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ABSTRACT

LPP3 is an integral membrane protein belonging to a family of enzymes (LPPs) that display broad sub-
strate specificity and catalyse dephosphorylation of several lipid substrates, including lysophosphatidic
acid and sphingosine-1-phosphate.

In mammals, the LPP family consists of three enzymes named LPP1, LPP2 and LPP3, which are encoded
by three independent genes, PLPP1, PLPP2 and PLPP3, respectively (formerly known as PPAP2A, PPAP2C,
PPAP2B). These three enzymes, in vitro, do not seem to differ for catalytic activities and substrate pref-
erences. However, in vivo targeted inactivation of the individual genes has indicated that the enzymes do
not have overlapping functions and that LPP3, specifically, plays a crucial role in vascular development.

In 2011, two genome-wide association studies have identified PLPP3 as a novel locus associated with
coronary artery disease susceptibility. Shortly after these reports, tissue specific inactivation of PLPP3 in
mice highlighted a specific role for LPP3 in vascular pathophysiology and, more recently, in athero-
sclerosis development.

This review is aimed at providing an updated overview on the function of LPP3 in embryonic car-
diovascular development and on the experimental and clinical evidences relating this enzyme to vascular

cell functions and cardiovascular disease.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Total serum cholesterol and LDL-cholesterol have been estab-
lished as risk factors for atherosclerosis and its clinical manifesta-
tions. However, lipidomic analyses have demonstrated that both
lipoproteins and atherosclerotic plaques contain hundreds of mo-
lecular lipid species that could play a role in plaque development
[1,2]. The assessment of these bioactive lipids and the genes/
pathways responsible for their metabolism could improve our
comprehension of atherosclerosis aetiology and could provide
novel biomarkers to refine coronary artery disease (CAD) risk
stratification.

Genome-wide association studies (GWAS) have identified heri-
table single nucleotide polymorphisms (SNP) in the PLPP3 gene
associated with CAD susceptibility [3—6]. PLPP3 (until recently
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named PPAP2B) encodes for the Lipid Phosphate Phosphatase 3
(LPP3), an enzyme that catalyses the dephosphorylation of a broad
number of extracellular and intracellular lipid substrates [7]. In
addition, LPP3 has non-catalytic functions that promote endothelial
integrity [8].

Several studies have shown that LPP3 plays a fundamental role
in vascular pathophysiology. Recently, we have demonstrated that
hepatic deficiency of LPP3 worsens atherosclerosis development
through modulation of the plasma lipidome, specifically increasing
the concentration of low-abundant pro-atherogenic lipid species
[9].

This review is aimed at providing an updated overview of the
clinical and experimental findings that link LPP3 to vascular
development and atherosclerosis.

2. Structure and functions of LPP3

LPP3 is an enzyme that belongs to the family of phospholipid
phosphate phosphatases (LPPs) and catalyses the dephosphoryla-
tion of a broad number of extracellular and intracellular lipid
substrates. Mammalian LPPs were first characterized in 1991 as
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phosphatidic acid (PA) phosphatases [10], but it was subsequently
demonstrated that they act on a wide variety of lipid phosphates,
including lysophosphatidic acid (LPA), sphingosine-1-phosphate
(S1P), ceramide-1-phosphate (C1P) [11], diacylglycerol pyrophos-
phate [12] and N-oleoylethanolamine phosphate [13].
Mammalian LPPs consist of three related proteins named LPP1,
LPP2 and LPP3, which form both homo- and hetero-oligomers [14]
and are irregularly distributed in plasma membrane, caveolae,
endoplasmic reticulum, Golgi and cytoplasmic vesicles [15—18].

2.1. LPP3 structure

The crystal structures of LPPs have not yet been solved, thus the
predicted topology and mechanism of action have either been
predicted by computational modelling or inferred from the crys-
tallographic structure of a related enzyme [19—-21].

