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Abstract

The multivariate version of the Mixed Tempered Stable is proposed. It iserglza-
tion of the Normal Variance Mean Mixtures. Characteristics of this new digidb and
its capacity in fitting tails and capturing dependence structure between centpare in-
vestigated. We discuss a random number generating procedure andddg@n estimation
methodology based on the minimization of a distance between empirical andtitedore
characteristic functions. Asymptotic tail behavior of the univariate Mixedfdered Stable
is exploited in the estimation procedure in order to obtain a better model fittinganAdv
tages of the multivariate Mixed Tempered Stable distribution are discusseatiusteted
via simulation study.

Keywords. MixedTS distribution, Mixed TS Tails, MixedTSévy process, Multivariate MixedTS.

1 Introduction

The Mixed Tempered Stable (MixedTS from now on) distribatias been introduced in Rroji
and Mercuri (2015) and used for portfolio selection in Haagal. (2015) and for option pricing
in Mercuri and Rroji (2016). It is a generalization of the N@ailrivariance Mean Mixtures (see
Barndorff-Nielsen et al., 1982) since the structure is @bt its definition generates a depen-
dence of higher moments on the parameters of the standdr@lassical Tempered Stable (see
Kuchler and Tappe, 2013; Kim et al., 2008) that replaces thenididistribution.

Recently different multivariate distributions have beemdaduced in literature for modeling the
joint dynamics of financial time series. For instance, Keis(013) considers the LG distri-
bution defined as a linear combination of independent Ganfionake construction of a multi-
variate model whose properties are investigated based oelgtion with multivariate splines.
Another model is based on the multivariate Normal Tempertatl& distribution, defined in
Bianchi et al. (2016) as a Normal Mean Variance Mixture withnavariate Tempered Stable
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distributed mixing random variable that is shown to captbeemain stylized facts of multivari-
ate financial time series of equity returns.

In this paper, we present the multivariate MixedTS distidiu and discuss its main features.
The dependence structure in the multivariate MixedTS idrotiad by the components of the
mixing random vector. A similar approach has been used ineB&m (2008) for the construc-
tion of a multivariate Variance Gamma distribution stagtirom the idea that the components in
the mixing random vector are Gamma distributed. Howeveolagrved in Hitaj and Mercuri
(2013a,b), Semeraro’s model seems to be too restrictivedscribing the joint distribution of
asset returns. In particular, the sign of the skewness oimidginal distributions determines
the sign of the covariance. This means, for instance, if tveognals of a multivariate Vari-
ance Gamma have negative skewness, their correlation e@n bbe negative. The additional
parameters in the multivariate MixedTS introduce more Hgity in the dependence structure
and overcome these limits. Indeed, we compute higher manfienthe multivariate MixedTS
and show how the tempering parameters break off the bonceleetakewness and covariance
signs.

We discuss a simulation method and propose an estimatiareguoe for the multivariate
MixedTS. In particular the structure of univariate and nvaltiate MixedTS allows us to gener-
ate trajectories of the process using algorithms that@yreaist in literature on the simulation
of the Tempered Stable distribution (see Kim et al. (2008)).

The proposed estimation procedure is based on the miniorizat a distance between empiri-
cal and theoretical characteristic functions. As expldifog instance in Yu (2004), in absence
of an analytical density function, estimation based on theracteristic function is a good al-
ternative to the maximum likelihood approach. An estimawocedure can be based on the
determination of a discrete grid for the transform variadohel on the Generalized Method of
Moments (GMM) as for instance in Feuerverger and McDunndd@81). The main advan-
tage of this approach is the possibility of obtaining thendtad error for estimators whose
efficiency increases as the grid grows finer. However, tharance matrix of moment con-
ditions becomes singular when the number of points in the gxceeds the sample size. The
GMM obijective function explodes thus the efficient GMM estors can not be computed. To
overcome this problem Carrasco and Florens (2000) develapeadternative approach, called
Continuum GMM (henceforth CGMM), that uses the whole contmwaf moment conditions
associated to the difference between theoretical and aabtharacteristic functions.

Starting from the general structure of the CGMM approach, m@@se a constrained estima-
tion procedure that involves the whole continuum of momeniitions. Results on asymptotic
tail behavior of marginals are used as constraints in omé&mprove fitting on tails. An an-
alytical distribution that captures the dependence ofeexér events is helpful in many areas
such as in portfolio risk management, in reinsurance or ineting catastrophe risk related
to climate change. The proposed estimation proceduraigniited via numerical analysis on
simulated data from a bivariate and trivariate MixedTSribstions. We estimate parameters
on bootstrapped samples and investigate their empiristilalition.

The paper is structured as follows. In Section 2 we give af veeiew of the univariate
MixedTsS, study its asymptotic tail behavior and discusshiieedTS Lévy process. The def-
inition and main features of the multivariate MixedTS dHmttion are given in Section 3. In
Section 4 we explain the estimation procedure and presemt smimerical results. Section 5
draws some conclusions.



2 Univariate Mixed Tempered Stable
Let us recall the definition of a univariate Mixed Tempereald®t distribution.
Definition 1. A random variable Y is Mixed Tempered Stable distributed if:
Y = pu+pBV-+VWX (1)

where parametergl, B € R and conditioned on the positive r.v. V, X follows a standadiz
Classical Tempered Stable distribution with paramet@rsA; vV, A_\/V) i.e.:

X|V ~ stdCT %a, A, vVV,A_VV) (2)
or equivalently
YIV~CTS| a,Ai,A v v + BV 3)
o 7’F(Z—G)(/\ﬂ*ZHL”ZYF(2—a)()\f*2+)\i”2)’“

wherea € (0,2] andA,A_ > 0 (see Kim et al., 2008, for more details on CTS).

For this distribution it is possible to obtain the first fouoments which are reported in the
following proposition.

Proposition 2. The first four moments of the MixedTS have an analytic expressice:

( E[Y]=p+BEV]
Var[Y] = B#Var(V) +E[V]

Mo (Y) = B9me (V) +38Var(V) + (2 &) oz 4o AE V] "
me(¥) = Bmy(V) + 66%E [(V ~ E(V))2V] +4B (2- @) 35 3o Var(V)

+(3-a)(2— a)% V.

\

where m and nmy, are the third and fourth central moments respectively.

