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Abstract

For bounded domains Ω, we prove that the Lp-norm of a regular function with compact
support is controlled by weighted Lp-norms of its gradient, where the weight belongs to a
class of symmetric non-negative definite matrix valued functions. The class of weights is
defined by regularity assumptions and structural conditions on the degeneracy set where the
determinant vanishes. In particular, the weight A is assumed to have rank at least one when
restricted to the normal bundle of the degeneracy set S. This generalization of the classical
Poincaré inequality is then applied to develop a robust theory of first order Lp-based Sobolev
spaces with matrix valued weight A. The Poincaré inequality and these Sobolev spaces are
then applied to produce various results on existence, uniqueness and qualitative properties of
weak solutions to boundary value problems for degenerate elliptic, degenerate parabolic and
degenerate hyperbolic PDEs of second order written in divergence form, where A is calibrated
to the matrix of coefficients of the second order spatial derivatives. The notion of weak solution
is variational in which the spatial states belong to the matrix weighted Sobolev spaces with
p = 2. For the degenerate elliptic PDEs, the Dirichlet problem is treated by the use of
the Poincarè inequality and Lax-Milgram theorem, while the treatment of Cauchy-Dirichet
problem for the degenerate evolution equations relies only on the Poincarè inequality and the
parabolic and hyperbolic counterparts of the Lax-Milgram theorem.
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1 Introduction

The classical Poincaré inequality1 on a bounded domain Ω ⊂ Rn can be stated as: given
p ∈ [1,∞) there exists a constant CP = CP(Ω, p) > 0 such that∫

Ω

|u|p dx ≤ CpP
∫

Ω

|∇u|p dx, u ∈ C1
0 (Ω), (1.1)

where C1
0 (Ω) is the space of C1 functions with compact support in Ω. This simple inequality

is well known to yield an impressive amount of consequences in the theory of Sobolev spaces
and their applications for well-posedness results of the Dirichlet problem for elliptic equations
as well as the Cauchy-Dirichlet problem for parabolic and hyperbolic equations. Particularly
striking is its success in the Hilbert space setting (with p = 2) and for linear equations of
second order. Making use of only (1.1) plus the Lax-Milgram theorem in the elliptic case, and
of its parabolic/hyperbolic variants due to J.L. Lions (by way of a Galerkin approximation),
one is able to say quite a bit about well posedness for weak solutions (the so-called variational
methods).

Motivated by potential applications to second order partial differential equations with
degeneracies, we will generalize the inequality (1.1) by allowing for a large class of symmetric
non-negative matrix valued weights A = A(x); that is, for suitable A we will prove that∫

Ω

|u|p dx ≤ CpP
∫

Ω

〈A(x)∇u,∇u〉p/2 dx, u ∈ C1
0 (Ω), (1.2)

where 〈·, ·〉 is the Euclidean scalar product on Rn. The assumptions on A will be grouped into
two sets of hypotheses (see (2.1) and (2.3)). The first set of hypotheses concerns the regularity
of the function A which takes values in the symmetric nonnegative matrices Sym+

n (R) and the
second set of hypotheses gives prescriptions on where and how A degenerates. In particular,
the degeneracy set S (where the determinant of A vanishes) will be taken to be a finite
union of compact connected C2 submanifolds without boundary and codimension at least
two, and A restricted to the normal bundle NS of S must have rank at least one. Our proof
of (1.2) relies on the existence of a suitable pair w, w̃ of strict subsolutions to the equation
div
{
A(x)∇w

}
= 0 (one near S and one away from S). In general, the hypothesis on the rank

of A restricted to NS cannot be dropped, while the condition on the codimension of S is not
necessary (see the examples in section 6 and Remark 3.5).

We will then put (1.2) to work, along the classical lines indicated above, to treat the
Dirichlet problem and the Cauchy-Dirichlet problem for degenerate elliptic, parabolic and
hyperbolic linear equations of second order. Not surprisingly, in the degenerate elliptic case,
the differential operators L will be in divergence form with A(x) playing the role of the
(degenerate) diffusion matrix; that is, we will consider equations of the form

Lu := div
{
A(x)∇u

}
+ 〈b(x),∇u〉+ c(x)u = f(x). (1.3)

Results on existence and uniqueness of weak (variational) solutions to the Dirichlet problem on
bounded domains Ω ⊂ Rn will be given as well as weak comparison and maximum principles.
For the evolution equations, we will allow for time dependence in the coefficients and in the
source for the degenerate parabolic equation

∂tu = div
{
M(x, t)∇u

}
+ 〈b(x, t),∇u〉+ c(x, t)u+ f(x, t) (1.4)

and for the degenerate hyperbolic equation

∂2
t u = div

{
M(x, t)∇u

}
+ 〈b(x, t),∇u〉+ c(x, t)u+ f(x, t). (1.5)

1Also known as the Poincaré - Sobolev inequality or the Friedrich’s inequality in the case p = 2
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Here the matrix valued function M will be controlled by an admissible degenerate diffusion
matrix on a prescribed time interval (0, T ); that is, we will assume that there exists an A
(belonging to our class) and positive constants µ1, µ2 such that

µ1A(x) ≤M(x, t) ≤ µ2A(x), x ∈ Ω, t ∈ (0, T ) (1.6)

in the sense of quadratic forms. We will establish results on existence and uniqueness of
weak solutions to the natural Cauchy-Dirichlet problems for the equations (1.4) and (1.5) in
cylindrical domains QT := Ω × (0, T ] with T > 0. Moreover, we will prove weak comparison
and maximum principles in the parabolic case. In all cases, suitable hypotheses will need to
be placed on the lower order coefficients b and c and on the source term f . In particular, we
will need uniform pointwise bounds on |[

√
A]−1b|, |[

√
M ]−1b| and hence the drift coefficients

(if present) must tame the singularity of [
√
A]−1, [

√
M ]−1 on S.

The notion of weak solutions will be the natural one in which the standard Sobolev space
H1

0 (Ω) = W 1,2
0 (Ω) of spatial states used in the non-degenerate situations will be replaced by

a suitably weighted version H1
0 (Ω;A) = W 1,2

0 (Ω;A), which is calibrated to the degenerate
diffusion matrix A. More precisely, for p ∈ [1,∞) we will define W 1,p

0 (Ω;A) as the completion
of C1

0 (Ω) with respect to the obvious norm

||u||W 1,p(Ω;A) :=

[∫
Ω

|u|p dx+

∫
Ω

〈A(x)∇u,∇u〉p/2 dx
]1/p

, (1.7)

and the space W 1,p(Ω;A) as the completion with respect to (1.7) of the subspace of C1(Ω)
with finite norm. Of course, the Poincaré inequality (1.2) passes to the completion and
yields the obvious equivalent norm on W 1,p

0 (Ω;A). In preparation for the PDE applications,
various elementary properties of these spaces and an effective calculus will be developed in
section 4. Of particular importance will be the question of whether these spaces defined by
strong derivatives can be captured in terms of a suitable notion of weak derivatives and a
key role will be played by the weak quasi-gradient. This notion was introduced in [20] to
address this question for a different class of matrix valued weights which yield the Poincaré
inequality. In [20] the degeneracy set S has codimension at least 1 and is calibrated to a class
of degenerate elliptic operators having a direction of uniform ellipticity, while in the present
work, the degeneracy set has codimension at least 2 but a direction of uniform ellipticity
need not be present (see Example 6.1). Moreover, for current and future use, we will give
a unified treatment of such Sobolev spaces with matrix valued weights by assuming only
that A ∈ C0(Ω,Sym+

n (R)) having degeneracy set S of measure zero for which the Poincaré
inequality holds.

In order to place the present work in context, some additional remarks and comparisons
with the vast existing literature on Poincaré inequalities, Sobolev spaces with weights and
degenerate PDEs are in order. We begin with our principal motivation which is the treatment
of degenerate PDEs by focusing attention directly on the singular set S and the properties that
a degenerate diffusion matrix A must satisfy in order to employ various techniques. Here, we
restrict our attention to the validity of the Poincaré inequality and its implications for linear
PDE problems with Dirichlet and Cauchy-Dirichlet conditions. The key structural property
that emerges is the role of a degenerate diffusion matrix A with thin degeneracy set S for
which the rank of A restricted to the normal bundle of S is at least one. This is the so-called
orthogonal rank of A on S and plays an important role in questions of nonattainability of S
in the associated diffusion process (see Chapter 11 of [14]). This notion of orthogonal rank
also plays a key role in characterizing well-posedness of distributional solutions for degenerate
elliptic and parabolic equations when the singular set S is a thin subset of the boundary,
as done in [26]. More precisely, the main question is whether one can obtain uniqueness
without prescribing Dirichlet data everywhere on S, and this occurs when such portions are not
attainable for the associated diffusion process. That boundary conditions need not be placed
everywhere in degenerate contexts (operators with non negative characteristic form) is well
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known from the work of Fichera [9] (see also Fichera [10] and Olĕinik and Radkevič [25] and the
references therein). One can view the present paper as well as [20] and [26] as continuations of
the point of view of focusing attention on S and A for equations of nonnegative characteristic
form. There are various similarities, but there are key differences in these related papers.
While [26] treats boundary degeneracy and [20] treats cases where S is partially contained
in Ω but can reach the boundary, the results of the present paper will be stated for singular
sets S which are suitably regular and contained in the interior of Ω. However, boundary
degeneration for Ω can be also treated here if the required hypotheses hold on a larger domain
Ω̃ which contains the closure of Ω (see Corollary 3.2). While the Poincaré inequality plays a
role also in [20], it does not in [26]. On the other hand, a common feature of all of these works
are the construction of suitable subsolutions. In [26] such subsolutions tend to −∞ as the
distance from the degeneracy set goes to 0, while here and in [20] the relevant subsolutions
will remain bounded. Moreover, in [26] the distance function to S plays a prominent role,
while here local defining functions for S are the key auxiliary objects.

Having discussed our point of view, we should make some comparison with the vast lit-
erature on Poincaré inequalities, Sobolev spaces and degenerate PDEs. First, for approaches
involving matrix valued weights, one must note the very general and abstract program begun
by Sawyer and Wheeden in their work on Hölder continuity for subelliptic linear equations
[30] (and refined in [31]), which has led to the development of elegant techniques to treat local
properties of weak solutions to degenerate elliptic PDEs with rough coefficients. Through
their work and that of their disciples and collaborators, the Sawyer-Wheeden program has
been subsequently freed from the Hilbert space setting of L2-based spaces (and hence linear
equations) to yield results on local boundedness in [22], Harnack inequalities in [23] and com-
pact embeddings in Lebesgue spaces [4], amongst others. In addition, global results on weak
existence for linear degenerate elliptic equations have been obtained for the Dirichlet problem
in [27] and for the Neumann problem as well in [21], which also contains some elements of
spectral theory. In all of these works, the approach is axiomatic in nature, where in order to
deduce their results the authors assume a priori the validity of suitable local Poincaré and
Sobolev inequalities (with a strict gain in summability) adapted to the nonnegative matrix of
weights A, as well as the existence of suitable families of Lipschitz cutoff functions. Hence the
inequality (1.2), which is the focus of the present work, can be seen as a precursor of the con-
ditions required in the Sawyer-Wheeden axiomatic program. While there may be some cases
in which results of the present work overlap with results that have been obtained within the
axiomatic program, neither approach subsumes the other. On the one hand, we make stronger
explicit hypotheses on the matrix A, which is assumed to have continuous coefficients and a
singular set S of measure zero. On the other hand, we do not assume the a priori validity of
local Sobolev inequalities with a strict gain in summability, which may fail in cases where the
Poincaré inequality (1.2) holds and our results (and those of [20]) apply. A simple example of
this failure is presented in Example 6.6 and hence we cannot always transport the axiomatic
program to our setting. As a final comparison, we mention that the Sobolev spaces with
matrix valued weight A used in the axiomatic program are defined as completions of locally
Lipschitz functions, while we have used C1 functions here. Under our assumptions, the two
definitions yield the same function spaces as described in Remark 4.9.

The Poincaré inequalities presented here (and in [20]) involve anisotropic matrix valued
weights A and do not presume any particular underlying geometric structure, such as a Carnot-
Carathéodory metric associated to a suitable family {Xj}mj=1 of locally Lipschitz vector fields
on Ω. This underlying sub-Riemannian structure is natural for studying PDEs whose principal
part is a sum of squares of the vector fields and has a rich history beginning with the work of
Hörmander [17] for smooth vector fields. Hörmander’s work, coupled with the seminal papers
of Fefferman-Phong [8] in a general nonnegative definite but smooth setting and the first
extension to a non-smooth setting in Franchi-Lanconelli [13], also provided the motivation for
the Sawyer-Wheeden program descibed above. An underlying sub-Riemmannian structure
plays a fundamental role in the analysis on the Heisenberg group and other homogeneous
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Carnot groups (see the monograph of Bonfiglioli, Lanconelli and Uguzzoni [2] for a detailed
account). In such a geometric context, there are a wealth of available Poincaré inequalities
(see the paper of Hajlasz and Koskela [16] for an extensive survey). While we do not assume
such an underlying structure, our class of problems may allow for one provided that the matrix
A represents the principal part of the sum of the squares of vector fields {Xj}mj=1 satisfying

the needed sub-Riemannian structural conditions. For example, if A ∈ C2(Ω; Sym+
n (R)) then

the entries of
√
A will be locally Lipschitz functions (see Theorem 6.1.2 in volume I of [14])

and one could attempt to choose {Xj}nj=1, where Xj is the j-th column of
√
A, provided that

the resulting degeneracy set S satisfies the requirements in condition (2.3). We do not require
A to be regular enough to support such locally Lipschitz vector fields. On the other hand, for
the analysis on homogeneous Carnot groups, the degeneracy set S does not have to be thin,
as we require.

