1	Anti-Müllerian hormone receptor type 2 is expressed in gonadotrophs of post-
2	pubertal heifers to control gonadotropin secretion
3	Onalenna Kereilwe ⁴ , Kiran Pandey ⁴ , Vitaliano Borromeo ^B , and Hiroya Kadokawa ^{AC}
4	
5	^A Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken
6	1677-1, Japan
7	^B Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Italy.
8	^C Corresponding author: E-mail address: hiroya@yamaguchi-u.ac.jp
9	Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken
10	1677-1, Japan
11	Tel.: + 81 83 9335825; Fax: +81 83 9335938
12	
13	
14	Running head: AMHR2 controls gonadotropin secretion
15	

16	Abstract. Preantral and small antral follicles may secret anti-Müllerian hormone (AMH)
17	to control gonadotropin secretion from ruminant gonadotrophs. This study investigated
18	whether the main receptor for AMH, AMH receptor type 2 (AMHR2), is expressed in
19	gonadotrophs of post-pubertal heifers to control gonadotropin secretion. RT-PCR
20	detected expressions of AMHR2 mRNA in anterior pituitaries (APs) of post-pubertal
21	heifers. We developed an anti-AMHR2 chicken antibody against the extracellular region
22	near the N terminus of bovine AMHR2. Western blotting utilizing this antibody detected
23	the expressions of AMHR2 protein in APs. Immunofluorescence microscopy utilizing the
24	same antibody visualized colocalization of AMHR2 with gonadotropin-releasing
25	hormone (GnRH) receptor on the plasma membrane of gonadotrophs. We cultured the AP
26	cells for 3.5 days, and then treated them with increasing concentrations (0, 1, 10, 100, or
27	1000 pg/ml) of AMH. AMH (10–1000 pg/ml) stimulated (P < 0.05) basal FSH secretion.
28	The hormone (100–1000 pg/ml) also stimulated ($P < 0.05$) basal LH secretion weakly.
29	However, AMH (100-1000 pg/ml) inhibited GnRH-induced FSH secretion, but not
30	GnRH-induced LH secretion, in AP cells. In conclusion, AMHR2 is expressed in
31	gonadotrophs of post-pubertal heifers to control gonadotropin secretion.
32	Additional keywords: AMHR2, GnRH receptor, Müllerian-inhibiting substance,

33 ruminant.

35	Short summary
36	This study revealed that gonadotrophs express the receptor for anti-Müllerian hormone
37	(AMH) in post-pubertal heifers, and the AMH receptor colocalized with gonadotropin-
38	releasing hormone receptors on the surface of gonadotrophs. Furthermore, AMH
39	stimulated gonadotropin secretion from anterior pituitary cells of post-pubertal heifers.
40	Therefore, preantral and small antral follicles may secret AMH to control the
41	gonadotropin secretion from gonadotrophs in post-pubertal heifers.
42	

43 Introduction

Gonadotrophs in the anterior pituitaries (APs) secrete gonadotropins, luteinizing 44hormone (LH) and follicle stimulating hormone (FSH), to regulate follicle growth, 4546 ovulation, and corpus luteum formation in ovaries of vertebrates. Acting as a feedback mechanism, antral follicles and corpora lutea secrete steroids and inhibin to control 47gonadotropin secretion from the AP (Martin et al. 1991). This pituitary-ovary axis is one 48 of the most important fundamental mechanisms for reproduction. However, it is not clear 49 whether hormones secreted from preantral and small antral follicles control gonadotropin 5051secretion from the AP. We have a question whether preantral and small antral follicles are 52silent majority in ovaries.

Anti-Müllerian hormone (AMH) is a dimeric glycoprotein in the transforming growth 5354factor (TGF)-β family, and AMH is produced mainly by granulosa cells of the preantral and small antral follicles in humans and animals (Bhide et al. 2016). AMH regulates 55follicular development during the gonadotropin-responsive phase (Hernandez-Medrano 56et al. 2012) and to inhibit follicular atresia (Seifer et al. 2014). Blood AMH 57concentrations are indicative of ovarian aging in women (Bhide et al. 2016; Dewailly et 5859al. 2014). Plasma AMH concentrations positively correlate with pregnancy rates in dairy cows (Ribeiro et al. 2014). Further, circulating AMH concentrations can predict the 60