LPP3 is predicted to possess six transmembrane o-helices and an
active site comprised of three regions (C1, C2 and C3) localized on
the extracellular side of the plasma membrane or on the luminal
surface of intracellular organelles. The catalytic domains C1 and C2
are located between the transmembrane a-helices Il and 1V,
whereas C3 is located between the helices V and VI. C1 is respon-
sible for substrate recognition, whereas C2 and C3 mediate the
phosphotransferase reaction [19] (Fig. 1).

2.2. LPP3 functions

Dephosphorylation of extracellular LPA and S1P - The most rele-
vant function of LPP3, as well as LPP1 and LPP2, is considered to be
the dephosphorylation of extracellular LPA and S1P at the cell
surface (Fig. 2).

LPA is a glycerophosphate normally present in extracellular
fluids and is mostly produced through the hydrolysis of lysophos-
phatidylcholine (LPC) by secreted autotaxin (ATX) [22]. LPC itself is
mainly secreted by hepatocytes [23], but also originates from the
action of lecithin:cholesterol acyltransferase on HDL [24]. In addi-
tion, LPA is produced by secretory phospholipase A,, which hy-
drolyzes PA in microvesicles shed from cells during inflammation
[25] and platelet aggregation [26].

LPA exerts its action through at least six G protein-coupled re-
ceptors (LPA1-LPAg) as well as one nuclear receptor, the peroxisome
proliferator activated receptor vy [27].

LPA has recently gained great importance as a critical oncogenic
mediator, being involved in the regulation of cellular activities such

Fig. 1. LPP3 structure.

LPP3, as well as LPP1 and LPP2, is predicted to possess six transmembrane a-helices (I-
VI) and three catalytic domains (C1, C2 and C3) localized on the extracellular side of the
plasma membrane or on the luminal surface of intracellular organelles.
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Fig. 2. Metabolism of extracellular and intracellular bioactive lipids by LPP3.

The main function of LPP3 is considered to be the dephosphorylation of extracellular
lysophosphatidic acid and sphingosine-1-phosphate at the cell surface. LPP3 can also
regulate intracellular signalling by dephosphorylating intracellular phosphatidic acid,
ceramide-1-phosphate and sphingosine-1-phosphate. The described extracellular and
intracellular functions belong to all LPPs. SPPs, sphingosine-1-phosphate phospha-
tases; S1PL, sphingosine-1-phosphate lyase; SPHK1/2, sphingosine kinase 1/2; PLD,
phospholipase D; PLA,, phospholipase A;; ATX, autotaxin.

as cell proliferation, tissue invasion, and metastasis [28—30].

LPA promotes wound repair by stimulating platelet aggregation
and cell migration into the wounded area [18]. Moreover, LPA
stimulates the conversion of monocytes into macrophages [31],
modulates lymphocyte extravasation [32,33] and, in chronically
inflamed tissues, promotes lymphocyte invasion and increases
cytokine production [34,35].

These actions suggest a possible role of LPA in atherosclerosis. In
mice, increased amounts of circulating LPA have been shown to
have pro-atherosclerotic effects [36]. In humans, an increased
serum concentration of LPA associates with the occurrence of cor-
onary syndromes [37]. LPA accumulates in the atherosclerotic
plaque and it can exacerbate plaque progression. In particular,
previous studies have highlighted that LPA is abundant within the
lipid-rich core region of the plaques, where it may trigger intra-
arterial thrombus formation following plaque rupture [38].

LPPs, by dephosphorylating LPA, interrupt its receptor-mediated
signalling actions. The liver seems to play a major role in LPA
catabolism [39], as also supported in a recent study, where liver-
specific deletion of Plpp3 in mice, increased plasma LPA concen-
tration [9].

S1P is a sphingolipid analogue of LPA formed intracellularly
through phosphorylation of sphingosine by sphingosine kinase 1
and 2 [40]. Inside the cells, sphingosine is derived from ceramide,
which is synthesized de novo or from the breakdown of membrane-
resident glycosphingolipids and sphingomyelin [41].