We observe thatnz andmy depend on the mixing random variabeand on the tempering
parameterdl_ andA,. Indeed, we are able to obtain an asymmetric distributicanef/we
fix B = 0. It is worth to note that parametersand 3 may have an economic interpretation.
In particular, u can be thought as the risk free rate ghdas the risk premium of the unit
variance procesg. In the Normal Variance Mean Mixtures is not possible to hasgatively
skewed distribution witiB > 0. From an economic point of view, it is not possible to have a
positive risk premium for unit variance for negatively skeshdistributions. This is a drawback
of the Normal Variance Mean Mixture model since negativensiess is frequently observed in
financial time series.
The mixture representation becomes very transparent fautant generating functions. Let

®y (u) = logE[e"Y], ®y(u) =logE[e"], (5)



and
A —UW2 =A%+ (A_+u)—A2 (A9t _a2 1y

a(a—1)(AT7241972) (@ —1)(A972 42972y

where®y (u) is the cumulant generating function of a random varidble CT S(a,A;,A_).
Then we have

CDH(U) =

(6)

Dy (U) = pu+ Dy (Bu+ Dy (u)). (7)

As shown in Rroji and Mercuri (2015), W ~ I'(a,b), we get some well-known distributions
used for modeling financial returns as special cases. Fanos ifa = 2 the Variance Gamma
introduced in Madan and Seneta (1990) is obtained. Fibiﬁg% and lettinga go to infinity
leads to the Standardized Classical Tempered Stable Kim @0418). Choosing:

Ae = A=A
a =1

~1)

b = )92 a(a-1)

v cos(a )

(8)

and computing the limit foh — 0" we obtain the Geometric Stable distribution (see Kozubowsk
et al. (1997)).

2.1 Fundamental strip and moment explosion

Laplace transform theory tells us that given a random vliglihe set ofu € C where:
E[|e"X|] < oo.

is a strip, which is called thieaundamental stripf X. Depending on the tails of the strip can
be the entire set of complex numbésa left or right half-plane, a proper strip of finite width
or degenerate to the imaginary axis if both tails are heavgmFhere on we neglect the case
o = 2 since the MixedTS becomes a Normal Variance Mean Mixtudenaarefer to Barndorff-
Nielsen et al. (1982) for the fundamental strip and tail vérain this special case. When
a € (0,2), H with cumulant generating function in (6) has fundamentgstA_ <[(u) <A,.

Theorem 3. Suppose now V has fundamental strig < (u) < b for some b> 0. A concrete
example would be W I"(a,b). Then we have:

1. Ifmax{—BA_+Py(—A_),BAL +DPy(A+)} <bthenY has fundamental stripA_ <
O(u) <AL

2. If =BA_4+Py(—A_) <b< BAL+Py(As) thenY has fundamental striph_ <[ (u) <
uy, where u. is the unique real solution tBu+ ®y (u) = b.

3. f=BA_+Py(—A_) >b> BAL +Py(A4) then Y has fundamental strip < O (u) <
A, where u is the unique real solution tBu+ ®y (u) = b.

4. If b< min{—BA_+®Py(—A_),BAL +Py(A4)} then Y has fundamental strip_u<
O(u) < ur where u < uy. are the two real solutions @u+ @y (u) = b.

4



Proof. First of all we prove point 1 wher¥ has fundamental stripA_ < O(u) < A;. Any
pointu* € [—A_,A4] can be written as:

We start from

BUT+Pp(U7) = Bly(=A-) +(1=Y) A+ Pu(y(=A-) + (1-y) (A4)).

Since®y (x) is a convex function, we have:

Bu+ @ (U") < Bly(=A-)+ (1=y) A+ YPu(=A-) + (1—y) Pn (A).

Collecting terms withy and 1— y we get:
Bu+ Py (") < Y[B(=A-) + P (A )]+ (1= Y) [B(A+) + P (A4)]. 9)

If max{—BA_ +®Py(—A_),BAL+Dy(A;)} < bthe right hand side in (9) is less than
To prove the second point, it is enough to observe that

G(u) = Bu+Ddp(u)—b

is a convex continuous function. Moreover, the conditiofA_ + Py (—A_) <b < AL +
®y (A4) implies that:
G(—-A_) <0, G(Ay)>0.

As observed in Giaquinta and Modica (2003), a convex coatisdunctionf (x) in the compact
interval[a,b], f(a) < 0 andf(b) > 0 has a unique zemc [a,b]. In our case, this result ensures
thatu,. is the unique real solution of the equatiBo+ @y (u) = b. Following the same steps in
point 1 we get the result in point 2.

Point 3 is the same of point 2.

Point 4. Itis sufficient to observe thdé, (x) is a continuous convex function such tkigg (0) =

0. For anyb > 0, there exists a neighborhood of zero such Bét) < 0. Continuity and
convexity ensure the existence of two zetns< u,.. The remaining part of the proof arises
from the same steps in point 1. ]

2.2 Tail Behavior of a Mixed Tempered Stable distribution

In order to study the tail behavior of MixedTS$u,B,a,A,A_) —(ab), that denotes a
MixedTS distribution with Gamma mixing r.v., we need firstrexall the structure of its mo-
ment generating function where without loss of generaligyrequireu = 0.

If Y ~MixedT 30,8,a,A,A_)—T(a b), the moment generating function is defined as:

b a
Bu+ Py (U))} '
We recall some useful results on the study of asymptoticbiglavior given in Benaim and

Friz (2008). Given the moment generating functirof a r.v. X with cumulative distribution
functionF(x) defined as:

My (u) = E (&) = [b_ ( (10)

M (u) := /e”XdF (x)
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we consider* andg* defined respectively as:
—g*:=inf{u: M(u) < oo}, (11)
and
r*:=sup{u: M(u) < o} (12)
wherer*, g~ € (0,). Criterion | in Benaim and Friz (2008) for asymptotic studyaifg states:

Proposition 4. 1. If for some n> 0, M(" (—qg* 4-u) ~ uPI;(1/u) for somep >0, I; € Ry
as u— 0" then
logF ((—e0, =) ~ —a"x.

2. Iffor some n> 0, M(" (r* —u) ~ uPl1(1/u) for somep > 0, I; € Ry as u— 0T then

logF ((X,00)) ~ —r*x.