Similar geometric considerations hold for the applications to degenerate PDEs of course.
In particular, in the situation described above one sees that A satisfies

n∑
j=1

〈Xj , ξ〉2 = 〈A(x)ξ, ξ〉, ∀ x ∈ Ω, ξ ∈ Rn, (1.8)

which means that the principal part div
{
A(x)∇u

}
is uniformly X-elliptic in the language

of Lanconelli and Kogoj [18] which rendered explicit the property introduced in Franchi and
Lanconelli [12]. In that spirit, we could say that our point of view is merely that div

{
A(x)∇u

}
is uniformly

√
A-elliptic for any measurable non negative matrix-valued function A. Similarly,

one could interpret the condition (1.6) in this light by writing

µ1|
√
A(x)ξ|2 ≤ 〈M(x, t)ξ, ξ〉 ≤ µ2|

√
A(x)ξ|2, (1.9)

to say that the equation (1.4) is
√
A-parabolic.

With respect to other possible approaches to the degenerate PDEs, we wish to make a few
additional remarks. First, we do not assume conditions on the smallest, largest eigenvalues
λ(x),Λ(x) of A(x) of the form

λ−1 ∈ Lp(Ω) with p ≥ n/2

as in Murthy and Stampacchia [24] or

Λ(x) ≤ Cλ(x) for some constant C > 0

as in Fabes, Kenig and Serapioni [7], although we will effectively require Λ(x) ≤ Λ < +∞ (see
assumption (2.1)-(i)). Similar considerations hold for the degenerate parabolic applications
in contrast with the related work of Chiarenza and Serapioni [5]. For the evolution equations,
we have taken the variational approach in part in order to easily treat equations with time-
dependent coefficients, which complicates matters for approaches based on semigroups in this
non-autonomous setting. Moreover, we do not fully exploit the unity present on the Fichera-
Olĕinik theory of equations with non-negative characteristic form. More precisely, we prefer
to treat the degenerate elliptic and degenerate parabolic problems in a distinct but related
variational way, making use of the their special features. In principle, one could treat them
together (as summarized in Chapter 1 of [25]). However one is able to obtain better parabolic
results directly with no additional effort. For example, there are no sign conditions on the
coefficient c(x, t) in our parabolic results.

We conclude this introduction with a brief outline of the contents. In section 2, we present
the precise assumptions made on the degenerate diffusion matrix A and reduce the proof of
the Poincaré inequality (1.2) to the existence of the aforementioned subsolution pair w, w̃
(see Proposition 2.1). This proposition uses essentially only the regularity hypotheses (2.1).
In section 3, we complete the proof of (1.2) by constructing the pair w, w̃ by exploiting the
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structural hypotheses (2.3) on A and S (especially the normal rank condition). Various mild
generalizations and remarks will also be given. Section 4 studies the associated Sobolev spaces
with matrix valued weights A under mild assumptions on A and S, but assuming the validity
of the Poincaré inequality (1.2) (see hypothesis (4.1)). In section 5 we will apply the present
results to degenerate PDEs, where the key point is the validity of (1.2) for the degenerate
diffusion matrix A. Finally, in section 6 we present the examples mentioned above which
illustrate the structural hypotheses made on the weight A and its singular set S in order to
ensure the validity of the Poincaré inequality. In particular, the Poincaré inequality may fail
if the orthogonal rank condition of A on S does not hold, while the Poincaré inequality can
be valid without requiring a direction of uniform ellipticity for the diffusion matrix A (as
required in [20]) and without assuming that S has codimension at least two (in accordance
with Remark 3.5).

2 Degenerate diffusion matrices and subsolution pairs

As described in the introduction, we would like to find sufficient conditions on a degenerate
diffusion matrix valued function A on a bounded domain Ω ⊂ Rn for which the Poincaré
inequality (1.2) holds. In this section, we will give such sufficient conditions and explain how
the validity of (1.2) reduces to the existence of a suitable pair of subsolutions to the associated
degenerate elliptic operator Lu := div{A∇u}. We will first require that A : Ω→ Sym+

n (R) is
sufficiently regular; more precisely, denoting by A(x) = [aij(x)]i,j=1,...,n we will assume that:

(i) aij = aji ∈ C1(Ω) ∩ C0(Ω) for i, j = 1, . . . , n;

(ii)
∂aij
∂xj

∈ L∞(Ω) for i, j = 1, . . . , n;

(iii) 〈ξ, A(x)ξ〉 =

n∑
i,j=1

aij(x)ξiξj ≥ 0 for every x ∈ Ω and ξ = (ξ1, .., ξn) ∈ IRn.
(2.1)

Condition (iii) in (2.1) says that L is of nonnegative characteristic form and we denote by

S =
{
x ∈ Ω

∣∣ detA(x) = 0
}

(2.2)

the degeneracy set of any second order operator having principal part L. Of course, for every
x ∈ Ω \ S one has

n∑
i,j=1

aij(x)ξiξj > 0 for any ξ = (ξ1, .., ξn) ∈ IRn \ {0}.

Our assumptions on the domain Ω and the degeneracy set S are the following:

(i) ∂Ω is of class C1,1;
(ii) S =

⋃m
α=1 Sα ⊂ Ω is the disjoint union of a finite number m of compact

connected submanifolds of IRn, without boundary, of class C2 and having
dimension k1, . . . , km ∈ {0, 1, . . . , n− 2};

(iii) for every point x0 ∈ S there exists ζ = ζ(x0) ∈ IRn \ {0} such that ζ ⊥ S
at x0 and 〈ζ,A(x0)ζ〉 > 0.

(2.3)

Since A ≥ 0 as a quadratic form, condition (iii) in (2.3) just says that A restricted to the
normal bundle of S has rank at least one at each point x0 ∈ S. This orthogonal rank may vary
from point to point. We will say that dimSα = 0 if Sα is a single point x0, and in that case
condition (iii) just means that A(x0) 6= 0. Note that, under condition (2.3), the degeneracy
set S has exactly m connected components.
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For ε > 0 and α = 1, . . . ,m we define the following open neighborhoods of the singular set
and its components

Sε := {x ∈ Ω | d(x,S) < ε} and Sεα := {x ∈ Ω | d(x,Sα) < ε}.

We always assume that ε > 0 is small enough to ensure that

Sε ⊂ Ω and Sεα ∩ Sεβ = ∅ for α 6= β. (2.4)

By the structural condition (ii) of (2.3), all of the connected components S1, . . . ,Sm of S have
codimension at least two. This hypothesis combined with (2.4) implies that

Ω \ Sε is connected (2.5)

since Ω is connected. Indeed, by (2.4), one can remove one connected component of Sε at a
time. Exploiting a bundle of planes orthogonal to Sα, one easily shows that Ω \ Sεα is path
connected. Moreover, by choosing ε > 0 even smaller if necessary, we can assume that each
of the open sets Sεα is of class C2, see for instance [11, Theorem 1].

Making use of the elementary inequality

|〈Mv1, v2〉| ≤ |
√
Mv1||

√
Mv2|, M ∈ Sym+

n (R), v1, v2 ∈ IRn (2.6)

and performing simple Lp estimates for degenerate elliptic equations along the lines of Fichera
(see section 3 of [10] as well as Lemma 1.2.1 of [25]), one has the following sufficient conditions
for the validity of the Poincaré inequality (1.2) in terms of the existence of a suitable pair of
local strict subsolutions w, w̃.

Proposition 2.1 Let A satisfy the conditions (2.1) and let p ∈ [1,∞). Assume that S ⊂ Ω,
that Θ is a C1,1 bounded open set such that S ⊂ Θ ⊂ Θ ⊂ Ω and that there exist w ∈ C2(Θ),
w̃ ∈ C1

(
Ω \Θ

)
∩W 2,p(Ω \Θ) for some p ≥ 1, θ > 0, K > 0 such that

div
(
A(x)∇w

)
≥ θ in Θ, (2.7)∣∣√A(x)∇w

∣∣ ≤ K in Θ, (2.8)

div
(
A(x)∇w̃

)
≥ θ a.e. in Ω \Θ, (2.9)∣∣√A(x)∇w̃

∣∣ ≤ K in Ω \Θ. (2.10)

Furthermore, suppose that

〈A(x)(∇w −∇w̃), ν̂〉 ≤ 0 on ∂Θ , (2.11)

where ν̂ denotes the outward unit normal to ∂Θ. Then, for every u ∈ C1
0 (Ω), we have

‖u‖Lp(Ω) ≤ C
(∫

Ω

〈A(x)∇u,∇u〉
p
2 dx

) 1
p

, (2.12)

for some constant C > 0 depending only on p, θ, K.

Proof. Let δ > 0 and u ∈ C1
0 (Ω). By the Divergence Theorem, since suppu ⊂ Ω, A(x)∇w̃ ∈

W 1,p(Ω \Θ) and by the regularity of u and of ∂Θ, we obtain∫
Θ

div
(
A(x)∇w

)
(u2 + δ)

p
2 dx+

∫
Ω\Θ

div
(
A(x)∇w̃

)
(u2 + δ)

p
2 dx = (2.13)

−p
∫

Θ

〈A(x)∇w,∇u〉u(u2 + δ)
p
2−1 dx+

∫
∂Θ

〈A(x)∇w, νε〉(u2 + δ)
p
2 dσ

−p
∫

Ω\Θ
〈A(x)∇w̃,∇u〉u(u2 + δ)

p
2−1 dx−

∫
∂Θ

〈A(x)∇w̃, νε〉(u2 + δ)
p
2 dσ

+

∫
∂Ω

〈A(x)∇w̃, ν〉(u2 + δ)
p
2 dx,
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where ν denotes the outward unitary normal vector to ∂Ω. Letting δ → 0+ in (2.13), by the
Dominated Convergence Theorem and recalling that suppu ⊂ Ω, and thus u = 0 on ∂Ω,∫

Θ

div
(
A(x)∇w

)
|u|p dx+

∫
Ω\Θ

div
(
A(x)∇w̃

)
|u|p dx = (2.14)

−p
∫

Θ

〈A(x)∇w,∇u〉u|u|p−2 dx− p
∫

Ω\Θ
〈A(x)∇w̃,∇u〉u|u|p−2 dx

+

∫
∂Θ

〈A(x)(∇w −∇w̃, νε〉|u|p dσ.

Here, in case p = 1, we have u|u|−1 = sgnu with the convention that the function is 0 at
each point of the domain where u = 0. From (2.14), using conditions (2.7), (2.9), (2.11) and
inequality (2.6), we get

θ

∫
Ω

|u|p dx ≤ p

∫
Θ

|
√
A(x)∇w||

√
A(x)∇u||u|p−1 dx (2.15)

+p

∫
Ω\Θ
|
√
A(x)∇w̃||

√
A(x)∇u||u|p−1 dx.

By (2.15), (2.8) and (2.10) we obtain

θ

∫
Ω

|u|p dx ≤ pK
∫

Ω

|
√
A(x)∇u||u|p−1 dx. (2.16)

If p = 1, the conclusion now easily follows by dividing through by θ > 0. In case p > 1, in
view of Hölder inequality, (2.16) yields∫

Ω

|u|p dx ≤ pK

θ

(∫
Ω

〈A(x)∇u,∇u〉
p
2 dx

) 1
p
(∫

Ω

|u|p dx
) p−1

p

.

This easily implies the conclusion with C = pK
θ . �

We conclude this section by noting that that the parameters θ and K will depend, in
practice, on the domain Ω and the coefficients of A and hence C = C(p,Ω, A). This will be
illustrated in the following section when we construct the pair w, w̃ and the neighborhood Θ
of S.

3 The Poincaré inequality with matrix valued weights

In this section, we will construct the subsolution pair w, w̃ required by Proposition 2.1 and
hence complete the proof of the following Poincaré inequality with matrix valued weight A.

Theorem 3.1 Assume that A and Ω satisfy the assumptions (2.1) and (2.3) and let p ∈
[1,∞). Then there exists a constant CP = CP(p,Ω, A) > 0 such that for every u ∈ C1

0 (Ω) one
has

‖u‖Lp(Ω) ≤ CP
(∫

Ω

〈A(x)∇u,∇u〉
p
2 dx

) 1
p

. (3.1)

Before giving the proof, we wish to make a few remarks about extending the applicability
of the theorem. A first obvious consequence of Theorem 3.1 allows for degeneracy on the
boundary on the boundary of a domain Ω′, provided that it has compact closure within a
domain on which the theorem applies. In particular, no regularity hypotheses on ∂Ω′ need to
be made as one merely extends u to be zero on the complement Ω \Ω′ and uses the regularity
on ∂Ω.
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Remark 3.2 If the conditions (2.1) and (2.3) are satisfied by A on Ω and p ∈ [1,∞), then
for each subdomain Ω′ b Ω there exists a constant C = C(p,A,Ω′) > 0 such that

‖u‖Lp(Ω′) ≤ C
(∫

Ω′
〈A(x)∇u,∇u〉

p
2 dx

) 1
p

holds for each u ∈ C1
0 (Ω′).

Next we note that one can relax the regularity assumptions on the coefficients of the matrix
valued weight if it dominates a weight for which the theorem applies.