The main sources of circulating S1P are red blood cells and
vascular endothelial cells (EC) [42—44]. The sphingolipid trans-
porter 2 is used by EC for S1P secretion [45]. Platelets also
contribute to the release of S1P when activated and during clot
formation [40].

Within the plasma, S1P is bound to HDL (~60%), albumin (~30%),
VLDL and LDL [46]. S1P is bound to HDL via apoM, which acts as a
chaperone, protects S1P from degradation and facilitates S1P pre-
sentation to receptors [40].

Extracellular S1P exerts its effects by interacting with a family of
five G protein-coupled receptors (S1P1.5), and it regulates several
physiological processes, including vascular development and
function [47—49], hematopoietic cell trafficking [50,51], and ner-
vous system development [52].
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S1P is thought to be involved in several diseases including
cancer [53], diabetes [54], congenital disorders [55], kidney dis-
eases [56], and immunological diseases [57].

Plasma S1P levels have been reported to be lower in subjects
with CAD [58], although several studies have indicated that S1P
possesses a dual nature in the pathogenesis of atherosclerosis.
Specifically, S1P bound to HDL exhibits anti-atherosclerotic effects
[59] whereas S1P bound to albumin seems to exert both beneficial
and harmful effects during atherosclerosis development. HDL-
associated S1P is cytoprotective and prevents the apoptosis of EC
[60—62], preserves the stabilisation of EC-cell junctions [63], and
induces the phosphorylation of eNOS, thereby promoting the
relaxation of vessels [64,65]. In addition, S1P reduces the adhesion
of leukocytes to the vessel wall by lowering the expression of
VCAM1 and ICAM1 on EC [65,66].

Conversely, albumin-bound S1P, besides anti-atherosclerotic
effects, can drive the recruitment of lymphocytes to sites of
inflammation [67,68] and promote macrophage chemotaxis
[69,70].

S1P is degraded by three types of enzymes: S1P phosphatases
(SPPs), S1P lyase (S1PL), and LPPs. LPPs are the only enzymes that
have the ability to degrade extracellular S1P, being SPPs and S1PL
localized in the endoplasmic reticulum [71]. LPP3 plays an impor-
tant role in shaping S1P gradients in the spleen, thymus and cer-
ebellum as well [72—74].

Intracellular functions - LPPs can regulate intracellular signalling,
being localized also on the luminal side of the endoplasmic retic-
ulum and the Golgi network membranes [75,76]. LPPs could
potentially modulate inflammation [77], gene transcription [78],
cell proliferation and apoptosis [79], by dephosphorylating intra-
cellular C1P and S1P (Fig. 2). Manipulations of LPP expression have
been shown to alter the levels of cell-associated LPP substrates and
products, including PA and its dephosphorylated product diac-
ylglycerol (DG) [17] that are well known to regulate intracellular
signalling pathways [80,81]. The lack of LPP3 reduces the levels of
de novo synthesized DG and the Golgi—associated DG content, with
the consequent impairment of protein trafficking in the early
secretory pathway [82]. In addition, LPP2 and LPP3 decrease cell
survival by reducing the intracellular levels of PA that, together
with S1P, has been shown to protect cells from apoptosis [83].

Noncatalytic functions - Beyond its phosphatase activity, LPP3
binds to integrins at the plasma membrane and promotes endo-
thelial cell-to-cell adhesion. Both human and rodent LPP3 recog-
nize a3 and osB; integrins [84,85], and LPP3 inhibition blocks the
EC aggregation mediated by these two integrins [84]. In humans,
this interaction relies on an arginine-glycine-aspartate (RGD)
recognition motif on LPP3, which is located in the second extra-
cellular loop, between the transmembrane «-helices IIl and IV [86].
Even though in mouse and rat the corresponding sequence is
arginine-glycine-glutamate (RGE), murine LPP3 can also interact
with ayf3 and osB; integrins [84].

