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Abstract—Recent advances in statistics have spawned powerful
methods for regression and data decomposition that promote
sparsity, a property that facilitates interpretation of the results.
Sparse models use a small subset of the available variables and
may perform as well or better than their full counterparts if
constructed carefully. In most medical applications, models are
required to have both good statistical performance and a relevant
clinical interpretation to be of value. Morphometry of the corpus
callosum is one illustrative example. This paper presents a method
for relating spatial features to clinical outcome data. A set of
parsimonious variables is extracted using sparse principal com-
ponent analysis, producing simple yet characteristic features. The
relation of these variables with clinical data is then established
using a regression model. The result may be visualized as patterns
of anatomical variation related to clinical outcome. In the present
application, landmark-based shape data of the corpus callosum is
analyzed in relation to age, gender, and clinical tests of walking
speed and verbal fluency. To put the data-driven sparse principal
component method into perspective, we consider two alternative
techniques, one where features are derived using a model-based
wavelet approach, and one where the original variables are re-
gressed directly on the outcome.

Index Terms—Corpus callosum (CC), decomposition,
Leukoaraiosis And DISability in the elderly (LADIS), prin-
cipal component analysis (PCA), shape analysis, sparse.
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I. INTRODUCTION

TRADITIONAL morphometric investigations in medicine
make use of simple metrics such as volume, area, length,

and various ratios to evaluate relations between structure and
function. The outcomes of such studies provide the examiner
with an indication of the characteristic anatomy of a clinical
population, or spatial features related to pathology, for example.
More intricate features provide more information for interpreta-
tion, but require a more detailed hypothesis of the process under
study. For a clinical investigation that is exploratory in nature,
it makes sense to use an exploratory method to extract features.
Such variables should ideally have a clear relation to the relevant
morphology while imposing as few assumptions on the data as
possible. During the last two decades, methods for extracting
more complex representations of anatomy from image data of
increasingly high resolution have evolved. This has led to the
development of methods that allow for the computation of more
abstract features such as the mean shape and typical deformation
patterns according to the latent shape distribution. Derived vari-
ables may be concretized as examples of anatomy, which allows
for more detailed investigation and interpretation. Furthermore,
the relationship between structural and clinical variables can be
analyzed in a formal statistical framework, making the investi-
gation of certain clinical hypotheses possible.

The challenge posed by increasingly complex anatomical
representations is to extract physically intuitive parameteriza-
tions of spatial variation. Conventional statistical techniques
tend to extract global decompositions of spatial data. However,
the effects of many biological processes of interest are expected
to be anatomically localized, even if the particular location,
extent, and frequency are usually unknown.

This paper presents a methodology in which a statistically
defined, spatially localized representation of anatomy is auto-
matically extracted. The approach is built on a generic statis-
tical method known as sparse principal component analysis. The
paper further describes a way of relating these spatial variables
to a clinical outcome variable, producing a characteristic de-
formation of the present anatomy and indicating its statistical
relevance.

Advanced techniques for analyzing the shape of anatomical
structures have emerged during the last two decades [1]. A suit-
able choice of shape parameterization is crucial to ensure cor-
rect and efficient analysis, and several techniques have been de-
veloped to describe the variability of human anatomy. These
techniques include corresponding landmarks [2]–[4], represen-
tations in the frequency domain in two [5] and three [6] dimen-
sions, skeleton-based techniques [7], [8], distance transforms
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[9], [10], and deformation fields resulting from the registration
of a set of images to a common [11], [12].

Most of these methods produce a large number of spatial fea-
tures. To devise a more manageable model, the features are often
arranged into groups according to a spatial or statistical crite-
rion. Cootes et al. [3] pioneered the use of principal component
analysis (PCA) to decompose sets of landmarks. This provides
compact and powerful models for shape-driven segmentation
and registration. A more recent example is Davies et al. [13],
who decomposed sets of landmarks with optimized correspon-
dences using PCA and used the resulting shape features in a
classification study of the hippocampus. PCA has also been used
to decompose other shape descriptors. For instance, Kelemen
et al. [14] presented a framework similar to that of Cootes et al.
[3] for frequency domain descriptors applied to the segmentation
of the hippocampus, and Le Briquer and Gee [15] applied PCA
to deformation fields extending throughout the entire brain.

The use of PCA as an explanatory basis for interpretation in
clinical applications has been limited (Peterson et al. [16] is one
exception). While PCA is an excellent tool for efficient data rep-
resentation, the global nature of the derived variables makes in-
terpretation difficult. This motivates the use of an extension to
PCA known as sparse PCA (SPCA). While the variables derived
by PCA consist of linear combinations of all original variables,
SPCA forces the weights on some variables towards zero, while
others are adjusted to uphold the variance-maximizing proper-
ties of PCA. The idea in studies of anatomy is that each variable
describes a spatial pattern of variation with a simple structure
and a clinically relevant interpretation [17]. Although conceptu-
ally simple, calculation of SPCA has proved difficult and several
algorithms have been proposed [18]–[24]. The approach advo-
cated in this paper was developed by Zou et al. [25] and for-
mulates PCA as a regression problem, using a recent variable
selection algorithm [26] to achieve sparsity. Selection of impor-
tant variables is achieved by penalization of the weights on each
variable using the norm, a methodology introduced with the
LASSO regression framework [27], along with a method for its
efficient computation [28].