Remark 3.3 Assume that conditions (2.1) and (2.3) are satisfied by A on Ω and that p ∈
[1,∞). If B : Ω→ Sym+

n (R) is measurable and admits C0 > 0 such that

〈ξ, A(x)ξ〉 ≤ C0〈ξ,B(x)ξ〉

for a.e. x ∈ Ω and every ξ ∈ IRn, then there exists a constant C > 0 such that for every
u ∈ C1

0 (Ω) one has

‖u‖Lp(Ω) ≤ C
(∫

Ω

〈B(x)∇u,∇u〉
p
2 dx

) 1
p

.

Finally, we note two possible ways in which one can relax the assumptions on the degeneracy
set S. The first concerns the regularity of S, while the second concerns the codimension of S.

Remark 3.4 As the proof of Theorem 3.1 shows, the Poincaré inequality (3.1) will hold on
Ω provided that one has

i) the regularity condition (2.1),

ii) ∂Ω is of class C1,1,

iii) S ⊂ Ω and Ω \ Sε has only one connected component for ε > 0 small enough,

iv) for every x0 ∈ S there exists a closed ball BR(x0) ⊂ Ω and a function Φ ∈ C2(BR(x0))
such that

S ∩BR(x0) ⊂ {x ∈ BR(x0) |Φ(x) = 0}

and 〈∇Φ(x0), A(x0)∇Φ(x0)〉 > 0.

See also Proposition 3.6. These conditions may hold in some cases, even when the degeneracy
set S fails to be of class C2, as required in condition (2.3).

Remark 3.5 The case when the degeneracy set S has at least one connected component of
dimension n− 1 is more delicate, but we can recover the result under an additional technical
hypothesis. Indeed, as the proof of Theorem 3.1 will show, if one assumes (2.1) and relaxes
(2.3) to allow k1, . . . , km to vary in {0, 1, . . . , n− 1}, then (3.1) still holds, provided that one
assumes

∂Ωi ∩ ∂Ω 6= ∅ for all i = 1, . . . , n0 (3.2)

where Ωi are the connected components of Ω \ S; that is,

Ω \ S =

n0⋃
i=1

Ωi,

for some n0 ∈ IN . More precisely, this condition can be used in Step III of the proof in order
to obtain existence of a solution to problem (3.26), in every connected component Ωi.

We are now ready to discuss the proof. As explained in section 2, Theorem 3.1 follows
from Proposition 2.1, provided that we can exhibit a suitable subsolution pair w, w̃. Their
construction will be achieved in three steps:
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I. For any x0 ∈ S, construct a function ϕ ∈ C2
(
BR(x0)

)
, with BR(x0) ⊂ Ω, such that

div
(
A(x)∇ϕ

)
≥ θ in BR(x0) (3.3)

and
|
√
A(x)∇ϕ| ≤ K in BR(x0), (3.4)

for some R, K, θ > 0, depending on x0.

II. Define Θ = Sε and, by using the compactness of S and Step I above, construct a function
w satisfying (2.7) and (2.8) on Θ = Sε for ε > 0 small enough;

III. Exploit the uniform ellipticity away from the degeneracy set S to construct the function
w̃ such that (2.9), (2.10) and (2.11) are satisfied, with Θ = Sε as in Step II above.

3.1 Step I of the proof of Theorem 3.1

We begin with a local construction near the singular set S.

Proposition 3.6 Let the assumptions of Theorem 3.1 be satisfied and let x0 ∈ S. Then there
exist R, K, θ > 0 and Φ ∈ C2

(
BR(x0)

)
with BR(x0) ⊂ Ω such that

i) ϕ = Φ2 satisfies (3.3) and (3.4); that is,

div
(
A(x)∇ϕ

)
≥ θ and |

√
A(x)∇ϕ| ≤ K in BR(x0) (3.5)

ii) one has

R <
1

3
min
α6=β

d(Sα,Sβ); (3.6)

iii) one has
S ∩BR(x0) ⊂

{
x ∈ BR(x0) |Φ(x) = 0

}
. (3.7)

Remark 3.7 Since S1, . . . ,Sm are compact, minα 6=β d(Sα,Sβ) is finite and positive. In par-
ticular, if x0, x1 ∈ S belong to different connected components of S, the corresponding balls
provided by Proposition 3.6 have closures which do not intersect.

Proof. Since x0 ∈ S, there exists a unique α ∈ {1, . . . ,m} such that x0 ∈ Sα. Let ζ ∈ IRn\{0}
be such that ζ ⊥ S at x0 and 〈ζ,A(x0)ζ〉 > 0, as given by the normal rank condition (iii) of
(2.3). We construct Φ in terms of this direction ζ along which A is nondegenerate.

Claim: There exist r > 0 and Φ ∈ C2
(
Br(x0)

)
such that Br(x0) ⊂ Ω,

S ∩Br(x0) ⊂
{
x ∈ Br(x0) |Φ(x) = 0

}
, (3.8)

Br(x0) ∩ Sβ = ∅ if β 6= α and ∇Φ(x0) = ζ.

Indeed, in the case when Sα = {x0}, first choose r > 0 small enough so that Br(x0) ⊂ Ω
and Br(x0) ∩ Sβ = ∅ for every β 6= α. This is possible by the compactness of S1, . . . ,Sm and
since x0 /∈ Sβ for β 6= α. Then we can choose Φ(x) := 〈x − x0, ζ〉 on Br(x0) and the claim
follows in this case.

In the remaining cases, since Sα is a C2 manifold of dimension kα > 0 in IRn, we can find
an open neighborhood W ⊂ IRn of x0 and a function F ∈ C2(W, IRn−kα) such that

W ∩ Sα =
{
x ∈W |F (x) = 0

}
, rk

[
DF (x)

]
= n− kα for every x ∈W. (3.9)

Since S1, . . .Sm ⊂ Ω are compact and disjoint, by choosing a smaller neighborhood W if need
be, we can assume that W ⊂ Ω and that W ∩ Sβ = ∅ for β 6= α.

Let F1, . . . , Fn−kα denote the scalar components of F . By applying condition (3.9), we have
that Fj = 0 and ∇Fj 6= 0 on W ∩Sα for every j = 1, . . . , n−kα. Thus ∇Fj(x) is perpendicular
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to Sα at x, for every x ∈W ∩ Sα and every j = 1, . . . , n− kα. By condition (3.9) the vectors
∇F1(x), . . . ,∇Fn−kα(x) are independent for every x ∈W ∩Sα. Since Sα ⊂ IRn has dimension
kα, for every x ∈ Sα ∩W the system {∇Fj(x)}n−kαj=1 form a basis of the space of vectors in
IRn that are perpendicular to Sα at x. Since ζ ⊥ S at x0 ∈ Sα, we have

ζ =

n−kα∑
j=1

cj∇Fj(x0)

for some constants c1, . . . , cn−kα ∈ IR. Now let r > 0 be small enough so that Br(x0) ⊂ W ;
then the function

Φ(x) :=

n−kα∑
j=1

cjFj(x)

satisfies all the requirements in the claim.
Having selected Φ, we need only verify that R,K, θ can be found so that (3.5) - (3.7) hold.

By condition (iii) of (2.3), we have

〈∇Φ(x0), A(x0)∇Φ(x0)〉 = 〈ζ,A(x0)ζ〉 := 2θ > 0;

which selects θ. Using the continuity of A and ∇Φ and choosing r > 0 smaller if need be, we
can assume that

〈∇Φ(x), A(x)∇Φ(x)〉 ≥ θ > 0, in Br(x0). (3.10)

For x ∈ Br(x0), we compute the expression needed for the first property in (3.5):

div
(
A(x)∇(Φ2(x))

)
= 2Φ(x)

n∑
i,j=1

(
∂aij
∂xj

(x)
∂Φ

∂xi
(x) + aij(x)

∂2Φ

∂xi∂xj
(x)

)
(3.11)

+2〈∇Φ(x), A(x)∇Φ(x)〉.

Since A ∈ C1(Br(x0)) and Φ ∈ C1(Br(x0)), there exists a constant M > 0 such that∣∣∣∣∣∣2
n∑

i,j=1

∂aij
∂xj

(x)
∂Φ

∂xi
(x) + aij(x)

∂2Φ

∂xi∂xj
(x)

∣∣∣∣∣∣ ≤M in Br(x0). (3.12)

Since Φ(x0) = 0 and is continuous, we can choose R ∈ (0, r) small enough so that (3.6) holds
and

|Φ(x)| ≤ θ

M
in BR(x0). (3.13)

Setting ϕ = Φ2, we have ϕ ∈ C2
(
BR(x0)

)
and hence one has the existence of a constant

K > 0 for which the second property in (3.5) holds. Moreover, by (3.10)–(3.13), we easily
obtain

div
(
A(x)∇ϕ(x)

)
≥ θ > 0

on BR(x0), which gives the first property in (3.5). Finally, condition (3.7) is an immediate
consequence of (3.8) since 0 < R < r. �

3.2 Step II of the proof of Theorem 3.1

Using Proposition 3.6, we now construct a function w ∈ C2(Sε) satisfying (2.7) and (2.8)
on Θ = Sε, for ε > 0 small enough. The function w will be constructed separately on a
neighborhood Sεα of each Sα for every fixed α = 1, . . . ,m, with ε > 0 small enough so that
(2.4) holds.
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Fix α = 1, . . . ,m. If Sα = {x0} has dimension 0, then the function w = Φ2 constructed
using Proposition 3.6 satisfies (2.7) and (2.8) in Sεα = Bε(x0), for ε > 0 small enough. Hence
we can restrict our attention to those α for which dim(Sα) > 0.

Using the compactness of Sα and Proposition 3.6, we can cover Sα by a finite number
N = N(α) of balls

Sα ⊂
N⋃
k=1

BRk(xk) := Ω∗α

with centers xk ∈ Sα and radii satisfying

Rk <
1

3
d(Sα,Sβ) for each β 6= α

for which there are functions Φk ∈ C2
(
BRk(xk)

)
satisfying (3.5) and (3.7) with Rk,Φk, xk in

place of R,Φ, x0.
In order to complete the construction of the subsolution w in a neighborhood of S, we note

that distinct connected components Sα have associated coverings Ω∗α with disjoint closures.
Hence it will suffice to introduce a suitable partition of unity subordinate to the open covering
{BRk(xk)}Nk=1 of each connected component Sα of S in order to patch together the family of
functions {Φ2

k}Nk=1. To this end, we note that for each fixed α the neighborhood Ω∗α is open

and satisfies Ω
∗
α ⊂ Ω. In particular, d(Sα, ∂Ω∗α) > 0; thus there exists ε∗ > 0 such that

Sε∗α =
{
x ∈ Ω

∣∣ d(x,Sα) ≤ ε∗
}
⊂ Ω∗α;

that is, {BRk(xk)}Nk=1 is also an open covering of the fattening Sε∗α of the component Sα. We

may then select a smooth partition of unity {ψk}Nk=1 on Sε∗α which is subordinate to the open
covering {BRk(xk)}Nk=1; that is,

ψk ∈ C∞0
(
BRk(xk)

)
, ψk ≥ 0 for k = 1, . . . , N,

N∑
k=1

ψk(x) = 1 for every x ∈ Sε∗α .
(3.14)

Since suppψk is compact and is contained in BRk(xk), one has

γk := d
(
suppψk, ∂BRk(xk)

)
> 0 for k = 1, . . . , N. (3.15)

Moreover, using the regularity of ψk,Φk and the coefficients aij , there exists a constant M =
M(α) > 0 such that

|ψk(x)| ≤M,

∣∣∣∣∂ψk∂xj
(x)

∣∣∣∣ ≤M,

∣∣∣∣ ∂2ψk
∂xi∂xj

(x)

∣∣∣∣ ≤M,

|aij(x)| ≤M,

∣∣∣∣∂aij∂xj
(x)

∣∣∣∣ ≤M,

∣∣∣∣∂Φk
∂xj

(x)

∣∣∣∣ ≤M (3.16)

for every x ∈ Ω
∗
α, every k = 1, . . . , N and every i, j = 1, . . . , n. In particular, from the last

inequality in (3.16) it follows that

|Φk(x)− Φk(y)| ≤
√
nM |x− y| (3.17)

for every k = 1, . . . , N and every x, y ∈ BRk(xk). By Proposition 3.6, for every k = 1, . . . , N
there exists θk > 0 such that

div
(
A(x)∇(Φ2

k(x))
)
≥ θk on BRk(xk). (3.18)
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Finally, we pick ε and θ to satisfy

0 < ε < min{ε∗, γ1, . . . , γN}, θ =
1

2
min{θ1, . . . , θN}

and on Sεα we define the function

w(x) =

N∑
k=1

ψk(x)Φ2
k(x).