number of high-quality embryos produced by a donor goat or cow (Ireland et al. 2008; 61 Monniaux et al. 2011). These data suggest the importance of AMH for proper 62reproductive function in ruminants after puberty. 63 64 Although the primary role of AMH is at the ovary level in female animals, AMH secreted from preantral and small antral follicles into circulating blood may have roles in 65 66 other organs. Indeed, the APs of adult rats express mRNA for the main receptor of AMH, AMH receptor type 2 (AMHR2) (Bédécarrats et al. 2003). AMH activates LHB and FSHB 67 gene expression in LBT2 cells-a murine gonadotroph-derived cell line (Bédécarrats et 68 69 al. 2003). Garrel et al. (2016) recently reported that AMH stimulates FSH secretion in 70 rats in vivo; however, such stimulation is restricted to pre-pubertal female rats. However, there are still no data on the regulatory role of AMH on gonadotropin secretion from 7172gonadotrophs in ruminant species.

Gonadotrophs are controlled by GnRH *via* the GnRH receptor (GnRHR) at the surface. GnRHRs are present in gonadotroph plasma membrane lipid rafts (Navratil *et al.* 2009; Wehmeyer *et al.* 2014; Kadokawa *et al.* 2014), which are distinct, relatively insoluble regions that have lower density and are less fluid than surrounding membrane (Simons *et al.* 2000; Head *et al.* 2014). Lipid rafts facilitate signaling by allowing colocalization of membrane receptors and their downstream signaling components

79	(Simons et al. 2000; Head et al. 2014). We recently discovered that two orphan receptors,
80	GPR61 and GPR153, are colocalized with GnRHR in gonadotroph plasma membrane
81	lipid rafts (Pandey et al. 2017a, 2017b). Therefore, gonadotroph lipid rafts containing
82	GnRHR may contain AMHR2. In the present study, we tested the hypothesis that AMHR2
83	is expressed in the gonadotrophs of post-pubertal heifers to control gonadotropin
84	secretion.
85	
86	Materials and Methods
87	AP and ovary sample collection
88	We obtained AP tissue from post-pubertal (26 months of age) Japanese Black heifers
89	at a local abattoir, using a previously described method (Kadokawa et al. 2014). The
90	heifers were in the middle luteal phase, i.e., 8 to 12 days after ovulation, as determined
91	by macroscopic examination of the ovaries and uterus (Miyamoto et al. 2000); the AP
92	show the highest LH and GnRHR concentrations in this phase (Nett et al. 1987).
93	Granulosa cells in small antral follicles express AMHR2 mRNA (Poole et al. 2016).
94	Therefore, we also collected ovary tissue samples from the same heifers to use as positive
95	controls of AMHR2 in western blotting and immunohistochemistry assays.
96	The AP and ovary samples for RNA or protein $(n = 3)$ extraction were immediately

frozen in liquid nitrogen and stored at -80° C. The AP and ovary samples for immunohistochemistry (n = 35) were fixed with 4% paraformaldehyde at 4°C for 16 h. The AP samples meant for cell culture followed by immunocytochemical analysis (n = 5) and those that were to be used for cell culture to evaluate the effect of AMH on LH and FSH secretion (n = 8) were stored in ice-cold 25 mM HEPES buffer (pH 7.2) containing 10 mM glucose and transported on ice to the laboratory.

103

104 RT-PCR, sequencing of amplified products, and homology search in gene databases

105Total RNA was extracted from the AP samples (n = 3) using RNA iso Plus (Takara Bio Inc., Shiga, Japan) according to the manufacturer's protocol. The extracted RNA 106 samples were treated with ribonuclease-free deoxyribonuclease (Toyobo, Tokyo, Japan) 107 108 to eliminate possible genomic DNA contamination. The concentration and purity of each RNA sample were evaluated using a NanoDrop ND-1000 spectrophotometer (NanoDrop 109110 Technologies Inc., Wilmington, DE, USA) to ensure the A₂₆₀/A₂₈₀ nm ratio was in the acceptable range of 1.8–2.1. Electrophoresis of total RNA followed by staining with 111 ethidium bromide was performed to verify the mRNA quality of all samples, and the 11211328S:18S ratios were 2:1. The cDNA was synthesized from 0.5 µg of the total RNA per

AP using ReverTra Ace qPCR RT Master Mix (Toyobo) according to the manufacturer'sprotocol.