Examples of other statistical decomposition techniques
used in shape analysis are factor analysis [29], varimax ro-
tated principal components [30], and independent component
analysis [31]. The latter two typically produce approximately
sparse representations but lack the flexibility of most SPCA
implementations.

In medical image analysis, the use of variable selection algo-
rithms to aid interpretation is gaining momentum. Yushkevich et
al. [32] employed a support vector machine classification algo-
rithm that incorporates variable selection to select subregions of
the hippocampus separating schizophrenic patients from normal
controls. A similar algorithm was used by Stoeckel and Fung
[33] on SPECT imagery to find regions of the brain that differ-
entiate between healthy subjects and patients with Alzheimer’s
disease. Fan et al. [34] used variable selection on deformation
field data in a study of schizophrenia.

The methodology introduced in this paper is applied to a data
set of 569 outlines of the corpus callosum (CC) brain struc-
ture, obtained from a study on atrophy in an elderly population
[35]. The CC provides an illustrative example of a structure that

may benefit from a localized analysis. The white-matter fibers
defining the CC are organized according to an anterior–posterior
topographical organization; tissue loss and discrepancies can
therefore be expected to be constrained to specific regions [36].
The CC is perhaps the most popular single nervous structure for
morphometric analysis and a wide range of applications in shape
analysis exist. Bookstein [2] characterized deformations of the
CC using partial thin-plate spline warps. Davatzikos et al. [37],
Machado and Gee [38], and Dubb et al. [39] used deformation
field features to find gender differences in the CC. Golland et al.
[40], [41] takes a classification approach to finding anatomical
discrepancies between populations where group differences are
characterized by the gradient of the classifier function and ap-
plies the method to a study of the CC in affective disorder. Joshi
et al. [42] extract predefined global and local shape features
of the CC using a multiscale medial shape representation. The
features are used for classification of schizophrenic and normal
subjects.

The advantage of the method presented in this paper over pre-
vious work is the extraction of interpretable localized features
governed by few and weak assumptions. The central assumption
is on the extent of the deformations; however, we propose to al-
leviate this assumption by extracting features on several scales.

To put the SPCA method into perspective, we provide a com-
parison with two alternative analysis methods. The first ana-
lyzes the original shape features (landmarks) directly to provide
a sparse representation of anatomy. The second method chal-
lenges a potential shortcoming of a data-driven process such as
PCA or SPCA in that a minor but clinically relevant variation
may be omitted. We therefore include a model-based method
for decomposition based on the wavelet transform. Multiscale
representation of curves using the wavelet transform has found
applications in both computer graphics [43] and image analysis
[44]. The wavelet transform decomposes the anatomy into co-
efficients of both scale and localization [45] and offers a sparse
orthogonal shape basis with acceptable interpretability.

Characteristic deformation patterns of the CC are derived for
four different clinical variables. Focus is on shape differences of
the CC due to gender [37]–[39], [46]–[49], but results are also
given for age effects, verbal fluency, and walking speed. Using
the same data set, atrophy of the CC has previously been shown to
correlate with general cognitive and physical decline [36], [50].

II. METHODS

To understand and quantify a complex process such as the
variability of anatomy, one has to compromise between a gen-
eral model and a compact model. The first property means that
it should be possible to model any conceivable deformation pat-
tern, while the second property ensures that the number of vari-
ables used to do this is kept small, allowing more power for sub-
sequent statistical analysis. If the intended use of the model goes
beyond prediction, interpretability adds to this list of require-
ments. Many anatomical processes are expected to be localized,
leading to high correlations between neighboring features. This
property can be used to derive variables where a single variable
may describe deformations across several features in an anatom-
ically plausible fashion. Furthermore, restricting the analysis to
relevant variation only, the number of variables can be reduced.
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In the following, we will review two methods for deriving such
variables.

A. Principal Component Analysis

The first method is perhaps the most well known and widely
used method for data decomposition in general, PCA. To in-
troduce the method, as well as the notation and terminology
used throughout the rest of this paper, a brief explanation will
be given here.

PCA takes a mean-centered data matrix , with
being the number of observations and being the number of
variables, and transforms it by such that the derived
variables (the columns of ) are uncorrelated and correspond
to directions of maximal variance in the data. The derived coor-
dinate axes are the columns of , called loading vectors, with
individual elements known as loadings. These are at right an-
gles with each other; PCA is simply a rotation of the original
coordinate system, and the loading matrix is the ro-
tation matrix. The new variables (the columns of ) are known
as principal components (PCs). Usually, only the first compo-
nents, , are retained since these explain the majority of the
sample set variance. This makes and . The
loading matrix can be calculated using singular value decom-
position of the data matrix or by eigenanalysis of the corre-
sponding covariance or correlation matrix.