This completes the construction of w.
It remains only to verify that w satisfies the required properties. By construction, we have

w ∈ C2(Sεα) and

div
(
A(x)∇w(x)

)
=

N∑
k=1

ψk(x) div
(
A(x)∇(Φ2

k(x))
)

+
N∑
k=1

4Φk(x)〈∇Φk(x), A(x)∇ψk(x)〉+ Φ2
k(x) div

(
A(x)∇ψk(x)

) (3.19)

for every x ∈ Sεα. Using conditions (3.14) and (3.18), since Sεα ⊂ Sε∗α ⊂ Ω∗α, we easily see that

N∑
k=1

ψk(x) div
(
A(x)∇(Φ2

k(x))
)
≥

N∑
k=1

ψk(x)θk ≥ 2θ > 0 on Sεα. (3.20)

Moreover, for every x ∈ Sεα the conditions in (3.16) yield∣∣∣∣∣
N∑
k=1

Φ2
k(x) div

(
A(x)∇ψk(x)

)∣∣∣∣∣
=

∣∣∣∣∣∣
N∑
k=1

Φ2
k(x)

 n∑
i,j=1

∂aij
∂xj

(x)
∂ψk
∂xi

(x) + aij(x)
∂2ψk
∂xi∂xj

(x)

∣∣∣∣∣∣ (3.21)

≤ 2n2M2
N∑
k=1

Φ2
k(x)χsuppψk(x),

where χA is the characteristic function of the set A. If χsuppψk(x) 6= 0, then x ∈ suppψk ⊂
BRk(xk), and hence

d
(
x, ∂BRk(xk)

)
≥ d
(
suppψk, ∂BRk(xk)

)
= γk > ε. (3.22)

On the other hand, d(x,Sα) < ε, since x ∈ Sεα; in particular, there exists x∗ ∈ Sα ∩ Bε(x).
Condition (3.22) shows that Bε(x) ⊂ BRk(xk) and hence x∗ ∈ Sα ∩BRk(xk). Using condition
(3.7) of Proposition 3.6, we conclude that Φk(x∗) = 0, and hence by (3.17)

|Φk(x)| = |Φk(x)− Φk(x∗)| ≤
√
nM |x− x∗| <

√
nMε. (3.23)

Combining (3.21) and (3.23) we obtain∣∣∣∣∣
N∑
k=1

Φ2
k(x) div

(
A(x)∇ψk(x)

)∣∣∣∣∣ ≤ 2n3NM4ε2 for every x ∈ Sεα. (3.24)

With a similar argument, using again inequality (3.23), it is easy to see that∣∣∣∣∣4
N∑
k=1

Φk(x)〈∇Φk(x), A(x)∇ψk(x)〉

∣∣∣∣∣ ≤ 4n
5
2NM4ε for every x ∈ Sεα. (3.25)
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Combining (3.20), (3.24) and (3.25) with (3.19) we see that

div
(
A(x)∇w(x)

)
≥ 2θ − 4n

5
2NM4ε− 2n3NM4ε2 ≥ θ > 0

for every x ∈ Sεα, if ε > 0 is small enough. Hence w satisfies (2.7) on Sεα; by the compactness
of Sεα and by regularity of the entries of the matrix A(x) and of the function w, condition
(2.8) is also trivially satisfied for some positive K > 0 on Sεα.

Repeating the above argument on each connected component Sε1 , . . . ,Sεm of Sε we obtain
the function w with the desired properties. �

3.3 Step III of the proof of Theorem 3.1

Exploiting the uniform ellipticity of div
(
A(x)∇v

)
away from the degeneracy set S, we now

proceed to construct a function w̃ ∈ C1
(
Ω \ Sε

)
∩ W 2,p(Ω \ Sε) which satisfies conditions

(2.9), (2.10) and (2.11) for some θ,K > 0 and for ε > 0 small enough.
We start by considering the function w constructed in Step II of the proof. Up to choosing

a smaller ε > 0, we can assume that w ∈ C2
(
S2ε
)

and that S2ε ⊂ Ω. Now consider a function

ŵ ∈ C2
0 (Ω) having compact support in S2ε and such that ŵ ≡ w on Sε. For example, a

function ŵ with the desired properties can be constructed as follows. By the compactness of
Sε, we can find a finite number of open balls {B 3

2 ε
(xk)}Nk=1 such that x1, . . . , xN ∈ S and

Sε ⊂
N⋃
k=1

B 3
2 ε

(xk).

Now let {ψk}Nk=1 be a smooth partition of unity on Sε subordinate to the open covering
{B 3

2 ε
(xk)}Nk=1. Then we can define

ŵ(x) =


N∑
k=1

ψk(x)w(x) for x ∈ S2ε,

0 otherwise.

We are now going to construct the function w̃ on Ω \ Sε with ε > 0 small enough so that
(2.4) holds. As noted in (2.5), one has that Sε ⊂ Ω is connected. For such ε one also has that
∂
(
Ω \ Sε

)
= ∂Ω ∪ ∂Sε with ∂Ω ∩ ∂Sε = ∅.

Let θ > 0 be as in Step II of the proof and let νε = νε(x) denote the outward unit normal
to ∂Sε at the point x. In the bounded open domain U := Ω\Sε with C1,1 boundary ∂Ω∪∂Sε,
consider the weak solution v ∈ H1

(
U) of the uniformly elliptic boundary value problem

div
(
A(x)∇v

)
= −div

(
A(x)∇ŵ

)
+ θ := f in U ,

〈νε, A∇v〉 = 0 on ∂Sε,
v = 0 on ∂Ω.

(3.26)

We note that all of the connected components of ∂U are compact and separated by a positive
distance, which aids the regularity analysis of v. Since ŵ ∈ C2

0 (Ω) and the coefficients of A
are C1(Ω), one has f ∈ C(Ω). Denoting by H1

∂Ω(U) the subspace of H1(U) whose elements
have zero trace on the component ∂Ω and using f ∈ L2(U), one knows that there exists a
unique v ∈ H1

∂Ω(U) which solves (3.26) in the sense that

B(v, ψ) = (f, ψ)L2(U), ∀ ψ ∈ H1
∂Ω(U),

where B is the usual bilinear form associated to the PDE (see Proposition 8.8 of Salsa [28], for
example). Since f ∈ Lp(U) for each p ≥ 1 and since the coefficients of A are uniformly con-
tinuous on U , harmonic analysis techniques such as Calderon-Zygmund theory, interpolation
and comparison with constant coefficient operators for the uniformly elliptic PDE yields

v ∈W 2,p
loc (U) for each p ∈ [1,∞). (3.27)
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as shown for elliptic systems in Remark 15.16 and Theorem 15.18 of Ambrosio [1]. In particu-
lar, v is a strong solution of the PDE and satisfies the equation pointwise almost everywhere.
Moreover, since ∂U is at least C1, by applying Theorem 4.1 of Stampacchia [29] with p > n,
one has that v admits a representative

v∗ ∈ C(U), (3.28)

where v∗ will vanish on the Dirichlet component ∂Ω. Combining (3.27) and (3.28), one has
that v ∈ C(U) ∩W 2,p

loc (U) with p > n is a strong solution of the Dirichlet problem{
div
(
A(x)∇v

)
= f in U ,

v = v∗ on ∂U ,
(3.29)

with ∂U ∈ C1,1. Such a solution is unique by Corollary 9.18 of Gilbarg-Trudinger [15]. Take a
sequence ϕk ∈W 2,p(U) which converges uniformly to v∗ on ∂U . By Theorem 9.15 of [15] there
exists a unique strong solution uk ∈W 2,p(U) of the Dirichlet problem with uk−ϕk ∈W 1,p

0 (U).
The W 2,p estimate of Lemma 9.17 of [15] then shows that uk is a bounded sequence in W 2,p(U)
and hence has a weakly converging subsequence whose weak limit is a W 2,p(U) strong solution,
which must agree with v by the uniqueness. Since p > n, we also have v ∈ C1

(
U).

Now we define w̃ := v+ŵ on U = Ω\Sε, so that we immediately have w̃ ∈ C1
(
U
)
∩W 2,q(U)

for some q > n. By the regularity of the matrix of the coefficients A(x) and of the function w̃,
we easily see that w̃ satisfies condition (2.10) for some K > 0. Moreover, since v ∈ W 2,q(U)
is a strong solution of (3.26), for a.e. x ∈ U we have

div
(
A(x)∇w̃

)
= div

(
A(x)∇v

)
+ div

(
A(x)∇ŵ

)
= θ > 0, (3.30)

which is condition (2.9). Finally, since w = ŵ on Sε, we have

∇w −∇w̃ = ∇ŵ −∇w̃ = −∇v on ∂Sε.

Thus by (3.26) we see that

〈A(x)(∇w −∇w̃), νε〉 = −〈A(x)∇v, νε〉 = 0 on ∂Sε.

This concludes the proof of Step III, and hence also the proof of Theorem 3.1. �

4 Sobolev spaces with matrix valued weights

In this section, we present the functional setting in which we will study questions of existence
and uniqueness of weak solutions to the Dirichlet and Cauchy-Dirichlet problem for degenerate
elliptic (1.3) and degenerate parabolic and hyperbolic equations (1.4) and (1.5). This involves
studying first order Sobolev spaces with matrix valued weights A which are calibrated for use
in the applications and encode the degeneracy in terms of the set S. We will make minimal
assumptions on A and S in order to recover most of the useful properties that are present
in the situation without weights, which will correspond to choosing A as the identity matrix
everywhere on Ω (or more generally as a uniformly positive definite matrix valued function).
More precisely, we will assume that

(i) the Poincaré inequality (3.1) holds ;

(ii) A ≡ [aij ], with aij = aji ∈ C0(Ω̄), is nonnegative definite ,

(iii) the degeneracy set S (which is closed) has zero Lebesgue measure .

(4.1)

We note that we have made milder regularity assumptions on A (condition (ii) of (4.1))
and milder structural assumptions on S (condition (iii) of (4.1)) with respect to (2.1) and
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(2.3). On the other hand, we assume here the validity of the Poincaré inequality, which follows
by Theorem 3.1 in the presence of the stronger regularity and structural assumptions. Hence
the class of weights A defined by (2.1) and (2.3) enters into this theory, as will other classes
such as those for which A has a uniformly elliptic direction (introduced in [20]), which also
ensures the validity of the Poincaré inequality (see Theorem 2.1 of [20]). We will not prove
most of the results of this section, since they follow from the same arguments employed in
[20], which treated only the Hilbert case of L2-based spaces. In particular, the arguments
really depend on mild regularity and structural conditions on A and S provided that one has
the Poincaré inequality.

We begin with the definition of the spaces, which will at first employ the notion of strong
derivatives; that is, we will define the spaces as completions of regular functions with respect
to the natural norm involving A. The question of the equivalence with respect to using some
notion of weak derivative to define the Sobolev spaces as natural subspaces of Lebesgue spaces
will be discussed later, as will the question of suitable representation formulas which allow
one to perform standard calculus on suitable representatives with weak a priori regularity (see
the discussion beginning with Theorem 4.3 below).

Definition 4.1 Assume that condition (4.1) holds and let 1 ≤ p <∞.

(a) Let V p(Ω;A) be the set of functions u ∈ C1(Ω) such that∫
Ω

|u|pdx+

∫
Ω

〈A(x)∇u,∇u〉p/2dx <∞ , (4.2)

and define W 1,p(Ω;A) as the completion of V p(Ω;A) with respect to the norm

‖u‖W 1,p(Ω;A) :=

(∫
Ω

|u|pdx+

∫
Ω

〈A(x)∇u,∇u〉p/2dx
)1/p

(4.3)

=
(
‖u‖pLp(Ω) + ‖|

√
A∇u|‖pLp(Ω)

)1/p

.

(b) Define W 1,p
0 (Ω;A) as the completion of C1

0 (Ω) with respect to the norm

‖u‖W 1,p
0 (Ω;A) := ‖|

√
A∇u|‖Lp(Ω) . (4.4)

The spaces W 1,p(Ω;A), W 1,p
0 (Ω;A) are Banach spaces for each p. For p = 2, the spaces

are Hilbert spaces, which will be denoted by H1(Ω;A) and H1
0 (Ω;A) and whose norms (4.3)

and (4.4) are induced by the inner products

〈u, v〉H1(Ω;A) :=

∫
Ω

uvdx+

∫
Ω

〈A(x)∇u,∇v〉 dx
(
u, v ∈ V 2(Ω;A)

)
,

and

〈u, v〉H1
0 (Ω;A) :=

∫
Ω

〈A(x)∇u,∇v〉 dx
(
u, v ∈ C1

0 (Ω)
)
,

respectively.
A first application of the Poincaré inequality are the following expected facts about equiv-

alent norms and continuous immersions (see Proposition 3.3 of [20] for the proof in the case
p = 2 which carries over without change here). We will denote by

Wp =

{
w ∈ C1(Ω) :

∫
Ω

|w|pdx <∞
}
.

Proposition 4.2 Assume that condition (4.1) holds and let CP be the Poincaré constant in
(3.1). Then
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(a) W 1,p
0 (Ω;A) is a subspace of W 1,p(Ω;A) and one has the following equivalence of norms

(CpP + 1)−1/p‖u‖W 1,p(Ω;A) ≤ ‖u‖W 1,p
0 (Ω;A) ≤ ‖u‖W 1,p(Ω;A) , (4.5)

for any u ∈W 1,p
0 (Ω;A).

(b) The spaces W 1,p(Ω;A), W 1,p
0 (Ω;A) are continuously immersed into Lp(Ω); that is, any

Cauchy sequence in
(
V p(Ω;A), ‖·‖W 1,p(Ω;A)

)
,
(
C1

0 (Ω), ‖·‖W 1,p
0 (Ω;A)

)
is a Cauchy sequence

in
(
Wp(Ω), ‖ · ‖Lp(Ω)

)
and these inclusions pass to the relevant quotient spaces to give

well defined linear maps i, i0 such that

‖i(u)‖Lp(Ω) ≤ ‖u‖W 1,p(Ω;A) for any u ∈W 1,p(Ω;A) , (4.6)

and
‖i0(u)‖Lp(Ω) ≤ CP‖u‖W 1,p

0 (Ω;A) for any u ∈W 1,p
0 (Ω;A) . (4.7)

We now address the question of selecting suitable representatives u from the space of
equivalence classes in W 1,p(Ω;A) and W 1,p

0 (Ω;A). The starting point is the following gener-
alization of Theorem 3.5 of [20], which treats the case p = 2, and again the proof trivially
adapts to general p in the presence of the Poincaré inequality.

