in 62% (13/21) 

of the RA subjects. Even more strikingly, such cit-eno326-340-specific T cells 

were significantly elevated in synovial fluid with an average of 15 per million 

and were found in 50% (9/18) of the RA patients. Moreover, these cells were 

consistently of a memory T cell phenotype (average 95%), implying previous 

cognate interaction with the antigen (figure 3C). 
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As synovial fluids and synovial tissues are two discrete compartments of the 

rheumatic joint, we investigated whether -enolase-specific T cells could be 

found also in the tissue. Due to the size limitation of the biopsy material, we in 

vitro propagated single cell suspensions with the peptide mix and IL-2 prior to 

staining. Hereby, T cells specific for HLA-DRB1*04:01/eno326-340 and HLA-

DRB1*04:01/cit-eno326-340 could be found in one out of two tested biopsy 

samples, implicating that autoreactive T cells are not restricted to synovial fluids 

but are also present in synovial tissues (figure 3D). N.B. as the tissue cells 

required cell culture expansion, we could not calculate the original frequencies 

nor analyse the unmanipulated phenotypes. 

Lastly, we had the possibility to assess Tmr+ T cells in paired samples of 

peripheral blood and synovial fluid taken from the same patients. Here we found 

that, in four out of seven paired samples, the numbers of native eno326-340 

specific T cells are increased in SF compared to PB when gating at the 

CD45RO+ population. For cit-eno326-340 specific T cells, an increase was only 

seen in two out of six sample pairs, but when present, the frequency was much 

higher than those for the native peptide (figure 3E). 

 

3.5 Presence of both specific and cross-reactive T cells recognizing native and 

citrullinated eno326-340 

 

Our crystal structures of HLA-DRB1*04:01 in complex with eno326-340 or cit-

eno326-340 indicated that dependent on where the TCR docks, T cells could 

either be specific for the respective peptides (by binding to the N-terminal part 

of the peptide-HLA complex) or cross-react (when interacting with the central 
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parts of the peptide-HLA complexes). To visualize this, we overlayed our crystal 

structure of HLA-DRB1*04:01/eno326-340 with three ternary complexes with 

known three-dimensional structures: HLA-DRB1*04:01 with a TCR specific for 

a viral peptide [37], a tumor-specific TCR [38] and a TCR specific for the 

multiple sclerosis-associated autoantigen myelin basic protein [39] (figure 4). 

The superposition clearly demonstrates that peptide residue p327R could 

interact with the -chain of a TCR. Since this residue protrudes away from the 

HLA molecule, its conformation can change after TCR binding resulting in 

interaction either with CDR3 or with CDR1. Modeling of the interaction 

surface area found in three crystal structures of ternary complexes 

DRB1*0401/TCR [37] clearly demonstrates that in all cases TCR come close 

to the amino acid preceding the first anchor residue (Figure 4a and b).   

To further assess this from a functional point of view, we assembled HLA-

DRB1*04:01 tetramers using two different fluorophores. Dual-color tetramer 

staining was performed on peripheral blood T cells from several HLA-

DRB1*04:01-positive RA patients, following in vitro stimulation with either the 

native eno326-340 or the cit-eno326-340 peptide. Here, we could detect two types 

of patterns: samples with double-positive, i.e. cross-reactive, T cells (figure 5A), 

and samples without double positives, i.e. selective T cells recognizing either 

the native or the citrullinated peptide (figure 5B). As a positive control, in vitro-

expanded cells stimulated with HA306-318 were stained simultaneously with two 

differently labeled HLA-DRB1*04:01/HA306-318-tetramers and a clear double 

stained population was observed as expected (figures 5A and B, far right 

panels). These results implicate that the -enolase-specific T cells we detect 
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with tetramers represent a diverse repertoire with some being dependent on 

interactions with the N-terminal arginine/citrulline residues, and others not. 

As a next step, we immunized HLA-DRB1*04:01-IE transgenic mice with the 

native eno326-340 peptide and examined recall responses to both the native and 

citrullinated versions of the -enolase peptide. Mice immunized with eno326-340 

displayed similar proliferation responses irrespective if they were re-stimulated 

with eno326-340 or cit-eno326-340 (figure 5C), suggesting high degree of T cell 

cross-reactivity between the two peptides in a setting of active immunization. 