We remark thaRg stands for regularly varying functions of order 0, i.e. detlowly varying
functions anav (" the derivative of orden of the moment generating functidv.

Before studying the tail behavior of tiixed T S-T (a, b), let us study first the tail behavior
of aCTSa,A+,A_). The fundamental strip is-A_,A] and the moment generating function
McTsis:

A=W AT+ (A +u)? — AT (AL =A%
a(a—1)(AT241972) (@a—1)(A972 421972

Mcts(u) = exp (13)

We consider separately two cases:
1. ae(0,1),
2. a €1,2).

Considering the right tail of a CTS we have= A, and theMcTs(r* —S) = Mcts(A+ —S)
converges to constant as- 0.
CTS case - 1:Under the assumption that< (0,1), we apply criterion 1 in Benaim and Friz

(2008) checking that the first derivative M&Tssatisfiesl\/lélT) s(r*—s)=s7"Pl1(1/s) for some
p >0,l; € Ry ass— 0. The first derivative oMctsin (13) is:

()\_F_u)a—l_/\gfl_()\_+u>a—1+/\g—1
(1-a)(A972 41972

MélT)s(U) = Mcts(u)

EvaluatingM((:lT)S(u) at pointA, —sand computing the limit fos — 0", we obtain:

McTs(Ay)
(1-a)(A92 42972

lim M& (A —9) ~
SL[BL cts(A+—9)

s (=9 for a(0,1),



where the term(1 ag”(gt,%(éﬂa,z) is a constant. Therefore we have shown that the first order
“a)(AT 24 A

derivative ofMcTs(u) satisfies criterion 1 in Benaim and Friz (2008) wier (0,1).

CTS case - A et us consider now the right tail behavior o= [1,2) where bottMcTs(A+ —S)
andMélT) s(A+ —s) converge to some constantssas 0". We compute the second order deriva-

tive of theMcTtsand show that criterion 1 in Benaim and Friz (2008) is verifi@ohf= 2.

@ O o [ A=W AT - (A pwT A
M uy = M u
CTS( ) CTS( ) (1_ a)()\ng_i_)\ide)

—(AL w2 (A_+u)??
(1-a)(A9724 2972

+ MCTS(U) (or—l)

- 2
- M (U) ()\-i'_u)ail_)\-ﬁil_()‘—+u)a71+)\g71
crs (1—a) (AT 24772
(A -0 2 (A 4w
+ M u
CTS( ) (/\_(g_z_’_)\g_z)

We evaluaté\/lézT)S(u) at point(A. —s) and fors — 0" we obtain the following result:

. 2
Jim Mg ) ~ Mers(A)

r 2
/\g—l_)\g—l_ (A_—f—A_,_)a*l
| (A-a)(Af24A97?)
(972 + (A +A,)772
(Af24+2%72)

Mers(A+)  —(e-a)
(AZ2 42972

+ Mecrs(Ay)

Now we study the right tail behavior of tidixed T S-TI"(a,b). From Theorem 3 we have that
r* can beA, oruy, therefore in order to study the behavior of the moment gemegr function
My (u) in (10) we consider separately two cases:

e r* = A, thatrefers to points 1 and 3 in Theorem 3 whéxg(r*) # b— Br*.
e r* = u, that refers to points 2 and 4 in Theorem 3 whe%g(r*) = b— Br*.

MixedT S-T (a,b) case 1:r* = A, covers case 1 and 3in Theorem 3. The moment generat-
ing function of theMixed T S-T (a,b), defined in (10), at the critical poimt = A_. is finite. We
compute the first order derivative by (u) and verify if criterion 1 in Benaim and Friz (2008)
is satisfied. We consider separately the two caseg0,1) anda € [1,2).



e r*=A,anda € (0,1)

{ b }a—l b

b— (Bu+ @y (u)) (b— (Bu+ Dy (u)))?

{ b r‘ a(B+®y (u)

b— (Bu+®y (u)) | (b—(Bu+®y (u)))
a(B+®y (u)

(b— (Bu+®y (u)))

M\((l) (uy = a

(=B — P (u))

= MY (U)

Observing from (6) that

()\+_u>a—l_)‘_€fl_ ()\_—i—u)afl—{—)\f*l

®} (u) =
H (W (1-a)(AT24+2972)
and
lim @ (A —s) 507 (0,1)
im —S) ~ , ae(0,
ss0r 1T (1—a)(A9 242972
we obtain:
o@Dy e g B a(B+Py (A —9)
SR MRS = M A B 9 o (. - 9)
~ My (A1) a s (-9 for a € (0,1)

b—(BA++®u (A4+)) (L—a)(A9 24+ A%972)

My (A4) a
BA+PH (A1) (1-a)(AT24A572)
can conclude that the moment generating function ofMireedT S-T"(a, b), in case of
r*=A; anda € (0,1), satisfies criterion 1 in Benaim and Friz (2008) for 1.

Observe that since the tergl(

is a positive constant, we

e r*=A; anda € [1,2). In this particular case both the moment generating funatio
theMixedT S-T (a,b) and and its first derivative are constants, therefore we cterthe
second derivative of the m.g.f. of tihdixedTS-T(a,b).

oM (u
M () — \d(u()

(1) a(B+®y (u)
My (W) 5= (Bu on (W)
(@}, (u)) (b— (Bu+ Dr (U))) + (B + P (u))?
(b— (Bu+®y (u)))?

+ aMy (u)




(B + Py (u)*a?

(b— (Bu+dy (u)))?

(@, () (b— (Bu+ Pr (U))) + (B + Py (u))?
(b— (Bu+®n (u)))?

= (OO ()
(b— (Bu+®y (u)))

aMy (u) .
(b= (Buron () W

Sincea € [1,2), we have that the following limit converges to a positive stamt as
s—07:

M (U) = My (u)

+ aMy(u)

+

/\g—1+()\7+)\+)a—1_)\g—1

lim &y (AL —s) = > 0.
5. P (A =) (a—1)(AT2+1%72)
The termb— (BA4+ + Py (AL)) is a positive constant term in case 1 and 3 of Theorem 3

it aMy(A4)
and the same holds for the positive constant tetn BA++¢L Ik Now we study the

asymptotic behavior o}, (A+ —s) ass— 0*.