Theorem 4.3 Let assumption (4.1) be satisfied. Then for every [{un}] ∈ W 1,p(Ω;A) there

exist unique elements u ∈ Lp(Ω), U ∈
[
Lp(Ω)

]N
such that

(a) ‖un − u‖Lp(Ω) → 0, ‖
√
A∇un − U‖Lp(Ω) → 0 as n→∞ ;

(b) [
√
A]−1U is the weak gradient of u in the open set Ω \ S; that is, the gradient in the

sense of distributions of u ∈ L1
loc(Ω) is represented by [

√
A]−1U ∈

[
L1

loc(Ω \ S)
]N

when
the test functions have support in the open set Ω \ S ;

(c) if |[
√
A]−1| ∈ Lp′(Ω), then [

√
A]−1U is the weak gradient of u in all of Ω ;

(d) ‖[{un}]‖pW 1,p(Ω;A) = ‖u‖pLp(Ω) + ‖|U |‖pLp(Ω) .

Using Theorem 4.3, we have the following embedding result which generalizes Corollary
3.6 of [20].

Corollary 4.4 Under the hypotheses of Theorem 4.3, if [{un}] ∈ W 1,p(Ω;A) has its Lp(Ω)

class i(u) = 0, then U = 0 ∈
[
Lp(Ω)

]N
as well. In particular, the immersions i, i0 of

Proposition 4.2 are embeddings.

The injectivity of the maps i, i0 allows us to identify W 1,p(Ω;A) and W 1,p
0 (Ω;A) with

subsets of Lp(Ω) for each p ∈ [1,∞). In particular, this shows that W 1,p(Ω;A) and W 1,p
0 (Ω;A)

are separable for each p ∈ [1,∞]. We note that from now on we will use the slight abuse of
notation by using the same symbol u for an element [{un}] ∈ W 1,p(Ω;A),W 1,p

0 (Ω;A) as well
as for the Lp(Ω) class that it determines in accordance with the Representation Theorem 4.3.

As pointed out in [20], while [
√
A]−1U gives an L1

loc weak gradient away from the sin-
gular set S, such a weak gradient may well not exist everywhere on Ω if the integrability
condition |[

√
A]−1| ∈ Lp′(Ω) in part (iii) of Theorem 4.3 fails (see Example 3.9 of [20] for a

counterexample with p = 2). However, as done in [20], given the properties of the function

U ∈
[
Lp(Ω)

]N
in the theorem, the following notion helps to clarify the situation.

Definition 4.5 For each u ∈W 1,p(Ω;A), we define its quasi-gradient ∇∗u by

∇∗u := [
√
A]−1U ,

which is a measurable vector valued function defined almost everywhere in Ω; that is, away
from the singular set S of A.
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Remark 4.6 This quasi-gradient satisfies the following properties:

(a) if u ∈W 1,p(Ω;A) admits first order derivatives in L1
loc(Ω), then ∇∗u = ∇u a.e. in Ω;

(b) we have

‖u‖pW 1,p(Ω;A) = ‖u‖pLp(Ω) + ‖|
√
A∇∗u|‖pLp(Ω) =

∫
Ω

|u|pdx+

∫
Ω

〈A(x)∇∗u,∇∗u〉p/2dx ;

(4.8)

(c) we have

‖u‖p
W 1,p

0 (Ω;A)
= ‖|
√
A∇∗u|‖pLp(Ω) =

∫
Ω

〈A(x)∇∗u,∇∗u〉p/2dx ; (4.9)

(d) since ∇∗u = ∇u in Ω \ S, and S has zero Lebesgue measure, ∇∗u = 0 a.e. on each level
set of the function u .

In order to simplify notation, we will often write ∇u in place of ∇∗u as they agree almost
everywhere; however, one should keep in mind that ∇u may not have components which are
L1

loc near the singular set S if the integrability condition |[
√
A]−1| ∈ Lp′(Ω) fails. In particular,

in section 5 we will make constant use of the simple identities

〈A∇u,∇v〉 = 〈
√
A∇u,

√
A∇v〉 and 〈b,∇u〉 = 〈[

√
A]−1b,

√
A∇u〉 (4.10)

for u, v ∈W 1,p(Ω;A) and [
√
A]−1b ∈ L∞(Ω).

We now turn our attention to the problem of establishing conditions under which the norm
in W 1,p(Ω;A) or W 1,p

0 (Ω;A) can be calculated directly by the integral expression given by
(4.3) or (4.4) as opposed to calculating a limit of such expressions along a Cauchy sequence
representative. In this direction, we have the following two propositions (which are trivial
generalizations of Propositions 3.10 and 3.11 of [20]).

Proposition 4.7 Assume the conditions (4.1) and let p ∈ [1,∞). Then the following state-
ments hold:

(a) if u ∈W 1,p(Ω), then u ∈W 1,p(Ω;A) and

‖u‖W 1,p(Ω;A) =

(∫
Ω

|u|pdx+

∫
Ω

〈A(x)∇u,∇u〉p/2dx
)1/p

;

(b) if u ∈W 1,p
0 (Ω), then u ∈W 1,p

0 (Ω;A) and

‖u‖W 1,p
0 (Ω;A) =

(∫
Ω

〈A(x)∇u,∇u〉p/2dx
)1/p

.

Proposition 4.8 Assume the conditions (4.1) and let p ∈ [1,∞). If u ∈W 1,p
loc (Ω) and∫

Ω

|u|pdx+

∫
Ω

〈A(x)∇u,∇u〉p/2dx <∞ ,

then u ∈W 1,p(Ω;A) and

‖u‖W 1,p(Ω;A) =

(∫
Ω

|u|pdx+

∫
Ω

〈A(x)∇u,∇u〉p/2dx
)1/p

.

Remark 4.9 By Proposition 4.7, the space W 1,p
0 (Ω;A) coincides with the completion with re-

spect to the norm (4.4) of the space of Lipschitz functions with compact support in Ω since such
Lipschitz functions are included in W 1,p

0 (Ω). Similarly, Proposition 4.8 shows that W 1,p(Ω;A)
could be alternatively defined as the completion with respect to the norm (4.3) of the space of
locally Lipschitz functions in Ω satisfying (4.2).
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We next address the question of taking positive and negative parts, which will be useful in
the formulation of maximum and comparison principles for weak solutions to the associated
degenerate elliptic and parabolic PDEs in section 5. Given u ∈ W 1,p(Ω;A), W 1,p

0 (Ω;A), if
one starts from the positive part of a Cauchy sequence defining u, one sees that this sequence
determines an element, called u+, in W 1,p(Ω;A), W 1,p

0 (Ω;A). This claim is the content of the
next lemma (which is a trivial generalization of Theorem 3.13 of [20]).

Lemma 4.10 Assume the conditions (4.1) and let p ∈ [1,∞). Then the following statements
hold:

(a) If u ∈W 1,p(Ω;A), then u+, u− ∈W 1,p(Ω;A) and one has

‖u‖pW 1,p(Ω;A) = ‖u+‖pW 1,p(Ω;A) + ‖u−‖pW 1,p(Ω;A) ;

(b) if u ∈W 1,p
0 (Ω;A), then u+, u− ∈W 1,p

0 (Ω;A) ;

‖u‖p
W 1,p

0 (Ω;A)
= ‖u+‖p

W 1,p
0 (Ω;A)

+ ‖u−‖p
W 1,p

0 (Ω;A)
.

Next, we note that elements of W 1,p(Ω;A), W 1,p
0 (Ω;A) can be approximated by smooth

functions by using standard procedures. The following result generalizes Theorem 3.16 of [20].

Proposition 4.11 Assume the conditions (4.1) and let p ∈ [1,∞). Then the following state-
ments hold:

(a) C∞0 (Ω) ⊂W 1,p
0 (Ω;A) is dense;

(b) C∞(Ω) ∩W 1,p(Ω;A) ⊂W 1,p(Ω;A) is dense .

We remark that combining Corollary 4.4 with part (a) of Proposition 4.11 shows that
W 1,p

0 (Ω;A) is densely embedded in Lp(Ω) for every p ∈ [1,∞).
Finally, we give the following characterization of elements in the dual space H−1(Ω;A) =[

H1
0 (Ω;A)

]′
. This dual space will play a prominent role in the applications to degenerate

PDEs in the next section.

Proposition 4.12 Assume the conditions (4.1) hold with p = 2. Given f ∈ H−1(Ω;A) there
exists a collection {fk}nk=0 ⊂ L2(Ω) such that

〈f, u〉 =

∫
Ω

[
f0u+

n∑
k=1

fk(
√
A∇u)k

]
dx, u ∈ H1

0 (Ω;A). (4.11)

Proof. The argument is classical, but we give it in order to illustrate the role of the represen-
tation formulas of Theorem 4.3. Exploiting the Poicaré inequality, equipping H1

0 (Ω;A) with
the modified inner product

(u, v)H1(Ω;A) := (u, v)H1
0 (Ω;A) + (u, v)L2(Ω) (4.12)

also yields a Hilbert space. For each f ∈ H−1(Ω;A), one applies the Riesz representation
theorem with respect to the inner product (4.12) to find a unique ϕ ∈ H1

0 (Ω;A) such that

〈f, u〉 = (ϕ, u)H1
0 (Ω;A) + (ϕ, u)L2(Ω).

Using Theorem 4.3, one selects representatives u, ϕ ∈ L2(Ω) with associated quasi-gradients
∇u = [

√
A]−1U , ∇ϕ = [

√
A]−1Φ in order to find

〈f, u〉 =

∫
Ω

〈
√
A∇ϕ,

√
A∇u〉 dx+

∫
Ω

ϕudx,
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which yields (4.11) by selecting f0 = ϕ and fk = (
√
A∇ϕ)k. �

We conclude by noting the obvious fact that there is a natural continuous injection of
L2(Ω) into H−1(Ω;A) provided by f 7→ `f with

〈`f , u〉 := (f, u)L2(Ω), u ∈ H1
0 (Ω;A). (4.13)

The injectivity follows from the density of C∞0 (Ω) in L2(Ω) and H1
0 (Ω;A) while the continuity

follows from the standard combination of the Cauchy-Schwarz and Poincaré inequalities∣∣(f, u)L2(Ω)

∣∣ ≤ ||f ||L2(Ω)||u||L2(Ω) ≤ CP ||u||H1
0 (Ω;A)||f ||L2(Ω). (4.14)

5 Applications to degenerate PDEs

In this section, we put the Poincaré inequality of Theorem 3.1 to work in the context of the
Sobolev spaces with matrix valued weights A and domains Ω satisfying (2.1) and (2.3) to treat
questions of existence, uniqueness and qualitative properties of solutions of degenerate PDEs.
Assuming that (2.1) and (2.3) hold, we also have the rest of the conditions in (4.1) needed to
develop all of the results on the Sobolev spaces with matrix valued weights presented in section
4. Since the applications make use of standard techniques, we will be brief. However, we will
be precise with respect to the sense of solutions, the needed assumptions of the coefficients
and quantitative role of the Poincaré constant.

As is well known, the validity of a Poincaré inequality calibrated to the principal part of
the differential operator L acting in the spatial derivatives yields a common framework in
which to operate. This framework involves a Hilbert triple

V ↪→ H ↪→ V ′ (5.15)

where V and H are separable Hilbert spaces, V ′ is the dual space to V , the injections are
continuous and the image of V is dense in H, whose dual is identified with H. Setting

V = H1
0 (Ω;A), H = L2(Ω), and V ′ = H−1(Ω;A), (5.16)

the results of section 4 show that (5.16) does indeed give a Hilbert triple.
For the degenerate elliptic equations, solutions to the Dirichlet problem will be found in

the Sobolev space V , while for the evolution equations the solutions will be found as suitable
elements u = u(t) belonging to Sobolev spaces of V -valued maps depending on the real time
parameter t. To this end, we recall that for a separable Hilbert space X and T ∈ (0,+∞),
one defines the Hilbert space L2(0, T ;X) as the equivalence classes of maps u where

t ∈ (0, T ) 7→ u(t) ∈ X is defined almost everywhere and is measurable (5.17)

and

||u||L2(0,T ;X) :=

(∫ T

0

||u(t)||2X dt

)1/2

< +∞. (5.18)

For the parabolic problems, the solution will be a map u ∈ L2(0, T ;V ) ↪→ L2(0, T ;V ′) whose
derivative in t as V ′-valued distribution admits a representative in L2(0, T ;V ′), which will be

denoted by
du

dt
. For the hyperbolic problems, the solutions will be maps u ∈ L2(0, T ;V ) ↪→

L2(0, T ;H) ↪→ L2(0, T ;V ′) such that

du

dt
∈ L2(0, T ;H) and

d2u

dt2
∈ L2(0, T ;V ′).

In this setting, under suitable assumptions on the coefficients of L the evolution PDEs can
be interpreted as equations in L2(0, T ;V ′) which then reduce to ODEs for real-valued distri-
butions D′((0, T )) when tested on arbitrary elements v ∈ V . Various well known properties
of such time dependent Sobolev spaces will be used, such as those contained in sections 18.1
and 18.3 of Dautray-Lions [6].
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5.1 Degenerate elliptic problems

We begin with the Dirichlet problem associated to the equation (1.3); that is, Lu = f in Ω

u = 0 on ∂Ω ,
(5.19)

where L has the form Lu := div
{
A∇u

}
+ 〈b,∇u〉 + cu and f ∈ H−1(Ω;A) is given. If A

satisfies the conditions (4.1) and if (b, c) satisfy mild assumptions, the following notion of weak
solution makes sense.