3. The PLPP3 gene

The nomenclature of the LPP gene family has been recently
changed to better reflect the relationship between the gene and its
product. As such, PLPP3, previously known as PPAP2B, is the official
gene symbol for the gene encoding for LPP3. This gene appears to
be conserved in the vast majority (more than 90%) of living verte-
brates [87].

In humans, PLPP3 is located on chromosome 1 and it spans
150,827 base pairs. Five transcripts are generated from the gene,
but only one results in the formation of a protein product of 311
aminoacids. This transcript is assembled from 6 exons into a mature
mRNA of 3292 base pairs.

Because of the extensive use that has been done in model or-
ganisms, the mouse orthologue Plpp3, located on chromosome 4, is
of particular interest. When compared to the human, the murine
gene shows remarkable similarity in both intron/exon structure
(same number and comparable length), with an 89% identity at
cDNA level and a 94% at protein level.

The chromosomal regions around human and mouse genes are
highly syntenic. Within 5 megabases at either side of PLPP3/Plpp3,
195 transcripts are annotated in human and 192 in mouse. Of these,
55 protein-coding genes are conserved and show the same spatial
distribution. Genes that do not correlate, owing to a different
annotation scheme, are mainly non-coding RNA genes and pseu-
dogenes. Among the 55 conserved protein-coding genes, the locus
hosts other genes involved in atherosclerosis and lipid metabolism
(Fig. 3). Interestingly, within ~1.5MB in human and ~1.3 MB in
mouse lies PCSK9, encoding the Proprotein Convertase Subtilisin/
Kexin Type 9, a protease involved in the regulation of the LDL re-
ceptor trafficking [88]. Other nearby genes encode proteins dealing
with cholesterol metabolism including SCP2 (Sterol Carrier Protein
2)[89], OSBPL9 (Oxysterol Binding Protein Like 9) [90], DHCR24 (24-
Dehydrocholesterol Reductase) [91], and LRP8 (LDL Receptor
Related Protein 8) [92]; moreover, enzymes that process fatty acids
are present, like ACOT11 (Acyl-CoA Thioesterase 11) [93], CPT2
(Carnitine Palmitoyltransferase 2) [94], and ECHDC2 (Enoyl-CoA
Hydratase Domain Containing 2) [95]. A little farther, LEPR, the
Leptin Receptor gene [96], is also present.

PLPP3 is broadly expressed, showing detectable levels in almost
all tissues [9,75]. Nervous system, liver, lung, pancreas, eye, thyroid
gland, heart are organs where PLPP3 expression is reportedly
higher and consistent [97].

As described in previous paragraphs, the three mammalian LPPs
display overlapping activities and substrate preferences. Never-
theless, the use of several genetically modified mouse models have
demonstrated that the three proteins are not functionally
redundant.

Mice harbouring a gene-trap inactivation of Plpp1, encoding
murine LPP1, are phenotypically unremarkable [98], even though
multiple tissues isolated from these animals display a reduced
ability to dephosphorylate exogenously provided LPA. Similarly, the
lack of Plpp2, encoding murine LPP2, does not result in phenotypic
alterations [99].

In contrast, a constitutive deletion of Plpp3 in mice results in
embryonic lethality, largely due to defects in extraembryonic
vascular development [100].