As we previously reported, the opposite observation is also true, i.e. mice 

immunized with cit-eno326-340 displayed recall responses to both versions of the 

peptide [13]. 

Finally, dual color tetramers were also used for ex vivo staining of synovial fluid 

T cells obtained from three HLA-DRB1*04:01-positive RA patients. 

Interestingly, one of these samples contained T cells cross-reacting between 

HLA-DRB1*04:01/eno326-340 and HLA-DRB1*04:01/cit-eno326-340 (figure 5D), 

demonstrating that this was not only an in vitro phenomenon and that this cross-

reactivity occurs in active RA as well. 
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4. Discussion 
 
HLA-DRB1*04:01 is the most studied RA-associated HLA class II molecule. In 

the present study we have determined the crystal structures of HLA-

DRB1*04:01 in complex with a 15-mer peptide derived from an RA candidate 

autoantigen, i.e. peptide 326-340 of -enolase, in both its native and 

citrullinated forms. Whereas the native peptide is an abundantly available self-

peptide, the citrullinated version represents a neo-antigen not necessarily 

present during thymic T cell selection. This is an important distinction since 

the posttranslational citrulline modification did not alter peptide binding to 

HLA, but instead would bias TCR binding based on contacts made with either 

the positively charged side chain of the arginine or the neutrally charged 

citrulline residue. 

Upon assembly of HLA tetramers loaded with either of the two peptide 

versions, we could query the T cell repertoires of RA subjects and healthy 

individuals for the presence of cognate T cells recognizing the respective 

peptide-HLA complexes. We found no significant difference in frequencies of 

T cells recognizing the native eno326-340 between peripheral blood of RA 

patients and healthy controls, implicating that such cells are usually not fully 

eliminated during negative selection, but rather part of the normal repertoire. T 

cells recognizing the native peptide further lacked a memory phenotype and 

signs of expansion, thus implying that they are naïve (i.e. have not 

encountered their cognate antigen(s)). In contrast, elevated frequencies of T 

cells specific for the citrullinated version of the -enolase peptide in complex 

with HLA-DRB1*04:01 were observed in RA synovial fluid. These were 
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primarily of memory phenotype indicating that they have been previously 

activated and expanded.  

Rheumatoid arthritis manifests in the joints both as synovitis, i.e. the growth of 

the synovial lining layer, and as joint swelling with exudates in the synovial 

joint space. We retrieved most of the data on synovial fluid, the edema of 

inflamed joints, but also had the possibility to assess inflamed synovial tissue. 

Although direct tissue staining is still not available for HLA class II tetramers, 

digesting synovial tissues and assaying single cell suspensions makes it still 

possible to interrogate the RA joint. As a proof of principle, we could 

demonstrate the presence of auto-reactive CD4+ T cells in synovial tissue. 

Two findings in this study are of particular interest. First, T cells reactive to 

HLA-DRB1*04:01 in complex with either the native -enolase-derived eno326-

340 or the post translational modified version cit-eno326-340 are part of the 

normal circulating T cell repertoire. Secondly, citrulline-reactive memory T 

cells were not only found elevated in synovial fluid but also in peripheral 

blood, which is compatible with the notion that the primary activation of auto-

reactive T cells may take place outside the joints, for example in the gums 

[40, 41] or in the lungs [8, 42, 43]. These memory T cells may subsequently 

migrate to the joints in response to some ‘local insult’ [44], where they may be 

reactivated since extracellular citrullination is abundant during any kind of 

inflammation. These effector memory T cells may then contribute to the 

maintenance of an inflammatory milieu. 

Moreover, our structural data allow the dissection of cross-reactivity and the 

possibility to predict TCR interactions. The vast majority of crystal structures 

of ternary TCR-peptide-HLA class II complexes indicate that the -chain of 
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the TCR is landing in the vicinity of the first anchor residue [37-39]. The 

residue preceding the first anchor position is always protruding towards the 

TCR and during classical TCR-landing is typically located between the 

CDR3 and CDR1 loops. Our crystal structures demonstrate that the native 

and citrullinated versions of the peptide adopt nearly identical conformations 

throughout the entire length of the binding cleft of HLA-DRB1*04:01. This 

explains the similar binding affinities of the two peptide versions to HLA-

DRB1*04:01 and hence that the arginine/citrulline residue serves as a TCR 

contact; it is therefore not surprising that citrullination may expand a new 

fraction of the T cell repertoire. Furthermore, the partial cross-reactivity, which 

we also functionally detected, could be taken to suggest the existence of three 

different types of TCRs: One type of TCR recognizes both peptides, i.e. 

without making direct contact with the citrulline or arginine, while the other two 

TCR types interacting directly to either the arginine or citrulline, hence 

exhibiting a charge preference only for the positive arginine or the neutral 

citrulline. It will be of interest to investigate in further detail to which extent 

cross-reactive and single-reactive T cells give different functional responses 

(e.g. cytokine secretion or proliferation) in response to the native or 

citrullinated peptide [45-47] and to what extent single-reactive T cells exhibit 

different TCR usage. 