. s 2O (A A,)02
i - +
SO A =9 = I T ha ey
g (2-0a)

(Af24A972)

Combining these results together we conclude that the mogestrating function of the
MixedT S-T(a,b) in case ofr* = A, anda € [1,2) satisfies criterion 1 in Benaim and
Friz (2008) forn=2i.e.:

i M2 (AL g ~ aMy (A.,) _(2-a)
J M A+ =9) ~ Gea - e S '

MixedT S-T (a,b) case - 2At this point we are left with the case when = u,. which

covers cases 2 and 4 in Theorem 3. We recall that the m.g.editked T S- T (a,b) at point

(r*—s)is:
MO (r* —s) = { b r (14)
e e R GEE)
Multiplying and dividing bys? in (14) we have:
O/px Q) — bs 2 —a
e N e e
Substitutings with £ we obtain:
0 *_1‘ _ b ) a__ a
M (r t) = [tb_(ﬁ(tr*_l)ﬂ% (r*_%))] t*=g(O)t% (15)



We can show thaj(t) is a slowly varying function that impligg® (r* — s) is a regularly varying

function.

Let us study the following limit:
im 9k0 [ b [Brt-yseu ()] ]
=+ g(t)  toto | thk— [B (rrkt — 1) 4 tkdy (I’* kt)} .

(16)

Whenr* = u; we havedy (r*) =b— pr*, g(t) is a slowly varying function, since applying de
I'H dpital theorem to (16) we get:
@, (r*— 1 a
1 Gt v] t)] =1 (17)

m KU |,
Sl gl) ~ [eal, (- )

Concluding we can say that in case= u, the criterion one in Benaim and Friz (2008) is
satisfied fom = 0.
The study of the left tail behavior follows the same stepstave.

Remark 5. In the CTS distributiod _ and A influence both higher moments and tail behavior.
The singularities t1in Theorem 3 are helpful in describing the asymptotic bebraof the
MixedTsS tails based on the result:

PY >y)~e Y. (18)

From point 1 in Theorem 3 we get for the MixedTS the same asyimfzid behavior as in the
CTS, i.e. exponentially decaying, while in the other point¥teforem 3 the Us satisfy the
additional conditionfu* 4+ @y (u*) = b. Singularities in point 2 and 3 describe respectively
right and left asymptotic tail behavior. In point 4 asymptadf both tails are deduced. The
scale parameter b of the mixing r.v. allows us to have morebiléyiin capturing tails once
skewness and kurtosis, which dependarandA ., are computed. Consider for example point
2 where 0 < A, that implies, for fixed y, &+Y < Y from where we deduce that a higher
weight is given to the right tail of the MixedTS than in the CTSeca

We conclude this section by investigating numerically timplications of Proposition 4.
Results on the behavior of tails can be used for the ideniicaif g* andr* in (11) and in
(12). Indeed, fox — —co, we have:

log[F ()] = —g"x+0(X), (19)
while, for x — 40, we obtain:
log[1—F (X)] = —r*x+0(x). (20)

Figure 1 refers to the behavior of Igg(x)] and of logl—F (x)] for the MixedTSF (1,1)
with parameterst =0, 3 =0, a =1.25, A, = 1.2 andA_ = 1.9. Considering relations in
(19) and in (20), we estimaig* andr* as the slope of two linear regressions following four
steps:(i) Given a sample composed hybBservations, we determine the empirical cumulative
distribution functionF (x) = %Ziﬁzl 1y <x. (ii) Then we determing;"andx;_, as the empirical
quantiles at leve{ and 1- ¢, i.e.:

R ::inf{xi R (%) > Z}

10
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Figure 1: Left and right tail behavior of the MixedTSAL, 1) with fixed parametergt = 0,
B=0,a=125A,=12andA_=1.09.

and R

Xi_¢ = inf{xi R (x) > 1—Z}.
The setk1), X2, - .- X refers to the sorted values from the smalbesf to the largesk ).
(iii ) We introduce the set%4 () and%; ({) defined as:

L) = {(xi,lfﬁ(xi)> DX € [x(l),id}

Un(Q) = {(xi,lfﬁ ()(i)) 1% € [Re_z,X@)] }
(21)

(iv) We use the elements in the sg to estimatey* as the slope of the linear regression:
loglFr(x)] = —a"% +&, (x,Fa(x)) € Zn(Q).

while the elements in the sét; are used for the estimation of the coefficiehts the slope of
the following regression:

log[1— Fr(X)] = —r*x + &, (Xi, lfﬁ(Xi)) € (),

whereg; is an error term. In Figure 2 we show the behavior of the es&gchg” andr* for
varying ( if true values are* = 1.4105 and* = 1.2. This result is useful in estimation of a
MixedTSq since it can be used as a constraint in the optimizationmewtihen we require the
empiricalg® andr* to be equal to the corresponding counterpatrt.

2.3 MixedTS Lévy process

Supposé- is an infinitely divisible distribution o, with cumulant functior®y,. Then there
is a convolution semigroup of probability measu(Bgi>o on R+ and a levy process\; )i>o

11
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Figure 2: Behavior of the estimated andr™* for different levels of¢ .

such thai; ~ R fort > 0 and®y, (u) = tdy (u).
In Rroji and Mercuri (2015) it is shown that tidixed TS ut, 8, a,A;,A_) — K distribution is
infinitely divisible. According to the general theory, see é&xample Prop.3.1, p.69 in Cont and
Tankov (2004), there exists &lzy processY; )i>o such thatr; ~ MixedT Sy, B, a,A4,A_) —
F1. We have

Oy, (U) = ptu+ By, (Bu+ By (u), (22)

thus ifY; isMixed T Su, B, a, A4, A_) with mixing distributionFy, thenY; isMixed T Sut, B, a,A.,A_)
with mixing distributionR. In the caseY; is MixedT $u, B, a,A,A_) with mixing distri-
bution I (a,b) then; is MixedT Sut,B,a,A,A_) with mixing distributionT (at,b), since

Vi ~ I '(a,b) implies\; ~ I (at,b).