4. Role of LPP3 in embryonic cardiovascular development

As mentioned previously, in mice, knockout of Plpp3 yields se-
vere developmental abnormalities, including lack of chorio-
allantois fusion, allantois compaction, and limited formation and
remodelling of the yolk sac (YS) vascular plexus and haemorrhage,
leading to early lethality around embryonic day (E) 9.5 [100].
Chimaera analysis showed that Plpp3~/~ cells are unable to
contribute to the umbilical [100] and embryonic vasculature
(Fig. 4A) indicating a cell autonomous requirement for LPP3
expression in EC. This was confirmed in two studies analysing the
effects of the conditional inactivation of Plpp3 in endothelial and
some hematopoietic cells. Lack of LPP3 in EC also resulted in em-
bryonic lethality. Although mutant embryos were recovered be-
tween E9.5-E13.5, all showed vascular abnormalities such as pale
YS, deficient remodelling of the YS vascular plexus, YS and embryo
vascular leakage, irregular intersomitic vasculature, defective
sprouting of the tail's blood vessels and poor development of ce-
phalic vascular networks [8,101]. In these embryos, abnormal
vascular development was associated with the loss of barrier
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Fig. 3. The PLPP3/Plpp3 locus.
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The genomic location of PLPP3/Plpp3, as well as of genes involved in lipid metabolism, is shown for human (left) and mouse (right). Arrows indicate the relative position of each

gene, but are not drawn to scale. Mb, megabase (million base pairs).

integrity leading to increased apoptotic cell death of EC. In addition,
as a consequence of the loss of B-catenin-mediated transcriptional
activity caused by the lack of LPP3 in EC [102], a strong reduction in
the expression of several target genes important for EC prolifera-
tion and for the maintenance of the vascular integrity was observed
[8].

Whether the vascular abnormalities found in Plpp3~/~ embryos
or in embryos lacking the protein in EC arise from the loss of cat-
alytic activity and/or its role as a cell-cell adhesion molecule in EC
[84,85] remains to be established. However, indications that its
catalytic activity plays a predominant role come from models with
altered LPA- and S1P-signalling. In zebrafish, the ATX/LPA axis
regulates blood vessel development through LPAj46 receptors
[103], while no obvious developmental or vascular defects were
observed in maternal and/or zygotic mutants for most zebrafish
S1P receptors [104] (except for Sipr2, see below). Additionally,
knocking out or overexpressing Enpp2/Atx in mice results in similar
defects that are strikingly similar to those found in embryos lacking
global expression of LPP3 [105,106]. Additionally, it has been
described that LPP3 enhances endothelial cell-cell interactions by
downregulating LPAg receptor signalling in human umbilical vein
endothelial cells [107]. On the other hand, analysis of mouse em-
bryos lacking both S1P-synthesizing enzymes, sphingosine kinase 1
and 2, revealed widespread hemorrhaging and defects in remod-
elling of vascular networks mainly in the head region, with embryo
lethality occurring around E12.5, demonstrating that S1P-mediated
signalling also participates in vascular development [52]. In addi-
tion, S1pr1 gene inactivation produces abnormal vascular matura-
tion in the embryo, demonstrating that S1P-mediated signalling
also participates in vascular development [108].

Besides the key participation of LPP3 in vascular development,
evidence suggests it also plays a role in heart development (Fig. 4B’-
D). A small proportion of Plpp3~/~ embryos reaching E8.5 dis-
played cardia bifida [100] suggesting that LPP3 participates in the
morphogenetic movements required for the formation of the linear
heart tube (Fig. 4B and B’). Additionally, conditional inactivation of
Plpp3 in EC evidenced its key participation for posterior heart
development, in particular on the formation of endocardial cush-
ions (primordia of the cardiac valves and septa), trabeculation and
compact myocardium growth (Fig. 4C, C’, D, D’) [8,101]. Although
the mechanism leading to these phenotypes in mice remains to be
established, it is tempting to speculate that lipid mediated signal-
ling is also involved. In zebrafish, defects in endoderm convergence,

regulated by S1P/S1PR2 signalling, leads to cardia bifida
[55,109—112]. Likewise, analysis of developing hearts from S1pr1~/~
mouse embryos revealed that S1P-mediated signalling through this
receptor is required for proper endocardial cushions, trabeculae and
compact myocardial wall development [113].

Altogether, these observations suggest that many of the abnor-
malities found in embryos lacking general or EC expression of LPP3
could result from alterations in the fine regulation of LPA- and S1P-
signalling required for proper cardiovascular development.