Obviously, there are some limitations in our study; due to sample constraints, 

we had to focus our efforts on one specific T cell epitope from one candidate 

autoantigen. Optimally, we could have studied several different peptides in 

parallel. Additionally, all RA patients included in the study have a chronic 

disease, and all of them are immunosuppressed, which could affect the 
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observed frequency and functionality of their T cells [13]. However, our cohort 

is representative for real life scenario patients. In fact, our data on peripheral 

blood are in good agreement with other studies using both in vitro and ex vivo 

approaches [13, 48]. Our results using synovial fluid cells, furthermore, 

corroborate the findings from the borrelia-induced Lyme arthritis, showing 

higher frequency of antigen-(borrelia)-reactive T cells in synovial fluid 

compared to peripheral blood [49, 50]. 

 

5. Conclusions 

We identified and characterized autoreactive CD4+ T cells specific for HLA-

DRB1*04:01 in complex with the RA autoantigen -enolase-derived native 

eno326-340 and citrullinated cit-eno326-340 peptides in the periphery, synovial 

fluids and synovial tissues of RA patients. Importantly, citrulline--enolase-

specific T cells were more often of a memory phenotype in the circulation and 

were enriched in the synovial fluid compared to those recognizing the native 

variant of the peptide. This study highlights the added value of interrogating 

the inflamed joint and not only peripheral blood when studying autoimmunity. 
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Suppl Table 1. Flow cytometry panel used for in vitro and ex vivo peptide-
HLA-DR tetramer phenotyping. (BL=Biolegend, eBio=eBioscience) 
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Suppl Table 2. Data collection and refinement statistics of the crystal 
structures of HLA-DRB1*04:01 in complex with cit-eno326-340 or eno326-340  

 cit-eno326-340 eno326-340 

PDB code 
 
Data collection: 
Beamline 
Wavelength (Å)  
Space group 
a (Å) b (Å ) c (Å) 
Resolution (Å) 
No. of observed reflections 
No. of unique reflections 
Multiplicity 
Completeness (%) 
1Rmeas (%) 
I/σ(I) 
CC(1/2) (%) 
Wilson B-value (Å2) 
 
Refinement statistics: 
Resolution of Data (Å) 
2Rcryst (%)  
3Rfree (%)  
Number of protein atoms 
Number of peptide atoms 
Water molecules 
 
Rmsd from ideal geometry 
Bond length (º) 
Bond angles (deg.) 
 
Ramachandran Plot (%): 
Residues in preferred regions 
Residues in allowed regions 
Outliers 
 
Average B- value (Å2) 
Protein  
Peptide 
Water 

5NIG 
 
 
ID30A-1/MASSIF-1, ESRF 
0.966 
P21212 
68.6  128.3  53.5 
46.86 – 1.35 (1.43 – 1.35) 
455890  
103630  
4.4 
98.9 (97.6) 
8.3 (70.2) 
9.9 (1.9) 
99.6(78.0) 
23.5 
 
 
46.86 – 1.35 
14.0 
17.8 
3183 
121 
414 
 
 
0.011 
1.56 
 
 
98.2 
1.8 
0 
 
23.9 
21.8 
26.8 
38.4 

5NI9 
 
 
ID30A-1/MASSIF-1, ESRF 
0.966 
P21212 
68.5  128.1  53.6 
46.77 – 1.33 (1.4 – 1.33) 
451740 
108263 
4.2 
99.3 (98.9) 
5.0 (70.1) 
13.7 (1.8) 
99.9 (80.5) 
26.0 
 
 
49.43 – 1.33 
14.7 
17.5 
3141 
121 
309 
 
 
0.011 
1.48 
 
 
98.3 
1.7 
0 
 
25.2 
23.8 
27.0 
36.5 

Values in parentheses are for the highest resolution shell 

1   redundancy independent R-factor (intensities) [36] 
 

