
Abstract. Background: Mutations involving KIT and FLT3
genes, encoding tyrosine kinase (TK) membrane receptors,
are detected in core-binding factor leukaemia (CBFL)
patients. PDFGRA and PDGFRB encode class III TK
receptors and are involved both in physiological processes
and in the pathogenesis of haematological and solid
tumours. The aim of this study was to investigate if PDGFR
mutations are involved in CBFL. Patients and Methods: In
order to detect PDGFR mutations in CBFL, 35 patients
without KIT or FLT3 mutations patients were screened by
rapid and sensitive single-strand conformation polymorphism
(SSCP) analysis. Sequence analysis was performed in
polymerase chain reaction (PCR) products showing altered
mobility in SSCP analysis in order to determine the
nucleotide changes. Results: Three types of single-nucleotide
polymorphism (SNP) were detected in the PDGFRA gene
(exon 12, exon 13 and exon 18) while no mutation of

PDGFRB was detected in the tested CBFLs. Conclusion:
These data showed that no pathogenic mutations in
PDGFRA and PDGFRB were detected in the context of
CBFL without KIT and FLT3 mutations. Thus, PDGFR
genes do not seem to be involved in CBFL and future studies
are needed to establish the genetic causes of the disease in
these particular patients.

Core-binding factor leukaemias (CBFLs) resulting from
anomalies of the CBF a and b subunits represent two of the
most prevalent types of acute myeloid leukaemia (AML)
with recurrent cytogenetic abnormalities (1). Translocation
t(8;21)(q22;q22) and inv(16)(p13q22) occur in 7 to 8% and
4-5% of adult cases, respectively (2, 3). According to the
French-American-British (FAB) classification, AML
associated with t(8;21) typically shows M2 morphology, with
a minority of cases showing M1 or M4 morphology, and has
secondary cytogenetic changes, including the loss of a sex
chromosome (LOS) or the loss of part or even all of 9q (4-7).
AML M2 FAB exhibits a granulocytic maturation along the
neutrophil pathway and rarely exhibits eosinophilia and
mastocytosis (8).

AML associated with inv(16) more often has FAB M4Eo
morphology and is less likely to have secondary cytogenetic
changes. AML M4Eo has a specific abnormal eosinophil
component as the bone marrow shows abnormalities in that
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compartment (4).
Clinically, both with t(8;21)(q22;q22) and inv(16)(p13q22),

the disease is usually associated with a good response to
chemotherapy, showing a high remission rate and long-term
disease-free survival (9-13). Because CBFLs have relatively
favourable prognoses, they are often treated similarly (14-25).
Recent advances in molecular biology suggest that
leukaemogenesis in AML is the result of two genetic events:
mutations of class I which lead to reduced apoptosis and/or
increased proliferative advantage in leukaemic cells such as in
KIT, FLT3, RAS and c-FMS, and mutations of class II which
involve haematopoietic differentiation (e.g. CBF fusion genes)
(26, 27).

CBFLs are considered as good examples for such two-
event mechanisms. Activating mutations of FLT3, described
in AML, are both internal tandem duplications (ITDs) and
point mutations such as Asp835 and Ala680Val (28-30). KIT
Asp816 activating loop mutations have been reported in
patients with CBFL, while an association between KIT exon
8 mutations and inv(16) AML has been documented (31, 33).

Receptor tyrosine kinases (RTKs) are a family of proteins
with more than 518 putative protein kinase genes that play a
fundamental role in signal transduction (34). Platelet-derived
growth factor receptor (PDFGR) A and PDGFRB encode
class III TK receptors and are involved both in physiological
processes, such as fibrosis, and in the pathogenesis of
haematological and solid tumours. Mutations in PDGFRA are
found in gastrointestinal stromal tumours (GIST), rarely in
synovial sarcomas (SSs) and in malignant peripheral nerve
sheath tumours (MPNST), whereas the FIP1L1-PDGFRA
fusion product occurs in systemic mastocytosis associated
with eosinophilia, in idiopathic hypereosinophilic syndrome,
in chronic eosinophilic leukaemia and in polycythemia vera
patients (35-38). Many different PDGFRB chimeras are

described in BCR-ABL-negative chronic myeloproliferative
disorders (39). In general, point mutations detected in KIT
and FLT3 are mutually exclusive (40).

In view of these findings, we screened a significant
number (n=35) of patients with CBFL, who had previously
tested negative for KIT and FLT3 mutations, for PDGFRA
and PDGFRB mutations with a quick and reliable modified
single-strand conformational polymorphism (SSCP) method.

Patients and Methods

Patient selection. Bone marrow samples of 21 AML patients with
t(8;21) and 14 patients with inv(16) from six Italian centers (Ferrara,
Milan, Naples, Pavia, Verona and Vicenza) were collected and
cryopreserved at diagnosis. All patients underwent mutational
screening for KIT and FLT3 previously, and no mutations were
detected.