Definition 5.1 Let f ∈ H−1(Ω;A). We say u ∈ H1
0 (Ω;A) is a weak solution of (5.19)

provided that
B(u, v) = −〈f, v〉 for every v ∈ H1

0 (Ω;A), (5.20)

where

B(u, v) :=

∫
Ω

{
〈A(x)∇u,∇v〉 − 〈b(x),∇u〉v − c(x)uv

}
dx (5.21)

is the natural bilinear form associated to L and ∇u,∇v are the quasi-gradients of u, v re-
spectively. If B is continuous, then it is equivalent to require the validity of (5.20) for each
v ∈ C1

0 (Ω).

The Lax-Milgram theorem yields the existence of a unique weak solution provided that
the bilinear form B is bounded and coercive on H1

0 (Ω;A) × H1
0 (Ω;A); that is, if there exist

α, β > 0 such that

|B(u, v)| ≤ α||u||H1
0 (Ω;A)||v||H1

0 (Ω;A), u, v ∈ H1
0 (Ω;A) (5.22)

and
B(u, u) ≥ β||u||2H1

0 (Ω;A), u ∈ H1
0 (Ω;A). (5.23)

Making use of the simple identities (4.10) and estimating from above in the standard way,
one finds that (5.22) holds with

α = 1 + CP‖|[
√
A]−1b|‖L∞(Ω) + C2

P‖c‖L∞(Ω) < +∞

provided that
[
√
A]−1b ∈ L∞(Ω) and c ∈ L∞(Ω). (5.24)

We note that when A is positive definite and the equation is elliptic, the first condition in
(5.24) is the familiar condition b ∈ L∞(Ω).

On the other hand, estimating the quadratic form from below by way of the Cauchy-
Schwarz inequality, one obtains (5.23) provided that (2.1), (2.3) and (5.24) hold with

β := 1− CP‖|[
√
A]−1b|‖L∞(Ω) − C2

P‖c+‖L∞(Ω) > 0 , (5.25)

where CP is the Poincaré constant. Summing up, one has the following existence theorem.

Theorem 5.2 Let assumptions (2.1), (2.3) and (5.24) be satisfied and suppose that the rela-
tion (5.25) holds. Then for each f ∈ H−1(Ω;A) there exists a unique solution u ∈ H1

0 (Ω;A)
to the Dirichlet problem (5.19). Moreover, the unique solution u satisfies the estimate

‖u‖H1
0 (Ω;A) ≤

1

β
‖f‖H−1(Ω:A). (5.26)
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A variant of the above proof of the coercivity estimate, which uses Young’s inequality
instead of the Poincaré inequality in order to estimate the first order terms of the quadratic
form B(u, u), shows that if

sup
Ω
c < −1

4
‖|[
√
A]−1b|‖2∞ (5.27)

then (5.23) holds with

β := 1 +
‖|[
√
A]−1b|‖2∞

4 supΩ c
∈ (0, 1). (5.28)

This yields the following existence theorem, in the case when c is negative and large enough
on the domain Ω.

Theorem 5.3 Let assumptions (2.1), (2.3) and (5.24) be satisfied and suppose that the rela-
tion (5.27) holds. Then for each f ∈ H−1(Ω;A) there exists a unique solution u ∈ H1

0 (Ω;A)
to the Dirichlet problem (5.19). Moreover, the unique solution u satisfies the estimate (5.26),
with β defined as in (5.28).

Remark 5.4 From Theorems 5.2 and 5.3 and from (5.26) it follows that the solution map,
that associates to each f ∈ H−1(Ω;A) the unique solution u ∈ H1

0 (Ω;A) to problem (5.19) is
continuous and linear. Moreover, this solution operator is the inverse of the bounded linear
operator L : u ∈ H1

0 (Ω;A) 7→ f := Lu ∈ H−1(Ω;A) defined by

〈Lu, v〉 := B(u, v), u, v ∈ H1
0 (Ω;A),

and hence L establishes an isomorphism between H1
0 (Ω;A) and H−1(Ω;A) if the coefficients

of L satisfy (2.1), (2.3), (5.24) and either (5.25) or (5.27).

We turn our attention to the validity of a weak comparison and a weak maximum principles
for the degenerate elliptic equation Lu = f which are compatible with the weak well posedness
of the Dirichlet problem (5.19). To this end, we note that the associated bilinear form B (with
the expression (5.21)) is well defined and continuous on the larger spaces H1(Ω;A)×H1

0 (Ω;A)
and H1(Ω;A)×H1(Ω;A) if the conditions (2.1), (2.3) and (5.24) hold.

Definition 5.5 Let A and Ω satisfy the assumptions of Theorem 5.2 and let f ∈ H−1(Ω;A).
We say that

(a) u ∈ H1(Ω;A) is a weak subsolution of the equation Lu = f if

B(u, v) + 〈f, v〉 ≤ 0 for any v ∈ H1
0 (Ω;A), v ≥ 0 ;

(b) u ∈ H1(Ω;A) is a weak supersolution to the equation Lu = f if

B(u, v) + 〈f, v〉 ≥ 0 for any v ∈ H1
0 (Ω;A), v ≥ 0 .

By the continuity of B, one may replace the test function space H1
0 (Ω;A) with C1

0 (Ω).

The standard argument of using the coercivity of B and the choice of v = u+ in Definition
5.5 (a) yields the following weak comparison principle, where we recall that for u ∈ H1(Ω;A)
the condition u ≤ 0 on ∂Ω just means u+ ∈ H1

0 (Ω;A).

Theorem 5.6 Let the assumptions of Theorem 5.2 be satisfied. Let u ∈ H1(Ω;A) be a
subsolution to the equation Lu = 0 such that u ≤ 0 on ∂Ω. Then

u ≤ 0 a.e. in Ω .

By linearity, one has the full comparison principle that u ≤ v on ∂Ω implies u ≤ v a.e. in
Ω, provided that Lu ≤ Lv in the weak sense. The following weak maximum principle follows
from the standard argument.
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Corollary 5.7 Let the assumptions of Theorem 5.2 be satisfied. Suppose that c ≤ 0 a.e. in
Ω. Let u ∈ H1(Ω;A) be a subsolution to the equation Lu = 0. Then

u ≤ sup
∂Ω

u+ a.e. in Ω.

5.2 Degenerate parabolic problems

Next we consider the Cauchy-Dirichlet problem associated to equation (1.4); that is
∂tu = Lu+ f(x, t) in QT := Ω× (0, T ]

u = 0 in ∂Ω× (0, T ] ,

u = u0 in Ω× {0} ,

(5.29)

where L has the form Lu := div
{
M(x, t)∇u

}
+〈b(x, t),∇u〉+c(x, t)u, f ∈ L2(0, T ;H−1(Ω;A))

and u0 ∈ L2(Ω). As noted at the beginning of this section, we will regard u = u(t) as an
H1

0 (Ω;A)-valued distribution of t ∈ (0, T ). Under suitable assumptions on the coefficients
(M, b, c) the following notion of weak solution makes sense as detailed in section 18.3 of [6]
and as sketched in Remark 5.9 below.

Definition 5.8 Given f ∈ L2(0, T ;H−1(Ω;A)) and u0 ∈ L2(Ω), we say that u is a weak
solution of (5.29) provided:

u ∈ L2
(
0, T ;H1

0 (Ω;A)
)

and
du

dt
∈ L2

(
0, T ;H−1(Ω;A)

)
; (5.30)

d

dt
〈u(·), v〉+ B(·;u(·), v) = 〈f(·), v〉 in D′((0, T )), ∀v ∈ H1

0 (Ω;A); (5.31)

and
u(0) = u0, (5.32)

where

B(t, u, v) :=

∫
Ω

{
〈M(x, t)∇u,∇v〉 − 〈b(x, t),∇u〉v − c(x, t)uv

}
dx u, v ∈ H1

0 (Ω;A). (5.33)

is the natural family of t-dependent bilinear forms and ∇u,∇v are the quasi-gradients of u, v.

We record some well known considerations regarding the choice of the solution space
encoded by (5.30) with respect to Definition 5.8. This solution space is often denoted by
W (0, T ;V, V ′) with (V,H, V ′) the Hilbert triple (5.16)

Remark 5.9 Let u satisfy condition (5.30) in Definition 5.8.

(a) W (0, T ;V, V ′) is embedded in C([0, T ];H); that is, the function u admits a representative
in C([0, T ];L2(Ω)) (see Theorem 1 in section 18.1 of [6]). Hence the initial condition
(5.32) means u0 = lim

t→0+
u(t) in L2(Ω).

(b) If the map t ∈ [0, T ] → B(t, ·, ·) taking values in bounded linear forms on V × V is
essentially bounded, then the condition (5.31) is equivalent to〈

du

dt
(t), v

〉
+B(t, u(t), v) = 〈f(t), v〉 for a.e. t ∈ (0, T ), for every v ∈ C1

0 (Ω). (5.34)

Indeed, by Proposition 7 of [6] the first term in (5.31) agrees with
〈
du
dt (·), v

〉
in D′((0, T ))

for each v ∈ V = H1
0 (Ω;A), but the continuity on V of

〈
du
dt (t), ·

〉
and 〈f(t), ·〉 for almost

every t means that one need only check that (5.31) holds for each v ∈ C1
0 (Ω), which is

dense in V .
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(c) If we denote by Lu(t) as the V ′-valued distribution on (0, T ) defined by

〈Lu(t), v〉 := B(t, u(t), v), v ∈ V = H1
0 (Ω;A),

then (5.34) yields
du

dt
+ Lu = f in L2

(
0, T ;H−1(Ω;A)

)
(5.35)

since all of the vector valued distributions in (5.35) are representable as L1
loc functions

in t and one can apply Proposition 5 of section 18.1 of [6].

Having transformed the problem (5.29) into the initial value problem (5.31)–(5.32) for u(·)
satisfying (5.30), one can exploit an abstract existence and uniqueness theorem in the Hilbert
triple (5.16) by using the so-called parabolic counterpart of the Lax-Milgram theorem, due to
J-L. Lions (see the Comments on Chapter 10 of [3]). One needs only to verify that the family
of bilinear forms B(t, ·, ·) with t ∈ [0, T ] is measurable in t, uniformly bounded and uniformly
weakly coercive; that is, one needs only

∀ u, v ∈ H1
0 (Ω;A), t 7→ B(t, u, v) defines a measurable function on [0, T ] (5.36)

and the existence of positive constants α, β, γ such that

|B(t, u, v)| ≤ α||u||H1
0 (Ω;A)||v||H1

0 (Ω;A), ∀t ∈ [0, T ],∀ u, v ∈ H1
0 (Ω;A), (5.37)

and
|B(t, u, u)| ≥ β||u||2H1

0 (Ω;A) − γ||u||
2
L2(Ω), ∀t ∈ [0, T ],∀ u ∈ H1

0 (Ω;A). (5.38)

Under the assumptions (5.36)–(5.38) there exists a unique solution of problem (5.29) in the
sense of Definition 5.8 (see Theorems 1 and 2 of section 18.3 in [6]). The uniqueness fol-
lows easily from the weak coercivity assumption (5.38) and the existence in obtained using a
Galerkin approximation in the separable Hilbert space V = H1

0 (Ω;A).
The needed regularity, boundedness and coercivity will follow by making suitable hypothe-

ses on the coefficients (M, b, c) of the degenerate elliptic operator L. The following theorem
does precisely that, where we recall that QT = Ω × (0, T ] and Sym+

n (R) is the space of
symmetric nonnegative definite matrices with real entries.

Theorem 5.10 Let A and Ω satisfy the regularity and structural conditions (2.1) and (2.3).
Assume that the coefficients (M, b, c) of L satisfy

M ∈ C(QT ,Sym+
n (R)), (5.39)

[
√
M ]−1b ∈ L∞(QT ,Rn) and c ∈ L∞(QT ,R) (5.40)

and there exist positive constants µ1, µ2 such that

µ1A(x) ≤M(x, t) ≤ µ2A(x), ∀ t ∈ (0, T ), ∀ x ∈ Ω, (5.41)

with the inequalities in the sense of quadratic forms. Then there exists a unique weak solution
to the Cauchy-Dirichlet problem (5.29) in the sense of Definition 5.8

Proof. Applying the abstract existence theorem, it suffices to check that one has the needed
properties (5.36)–(5.38). For the uniform upper bound (5.37) one uses the Cauchy-Schwarz
inequality and the conditions (5.40) to find

|B(t, u, v)| ≤‖|
√
M(t)∇u|‖L2(Ω)‖|

√
M(t)∇v|‖L2(Ω) + C1‖|

√
M(t)∇u|‖L2(Ω)‖v‖L2(Ω)

+ C2‖u‖L2(Ω)‖v‖L2(Ω)
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with C1 = ‖|[
√
M ]−1b|‖L∞(QT ) and C2 = ‖c‖L∞(QT ), where the lower bound in (5.41) justifies

the existence of
√
M ∈ C(QT ,Sym+

n (R)). Using the upper bound in (5.41) and the Poincaré
inequality one obtains (5.37) with α = α(C1, C2, µ2, CP) independent of (t, u, v).

In particular, for each t fixed B(t, ·, ·) is a bounded bilinear form on H1
0 (Ω;A). Moreover,

fixing representatives u, v and their quasi-gradients in accordance with Theorem 4.3, one sees
that the integrand in (5.33) is a measurable function of t taking values in L1(Ω) and the
property (5.36) follows.