B. Sparse Principal Component Analysis

SPCA can be described as an extension of PCA, where a con-
straint of the number of nonzero loadings is added. The recent
development in statistical methods for variable selection in re-
gression has resulted in an SPCA approach described by Zou
and Hastie [25]. This method is used throughout this paper and
the idea will be described here in brief. For a complete descrip-
tion, consult [25] and the preliminary papers [26]–[28]. Refer
to [17] for an introduction on using SPCA to decompose shape
data.

The regression methods used in the calculation of SPCA all
originate from ordinary least squares (OLS) approximations.
The independent variable is approximated by a linear com-
bination of the dependent variables in . The coefficients for
each variable (column) of are contained in

(1)

where represents the norm. This is the best linear unbiased
estimator given a number of assumptions, such as independent
and identically distributed (i.i.d.) residuals. However, if some
bias is allowed, estimators can be found with lower mean square
error than OLS when tested on an unseen set of observations.
A common way of implementing this is by introducing some
constraint on the coefficients in . The methods described here
use constraints on either the norm or the norm of , or
both. Adding the constraint gives

(2)

This is known as ridge regression [51]. Sufficiently large values
of will shrink the coefficients of . The shrinkage introduces
bias but lowers the variance of the estimates. Careful selection of

may lead to improved prediction accuracy, but of more interest
here are the improved numerical properties, making estimation
in cases where is feasible [52]. Replacing the norm in
the constraint with the norm gives

(3)

where . This is the LASSO method [27].
Using the norm not only shrinks the coefficients, but also
drives them one by one to exactly zero as increases. This im-
plements a form of variable selection, as minor coefficients will
be set to zero in a controllable fashion, while the remaining co-
efficients will be used to minimize the size of the regression
residuals.

A third possibility is to use a combination of the constraints
from ridge regression and the LASSO. This approach is known
as the elastic net [26] and has the form

(4)

The main benefit of the elastic net is that it better handles cases
where . The elastic net can be formulated as a LASSO
problem on augmented variables and is solved using the same
algorithm, outlined as follows.

OLS and ridge regression have closed-form solutions, that is,
and can be expressed as functions of the random

variable and
. This is not true for the LASSO and elastic net

methods. For many years, LASSO solutions were found using
standard optimization techniques, which made for long compu-
tation times. In 2002, Efron et al. [28] published a report on a
new regression method which they called least angle regression
(LARS). Although conceptually different, the method is shown
to be very similar to LASSO, and through a small modification,
the exact LASSO solution can be computed. The method is built
on a powerful geometric framework, through which a compu-
tationally thrifty algorithm is conceived. The paper shows that
the coefficients are piecewise linear with respect to the reg-
ularization parameter , with breakpoints as variables enter or
leave the model. The breakpoints can be established using stan-
dard linear algebra. Using this property, the entire regularization
path can be computed. Starting with the empty model ,
variables are added and occasionally subtracted as grows until
all variables are nonzero and the full least squares solution is
reached. Hereby, the LARS path algorithm returns the solutions
for all possible values of . The computational cost of obtaining
the entire LASSO regularization path is the same as for a single
least squares fit.

PCA and SPCA are strongly related to these regression al-
gorithms. One way of describing PCA using regression is by
treating each principal component as a response vector and re-
gressing this on the variables using ridge regression

(5)
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The minimizing coefficient vector normalized to unit length
is exactly the th principal loading vector, independent of the
choice of [25]. A direct approach to sparse PCA is obtained
by adding the (LASSO) constraint

(6)

The regression procedure will calculate a loading vector such
that the resulting PC is close to while being sparse. The weak-
ness of this approach is that all solutions are constrained to the
immediate vicinity of a regular PCA. A better approach would
be to approximate the properties of PCA, rather than its exact
results. Specifically, the columns of the loading matrix should
be near orthogonal and describe directions of high variance in
the data set. Zou and Hastie propose a problem formulation
called the SPCA criterion [25] to address this

subject to (7)

To clarify this expression, it will be broken down into com-
ponents. First, takes the variables of observation and
projects them onto the principal axes (loading vectors) of .
Note that denotes the th column of . Only PCs are
retained, meaning that some information is lost in this trans-
formation. Next, takes the scores of and trans-
forms them back into the original space. The orthogonality con-
straint on makes sure is near orthogonal. The whole term

measures the reconstruction error. The
remaining constraints are the same as for elastic net regression,
driving the columns of towards sparsity and ensuring good
numerical properties in cases where . Some further in-
sight into this criterion is given by considering the loss function
alone, with the additional constraint

subject to

(8)
The minimizer of this function is given by the first loading
vectors of a standard PCA; this equation is, in fact, the basis
for a derivation of PCA [52] other that the standard variance-
maximization approach. One of the key results of the SPCA
paper [25] is that the constraint can be omitted given
the addition of an penalty term

subject to (9)

The columns of (normalized to unit length) will still give
the exact PCA solution. The SPCA criterion then augments this
formulation by the addition of the term, making it possible to

estimate loading vectors that range from the results of a standard
PCA to various sparse approximations.