Definition 6. A Lévy procesgY;)i>o such that ¥ ~ MixedT Sy, B,a,A+,A_) — Fy is called
the MixedT $ut,3,a,A,A_) — R Lévy process

TheMixedTSut,B,a,A,A_) — Rk Lévy process is first of all advy process, thus it starts
at zero and has independent and stationary increments, @ahdwe for 0< s<'t

Yi— Yo~ Mixed TSu(t—s), 8,0, A A) — Rs. (23)
For example with gamma mixing
Yt —Ys ~ MixedTSu(t—9),B8,a,A,A_) —T(alt—s),b). (24)

We conclude this section by showing how to determineNtiged T SLévy measure from a
numerical point of view.
The Lévy-Khintchine formula says

Oy (U) = iuu+/R_O (ei”X—l—iux]l|X|§1)gy(x)d>g (25)
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wherel is the indicator functiongy is theMixed T SLévy density. Differentiating twice yields:

P (u) = /oo — &gy (X)dx (26)

—00

Choosingx = —z, the integral in (26) becomes:

Y (u) :/ e Y2Z2qy (—2)dz (27)
Therefore®! (u) is the bilateral transform afgy (—2) with z= —x. The Lévy densitygy (X)
Is determined using the Bromwhich inversion integral (seesB2a06, for details). In Figure
3, we have the évy density of theMixedT S-T (1,1) with fixed parametergt =0, 8 = 0,
a=125A,=19andA_=19

Figure 3: Levy density of théMixedtT S-T (1, 1) with fixed parameterg =0, 3 =0, a =1.25,
Ar=19andA_=109.

3 Multivariate Mixed Tempered Stable

In this section we define the multivariate MixedTS distribat analyze its characteristics in the
particular case the mixing r.v. is multivariate Gamma distied.

3.1 Definition and properties

Definition 7. A random vector Ye RY follows a multivariate MixedTS distribution if th&'i
component has the following form:

Yi = i + BV + VVEX, (28)

13



where Vis the fh component of a random vector V, defined as:
Vi=Gi+a Z, (29)

Gi and Z are infinitely indivisible defined dR, with {Gi}iN:1 and Z mutually independent;
a > 0and
X|Vi ~ stdCT gai, A+ ivVi, A ivVi) . (30)
It is worth to notice that in Definition 7 it is possible to caaesr a finer sigma fielgy =

o ({Gi}izle, Z) generated from the sequence of rYG };_; \, Z. Letus defing Hi}
as:

Hi:=X|x fori=1,...,N, (31)
and require the distribution ¢f; to be a Standardized Classical Tempered Stable:
H ~ stdCT i, A+ivVi, A_jvV). (32)

Notice that this condition is the generalization of (30)c&ithe following implications hold:
Hi ~stdCTSai, A ivVi,A_ivM) = X [{Gi,Z} ~stdCT ai, A+ ivM,A_jVV)
Xj|{Gi,Z} ~ stdCTS(ai,/\+7i\/Vi,/\,7i\/Vi) = X.|V| ~ stdCTS(ai,/\H\/Vi,/\,’i\/Vi) .
The sigma fieldy is also suitable in order to define the dependence strucaiveelen compo-

nents since we impose independence antdrgy
We remark that ilG; ~ " (lj,my), Z ~ ' (n,k) and foreach=1,...,N :

k
a=— —alZ~T(nm
= (n,m)

we have tha¥/ is sum of two Gamma’s with the same scale parameter. Appthimgummation
property, we hav®; ~ T (l; +n,my) that guarantees infinite divisibility, necessary for deiomi
of multivariate MixedTSF.

Remark 8. The multivariate MixedTS definition (28) using matrix notation reads:
Y = u+BV +SIX (33)

wherep € RY, B € RNN such that B= diag(Bi,...Bn), V € RY is a random vector with
positive elements, S is a random matrix positive definedy that S= diag(V,...W) and X
is a standardized Classical Tempered Stable random vector.

The characteristic function of the multivariate MixedTSlaclosed form formula as re-
ported in the following proposition (for the derivation séependix B).

Proposition 9. The characteristic function of the multivariate MixedTS is

fv(u) = E [exp(iuY)]

N
B B e LR L)) (34

% H e¢eh(i UhBhJFLstdCTS(Uh;A+,h7)\<h~,ah))’
h=1

where the LigctdU; o, A, A_) is the characteristic exponent of a standardized Classieai-T

pered Stable r.v. defined as:

_  (A—iw) T AT (A iu)? A iu(Ag-1-29°1)
Lstacts(U A, A, a) = a(a—1)(A924+297%) (a—1)(A9242%72)"
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Proposition 10. Consider a random vector where the distribution of each component is
Y; ~ MixedT S-T (li +n,m) fori =1,...,N. The formulas for the moments are:

e Mean of the general'l element:

|+n

ENM] = ui+B—— (35)
e Varianceo? of the " element:
(1+l3 > (I,—|—n) (36)
my m
e Covarianced;; between thé't and f" elements:
g = PP, 37)
mm;
e Third central moment of théicomponent:
AR -An B2\ B ] (ti+n)
= [(2—q; —" + <3+2 ) IR 38

Fourth central moment of th&ielement:

. 2
m4=Bi4(3+ 6 )(Hn) 1682 (1 nt2) +

iin) nf P
+4ﬁi<2—ai)</\+l A >|i+n+(3—ai)(2—ai)</\al +)\al )|i+n.

ADT24A%2 )y AfEam2 ) m
(39)

See Appendix A for details on moment derivation. From (374 é38) is evident that the
multivariateMixed T S-T overcomes the limits of the multivariate Variance Gammgitistion
in capturing the dependence structure between comporssgsHitaj and Mercuri (2013a)).
Indeed, the relation that exists between the sign of the s&ssvof two marginals and the
sign of their covariance in the multivariate Variance Gammadroken up by the tempering
parameters in the multivariaMixedTS-T.

In particular the following result determines the exiseoé upper and lower bounds for
the covariance depending on the tempering parameters. wieeonsider the cases that the
Semeraro model is not able to capture.

Theorem 11.Let ¥ and Y, be two components of a multivariate MixedTSthe following
results hold:

1 gj B‘ BJ -n < gi; wheregj; is defined i(36)andg;; < 0if skew(Y;) > 0, skew(Y;) >
and)\+7, <)\_7 ANALjSA

15



_ BB
= T

2 0jj: n> gi; anddjj < 0if skew(Y;) <0, skew(Y;) <OandA, ;22 ; AA, S

3 gj; = — andojj; = + if skew(Y;) <0, skew(Y;) > 0 or skew(Y;) > 0, skew(Y;) <O0.