For the weak coercivity (5.38), one again estimates from below as in the classical G̊arding
inequality, where the lower bound in (5.41) is used. In fact, for each u ∈ H1

0 (Ω;A) one finds

µ1‖u‖2H1
0 (Ω;A) ≤ B(t, u, u) +

∫
Ω

{
〈[
√
M ]−1b,

√
M∇u〉+ cu2

}
dx

≤ B(t, u, u) + µ2‖|[
√
M ]−1b|‖L∞(QT )‖u‖H1

0 (Ω;A)‖u‖L2(Ω) + ‖c‖L∞(QT )‖u‖2L2(Ω).

Using Cauchy’s inequality with ε = µ1/[2‖|[
√
M ]−1b|‖L∞(QT )] on the second term above yields

(5.38) with

β =
µ1

2
and γ =

µ2
2‖|[
√
M ]−1b|‖2L∞(QT )

2µ1
+ ‖c‖L∞(QT ).

This completes the proof. �

As in the degenerate elliptic case, one has weak comparison and maximum principles
compatible with the existence theory established above for degenerate parabolic equations
with the regularity and structural conditions that we have imposed. Moreover, their proofs
involve simple adaptations of the arguments used in the non degenerate setting and hence we
will merely state the results, which rely on the notion of weak subsolutions/supersolutions.

Definition 5.11 Let A and Ω satisfy (2.1) and (2.3) and let f ∈ L2(0, T ;H−1(Ω;A)).

(a) We say that u ∈ L2
(
0, T ;H1(Ω;A)

)
with

du

dt
∈ L2

(
0, T ;H−1(Ω;A)

)
is a weak subsolution

to the equation ∂tu− Lu = f in QT if, for a.e. t ∈ (0, T ),〈
du

dt
(t), v

〉
+ B(t;u, v) ≤ 〈f(t)v〉 for any v ∈ C1

0 (Ω), v ≥ 0 ;

(b) We say that u ∈ L2
(
0, T ;H1(Ω;A)

)
with

du

dt
∈ L2

(
0, T ;H−1(Ω;A)

)
is a weak superso-

lution to the equation ∂tu− Lu = f in QT if, for a.e. t ∈ (0, T ),〈
du

dt
(t), v

〉
+ B(t;u, v) ≥ 〈f(t)v〉 for any v ∈ C1

0 (Ω), v ≥ 0 ;

Making use of considerations like those recorded in Remark 5.9, one can replace the test
function space C1

0 (Ω) with H1
0 (Ω;A) in the above definition. The weak comparison principle

is the following result.

Theorem 5.12 Let the assumptions of Theorem 5.10 be satisfied. Let u ∈ L2
(
0, T ;H1,A(Ω)

)
with du

dt ∈ L
2
(
0, T ;H−1(Ω;A)

)
be a subsolution to the equation ∂tu−Lu = 0 in QT such that

u ≤ 0 on ∂Ω× (0, T ) and u(x, 0) ≤ 0 for a.e. x ∈ Ω. Then

u ≤ 0 a.e. in QT .

A direct consequence of Theorem 5.12 is the following maximum principle.

Corollary 5.13 Let assumptions of Theorem 5.10 be satisfied. Let u be a weak solution to
problem (5.29) with f = 0 in the sense of distributions. Suppose that u0 ∈ L∞(Ω). Then
u ∈ L∞(QT ) and

‖u‖L∞(QT ) ≤ ‖u0‖L∞(Ω) .
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5.3 Degenerate hyperbolic problems

Next we consider the Cauchy-Dirichlet problem associated to equation (1.5); that is

∂2
t u = Lu+ f(x, t) in QT := Ω× (0, T ]

u = 0 in ∂Ω× (0, T ] ,

∂tu = v0 in Ω× {0}

u = u0 in Ω× {0}

(5.42)

where L has the form Lu := div
{
M(x, t)∇u

}
+ 〈b(x, t),∇u〉 + c(x, t)u, f ∈ L2(0, T ;L2(Ω)),

u0 ∈ H1
0 (Ω;A) and v0 ∈ L2(Ω). Under suitable assumptions on the coefficients (M, b, c) the

following notion of weak solution makes sense.

Definition 5.14 Given f ∈ L2(0, T ;L2(Ω)), u0 ∈ H1
0 (Ω;A) and v0 ∈ L2(Ω). We say that u

is a weak solution of (5.42) provided:

u ∈ L2
(
0, T ;H1

0 (Ω;A)
)
,
du

dt
∈ L2

(
0, T ;L2(Ω)

)
, and

d2u

dt2
∈ L2

(
0, T ;H−1(Ω : A)

)
; (5.43)

d2

dt2
〈u(·), v〉+ B(·;u(·), v) = 〈f(·), v〉 in D′((0, T )), ∀v ∈ H1

0 (Ω;A); (5.44)

and

u(0) = u0,
du

dt
(0) = v0 (5.45)

where

B(t, u, v) :=

∫
Ω

{
〈M(x, t)∇u,∇v〉 − 〈b(x, t),∇u〉v − c(x, t)uv

}
dx u, v ∈ H1

0 (Ω;A). (5.46)

is the natural family of t-dependent bilinear forms and ∇u,∇v are the quasi-gradients of u, v.

As in the parabolic case, some remarks concerning the definition are in order.

Remark 5.15 Given u satisfying condition (5.43) in Definition 5.14.

(a) u admits a representative in C([0, T ];H1
0 (Ω;A)) with

du

dt
∈ C([0, T ];L2(Ω)) (see Remark

1 in section 18.5 of [6]). Hence the initial condition (5.45) makes sense.

(b) Ensuring that B(t, ·, ·)) is a bounded bilinear form for each fixed t, one need only check
that (5.44) holds for each v ∈ C1

0 (Ω). which is dense in H1
0 (Ω;A).

(c) Ensuring that the map t ∈ [0, T ] → B(t, ·, ·)) is continuous, then the condition (5.44) is
equivalent to〈

d2u

dt2
(t), v

〉
+ B(t, u(t), v) = 〈f(t), v〉 for a.e. t ∈ (0, T ), for every v ∈ C1

0 (Ω). (5.47)

In order to treat the initial value problem (5.45) for u(·) satisfying the second order evolu-
tion equation (5.44), we will make use of a special case of Theorem 1 of [6] which states that
a unique solution in the sense of Definition 5.14 exists, provided that the family of bilinear
forms (5.46) can be split as

B(t, ·, ·) = B0(t, ·, ·) + B1(t, ·, ·), t ∈ [0, T ] (5.48)

where
Bk(t, ·, ·) is bounded on H1

0 (Ω;A)×H1
0 (Ω;A), ∀ t ∈ [0, T ], k = 0, 1. (5.49)
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The principal part B0 is assumed to satisfy the following three properties:

∀ u, v ∈ H1
0 (Ω;A), t 7→ B0(t, u, v) defines a C1 function on [0, T ]: (5.50)

∀ u, v ∈ H1
0 (Ω;A), B0(t, u, v) = B0(t, v, u) ∀ t ∈ [0, T ]; (5.51)

and there exist positive constants β, γ such that

|B0(t, u, u)| ≥ β||u||2H1
0 (Ω;A) − γ||u||

2
L2(Ω), ∀ t ∈ [0, T ],∀ u ∈ H1

0 (Ω;A). (5.52)

The lower order part B1 is assumed to satisfy the following two properties

∀ u, v ∈ H1
0 (Ω;A), t 7→ B1(t, u, v) defines a continuous function on [0, T ]: (5.53)

and there exists a positive constant α1

|B1(t, u, v)| ≤ α1||u||H1
0 (Ω;A)||v||L2(Ω), ∀ t ∈ [0, T ],∀ u, v ∈ H1

0 (Ω;A). (5.54)

Before stating the application of this abstract result, we wish to make a few remarks about
the hypotheses. Using the L2-norm on v in (5.54) is what makes B1 a term of lower order.
Combining the pointwise boundedness (5.49) of B0 with the continuity of the map in (5.50)
yields the uniform bound

|B0(t, u, v)| ≤ α0||u||H1
0 (Ω;A)||v||H1

0 (Ω;A), ∀t ∈ [0, T ],∀ u, v ∈ H1
0 (Ω;A), (5.55)

for some constant α0 > 0. This uniform boundedness property follows from the Baire category
theorem in the same way as one proves the uniform boundedness principle for a pointwise
bounded family of linear functionals. Moreover, the derivative with respect to t of the map in
(5.50) will take values in the space of bounded symmetric bilinear forms and the continuity
of the map t 7→ d

dtB0(t, u, v) yields an estimate like (5.55) for d
dtB0(t, u, v). Control on this

family of maps is needed in the a priori estimates required for passing to the limit in the
Galerkin approximation scheme.

The needed regularity, boundedness and coercivity will follow by making suitable hy-
potheses on the coefficients (M, b, c) of the degenerate elliptic operator L. For the statement,
we denote by C0,1

x,t (QT ,Sym+
n (R)) the space of continuous functions on QT taking values in

symmetric nonnegative definite matrices whose first order spatial derivatives are continuous.

Theorem 5.16 Let A and Ω satisfy the regularity and structural conditions (2.1) and (2.3).
Assume that the coefficients (M, b, c) of L satisfy

M ∈ C0,1
x,t (QT ,Sym+

n (R)), (5.56)

[
√
M ]−1b ∈ C(QT ,Rn) and c ∈ C(QT ,R) (5.57)

and there exist positive constants µ1, µ2 such that

µ1A(x) ≤M(x, t) ≤ µ2A(x), ∀ t ∈ (0, T ), ∀ x ∈ Ω, (5.58)

with the inequalities in the sense of quadratic forms. Then there exists a unique weak solution
to the Cauchy-Dirichlet problem (5.42) in the sense of Definition 5.14.

Proof. We split B in the obvious way by setting

B0(t, u, v) =

∫
Ω

〈M(x, t)∇u,∇v〉 dx and B1(t, u, v) =

∫
Ω

{〈b(x, t),∇u〉v + c(x, t)uv} dx.

(5.59)
The boundedness properties (5.49), (5.54) and the weak coercivity (5.52) follow from the
proof of Theorem 5.10 where the same properties were shown under weaker assumptions. The
regularity properties (5.50) and (5.53) are easily verified with the aid of Theorem 4.3. �
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6 Examples of matrix valued weights

In this section, we will give a few simple examples to illustrate the structural hypotheses made
on the matrix A and its singular set S in order to ensure the validity of the Poincaré inequality
of Theorem 3.1 for each p ∈ [1,∞). The first example shows that there exist matrix valued
weights A which satisfy (2.1) and (2.3), but which do not admit a uniformly elliptic direction,
as required in [20].

Example 6.1 Let Ω := {(x, y, z) ∈ IR3 : x2 + y2 < 4, |z| < 1} and let α > 1 be arbitrary.

Define the matrix A for (x, y, z) in a C1,1 neighborhood Ω̃ of Ω by

A(x, y, z) :=

 x2 xy 0
xy y2 0
0 0 0

+
(
(x2 + y2 − 1)2 + z2

)α 1 0 0
0 1 0
0 0 1

 .

The matrix valued function A satisfies the condition (2.1) on Ω̃. Indeed, α > 1 ensures
the required regularity of parts (i) and (ii) and the nonnegativity follows from the fact that
A is the sum of nonnegative definite matrices. Denoting by ψ :=

(
(x2 + y2 − 1)2 + z2

)α ≥ 0,
one finds that detA = ψ2(ψ + x2 + y2) and hence the degeneracy set is the zero locus of ψ;
that is,

S = {(x, y, z) ∈ IR3 : x2 + y2 = 1, z = 0},

which is a compact connected C∞ submanifold without boundary of codimension 2 contained
in Ω. In order to have condition (2.3), it remains to check the orthogonal rank condition
(2.3)-(iii). For any (x0, y0, 0) ∈ S we have

Ker
(
A(x0, y0, 0)

)
= Span〈(0, 0, 1), (y0,−x0, 0)〉 and T(x0,y0,0)S = Span〈(y0,−x0, 0)〉 .

Thus
N(x0,y0,0)S =

(
T(x0,y0,0)S

)⊥
= Span〈(0, 0, 1), (x0, y0, 0)〉

and
(x0, y0, 0) ∈ N(x0,y0,0)S \Ker

(
A(x0, y0, 0)

)
.

In particular, the hypotheses (2.1) and (2.3) are satisfied on Ω̃ and Theorem 3.1 applies. Then
Corollary 3.2 yields the validity of the Poincaré inequality on Ω.

On the other hand, A does not admit any uniformly elliptic direction, which means that
there is no vector ξ of norm one such that there exists β > 0 such that

〈A(x, y, z)ξ, ξ〉 ≥ β > 0, ∀ (x, y, z) ∈ Ω,

as it is required in [20]. In fact, for every ξ ≡ (ξ1, ξ2, ξ3) ∈ IR3 \ {0} there exists a point
(x0, y0, 0) ∈ S such that ξ ∈ Ker

(
A(x0, y0, 0)

)
. Indeed, if ξ2

1 + ξ2
2 6= 0, then one can choose

(x0, y0, 0) :=

(
ξ2√
ξ2
1 + ξ2

2

,− ξ1√
ξ2
1 + ξ2

2

, 0

)
∈ S ,

while if ξ1 = ξ2 = 0, then one can choose any (x0, y0, 0) ∈ S.

We next give examples which show that the Poincaré inequality can fail if the orthogonal
rank condition (2.3)-(iii) does not hold. In all of the examples we present, Ker(A(x)) = NxS
for each x ∈ S although it would suffice to show the existence of x0 ∈ S for which Nx0

S ⊂
Ker(A(x0)). The first counterexample has S of codimension 2 and A not totally degenerate
on S.