The constraint weight must be chosen beforehand and has
the same value for all PCs, while may be set to different values
for each PC, offering good flexibility. The level of sparsity can
also be defined by specifying a target number of active variables.
This is done by terminating the elastic net estimation when a
suitable number of variables has entered the model. This stop-
ping criterion is very useful in practice.

Equation (7) resembles the elastic net formulation, but there
is a significant difference. Instead of estimating a single coef-
ficient vector, this problem has two matrices of unknown coef-
ficients, and . A reasonably efficient optimization method
for minimizing the SPCA criterion is presented in [25]. First,
assume is known. Expanding and rearranging (7) shows that

can be estimated by solving independent elastic net prob-
lems, one for each column of (loading vector). Referring to
the elastic net formulation in (4), the predictor matrix is as
usual, while , where is the th column of . On the
other hand, if is known, can be calculated using a singular
value decomposition; if , then .
Since both matrices are unknown, an initial guess is made and

and are estimated alternately until convergence. The stan-
dard option is to initialize to the loadings of the first ordi-
nary principal components.

C. Statistical Analysis

The goal of the analysis is to determine the relationship be-
tween the derived variables (loading vectors) and a clinical out-
come variable. Clinical variables here are assumed to consist
of a single score for each patient (e.g., age) and are therefore

dimensional. However, methods such as PCA and SPCA de-
rive new variables that are dimensional, that is, each variable
can be interpreted as a perturbation of the mean observation. As
a preliminary step, the presence of each PCA/SPCA variable
in each subject must be measured. We propose to do this via
univariate regression. The following model formulates the idea,
where the presence of deformation mode is determined for
the shape corresponding to subject (row vector) by

(10)

The loading vectors have unit length for both PCA and
SPCA, yielding the least squares estimate . This is
simply the th entry of the scores matrix , which,
as described in Section II-A, is estimated by , also
for SPCA. The presence can be interpreted as a measure of
correlation between shape and deformation .

The scores matrix provides -dimensional variables that
can be related to clinical outcome. In this paper, we propose
to establish this relation via a series of univariate tests. This ap-
proach is similar to those used in, e.g., analysis of functional
images and deformation/tensor-based analysis [39], where sep-
arate tests are performed at each voxel of an image volume. The
statistical properties of the scores vectors are often better suited
to a regression analysis than clinical variables, which may be
categorical or ordinal (ordered categorical). We therefore assign
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the scores vector as the outcome variable. The test for a rela-
tionship between spatial variable and the clinical outcome
becomes

(11)

Confounding variables enter the model on the right-hand side
as covariates. This simple regression model is solved using the
least squares criterion, providing access to a range of statistical
properties, most notably t-scores with corresponding p-values,
measuring the probability that a significant relation is declared
when the variables are in fact unrelated.

Using the above analysis, the relationship between the out-
come and each spatial variable is established. A complication
with this approach is that significance levels should be adjusted
for the number of comparisons performed. Bonferroni correc-
tion provides one simple procedure, where any test probabili-
ties (p-values) are multiplied by the number of tests performed.
This provides strong control over the family-wise (type-I) error
rate—the probability that one or more tests are falsely rejected is
less than the nominal significance level . However, this proce-
dure is generally too conservative, leading to unnecessarily high
p-values. A more powerful alternative, also with strong control
over type-I errors, is provided by nonparametric permutation
testing procedures. The specific method used here is described
in detail, in e.g., [53], and is based on finding the empirical dis-
tribution of a maximal statistic. First, we will review the basics
of permutation testing and then briefly explain how this may be
used to adjust a set of p-values for multiple comparisons.

The idea of permutation testing is that if two variables are in
fact unrelated, then the results (for instance from a correlation or
regression analysis) should not change notably even though the
elements of one of the variables have been randomly shuffled
around [54]. By permuting the dependent variable in the regres-
sion analysis in (11) times, where is some large integer
number , an estimate of the empirical distribution
function (EDF) under the null hypothesis is obtained as the his-
togram of the corresponding t-statistics of the independent vari-
able of interest. Calculating the proportion of t-values exceeding
the t-value obtained from the original (non-permuted) regres-
sion analysis provides a nonparametric estimate of the p-value
of the independent variable. Providing the standard assumptions
of the regression analysis in (11) hold, these p-values will be in
close agreement with those obtained from a classical parametric
analysis.

One advantage of this nonparametric approach is that it
provides additional information that can be used to adjust the
p-values obtained for multiple comparisons. This information
comes in the form of the distribution of the maximal statistic.
This statistic consists of the maximal absolute t-value over all
tests for each permutation. For the th repetition, we denote
this value as . After repetitions, an approximation of the
EDF for the maximal statistic is obtained. The critical value is
defined as the largest member of this distribution. Any
t-values exceeding this value are deemed significant at the
level. In practice, we do not need to compute the critical value.
An adjusted p-value can be obtained directly from the EDF

of the maximal statistic as the proportion of values exceeding
the t-value from the original regression analysis. Formally,
this corresponds to ,
where # denotes the number of elements in a set [54].