2Rcryst = Σ||Fo| - |Fc||/Σ|Fo|, where |Fo| and |Fc| are the observed and calculated structure factor 
amplitudes of a particular reflection and the summation is over 95% of the reflections in the 
specified resolution range. The remaining ~5% of the reflections were randomly selected (test 
set) before the structure refinement and not included in the structure refinement.  
3Rfree was calculated over these reflections using the same equation as for Rcryst. 
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FIGURE LEGENDS 
 

Fig. 1. Crystal structures of HLA-DRB1*04:01 in complex with eno326-340 

or with cit-eno326-340 show conventional peptide binding with p328I as 

anchor residue in pocket P1. 

(A) Superposition (overlay) of eno326-340 (orange) and cit-eno326-340 (light blue) 

in complex with HLA-DRB1*04:01 demonstrates nearly identical conformation 

of both peptides in the peptide binding cleft. The HLA-DRB1*04:01 is shown 

as ribbon diagram. The peptides are shown in sticks representation. 

(B) Electron-density maps calculated for eno326-340 (left) and cit-eno326-340 

(right) allow unambiguous modelling of peptides in the binding cleft.  

(C). Comparison of the electrostatically colored surface of HLA-DRB1*04:01 

in complex with the native eno326-340 (left) and modified cit-eno326-340 (right) 

illustrates the difference in property of the TCR landing surface. Red – 

negatively charged and blue – positively charged residues. Positions of 

p327Arg/Cit are labeled. 

 

Fig. 2. peptide-HLA tetramers for in vitro and ex vivo analyses. 

(A) PBMC from HLA-DRB1*04:01 healthy subjects were stimulated with 

peptides, cultured for 14 days and stained with indicated tetramers. Left plot: 

Negative control; cells were stimulated with eno326-340 and stained with HA306-

318-loaded tetramer. Middle and right plot: Cells were stimulated with HA306-318 

(middle) or eno326-340 and cit-eno326-340 peptides (right) and stained with 

corresponding tetramers. 
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(B) Representative example of ex vivo analysis of influenza-(HA)-specific T 

cells from synovial fluid of a DRB1*04:01 positive RA subject after staining 

with HA306-318 tetramer along with CD4, CD45RO, CD25 and CD28 antibodies. 

(C) Proportion (%) of positive tested patients for HA306-318 or eno326-340 in 

peripheral blood of control subjects (white bars) and RA patients (grey bars). 

The numbers of positive tested individuals/totally tested individuals is depicted 

on top of the bars. 

(D) The frequency of antigen-specific CD4+ T cells in blood from healthy 

controls (unfilled symbols) and RA-patients (grey symbols). The y-axis depicts 

tetramer-positive T cells per 1 Million CD4+ T cells. Cut-off for positivity is 1 

per 1 x 106. 

(E) Phenotypic comparison of tetramer positive cells from blood and synovial 

fluid. Each symbol depicts the percentage of tetramer-positive cells that are 

positive for the memory marker CD45RO. 

 

Fig. 3. Frequency and characterization of T cells specific for the 

citrullinated neo-antigen cit-eno326-340. 

(A) Proportion (%) of positive tested patients for cit-eno326-340 in peripheral 

blood of control subjects (white bars), peripheral blood of RA patients (grey 

bars) and synovial fluid of RA patients (black bars). The numbers of positive 

tested individuals/totally tested individuals is depicted on top of the bars. 

(B) The frequency of antigen-specific CD4+ T cells in blood from healthy 

controls (unfilled symbols) and RA-patients (grey symbols) and synovial fluid 

from RA-patients (black symbols). The y-axis depicts tetramer-positive T cells 
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per 1 Million CD4+ T cells. Cut-off for positivity is 1 per 1 x 106. p values <0.05 

are considered significant and marked with an asterisk. 

(C) Phenotypic comparison of tetramer positive cells from blood and synovial 

fluid. Each symbol depicts the percentage of tetramer-positive cells that are 

positive for the memory marker CD45RO. p values<0.05 are considered 

significant and marked with an asterisk. Two asterisks depicts p values <0.01. 

(D) Cells from a synovial biopsy obtained from an HLA-DRB1*04:01 RA 

patient and enzymatically digested were stimulated with eno326-340 and cit-

eno326-340, cultured for 14 days and stained with a cocktail of the two 

tetramers. 