Primary leukaemic cells and DNA isolation. Mononuclear bone
marrow leukaemic cells were collected after informed consent was
given by the patients and were isolated by standard Ficoll-Hypaque
(Lymphoprep™, Axis Shield PoC AS, Norway) density gradient
centrifugation. Genomic DNA was extracted using standard
procedures (Roche Diagnostics, Germany).

Polymerase chain reaction (PCR). Primers for DNA amplification
were designed according to human PDGFRA and PDGFRB gene
sequences (GeneBank accession number NM_006206 and
NM_002609). The sequences of the primers used for PCR are
reported in Table I.

For the analysis of the juxtamembrane and TK domains of
PDGFRA, exons 9, 11-15 and 17-20 were amplified. For analysis of
the TK domain of PDGFRB, amplifications of exon 12 and 18 were
performed. PCR conditions were as follows: initial denaturation at
95˚C for 10 min, 35 cycles of 95˚C for 40 s, annealing temperature
ranging between 48˚C and 59˚C for 40 s and 72˚C for 40 s followed
by elongation at 72˚C for 7 min (Mastercycler, Eppendorf, USA).
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Table I. Primers used for amplification of PDGFRA and PDGFRB by PCR.

Gene Fragment (Exon) Sizea (bp) Forward Reverse

PDGFRA 9 296 5’-agttgtgaactcatattcca-3’ 5’-atcatttgtgtcaagggag3’
11 254 5’-gcatgtctgccaggaaactt-3’ 5’-agctccttctctgtgccaag3’
12 373 5’-tggagtgaacgttgttgg-3’ 5’-agttcttactaagcacaagc3’
13 357 5’-gacacgatgacttggaggag3’ 5’-agctgcatgattttgagaaa3’
14 270 5’-tctgagaacaggaagttggtagc3’ 5’-tggaggatttaagcctgattg3’
15 315 5’-gcaggacaattcatggcttt3’ 5’-caggacatgggtctttccat3’
17 243 5’-catgcctctgcaacctgat3’ 5’-cgtccacactccactcactg3’
18 232 5’-tacagatggcttgatcctgagt3’ 5’-agtgtgggaggatgagcctg3’
19 298 5’-tgctgtggatcatcagtgag3’ 5’-cacaccaggttatcttaaca3’
20 270 5’-catgccaagtgtttcagcaa3’ 5’-cacagggggaagtctcagg3’

PDGFRB 12 282 5’-cctagacggacgaacctaa3’ 5’-ggaccagacctcagagagt3’
18 332 5’-tcctccaagagcacacca3’ 5’-agccacactggtcaggag3’

aSize represents the length of the amplified fragment.



Negative controls for each PCR were routinely coamplified.
SSCP analysis. Mutation analysis was carried out by a sensitive and
rapid SSCP. Five μl of PCR product were mixed with 5 μl of
formamide denaturing dye mixture (95% formamide, 20 mM
EDTA, 0.05% xylene cyanol, 0.05% bromophenol blue), heated at
95˚C for 3 min and then placed on ice. Eight μl of the mixture were
loaded into each well of 36-well nondenaturing polyacrylamide
gradient gels (5-20%) in 0.5X Tris-borate-EDTA buffer (TBE; pH
8.4) containing glycerol (5%). Each gel was electrophoresed
(Multiphor II; Pharmacia Biotech, Amersham, UK) at 350 V for
18-20 h (overnight). The gels were run at two different
temperatures (12˚C and 23˚C) by thermostatic circulation.
Following adequate running times, gels were stained using the
PlusOne DNA silver stain kit (Pharmacia Biotech) on a Hoefer
automated gel stainer (Pharmacia Biotech). Samples that showed
an abnormal SSCP pattern underwent sequencing studies with
forward and reverse primers.

Sequence analysis. Direct DNA sequencing was performed with an
ABI310 automated sequencer using the Big Dye™ Terminator
Cycle Sequencing kit (Applied Biosystems, UK). Numbering of
nucleotides is according to the full length PDGFRA cDNA
(GeneBank accession number NM_006206).

Results

SSCP analysis. We investigated 35 KIT and FLT3 mutation-
negative CBFL patients. In PDGFRA, altered SSCP patterns
were seen in twelve patients in the following three exons: the
first was in exon 12 in five out of 35 patients, the second was
in exon 13 in 5 out of 35 patients, and the last was in exon
18 in 5 out of 35 patients (Figure 1). Moreover, three patients
showed polymorphisms both in exon 13 and in exon 18 as
shown in Table II. In exons 12 and 18 of the PDGFRB gene,
no abnormal SSCP patterns were observed.