D. Application to Shape Analysis

In this section, we will describe more specifically how the
methods outlined previously are applied to landmark-based
shape analysis. We adopt the definition of shape by Kendall
[55], stating that shape information is what remains in a data
set, when translational, rotational, and scaling effects have
been filtered out. The shapes are therefore aligned using a gen-
eral Procrustes analysis [4]. The removal of scale differences
deserves some attention in this application. Many anatomical
discrepancies, age-related changes is one example, are likely
to include a component of pure scale. Obviously, a sparse
decomposition is not suitable for describing global properties
with preserved interpretability, which is why we recommend
removing such differences. In the subsequent analysis of the
results, this fact must be taken into consideration. A separate
analysis of area/volume differences may be used to complement
the study of local shape variability.

1) PCA Application: Global patterns of shape variability are
obtained through a principal component analysis, performed by
a singular value decomposition of the centered data matrix .
This matrix consists of the Procrustes-aligned shapes, where the
mean shape has been subtracted from each row. Typically, all
landmarks contribute to the variance of the data set, meaning
that each new variable (column of ) will affect the entire
outline. The usual practice is to truncate the set of variables to
account for, e.g., 95% of the total variation. This can be done
easily, since the variance explained by is given directly by
the th eigenvalue of . This reduction has a number of
advantages. For instance, it excludes noisy (wiggly) deforma-
tion modes and it simplifies and strengthens the subsequent sta-
tistical analysis.

2) SPCA Application: As for PCA, SPCA is applied to the
aligned and centered shapes contained in the data matrix . A
number of parameters govern the results. Also akin to PCA, a
choice must be made on the number of variables to retain. Un-
like PCA, this must be done in advance. A rough number is
provided by the number of variables deemed significant in the
PCA analysis, since when estimating an excess of variables, the
SPCA algorithm tends to produce highly correlated variables.
The next parameter to set is in relation to the constraint.
Empirical evidence [17] supported by some theoretical results
[25] suggests that the results are largely independent on the spe-
cific choice of this parameter. Typically, it is set at a small pos-
itive value to ensure good numerical properties. Finally, the pa-
rameters must be set, governing the amount of sparsity of
the decomposition. This choice is dependent on the anatomical
scale of interest and must be carefully chosen for each applica-
tion. For many purposes, will be equal for all , resulting in
the same deformation size for each .

3) Tabulation and Visualization: The most thorough way of
presenting the results is a table showing each deformation mode
and the significance level for each of these associated with each
tested clinical outcome variable. Such a presentation minimizes
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the risk of misleading the reader but may also become time
consuming and complex to draw conclusions from. In order to
construct a sample anatomy related to a specific outcome vari-
able, we suggest creating a compound deformation of a template
shape (for most purposes, the mean shape). Each deformation
mode exceeding the nominal significance level contributes to
this deformation with strength proportional to its corresponding

(regression coefficient) value. If both the spatial and clinical
variables are standardized (zero mean, unit variance) prior to
the regression analysis, the coefficients can be interpreted as the
change (in standard deviations) in the spatial (response) variable
introduced by a unit change in the clinical variable. For inter-
pretational purposes, the use of the values directly as weights
on the various deformations may not produce an anatomically
meaningful pattern. Therefore, we instead choose to normalize
the values within the group of spatial variables being tested
such that the maximal point-to-point distance is set to an appro-
priate value. The relative sizes of the deformations will still be
correct using this method, but the absolute strengths of the re-
lationships are lost, a fact that must be taken into consideration
when analyzing the results. This approach is used in the display
of deformations in this paper.

E. Alternative Methods

This section provides a brief explanation of two alternative
methods for relating clinical outcome to localized representa-
tions of anatomy. One represents a simple and direct analysis,
while the other provides a model-based alternative to the data-
driven decomposition of PCA/SPCA.

1) Direct Analysis of Original Variables: PCA derives vari-
ables that capture global properties of the relevant anatomy,
while SPCA provides a more localized alternative. If the anal-
ysis is made increasingly localized, the derived variables will
ultimately consist of a single component ( or coordinate in
the case of 2-D shape analysis). This results in an immediate and
simple approach where the original spatial variables enter (11)
one by one on the left-hand side, and their individual relation to
the clinical outcome is established.

2) Decomposition Using Wavelet Transform: The pitfall of
using subspace techniques such as PCA is that subtle but inter-
esting information may be lost. A minor deformation may be
strongly related to a clinical variable, but since the contribution
to the sample variance is low, the effect may not be modeled or
simply discarded. It is therefore of interest to find a basis where
each variable is clinically relevant and all the variance of the
original data set is preserved. The wavelet transform may pro-
vide one such basis.