5. Association between PLPP3 polymorphisms and human
cardiovascular disease

Atherosclerosis, in the form of CAD, is known to have a high
heritability [114]. For many decades the strategies to identify the
genetic variants underlying this heritability were unsuccessful
[115], but, over the last few years, methodological advances and
collaborative efforts have allowed a significant progress. GWAS
have identified several common variants associated with the risk of
CAD [116]. The number of variants identified by this approach was
markedly increased by the formation of large, international con-
sortia that, allowing the analysis of a very high number of study
subjects, accumulated a sufficient statistical power for new dis-
coveries. More than 90 genomic loci harbouring genetic variants
associated with CAD at genome-wide levels (p <5 x 10~8) have
been identified so far [6,117—119]. The contribution of each locus to
the overall risk is small. However, the study of the gene pathways
mediating risk at each locus will potentially contribute to the
identification of novel strategies in prevention and therapy.

In 2011, two GWAS identified PLPP3 as a new CAD locus. The
most significant variants associated with increased risk of CAD in
these studies were two SNPs, rs17114036 and rs17114046, both
located in intronic sequences of PLPP3 and correlated with each
other [3,4]. The association of rs17114036 with CAD susceptibility
was further confirmed in wider GWAS, carried on subjects mostly of
European ancestry [5,6,119]. Recently, a case-control study in the
Chinese Han population associated the PLPP3 rs1759752 poly-
morphism with an increased risk of CAD in males and a genetic
variant at rs12566304 with a decreased risk of CAD in females
[120].

The potential relationship between polymorphisms in five
different genes, including PLPP3 rs17114036, and subclinical
atherosclerosis was also investigated in patients with rheumatoid
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Fig. 4. Role of LPP3 in cardiovascular development.

E9.5

E11.5

(A) Wild-type <=> Plpp3~/~ chimaeric embryo (E10.5) shows that endothelial cells in blood vessels are predominantly of wild-type genotype (blue cells), indicating that LPP3
expression in endothelial cells is required for proper embryonic vascular development. (B—D) Graphic representation of normal heart development, and abnormalities produced by
the lack of LPP3 expression in (B’) the whole embryo, or in (B'-D’) endothelial cells [8,100,101]. AVC, open atrioventricular canal; ec, endocardial cushions; CC, cardiac crescent; Trab,
trabeculae; CM, compact myocardium. Green dots represent endothelial cells and purple dots mesenchymal cells of the endocardial cushions. (For interpretation of the references to

colour in this figure legend, the reader is referred to the Web version of this article.)

arthritis, a disease associated with accelerated atherosclerosis and
increased cardiovascular mortality. No association was found be-
tween each polymorphism and intima-media thickness, carotid
plaques and cardiovascular disease [121].

Prospective studies have also been carried out to evaluate the
predictive value of genetic variants, including PLPP3 rs17114036, on
acute cardiovascular events. In a study on 1345 CAD subjects, this
SNP was found associated to the risk of major advanced cardio-
vascular events, that included myocardial infarction, unstable
angina, stroke and cardiovascular mortality [122]. A similar trend,
despite not reaching statistical significance due to limited power,
was found for the association of this genetic variant with incidence

of myocardial infarction and CAD in a study from the CHARGE
consortium [123]. It is interesting to note that mice lacking LPP3 in
myocardial cells have a shorter lifespan and die from myocardial
dysfunction and heart failure [124].

A few studies have investigated how PLPP3 genetic variants that
are associated with increased CAD risk affect LPP3 expression. The
risk allele of rs17114046 was found associated with a 30% increase
in PLPP3 expression in carotid plaques [4]. In a subsequent study,
the risk allele of rs6588635, proxy to SNP rs17114036, was found
associated with a lower expression of PLPP3 in human aortic
endothelial cells (HAEC), both at basal conditions and after stimu-
lation with oxidized phospholipids [125]. More recently, the CAD
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associated variant rs72664324 at the PLPP3 locus showed lower
transcriptional response to oxidized LDL in macrophages [126].
Further studies on LPP3 expression in the cellular components of
the vascular wall and in the atherosclerotic plaque will be needed
to reconcile and fully understand these seemingly contradictory
evidences.