28



Example 6.2 Let Ω := {(x, y, z) ∈ IR3 : x2 + y2 < 4, |z| < 1} and let α > 1 be a parameter

to be chosen sufficiently large. Define the matrix A for (x, y, z) in a C1,1 neighborhood Ω̃ of
Ω by

A(x, y, z) :=

 y2 −xy 0
−xy x2 0

0 0 0

+
(
(x2 + y2 − 1)2 + z2

)α 1 0 0
0 1 0
0 0 1

 .

As in Example 6.1, The matrix valued function A satisfies the condition (2.1) on Ω̃ and
has the same determinant as before and hence the associated degeneracy set is again

S = {(x, y, z) ∈ IR3 : x2 + y2 = 1, z = 0}.

Hence the validity of condition (2.3) reduces to the orthogonal rank condition (2.3)-(iii). For
any (x0, y0, 0) ∈ S we have

Ker
(
A(x0, y0, 0)

)
= Span〈(0, 0, 1), (x0, y0, 0)〉

and
T(x0,y0,0)S = Span〈(y0,−x0, 0)〉 .

Thus,

N(x0,y0,0)S =
(
T(x0,y0,0)S

)⊥
= Span〈(0, 0, 1), (x0, y0, 0)〉 = Ker

(
A(x0, y0, 0)

)
and the condition (2.3)-(iii) fails to hold and we cannot affirm the validity of the Poincaré
inequality.

In fact, the Poincaré inequality does not hold. To show this, it suffices to produce a
sequence of functions {vn}n∈IN ⊂ C∞0 (Ω) such that

‖vn‖p →∞ as n→∞ ,

∫
Ω

〈A∇vn,∇vn〉
p
2 dxdydz ≤ M for every n ∈ IN , (6.60)

for some M > 0. An example of such a sequence can be constructed in the following way. Let
ϕ ∈ C∞0 (Ω) be a function satisfying 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 on U := {x2 + y2 ≤ 9/4, |z| < 1/2}
which contains S and satisfies U ⊂ Ω. Define the sequence of C∞0 (Ω) functions

vn(x, y, z) := ϕ(x, y, z)
(

(x2 + y2 − 1)2 + z2 +
1

n

)−β
for all (x, y, z) ∈ Ω,

where β is a positive constant such that β > 3
2p . Using the monotone convergence theorem,

it is easy to see that

lim
n→∞

∫
Ω

vpn dxdydz =∞ . (6.61)

On the other hand, if one sets ψn := (x2 + y2 − 1)2 + z2 + 1
n then

∇vn(x, y, z) = ψ−βn ∇ϕ(x, y, z)− βϕψ−β−1
n ∇ψn(x, y, z) := Vn +Wn. (6.62)

For each (x, y, z) ∈ Ω one has

∇ψn(x, y, z) = (4x(x2 + y2 − 1), 4y(x2 + y2 − 1), 2z) ∈ Ker(Ã(x, y, z)) (6.63)

where

Ã(x, y, z) :=

 y2 −xy 0
−xy x2 0

0 0 0

 .
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Making use of the decomposition (6.62), since A ≥ 0 and is self-adjoint, elementary inequalities
yield the following pointwise bound on Ω:

〈A∇vn,∇vn〉
p
2 ≤ 2p−

1
2

(∣∣∣√AVn∣∣∣p +
∣∣∣√AWn

∣∣∣p) . (6.64)

Notice that A = Ã + ψαI if one defines ψ(x, y, z) := (x2 + y2 − 1)2 + z2. Using (6.63),
supp(Vn) ⊂ Ω \ U , the lower bound ψn > ψ and the upper bound ϕ ≤ 1, one integrates (6.64)
to find C > 0 such that∫

Ω

〈A∇vn,∇vn〉
p
2 dxdydz ≤ C

(∫
Ω\U

∣∣∣√A∇ϕ∣∣∣p ψ−pβ dxdydz +

∫
Ω

ψ−pβ−
p
2 + pα

2 dxdydz

)
,

for each n ∈ IN . This expression is bounded by some positive constant M , provided that
α ≥ 2β + 1 . Combining this with (6.61) yields (6.60).

The following counterexample again has S of codimension 2, but A is totally degenerate
on S, which is a single point.

Example 6.3 Let Ω := {(x, y) ∈ IR2 : x2 + y2 < 1} and let α > 1 be a parameter to be
chosen sufficiently large. Define the weight A for (x, y) ∈ Ω by

A(x, y) :=

(
(x2 + 2y2)α 0

0 (2x2 + y2)α

)
.

Since α > 1 and A is nonnegative definite, one has (2.1). Clearly S = {(0, 0)} and since A
vanishes there, the condition (2.3)-(iii) is not satisfied.

The Poincarè inequality fails as again one can construct {vn}n∈IN ⊂ C∞0 (Ω) satisfying
(6.60). Indeed, let ϕ ∈ C∞0 (Ω) satisfy 0 ≤ ϕ ≤ 1 and ϕ(x, y) = 1 for every (x, y) ∈ U :=
{(x, y) ∈ IR2 : x2 + y2 ≤ 1

2} and define

vn(x, y) = ϕ(x, y)
(
x2 + y2 +

1

n

)−β
.

Arguing as in Example 6.2, one finds that (6.60) holds for β > 1
p and α ≥ 2β + 1.

We conclude with two examples which relax the condition (2.3)-(ii) to allow codim(S) = 1
but for which the topological condition (3.2) holds. As explained in Remark 3.5, one will have
the Poincarè inequality of Theorem 3.1 provided that the remainder of the conditions (2.1)
and (2.3) hold. The following illustrates the failure of the Poincarè inequality in the absence
of the orthogonal rank condition (2.3)-(iii).

Example 6.4 Let Ω := {(x, y) ∈ IR2 : 1
2 < x2 + y2 < 2} and let α > 1/2 be a parameter to

be chosen sufficiently large. Define the matrix A for (x, y) ∈ Ω by

A(x, y) :=

(
y2 −xy
−xy x2

)
+ (x2 + y2 − 1)2α

(
1 0
0 1

)
.

Since α > 1/2 and A is the sum of two nonnegative matrix valued functions, one has (2.1).
Denoting by ψ := (x2 + y2 − 1)2α ≥ 0, one has detA = ψ(ψ + x2 + y2) and hence

S = {(x, y) ∈ IR2 : x2 + y2 = 1},

which is a compact connected smooth manifold contained in Ω of codimension 1. Since

Ω \ S =
{

(x, y) ∈ IR2 :
1

2
< x2 + y2 < 1

}
∪
{

(x, y) ∈ IR2 : 1 < x2 + y2 < 2
}

:= Ω1 ∪ Ω2,
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the open connected components Ω1,Ω2 satisfy the condition (3.2); that is, ∂Ωi ∩ ∂Ω 6= ∅ for
i = 1, 2, However, for every (x, y) ∈ S one has

T(x,y)S = Span〈(y,−x)〉 and N(x,y)S = Span〈(x, y)〉 = Ker
(
A(x, y)

)
and hence the condition (2.3)-(iii) is not satisfied.

The Poincarè inequality fails as a sequence {vn}n∈IN ⊂ C∞0 (Ω) satisfying (6.60) is easily
constructed. Indeed, pick ϕ ∈ C∞0 (Ω) with ϕ ≡ 1 for 3/4 ≤ x2 + y2 ≤ 9/4 and set

vn(x, y) =
(

(x2 + y2 − 1)2 +
1

n

)−β
ϕ(x, y).

The same reasoning as the previous examples yields (6.60) for β > 1
2p and α ≥ 4 + 4β.

Next we give an example of S having codimension 1 which corrects the defect in the
orthogonal rank condition of the previous example.

Example 6.5 Let Ω :=
{

(x, y) ∈ IR2 : 1
2 < x2 + y2 < 2

}
and let α > 1

2 be arbitrary. For

every (x, y) ∈ Ω define

A(x, y) =

(
x2 xy
xy y2

)
+ (x2 + y2 − 1)2α

(
1 0
0 1

)
.

With respect to Example 6.4, changing signs on the off-diagonal entries leaves all of the
relevant properties of A and S unchanged with the exception of KerA, which is now

Ker
(
A(x, y)

)
= T(x,y)S = Span〈(y,−x)〉

so that for each (x, y) ∈ S = {(x, y) ∈ IR2 : x2 + y2 = 1} one has that the rank of A(x, y) re-
stricted to N(x,y)S is one and the condition (2.3)-(iii) is satisfied. Thus the Poincaré inequality
(3.1) holds in accordance with Remark 3.5.

Finally, we give an example which shows that Sobolev inequalities with a strict gain in
summability may fail for matrices A which support the inequality (1.2).

Example 6.6 Let Ω := [− 1
2e
−2, 1

2e
−2] × [− 1

2 ,
1
2 ], p ≥ 1 and let α ≥ 2 + 2

p be arbitrary. For

every (x, y) ∈ Ω define

A(x, y) =

(
|x|α 0

0 1

)
.

Then the coefficients of the matrix A are C1, the degeneracy set is S = {(0, y) | y ∈ [− 1
2 ,

1
2 ]}

and (0, 1) is a direction of uniform ellipticity for the matrix A. By the results in [20] one has
the validity of a Poincaré inequality of the form (3.1) for every u ∈ C1

0 (Ω). In particular, the
results of Sections 4 and 5 of the present work apply to the matrix A.

Let ψ ∈ C∞0 (Ω) be a smooth cutoff function such that 0 ≤ ψ ≤ 1 in Ω and ψ ≡ 1 in
Θ := [− 1

4e
−2, 1

4e
−2]× [− 1

4 ,
1
4 ]. Define on Ω

ϕn(x, y) =

[(
x2 +

1

n

) 1
2
(

log

(
x2 +

1

n

))2
]− 1

p

∈ C∞(Ω)

and un(x, y) = ψ(x, y)ϕn(x, y). Then one has

∂

∂x
ϕn(x, y) =− 1

p

[(
x2 +

1

n

) 1
2
(

log

(
x2 +

1

n

))2
]− 1+p

p

×[
x

(
x2 +

1

n

)− 1
2
(

log

(
x2 +

1

n

))2

+ 4x log

(
x2 +

1

n

)(
x2 +

1

n

)− 1
2

]
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so that

|
√
A∇ϕn|2

= |〈A∇ϕn,∇ϕn〉| = |x|α
(
∂ϕn
∂x

)2

≤ C|x|α
[(

x2 +
1

n

)(
log

(
x2 +

1

n

))4
]− 1+p

p
[(

log

(
x2 +

1

n

))4

+

(
log

(
x2 +

1

n

))2
]

= C|x|α
[(

x2 +
1

n

)−1− 1
p
(

log

(
x2 +

1

n

))− 4
p

+

(
x2 +

1

n

)−1− 1
p
(

log

(
x2 +

1

n

))− 4
p−2
]
.

Now note that the function t 7→ ta| log t|b, for a, b < 0, is decreasing in [0, e−
b
a ]. Choosing

a = −1− 1
p , b = − 4

p we obtain e−
b
a = e−

4
p+1 ≥ e−2, while choosing a = −1− 1

p , b = − 4
p −2 we

obtain e−
b
a = e−

4+2p
p+1 ≥ e−3. Then, for n ∈ N sufficiently large, we have x2 < x2 + 1

n < e−3

for every (x, y) ∈ Ω. Thus we deduce

|
√
A∇ϕn|2 ≤ C|x|α

[
x−2− 2

p (log |x|)−
4
p + x−2− 2

p (log |x|)−
4
p−2
]
≤ C,

for α ≥ 2 + 2
p , independently of n ∈ N. Therefore, also recalling the properties of ψ, for

sufficiently large n ∈ N we have

〈A∇un,∇un〉
p
2 = |

√
A∇un|p ≤

(
|ψ
√
A∇ϕn|+ |ϕn

√
A∇ψ|

)p
≤ C

(
|ψ
√
A∇ϕn|p + |ϕn

√
A∇ψ|p

)
≤ C

(
1 +

(
x2 +

1

n

)− 1
2
(

log

(
x2 +

1

n

))−2
)

≤ C
(

1 + |x|−1 (log |x|)−2
)

in Ω, independently of n ∈ N. Thus we conclude that un ∈ W 1,p
0 (Ω;A) and that there exists

a constant M > 0 such that ‖un‖W 1,p
0 (Ω;A) ≤M for every n ∈ N. By the Poincaré inequality,

the sequence un is bounded also in Lp(Ω).
Now we show that a Sobolev inequality with strict gain, of the form: for some ε > 0 there

exists a constant C > 0 such that

‖u‖Lp(1+ε)(Ω) ≤ C
(∫

Ω

〈A(x, y)∇u,∇u〉
p
2 dxdy

) 1
p

, ∀ u ∈ C1
0 (Ω), (6.65)

does not hold in this setting. Indeed, we claim that for the sequence un defined above one has

lim
n→+∞

‖un‖Lp(1+ε)(Ω) = +∞, ∀ ε > 0. (6.66)

To show the claim, we estimate∫
Ω

|un(x, y)|p(1+ε) dxdy ≥
∫ 1

4

− 1
4

∫ 1
4 e
−2

− 1
4 e
−2

|ϕn(x, y)|p(1+ε) dxdy

=

∫ 1
4 e
−2

0

(
x2 +

1

n

)− 1+ε
2
(

log

(
x2 +

1

n

))−2(1+ε)

dx

→ 1

41+ε

∫ 1
4 e
−2

0

x−(1+ε) (log x)
−2(1+ε)

dx = +∞,

by the monotone convergence theorem. Thus (6.66) holds while at the same time the sequence
un is bounded in W 1,p

0 (Ω;A), and hence there is no C > 0 such that (6.65) holds.
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