A wavelet is a waveform of limited duration. The wavelet
transform breaks the original signal into scaled and translated
versions of a predefined mother wavelet [45]. The original signal
is first divided into two parts of low and high scale. These rep-
resentations are known as the approximation (coarse scale) and
the detail (fine scale). The approximation is then further divided
in an equivalent fashion, and the process is repeated a suitable
number of times. This yields a hierarchy of coefficients orga-
nized in a tree structure according to scale and location de-
picted in Fig. 1. Each wavelet coefficient represents a defor-
mation across several landmarks that is localized in both scale

Fig. 1. Hierarchical representation of a shape in wavelet domain. Numbers rep-
resent number of wavelet coefficients on each level. Leftmost branch represents
approximation, while other branches correspond to detail at different scales. At
each branch, one example of resulting shape deformation is shown (dashed line)
with mean shape (solid line) as a reference.

Fig. 2. Subregions and approximate fiber connectivity of CC. Connectivity la-
bels are F (frontal), M (motor), S (somatosensory), A (auditory), P/T (parieto-
temporal), and V (visual). Image is adapted from [58] and is based on a post-
mortem study [49].

(spatial extent) and position along the outline. The first order
coiflet wavelet is used here, as this was deemed suitable for de-
scribing local shape changes because of its low complexity and
high symmetry. This particular wavelet is orthogonal, meaning
that the variance and structure of the original shape data are pre-
served. In the present analysis, and coordinates are treated
separately as 1-D periodic functions. The two resulting wavelet
coordinate vectors are concatenated into a single observation.
This process is repeated for all shapes in the data set, producing
a set of variables of the same size as the original data.

III. RESULTS

The proposed method was applied to a large data set of
2-D outlines of the CC brain structure. The CC is the band of
fibers connecting the hemispheres of the brain. These fibers
are organized in the approximate anterior to posterior topo-
graphical organization depicted in Fig. 2. The data set is part
of the longitudinal LADIS (Leukoaraiosis And DISability in
the elderly) study, involving 12 European countries and more
than 700 patients. Refer to [35] for a complete description
of this study and the project protocol. This paper presents a
cross-sectional study based on baseline data with 569 (312 fe-
male) subjects. The shape data was extracted from the baseline
MR images (3-D sagittal or coronal T1-weighted MPRAGE,
voxel size 1 1 1 mm). In the mid-sagittal plane, the CC was
registered using a learning-based active appearance model [56],
[57], trained on 62 CC examples, each manually annotated
with 78 corresponding landmarks. The automatic registration
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Fig. 3. Mean female CC shape (dashed) versus male (solid). Also shown is
empirical null distribution function of Procrustes distance between two shapes.
Observed distance is represented by dashed vertical line, corresponding to p =
0:0015.

was followed by manual inspection and correction by an expert
reviewer, unaware of any clinical status [50].

Initially, a simple test was performed to see whether the shape
of the male and female CC differed significantly. The full Pro-
crustes distance was used to measure the discrepancy between
two shapes. This measure is a normalized sum of point-to-point
distances between the aligned shapes and in complex no-
tation [4]

(12)

where is the transpose complex conjugate of . The Pro-
crustes distance between the male and female mean shapes was
found to be . Placing this value on
the null distribution estimated by calculation of the Procrustes
distance based on a large number of permutations of the data
set (cf., [53], [54], and Section II-C), the shapes were found to
differ significantly ( , repetitions). Fig. 3
shows the female versus the male mean CC shapes and the cor-
responding null distribution. The dashed line indicates the nom-
inal Procrustes distance .

The described algorithm for sparse principal component de-
composition was applied to the Procrustes-aligned shape data.
The anatomical scale of any deformations related to the clin-
ical outcome variables of interest is unknown. Three decompo-
sitions on three different scales were therefore calculated. The
extent of the deformations was set to 5, 20, and 50 nonzero
components, corresponding to 3%, 13%, and 32% of the total
number of components . This choice of scales
provides a relatively large span of deformations while main-
taining interpretability. A standard PCA was also applied, obvi-
ously corresponding to 100% nonzero components. Fig. 4 shows
the resulting deformations. Note the coherence of the sparse de-
formation patterns. This property is in no way enforced by the
algorithm and neither are such assumptions desired from a fully
exploratory method. Instead, the coherence is a result of the high
correlations between adjacent landmarks. In theory, however,
there is nothing to keep the deformations from breaking up into
an arbitrary number of separate effects, and this is seen to occur
to some extent for SPCA(20) and SPCA(50).

The deformations for each SPCA scale and for PCA were
related to four clinical outcome variables using the univariate

Fig. 4. Example deformation modes. Each group of deformations represents
one scale. Notation SPCA(k) denotes a sparse decomposition with k nonzero
components. Mean shape is shown in between representations of deformations
in positive (solid line) and negative (dashed line) directions, respectively. De-
formations have been appropriately scaled for visualization.

regression scheme outlined in Section II-C. The variables
are gender (male/female), age (years), walking speed (me-
ters/second), and verbal fluency (words/minute). In the tests for
gender and age, no confounding variables were identified. For
walking speed and verbal fluency, the results were adjusted for
age, gender, level of education, and the logarithm of the volume
of white-matter hyperintensities, as suggested by previous
studies on the same data set [36], [50].