6. LPP3 and atherosclerosis development

PLPP3 is expressed, even if at different levels, by all tissues/or-
gans [9,75], including the vessel wall and the atherosclerotic pla-
que. Indeed, LPP3 has been detected in EC, intimal macrophages,
and in the smooth muscle cells (SMC) of the media [125].

As discussed in detail at paragraph 3, in vivo gene targeting
approaches and in vitro experiments have allowed the identifica-
tion of LPP3 as an essential factor in the maintenance of the barrier
function of the endothelium and in the preservation of EC ho-
meostasis [101,107]. LPP3 in EC is mostly localized at cell-cell con-
tact sites, where it enhances cell-cell interaction, thus reducing
vascular permeability and stabilizing blood vessels [107]. Indeed,
targeted deletion of Plpp3 in murine endothelial and hematopoietic
cells resulted in increased vascular permeability and inflammation-
induced vascular leak [101].

Endothelial LPP3 activity is thus essential for vascular devel-
opment, but it may also have important implications in athero-
sclerosis, being alterations of endothelial function a primary
condition for the development of arterial plaques. In support of this
hypothesis, in vitro studies in HAEC have shown that PLPP3
silencing increases the endothelial expression and production of
the inflammatory cytokines interleukin-6 and -8, the expression of
the chemokine monocyte chemoattractant protein 1 (MCP-1) and
leukocyte adhesion to human endothelial monolayers [127]. These
effects may be consequent to the maintenance of LPA signalling
that, through LPA; and LPA3 dependent mechanisms, is known to
exert a pro-inflammatory effect by inducing cytokine/chemokine
expression and subsequently promoting monocyte chemotaxis
toward EC [128]. Additionally, being a known chemoattractant for
lymphocytes, S1P could also be implicated in the observed effects
[58]. Altogether, these data strongly support a protective role of
LPP3 against endothelial dysfunction and atherosclerosis (Fig. 5). It
has also been shown that endothelial LPP3 expression is sensitive to
shear stress, being lower in those arterial districts mainly exposed
to disturbed blood flow, i.e. in atherosclerosis-susceptible districts
[129]. This observation suggests that LPP3 plays a relevant role in
maintaining the integrity of the endothelial monolayer mostly in a
condition of athero-protective flow and highlights the need for
further investigations to fully understand the impact of
endothelium-derived LPP3 in atherosclerosis development.

The role of LPP3 expression in SMC was deeply investigated in a
murine model of vascular injury, which was induced through
dissection and ligation of the common carotid arteries [130].
Arterial injury was shown to enhance LPP3 expression that peaked
14 days after. In order to understand the pathophysiological role of
LPP3 in SMC, in vitro overexpression and in vivo targeted-deletion
approaches were attempted. LPP3 overexpression in cultured
SMC was shown to reduce cell migration and proliferation, at least
in part through the attenuation of LPA-mediated signalling [130].
Finally, when the carotid ligation method was applied to mice
where Plpp3 expression was conditionally deleted in SMC,
increased vascular inflammation and neointimal formation were
observed [130]. These results suggest that SMC-derived LPP3 may
play a relevant role in the regulation of intimal hyperplasia (Fig. 5).

Altogether, LPP3 of vascular origin seems to be strongly involved
in the maintenance of vascular health, since conditions leading to a
lower LPP3 expression in the cellular components of the vessel wall

LPP3 expression abolished in EC

J endothelial cell-to-cell adhesion
*1L-6, IL-8, MCP-1
1‘ leukocyte adhesion/invasion

LPP3 expression abolished in SMC
T vascular inflammation

T‘neointimal formation

Fig. 5. Consequences of LPP3 deletion in vascular cells.