Sequencing analysis. The PCR fragments with alterations in
the SSCP analysis were sequenced in order to determine the

nucleotide change responsible for their mobility shift.
Sequence analysis of the abnormal migrating bands in

PDGFRA showed polymorphisms: a CCA>CCG transition at
codon 567 (Pro) in exon 12, a GCG>GCA transition at
codon 603 (Ala) in exon 13, and a GTC>GTT transition at
codon 824 (Val) in exon 18. These three variants were
previously described as SNPs with reference SNP ID,
rs1873778, rs10028020, and rs2228230, respectively. While
the single-nucleotide variations in exon 13 and exon 18 were
always present in heterozygous form, the SNP in exon 12
was present in homozygous form in 5/35 cases. Exon 13 and
exon 18 polymorphisms were present together in 3 patients.
No mutation of PDGFRB was detected in the tested CBFLs
(Table II).

Discussion

The class III RTKs, which include FMS, KIT, FLT3,
PDGFRA and PDGFRB, play an important role in normal
hematopoiesis (41-44). The chromosomal location and
genomic structure of the class III RTKs suggests a close
evolutionary relationship. The KIT and PDGFRA genes, for
example, are both located on chromosome 4q11-q13 and have
structural similarities with the other PDGFR family members
(45, 46). KIT, PDGFRA and PDGFRB are transmembrane
glycoproteins that belong to the PDGFR subfamily of tyrosine
kinases by virtue of their shared amino acid sequence
homology in juxtamembrane and intracellular kinase domains.

Intriguing associations between RTK and CBFL have been
documented. A substantial proportion of patients with CBFL
carry mutations in the KIT gene such as Asp816Tyr in
patients with t(8;21) or a loss of Asp419 in patients with
AML-M4Eo and inv(16) (47, 48). FLT3 ITD mutations and
activating mutations, such as Asp835, are largely
documented in CBFL (40). The aim of our study was the
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Figure 1. (a) Silver-stained SSCP gel of exon 12 of the PDGFRA gene. Lanes 1-5 show a polymorphism in heterozygous form as they display bands
with abnormal mobility compared to a reference sample with a wild-type genotype (lane 6). (b) SSCP analysis of exon 13 of PDGFRA reveals an
heterozygous pattern of polymorphism in lanes 1-5; lane 6 shows wild-type DNA; (c) SSCP analysis of exon 18 of PDGFRA reveals a homozygous
pattern in lanes 1-5 compared to the wild-type genotype (lane 6).



search for mutations in tyrosine kinase genes which could be
associated with CBFL. We decided to investigate PDGFR
mutations in order to assess a pathogenetic role in CBFL
patients without KIT and FLT3 mutations.

For this purpose, we investigated the juxtamembrane and
TK domains of PDGFRA and the TK domain of PDGFRB
as they share strong sequence homology with KIT domains.
It has been demonstrated that mutations in these regions of
KIT and FLT3 result in a constitutive activation of their
signaling cascades leading to ligand-independent growth and
contributing to malignant transformation (49-50).

We used a particular SSCP for mutation detection which is
rapid and has higher sensitive in comparison with standard

DNA-SSCP method. The performance and quality assessment
of this modified SSCP was determinated by different
conditions. The search for mutations was based on the
evaluation of electrophoretic mobilities of single-stranded
DNA molecules in nondenaturing polyacrylamide gels.
Conditions influencing separation of the bands include
fragment length, base composition, buffer, gel conditions and
temperature. The presence of glycerol within the gel and the
long time of runs (18-20 h) allowed a better separation of PCR
fragments into bands. Moreover, analysis of PCR fragments
under two different temperature conditions (12˚C and 23˚C
respectively) increases the rate of detectable mutations based
on optimal conditions determined empirically. Altered
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Table II. Polymorphisms of PDGFR genes in CBFL.

Patient Gender Age Cytogenetic analysis Polymorphism (SNP ID)
(years)