The results for each clinical variable are given in Fig. 5. As
described in Section II-D, the deformations shown for each scale
and variable are the compounded results for each deformation
mode corresponding to an adjusted p-value below . To
provide more specific results in the case of gender differences,
Table I lists the resulting coefficient values for each deformation
mode and scale with corresponding significance levels.

To put the data-driven SPCA method into perspective, tests
for each clinical outcome variable were also investigated
through a direct analysis of the original variables and by using
the model-based wavelet approach. Fig. 6 shows the results
from these tests.

IV. DISCUSSION

This paper has introduced a method for relating localized,
anatomically meaningful patterns of variation to clinical out-
come using a method for the estimation of sparse principal
components.
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Fig. 5. Results for each clinical outcome variable and scale of decomposition.
Mean shape is denoted by solid lines, while dashed lines represent a more female
CC, old age, and lower scores for walking speed and verbal fluency. Results for
verbal fluency have not been corrected for multiple comparisons. Deformations
show a high degree of consistency over different scales and are sufficiently co-
herent and regular for clinical interpretation.

TABLE I
REGRESSION COEFFICIENTS � [CF. (11)] FROM INVESTIGATION OF CC GENDER

DIFFERENCES. SIGNIFICANCE LEVELS ARE INDICATED BY (p < 0:05),
(p < 0:01), AND (p < 0:001), CORRECTED FOR MULTIPLE

COMPARISONS USING PERMUTATION TESTING. ROW NUMBERS

REFER TO DEFORMATION MODES SHOWN IN FIG. 4

Fig. 6. Results for all four clinical outcome variables using direct compo-
nent-wise approach (top row) and wavelet coefficient approach (bottom row),
showing mean shape (solid) versus a more female shape (dashed). Methods
seem inferior to proposed method in terms of statistical power, specificity, and
interpretability.

A. Method

The results presented in Fig. 4 suggest that the SPCA method
is a useful method for deriving localized and interpretable pat-
terns of variability. The computational complexity is reasonable

in the present case of relatively many observations, but lim-
ited dimensionality. Computation times varied from seconds,
for low scale deformations, to minutes, for more complex cases.
Convergence also seems to vary considerably, with almost im-
mediate convergence in some cases and slower and more ir-
regular convergence in others. Alternative or approximate opti-
mization schemes for the SPCA criterion in (7) should be a focus
of future work. For application to higher dimensional data, we
supply a discussion as follows.

Splitting the testing procedure performed to relate spatial de-
formations to clinical outcome data into a series of univariate
tests has both benefits and drawbacks. Most importantly, it pro-
vides a strong form of regularization. Each model contains a low
number of variables (one plus any covariates), making the anal-
ysis more stable in cases with few observations. The main disad-
vantage is that this analysis disregards the correlation structure
between variables. However, PCA scores are uncorrelated and
are therefore unaffected by this property. SPCA scores gener-
ally show stronger patterns of correlation and the SPCA anal-
ysis may be more notably influenced by this limitation. Es-
timation methods that take the correlation structure between
spatial variables into consideration are also relevant for further
investigation.

Two alternative methods for a localized analysis of anatomy
were outlined. Arguably, the results obtained using these
methods (cf., Fig. 6) were inferior to those of the proposed
method. The point-based method suffers from two apparent
disadvantages. The high number of degrees of freedom makes
the method prone to overfitting. Disparate results may be
obtained for adjacent points, leading to variational patterns that
are scattered or irregular, and therefore difficult to interpret.
The SPCA method circumvents this problem by making sure
that each variable represents an anatomically meaningful pat-
tern over several data points. The second problem is the high
number of variables. Procedures for adjustment for multiple
comparisons such as Bonferroni correction or the permutation
method outlined in Section II-C tend to adjust more for more
high-dimensional models, effectively resulting in lower levels
of significance. The discouraging results obtained using the
wavelet representation seem to be due to the spatial appear-
ance of the derived variables, which look implausible from an
anatomical viewpoint (cf., Fig. 1). The poor results may there-
fore be due to an improper choice of mother wavelet. The first
order coiflet was used here, because of its low complexity and
high degree of symmetry. Reissell presents a type of wavelet
called pseudocoiflet [43], which is custom-designed for curve
and surface representation and may be a more suitable choice.
Further, the wavelet representation also suffers from multiple
testing problems, as the number of variables involved is equal
to the number of variables in the original data. To alleviate this,
the wavelet representation can either be truncated, or separate
analyses can be performed at each wavelet scale. Preliminary
tests using the latter approach did not point to an improvement
in the results.