Proof. Let us first discuss the case where both components haverpasiewness. In this case
the lower bound of the covariance exists if the followinglgesn admits a solution:
gjj = min%n
BB "t
skewY;) >0 - (40)
skew(Y;j) >0

The signs of skewness depend on the signs of the followingtdises:

3 3

ATEA ST _ 3
(2—ai) <*—2—z> +3f 4205 >0

)\Jr’i +A7,i
ai—3 ai—3 .
Al A Bi B}
(2—aj) %2—17],2 +3W]j+251220
A A i

The feasible regioi®, of the minimization problem in (40) depends on the diffeeebetween

ai—-3_,a—3
tempering parameters. We observe that the cubic fundtif) := (2— a;) <A%2A—al'z> +

)‘+Ei7 +)‘7,|

9 3 - - - - - . - - -
3% + 2%‘ is strictly increasing and satisfies the following limits:

lim g(Bi) = +oo
Bi—+o
Bilijj 9(B) = —o.

Therefore exists only ong* such thag(3*) = 0. The sign of3* is determined by the following
implications:

Ari=A_j=9(0)=0=pf"=0
Aii>Aj=09(0)<0=p(">0
ALi<A_j=9(0)>0=p"<0.

The feasible region can be written as:
Sa={(B.Bj):B>B " AB>B}

BB
mm;

and the lower bound igj; =
bound is negative when

n while the upper bound igjj = +.In this case the lower

)\+,i>)\—,i /\)\+,j<)\—,j
or
)\+7j>)\—,j /\/\+,i</\—,i'
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Now we consider the case when both skewnesses are negatil@wviRg a similar procedure
the feasible region becomes:

S=1{(B.B) :B<B AB <B}
BB

The gjj = — and the upper bound & = frm, " The upper bound is negative when

or

AJD]' > )\7’1' A\ /\+,i < /\77i.
The last case refers to the context when the skewnesses iffeverd signs and following the
same procedure as above we haye= —« andgj; = +o. O

3.2 Simulation scheme

The structure of the univariate / multivariate Mixed TS dizition allows us to exploit the proce-
dures (algorithms) for the estimation of the Tempered $tphbposed in literature for instance
in Kim et al. (2008). The steps that we follow for the simudatiof a multivariate MixedTS
with N components are listed below.

1. Simulate independent random variables Gj~T (lj,my) and Z~T (n,k) for i=
1...N.

2. Compute Vi =Gj+aZ for i=1 ... N.
3. Simulate X[V, ~ stdCTS{ai, AL ivVi, )\—J\/vi)-
4. Compute Y, = i+ BVi +/ViX.

5. Repeat the steps from 1 to 4.

The multivariate MixedTS inherits from its univariate viersa similar level of flexibility. For
instance, choosing attj = 2 fori = 1,..,N we obtain the multivariate Variance Gamma intro-
duced in Semeraro (2008) as a special case. As observedanadd Mercuri (2013a), the
Semeraro’s model is not able to capture some situations ofiserved in financial time series.
We recall that Semeraro’s model has the same structure &8)rb(t instead of eack; we
haveW whereW,,..,Wy are independent Standard Normals. This structure limgs#pacity
of the multivariate Variance Gamma distribution in captgrdifferent dependence structures
between components of a random vector, as the sign of skevimeetermined by the sign
of B and the covariance between components has the same forn{34.irin particular this
distribution is not able to reproduce negatively correlatemponents with marginal negative
(or positive) skewness or positively correlated compos&rith different signs on the marginal
skewness. The multivariaddixed T S- I overcomes these limits as the sign of marginal skew-
ness depends ghand on the tempering parameters.

In Figures 4 and 5 we report the level curves of joint dersitiebivariateMixedTS-T and
the corresponding marginal densities. In the Figure 4 weaiden the case where the marginal
distributions have opposed signs for skewneég\{(Y;) = 7.37 andskewY,) = —19.11) and
positive correlation. In the Figure 5 the components arategly correlated with marginal
negative skew distributionskewY;) = —3 andskewY,) = —19.3). These cases can not be
reproduced using the Semeraro model.
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K, =10, 0]
u=1[1,0.12]

5k 1 5 m=[1,1]

- 1=[15,1.5]

~. a=[1.212]
N | A, =[0.01,10]
A_=[10,0.01]
skew = [7.37, -19.11]
S d 3 corr =[0.08]

n
o

0.1

Figure 4. Level curves, marginal distributions and joinhsiéy for a bivariateMixedT S—T
with n=15.

Figure 5: Level curves, marginal distributions and joinhsiéy for a bivariateMixedTS-T
with n=15.

4 Estimation procedure

In this section we introduce an estimation procedure of thitivariate MixedTS based on
the distance between the empirical and theoretical cheniatit functions . Constraints on tail
behavior are considered in order to improve the fitting ols t&efore formulating the problem
mathematically let us first define the following two quasesti a weighting function given by:

T[(t) _ (27T>7N/2 e—O.EHtHZ
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and the error terry (t) computed on the empirical characteristic funcfgn(t) = #, ZJ 1€ 1{tx3)
computed on a sample of sineand the theoretical characteristic functigit), defined as:

D (t) := dm(t) — ¢ ().

The minimization problem reads:

min [z (D (1), Dm (1)) ()
s.t. (41)
g *"P=qg M for i=1,...,N

ri®MP=yxtheo for j=1...,N

where(a, b) is the inner product between vect@andb; © is the set of the MixedTS param-
eters. g ™, g e determine the left tail behavior of the empirical and théiost marginal
distribution whiler; *™", r* the®refer respectively to the empirical and theoretical maabiight
tail. For the quantltleq,* MNP g theo, p* &MP rxtheoyye refer to Section 2.2.