PDGFRA PDGFRB

LA 09 M 53 46, XY, t(8;21)(q22;q22)/45, (IDEM)X-Y/46, XY rs1873778 ND
LA 11 F 42 46, XX, inv(16)(p13;q22) rs1873778 ND
LA 12 F 56 46, XX, inv(16)(p13;q22) ND ND
LA 16 F 28 45, X, -X, t(8;21)(q22;q22), add(4)(p16), -9, + mar/ 46, XX ND ND
LA 25 F 60 46, XX, inv(16)(p13;q22) rs10028020 ND
LA 32 F 37 46, XX, inv(16)(p13;q22) rs1873778 ND
LA 33 F 63 45, X-X, t(8;21)(q22;q22) ND ND
LA 37 M 32 45, X, -Y, t(8;21)(q22;q22), del 9(q22) rs1873778 ND
LA 38 M 45 46, XY, inv(16)(p13;q22) rs2228230 ND
LA 39 M 66 46, XY, t(8;21)(q22;q22), dup(17)(q12), add(18)(q23) ND ND
LA 40 M 39 47, XY, inv(16)(p13;q22), +6 rs2228230+rs10028020 ND
LA 41 M 25 45, X, -Y, t(8;21)(q22;q22)/ 46, XY, t(8;21)(q22;q22)/ 46, XY ND ND
LA 42 F 88 47, XX, inv(16)(p13;q22), +8 ND ND
LA 43 F 38 46, XX, t(8;21)(q22;q22) ND ND
LA 44 F 49 46, XX, t(8;21)(q22;q22) rs1873778 ND
LA 45 F 51 46, XX, t(8;21)(q22;q22) rs2228230+rs10028020 ND
LA 48 M 24 46, XY, t(8;21)(q22;q22) ND ND
LA 49 F 70 46, XX, t(8;21)(q22;q22) ND ND
LA 51 M 43 46, XY, t(8;21)(q22;q22) ND ND
LA 52 M 26 45, X, Y, t(8;21)(q22;q22), del15(q22), der(21), t(8;21)(q22;q22)/ 46, XY ND ND
LA 55 M 35 46, XY, inv(16)(p13;q22) ND ND
LA 56 M 62 46, XY, t(8;21)(q22;q22) ND ND
LA 57 M 64 46, XY, t(8;21)(q22;q22) ND ND
LA 58 M 46 46, XY, inv(16)(p13;q22) ND ND
LA 59 M 35 46, XY, inv(16)(p13;q22) rs10028020 ND
LA 60 F 37 45, X, -X, t(8;21)(q22;q22)/ 46, XX ND ND
LA 61 F 68 46, XX, t(8;21)(q22;q22) ND ND
LA 62 F 42 46, XX, inv(16)(p13;q22) rs2228230 ND
LA 63 M 37 46, XY, t(8;21)(q22;q22) ND ND
LA 64 M 52 46, XY, inv(16)(p13;q22) rs2228230+rs10028020 ND
LA 65 M 70 47, XY, inv(16)(p13;q22) del(7)(q31), +22 ND ND
LA 66 M 72 46, XY, t(8;21)(q22;q22) ND ND
LA 67 M 48 46, XY, t(8;21)(q22;q22) ND ND
LA 68 F 51 46, XX, t(8;21)(q22;q22) ND ND
LA 69 M 51 46, XY, inv(16)(p13;q22) ND ND

Characteristics of the 35 investigated patients included age at diagnosis, chromosomal aberrations and polymorphisms detected in exons 12, 13 and
18 of PDGFRA; no base pair change was detected in exon 12 or exon 18 of PDGFRB. ND: not detected.



sequences may change the intramolecular folding and, hence,
the rate of migration of these DNA molecules in gels.
Furthermore, silver staining techniques had been used to detect
DNA fragments with high sensivity on polyacrylamide gels.

The mutational screening of PDGFRA and PDGFRB
detected three types of single-nucleotide alterations which
were previously described as SNPs. Detection of the SNPs
in the analyzed region of PDGFRA, confirmed the sensitivity
of this SSCP method for detection of sequence variation.

Regarding the allelic frequencies of the identified SNPs, for
rs10028020 (PDGFRA exon 13), no data have been reported
in public databases. For rs2228230 (PDGFRA exon 18), our
results are in agreement with the distribution reported in a
Caucasian population, while for rs1873778 (PDGFRA exon 12)
our data differ from those reported in a Caucasian population at
the NCBI website (http://www.ncbi.nlm.nih.gov/ sites/entrez/).

In particular, our results show that the A allele (p=0.86) is
the most frequent in the 35 Italian patients studied, whereas
data reported earlier indicated the G allele as being the most
frequent (p=0.98) in a Caucasian population (48 individuals).

Moreover at the NCBI website (http://www.ncbi.nlm.nih.gov/
SNP/snp_ref.cgi?rs=1873778P) a minor frequency for the G
allele (p=0.79) in Sub-Saharan African populations with respect
to Caucasias is indicated. The Caucasian population reported
belongs to western and northern Europe; since our population
belongs to the southern part of Europe, we cannot speculate as
to whether the observed discrepancy of allelic frequency might
be explained as a genetic gradient.

In conclusion, the present study suggests that mutations in
PDGFR genes, in contrast to KIT, do not occur in CBFL, thus
PDGFR genes do not seem to be involved in CBFL. Moreover,
molecular studies of PDGFRA and PDGFRB genes reported
that no pathogenic mutations were detected in CBFL (51-53).
Since the central role of receptor tyrosine kinases in the
development of haematological malignancies is well-known,
our future plan is to develop a careful search for activating
mutations in other RTK genes in CBFL patients whom tested
negative for KIT, FLT3, PDGFRA and PDGFRB mutations.
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