The abolishment of LPP3 expression in cells that constitute the arterial wall associates
with several pro-atherogenic features. When LPP3 expression is abolished in endo-
thelial cells (EC): (i) the barrier function of the endothelium is compromised; (ii) an
increased expression of pro-inflammatory cytokines/chemokines IL-6, IL-8 and MCP-1
as well as, (iii) an increased adhesion/invasion of leukocytes are observed. The lack of
LPP3 in smooth muscle cells (SMC) promotes vascular inflammation and SMC prolif-
eration, leading to neointimal formation.

result in endothelial dysfunction and SMC proliferation.

A major factor affecting the pathogenesis of atherosclerosis is
the exposure of the vessel wall to the lipids circulating within li-
poprotein particles, which play a relevant role in the onset of
endothelial dysfunction and lesion formation [131]. Lipoproteins
carry not only cholesterol, but also hundreds of other lipid species
[1], including LPP3 substrates/products [132]. Based on these con-
siderations, being the liver the main source of circulating plasma
lipoproteins, it was investigated if a liver-specific Plpp3 deletion
could affect atherosclerosis development. Targeted hepatic Plpp3
deletion was then conditionally induced in atherosclerosis—prone
ApoE~!~ mice. When fed a Western diet, hepatic Plpp3~/~ mice
developed larger atherosclerotic plaques compared with Plpp3
expressing mice [9]. This effect was accompanied by several mod-
ifications in the plasma lipid composition. Specifically, hepatic
Plpp3*/ ~ mice displayed increased plasma concentrations of TG and
LPA, whose levels, as described above, have been associated with
atherosclerosis worsening in animal models [36], and with the
occurrence of acute coronary syndromes in humans [37]. Addi-
tionally, elevation of other low-abundant lipids with a known pro-
atherogenic role, such as lysophosphatidylinositols and lacto-
sylceramides were observed. These results indicate that LPP3 may
contribute to vascular health, not only directly, through its
expression within the cells of the vascular wall, but also indirectly,
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Plpp37 in hepatocytes

Artery

Systemic circulation

Fig. 6. Hepatic Plpp3 deletion in mice worsens atherosclerosis development.

Liver-specific deletion of Plpp3 was achieved by crossing Plpp3-floxed mice with animals expressing Cre recombinase under the control of the hepatocyte-specific albumin promoter.
Hepatic Plpp3 deletion in mice promoted atherosclerosis worsening. This effect was associated with increased plasma levels of triglycerides (TG) and of low-abundant pro-
atherogenic lipids, namely lysophosphatidic acid (LPA), lysophosphatidylinositol (LPI) and lactosylceramide (LacCer).

through the modification of the plasma lipidome (Fig. 6). Moreover,
since LPP3 dephosphorylates numerous lipid substrates, its effects
may involve not only the most investigated and well known targets,
LPA and S1P, but also other several biologically-active low-abun-
dant lipids, whose functions are not completely understood. Finally,
the aforementioned work constituted the first direct demonstra-
tion of the role of Plpp3/LPP3 in atherosclerosis development and
provided evidence supporting clinical observations relating PLPP3
polymorphisms to CAD susceptibility.

7. Conclusions

LPP3 regulates intracellular and extracellular LPA and S1P sig-
nalling through the dephosphorylation of these bioactive lipids.
However, having a large number of substrates, LPP3 may play a role
in several other less explored pathways.

Experimental studies have indicated that LPP3 activity is crucial
for vascular and heart development. LPP3 deficiency, specifically
targeted at vascular cell types, induces endothelial permeability,
promotes leukocyte adhesion to EC, and stimulates SMC prolifera-
tion. Interestingly, hepatocyte-specific Plpp3 deficiency, by modu-
lating the plasma lipidome, exacerbates atherosclerosis
development in Apoe '~ mice. These observations are in agreement
with GWAS results, showing an association between PLPP3 SNP and
increased CAD risk, and indicate metabolic pathways involving
LPP3 as relevant targets for the treatment of cardiovascular disease.
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