(E) The frequency of antigen-specific CD4+ T cells in peripheral blood (PB) 

and synovial fluid (SF) in paired samples from RA patients (n=7 for eno326-340 

and n=6 for cit-eno326-340) is shown. Plotted are Tmr+ memory cells per 1 

Million CD4+ T cells. Left: cells specific for eno326-340, right: cit- eno326-340 

specific cells. 

 

Fig. 4. Peptide residue p327 can participate in TCR binding. 

Arginine/citruline-327 precedes the first peptide anchor residue and is 

available to contact the CDR1 and/or CDR3 loops. 

(A). Eno326-340 is shown as sticks and two possible conformations of p327R 

are depicted to demonstrate different potential binding scenarios. CDR1 and 

CDR3 loops from crystal structures of three ternary complexes of HLA-

DRB1*04:01 in complex with TCR HA1.7, specific for influenza hemagglutinin 

HA1 peptide (magenta), TCR MS2-3C8, specific for myelin basic protein 

(pink) and tumor-specific TCR G4 (green) are shown. 



 33 

(B). Arginine/citrulline-327 is located in the vicinity of the HLA-DRB1*04:01 

surface area (colored in blue) interacting with HLA-DRB1*04:01-specific TCRs 

mentioned in figure 4A. 

 

Fig. 5. Dual-tetramer staining with PE and APC-Tmr in peripheral blood 

and synovial fluid. 

(A, B) PBMC were expanded for 14 days with either HA306-318, eno326-340 or cit-

eno326-340 and stained with corresponding tetramers. Examples from two 

representative HLA-DRB1*04:01 RA patients are shown. 

(C) HLA-DRB1*04:01-IE transgenic mice were immunized with eno326-340 

peptide and their proliferation responses measured after re-stimulation with 

either eno326-340 or cit-eno326-340 peptide. 

(D) Ex vivo staining of synovial fluid from an HLA-DRB1*04:01 RA patient. 

Eno326-340-Tmr was conjugated to APC and cit-eno326-340-Tmr was conjugated 

to PE. 

 

Supplementary Figure 1. 

Binding of eno326-340 peptide in the HLA-DRB1*04:01 peptide binding cleft. 

The HLA-DR is shown as a surface colored with electrostatic potential (red – 

negatively charged and blue – positively charged residues). The peptide is 

shown in sticks representation. Peptide residues and binding pockets are 

labeled. 

 

Supplementary Figure 2. 
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Interactions of the two eno326-340 peptides with shared epitope residues Q70B 

and K71B of HLA-DRB1*04:01. The HLA-DR is shown as a ribbon diagram. 

The peptides eno326-340 (figure A, orange) and cit-eno326-340 (figure B, light 

blue) are shown in sticks representation. Residues p334E and K71B were 

modelled in two alternative conformations. Both conformations allow for salt 

bridge formation between side chains of residues p334E and K71B. 

 

Supplementary Figure 3. 

Competition binding assay demonstrates the decreased capacity of mutated 

-enolase peptide KRIAKAVNEKSSNSL (two cystein residues replaced by 

serine) to bind HLA-DRB1*04:01 compared to the native eno326-340 peptide 

KRIAKAVNEKSCNCL. The data for the reference influenza hemagglutinin 

HA306-318 (circles, solid gray line), native eno326-340 (triangles, dotted black line) 

and mutated eno326-340 (squares, dashed black line) peptides are shown. The 

lines represent fitting of experimental data to the one site competition model 

using SigmaPlot software v.13 (Systat software). The calculated IC50 values 

were 0.047±0.006µM for HA306-318, 0.073±0.013µM for native eno326-340 and 

0.67±0.1µM for double cysteine-to-serine mutant of eno326-340 peptide. 

Increasing concentrations of the peptides were incubated in 384-well 

polypropylene plate in the presence of 30nM HLA-DRB1*04:01 and 5nM 

biotin-labeled HA306-318 peptide overnight at 37C in a humidified incubator. 

Reaction mixture was transferred to a polystyrene plate coated with anti-HLA-

DR mAb L243 and incubated overnight at +4C. Bound peptide-HLA 

complexes were developed in DELFIA time-resolved fluorescence assay 

using europium-labeled streptavidin (PerkinElmer). 
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