The integral in (41) is evaluated using Monte Carlo simulasincet can be seen as a mul-
tivariate Standard Normal random variable. We observettiebbjective function in (41) is
bounded since thgpy 71(t)dt = 1 and the error ternDp (t) is bounded. In the constrained
problem (41) we introduce a dynamic penalty to the objediivetion. Let us first introduce

the following two vectors:
AqH = [(Cﬁ emp —q theo) <qaemp q*Ntheo>] :

* * emp * theo * emp * theo
Ar_[(r1 —r] ),...,(rN —IN )}

The considered penalty functioniigAg*, Ar*) defined as:
k 2 2
h(aq.ar) = 3 [(aa)?+ (@)

The optimization problem in (41) becomes the following umstoained optimization:
min fe <D.-n(t) , Dm(t)> n(t)dt + Ah(Ag*,Ar) for A > 0. (42)
S

A standard approach used when working with dynamic penatftgtfon is to solve a sequence
of unconstrained minimization problems:

Ll(e) = géingN <Dm(t) : Dm(t)> m(t)dt+ A h(Ag*,Ar*) for A > 0. (43)

where the penality coefficiery at each iteration increases, i.eA; > Aj_1 (see Eiben and
Smith, 2003, for more details). The algorithm stops whgn; (6) —L, (0)| < &, for a fixed
smalle. In this paper we choose a different method where at eaddtitek of the Nelder and
Mead (1965) algorithm the penalty in (42) is updated accwydio:

Ak = he 1 (AQ*,Ar).

In this way instead of solving a sequence of problems defimé4id) we have only one problem
to solve.
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4.1 Numerical Example

In the previous Section we introduced a methodology for thtm@ation of a multivariate
MixedTS distribution based on the minimization problem42). The integral in the objective
function is computed through Monte Carlo simulation basetherfollowing approximation:

1 Mo -
| (Pa®) Ba®) ntyd ~ n—oj;@m (4).Dn(y)) (44)
wheret; = (tgj,...,tn,j) With j = 1,...,ng are extracted from & — multivariate Standard

Normal andng refers to the numbers of points used in the evaluation ofmate
We investigate the behavior of the estimatorsrige= 150 implementing the following steps:

1. We generate a sample of size 7000 from a bivariate andaaifrie MixedTS distributions.
2. Using a boostrap technique with replacement we draw 480ps of size 7000.

3. For each boostrapped sample we estimate the parametsos/ing problem (42).
4

. We analyse the distribution of the obtained estimat@sgported in Table 1 and in Table
2 respectively for bivariate and trivariate MixedTS distriions.

np =150 true est median sd I quart 1l quart
Ho,1 0.0000 0.0213 0.0042 0.0285 -0.0175 0.0266
B1 0.0000 -0.0057 0.0089 0.0214 -0.0061 0.0225
my 1.0000 1.0608 1.0617 0.2278 0.9876 1.2024
l1 1.5000 1.3968 1.4312 0.1988 1.2682 1.5173
o 1.2000 1.2390 1.2829 0.2387 1.1505 1.4599
Ap1 1.0000 1.0955 1.1601 0.3139 1.0277 1.3648
Am1 1.0000 1.1865 1.1889 0.3210 1.0180 1.4203
Ho,2 0.0000 0.0049 0.0000 0.0316 -0.0267 0.0288
B2 0.0000 0.0084 -0.0052 0.0260 -0.0249 0.0152
mp 1.0000 1.0588 1.0000 0.1599 0.9287 1.0881
I 1.5000 1.4028 1.4604 0.1644 1.3526 1.5412
as 0.8000 0.8059 1.0422 0.1896 0.9022 1.1949
Ap2 1.0000 1.1884 1.0064 0.3171 0.8367 1.2124
Am2 1.0000 1.1774 0.9770 0.2698 0.8436 1.1393
n 0.5000 0.5146 0.5884 0.2546 0.4295 0.7542

Table 1: Estimated parameters choosigg= 150 in (44) for a bivariate MixedTS distribution
with parameters respectivey = (0,0,1,1.5,1.2,1,1) and6, = (0,0,1,1.5,0.8,1,1).

5 Conclusion

We introduced a new infinitely divisible distribution callenultivariate MixedTS. This new
distribution is a generalization of the Normal Variance Mdéaixtures. The flexibility of the

20



np =150 true est median sd I quart 1l quart

Ho1 0.0 -0.0109 -0.0003 0.0148 -0.0276 0.0231
B1 0.0 0.009 0.0037 0.0124  -0.0195 0.0227
my 1.0 0.874 1.0079 0.0920 0.9149 1.1898
l1 15 1589 1.4728 0.0973 1.2910 1.6037
(of] 1.2 1293 1.2082 0.1220 1.0204 1.4252
Ayt 1.0 1137 1.1434 0.1621 0.9317 1.4400
A1 1.0 1036 1.1609 0.1709 0.9106 1.4735
Ho,2 0.0 -0.030 0.0030 0.0164  -0.0260 0.0297
B2 0.0 0.0038 0.0059 0.0123  -0.0149 0.0261
nmp 1.0 1.1012 0.9989 0.0795 0.8709 1.1389
I 1.5 1.3658 1.4504 0.1045 1.2822 1.6287
ar 0.8 0.9922 0.8842 0.0793 0.7857 1.0449
Ayo 1.0 1.2896 1.0929 0.1385 0.8728 1.3232
A2 1.0 0.9882 1.0910 0.1405 0.8613 1.3337
Ho3 0.0 -0.0170 0.0009 0.0185 -0.0310 0.0293
B3 0.0 0.0145 0.0005 0.0157  -0.0252 0.0278
mg 1.0 1.0590 1.0122 0.0915 0.8903 1.1881
I3 15 1.4448 1.4924 0.0994 1.3272 1.6502
o3 1.8 1.8683 1.8181 0.1163 1.5877 1.9538
Ay3 1.0 1.2061 1.2104 0.1876 0.9789 1.5956
A_3 1.0 1.1152 1.2462 0.1877 1.0229 1.6222
n 0.5 0.5177 0.5414 0.1168415 0.3591 0.7435

Table 2: Estimated parameters choosigg= 150 in (44) for a bivariate MixedTS distribution
with parameters respective§y = (0,0,1,1.5,1.2,1,1), 6, = (0,0,1,1.5,0.8,1,1) and 65 =
(0,0,1,1.5,1.8,1,1).