There exist a few interesting alternatives to SPCA to con-
struct sparse representations of anatomy, most notably indepen-
dent component analysis (ICA) [31] and varimax rotated prin-
cipal components [30]. Some experiments using these bases
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have been carried out, with results similar to those of SPCA. One
disadvantage shared by both ICA and factor rotation is that the
patterns produced are only approximately sparse. The residual
variation makes the results more difficult to interpret.

1) Extension to 3-D and Higher Dimensions: The CC out-
lines used here to validate the method are represented by planar
shape data. However, the outline of the method, from the ex-
traction of spatially sparse and meaningful features to the sub-
sequent analysis of the relation of these to clinical data, is ap-
plicable to data of any dimension, modality, and topology, given
that its distribution is suitable for linear modeling. With an in-
creasing number of variables, such as for shape data in three
dimensions, comes an increase in computational burden and
memory requirements. The core problem for most SPCA algo-
rithms is the need to calculate and store the covariance
matrix of the variables involved. The algorithm presented here
uses sequential up- and down-dating of the Cholesky factoriza-
tion of the covariance matrix [59], such that only currently active
variables are considered. With active variables, this limits the
storage requirement to a matrix. The complexity of the
algorithm is therefore more due to the number of nonzero com-
ponents than to the total number variables involved.

In cases where a very large number of variables must be
considered, such as for complex shape representations in three
dimensions or for functional MRI analyses, the optimization
problem in (7) becomes too complex and the alternating estima-
tion algorithm will not converge. It turns out that the criterion
in (7) is valid for any positive value of and that the solutions
are not particularly dependent on the choice of this parameter
[17], [25]. Specifically, a computationally efficient algorithm
emerges for . In this case, the complex elastic net
process to estimate can be replaced by a simpler soft-thresh-
olding rule

(13)

where and is the th column of . Note
that the matrix does not need to be explicitly cal-
culated and stored if the matrix operations are properly ordered.
Some preliminary results on using this method for exploratory
analyses of fMRI data can be found in [60].

SPCA and its related methods for regression are available as
add-on packages for the statistical environment .1

B. Clinical Application

We will now comment on the results for the application of
the method on the CC data. These comments are provided to
support the method only, a more thorough clinical investigation
with subsequent interpretation is deferred to a separate paper.
The sexual dimorphism of the CC is a closely investigated sub-
ject that has yielded disparate results. However, several authors
[37], [39], [46], [48] report on a more bulbous splenium for

1Similar implementations for the MATLAB platform are available from www.
imm.dtu.dk/~kas/software/spca.

females. The present results clearly agree with this finding. The
results also agree with the male/female mean shape differences
depicted in Fig. 3. The advantage of using the proposed method
is the additional information on localization. In a number of
limited regions along the boundary, the method quantifies the
strength of the relevant discrepancies, giving more detailed
anatomical information. Moreover, any global method such
as measures of callosal area or the Procrustes distance mea-
sure used in this paper may not prove to be significant if the
differences are small and highly localized. Using sparse de-
composition, such differences can be identified and quantified
correctly.

The deformation of the CC corresponding to the measure of
walking speed provides an example that nicely demonstrates the
potential of the method. In the third row of Fig. 5, some thinning
can be seen in the genu area, but more interestingly, a clear de-
formation is also present in the rostral body, corresponding well
to the area of the CC containing fibers related to the motor cortex
(cf., Fig. 2). All SPCA scales show this effect to some extent.

The results for verbal fluency did not reach significant levels
when corrected for multiple comparisons. In Fig. 5, the corre-
sponding unadjusted deformations for are shown. Al-
though not highly significant, the results again make anatom-
ical sense. On scales SPCA(5) and SPCA(20), a thinning of the
isthmus subregion occurs. Referring to Fig. 2, this seems to cor-
respond to atrophy of the fiber tissue connecting to brain re-
gions involved in auditory tasks. This result is also in accor-
dance with previous results based on the same data set [36],
where verbal fluency was found to correlate exclusively with the
rostrum and isthmus regions. The latter paper used measures of
callosal area based on a partitioning the CC into subregions and
declared significance at level , not corrected for mul-
tiple comparisons.

The deformation modes extracted using PCA did not provide
much interpretational value in this application. For gender and
age, no deformations correlated significantly with the outcome.
For walking speed and verbal fluency, PCA yielded some sig-
nificant results, but the limited interpretational power becomes
apparent in the results. Effects are present throughout the entire
boundary, and inference of structure-function relationships be-
come difficult.

V. CONCLUSION

SPCA is introduced as an attractive method for extracting
strictly sparse and anatomically meaningful variables from a
data set. While the results may be interesting for direct anal-
ysis, this paper shows how to relate these spatial variables to
clinical outcome data, making it possible to derive typical de-
formation patterns related to e.g., pathology. As an illustrative
example, results are presented on the basis of a large data set of
CC outlines for several clinical target variables, demonstrating
the capabilities of the method. The method has been compared
to both a simple point-based alternative as well as decomposi-
tion using a wavelet transform. The results suggest that these
methods are either less precise, or offer inferior interpretability
compared to the sparse principal component analysis approach.
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