multivariate MixedTS distribution is emphasized by meahs alirect comparison with the
multivariate Variance Gamma, which is a competing modelphasents some limits. The mul-
tivariate Variance Gamma distribution is not able to captine dependence structure between
components of a random vector, which is important if we woitkhviinancial markets data. We
showed that using the multivariakéixed T S- I distribution these limits are overcome, which
is due to the presence of the tempering parameters. Takimgacount the structure of the new
distribution we propose a simulation procedure which eixpline existence of algorithms in
literature for the simulation of the Tempered Stable disttion. We also propose an estimation
procedure, based on the minimization of a distance betwesearhpirical and theoretical char-
acteristic functions. Results on asymptotic tail behaviomarginals are used as constraints
in the optimization problem, in order to improve tail fittin@apturing the dependence of ex-
treme events is helpful in many areas such as in portfollommianagement, in reinsurance or
in modeling catastrophe risk related to climate change. prbposed estimation procedure is
illustrated through a numerical analysis on simulated ttata a bivariate MixedTS. We esti-
mate parameters on bootstrapped samples and investigatentpirical distribution. Finally,
some remarks on possible future research starting fromptper are listed below. One can
study the multivariate MixedTS considering other mixingtdbutions, rather than Gamma.
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Empirical investigation on the ability of the proposed dizgttion in fitting the data in different
fields would also be of interest. Another important issue e the study of the efficiency of
the estimators resulting from the proposed estimation austlogy.
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A Derivation of higher order moments
For the general" element of the random vectdf, the mean is obtained as:
E V] = E [t + BV +VViX].
From the tower property applied to the conditional expeetdde we get:
E Y] =E [k +BVi +E [VViX [x]]
= E [Wi + BVi + VVE [X [x]]
Observe thaH; := X; | x is a standardized Tempered Stable, from where we have:
E[Y] = ui + BE V]
and since/; ~ T (li +n,my)
li+n
E Y] =i +BiIW~
First we consider the diagonal elements of the variancesi@vce Matrix. For thé" compo-
nent of the random vectof we have:

o? =E[(¥—EM))?]
—E[[B(V — E (Vi) + VX7
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Applying the binomial formula we rewritsi2 as:

= E[B2(Vi— E (V) + ViX2+ 28 (V — E (Vi) VViX]

The linearity property of the expected value allows the tdieation of three terms:
0? = BPE (Vi —E(W))?| + E [WX?] +2BE [(Vi — E (Vi) vVIX].

We observe that the first term is related to the variance ofttheomponent of the mixing
random vectoWV. Using the tower property, the second term becomes the tgegalue olV,
while the last expected value is zero.

of = (1+%i2) (Iir—;n)

The covariance;j between thé" and j'" elements of the random vectgris obtained as:
gij =E[(¥—E() (Y —E(Y)))]
=E[[BM—EM))+VViX] [B; (Vi —E (V) +ViXi]]
=BBE M —EM)) (Vi —E (V)] + E[VViVVXX].

Notice that the first term is related to the covariance betwbe component of the mixing
random vectoW . The last equality comes from the condition:

E B (Vi—EM) VX =E[B; (Vi—E(V})) VMX] =0
Applying the tower property, we have:
E[VWVIXX)] = E [VEVVE [ 1x]].

We recall that the random variablets := X | x andH; := Xj|x are independent fdar#£ j and
I,j=1,...,N, therefore:

E [V VIE [ X]] = E [V¥iy/ViE [H]E [H]]] =0

Finally we compute the covariance :

BuBJ
mmj

We now compute the terisy; of the skewness-coskewness matrix:
ms = E (Y~ E(%)?]
=€ |[B (i —E(V)) +v¥ix]’|
Using the Newton formula we obtain:
—E[[BM-EM)+ Vx|
— E[[B (M~ E ()P + 318 (Vi— E (M) VX + 36 (Vi — E (W) [V *+ [VWix]?]

gij =
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where using the tower property and the mean of a standardieegered Stable we get:
E [3[A (Vi— E(W)P VWi | =0

while

E [36 (M —E(M)) [ViX]?] =35 [E [W2] —E2 V]

The quantityE [(\/V.x)"’] is the third moment of the MixedTS and can be computed as:

3 Aa—3_)\f—3
e [(vaix)’] = 2-a) Ja a2l
Therefore: . ;
AI2 297 B2\ B (li +n)
=|(2—-a +—+(3+2—')—' .
e [< >Af—2+/\£’—2 m/m| m

We derive the formula for the central comomekts. The first termgijii is the fourth central
moment of the univariate MixedTS distribution:

m =E (% —E ()]
=€ |[B (Vi —E(W)+v¥ix]*].
Using the binomial formula we have:
my = BE | (V — E (V)*| +4B%E | (v — E () VUi ] +
+BB7E | (Vi — E (W))W +4BE | (M — E (V) V23 +
E [Vi2X1] .

Using the conditional Tempered Stable assumption we have:

_ b 6 (Ii+n)2 _2|i+n _
my = (3+Ii+n> TR (li+n+2)+
| [ ASTE-A873) Ji4n . (AT A di4n

B Derivation of the multivariate MixedTS characteristic func-
tion
LetY be a multivariate MixedTS, its characteristic function is:

¢v (u) = Efexp(i(u,Y))] (45)
Substituting in 45 the componenigdefined in (28) we have:

N
¢v () =E [exp (i S un (ki Bivh+ v/ )] (46)
h=1
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Applying freezing property for the expected value and cdeisng the conditional expected
value with respect to the—field defined ay = o ({Gh}hzl,...,N : Z>:

N
by () = E {E [exp(i S un (kn+Bvh+ Nm)) H } (47)
h=1
Using the condition in (32) and, measurable with respect to tioe-field x we obtain:
N
E [exp(i X J\Thxh) H } (48)
h=1

Since X| X ~ stdCT S an, A4 nv/Vh, A— ny/Vh) and indicating with_sacs(U, Qh, A4 n,A— )
the characteristic exponent of the Standardized Class&apé&red Stable, we obtain:

N
¢v(u)=E {exp [i > Un (Hn+ BnVh)
=

N N
¢y (U) =exp [i > Un Ilh] E {exp [i > (Un BnVh +Vh LstacTs(Un, O, /\+,h,/\_,h))] } (49)
=1

h=1

Recalling thav,, = G+ ayZ as in (29) and usingz and®g, for the logarithm of the m.g.f.
of Z andGy,, we obtain the result in (34)
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