In order to determine the expression of AMHR2 mRNA in the AP, PCR was 116 117 conducted using one of three pairs of primers designed by Primer3 based on reference sequence of bovine AMHR2 [National Center for Biotechnology Information (NCBI) 118 reference sequence of bovine AMHR2 is NM 001205328.1], as one of PCR primers must 119 span exon-exon junction. Table 1 shows the details of the primers, and the expected PCR-120121product sizes of the AMHR2 were 340 bp, 320 bp, and 277 bp. Using a Veriti 96-Well 122Thermal Cycler (Thermoscientific), PCR was performed using 20 ng of cDNA and polymerase (Tks Gflex DNA Polymerase, Takara Bio Inc.) under the following 123thermocycles: 94 °C for 1 min for pre-denaturing followed by 35 cycles of 98°C for 10 s, 12460°C for 15 s, and 68°C for 30 s. PCR products were separated on 1.5% agarose gel by 125electrophoresis with a molecular marker [Gene Ladder 100 (0.1-2kbp), Nippon Gene, 126127Tokyo, Japan], stained with fluorescent stain (Gelstar, Lonza, Allendale, NJ), and observed using a charge-coupled device (CCD) imaging system (GelDoc; Bio-Rad, 128129Hercules, CA, US). The PCR products were purified with the NucleoSpin Extract II kit 130 (Takara Bio Inc.) and then sequenced with a sequencer (ABI3130, Thermo Fisher Scientific, Waltham, MA, US) using one of the PCR primers and the Dye Terminator v3.1 131

132	Cycle Sequencing Kit (Thermo Fisher Scientific). The obtained sequences were used as
133	query terms with which to search the homology sequence in the DDBJ/GenBankTM/EBI
134	Data Bank using the basic nucleotide local alignment search tool (BLAST) optimized for
135	highly similar sequences (available on the NCBI website).

136

137 Development anti-AMHR2 chicken antibody

We previously determined using the SOSUI v.1.11 algorithm (Hirokawa *et al.* 1998;
<u>http://harrier.nagahama-i-bio.ac.jp/sosui/</u>) that bovine AMHR2 protein [543 amino acids;
accession number NP_001192257.1 in NCBI reference bovine sequences] contains one
hydrophobic transmembrane domains (amino acid 146–168) linked by hydrophilic
extracellular and intracellular regions. This structure is the same as the reported structure
of mouse AMHR2 (Sakalar *et al.* 2015).
Genetyx ver. 11 (Gentyx, Tokyo, Japan) was utilized to predict antigenic determinants

based on an algorithm derived by Hopp and Woods (1981). For antibody production, a

- 146 peptide corresponding to amino acids 31–45 (GVRGSTQNLGKLLDA), an extracellular
- 147 region that is located near the N terminus of the AMHR2, was used for three reasons.
- 148 First, this peptide has no homology to the corresponding region of chicken AMHR2
- 149 (XP_015145444.1). Second, the peptide sequences are in downstream region of the signal

peptide of bovine AMHR2 (amino acid 1–17). Third, we confirmed that no other protein
encoded in the bovine genome exhibited homology to the peptide sequences of the
AMHR2 by comparison with the sequences retrieved from DDBJ/GenBankTM/EBI Data
Bank, using the protein BLAST.

A commercial service (Scrum Inc., Tokyo, Japan) was utilized to synthesize antigen 154peptide (C-GVRGSTQNLGKLLDA), conjugation with keyhole limpet hemocyanin 155156(KLH), immunization, and antibody purification. Briefly, the AMHR2 antigen peptide was synthesized, and the purity was verified (greater than 99.0%) using high-performance 157158liquid chromatography followed by mass spectrometry. Then, KLH was conjugated to the sulfhydryl group of the cysteine of the antigen peptide. The immunogen was 159emulsified with Complete Freund's adjuvant and injected to chickens five times at 14-160 day intervals. Blood was collected 7 days after the final immunization. Antibody was 161 162purified by affinity column chromatography (PD10; GE Healthcare, Amersham, UK) 163 containing an antigen-conjugated gel prepared with the SulfoLink Immobilization Kit (Thermo Scientific). 164

165

166 Other antibodies used in this study

167 We previously developed a guinea pig polyclonal antibody that recognizes the N-

168	terminal extracellular domain (corresponding to amino acids 1-29;
169	MANSDSPEQNENHCSAINSSIPLTPGSLP) of GnRHR (anti-GnRHR). The specificity
170	of the anti-GnRHR antibody was verified by western blotting, and pretreatment with anti-
171	GnRHR antibody inhibited GnRH-induced LH secretion from cultured bovine
172	gonadotroph (Kadokawa et al. 2014). Additionally, we previously used the anti-GnRHR
173	antibody for immunofluorescence detection of GnRHR in plasma membrane of bovine
174	gonadotroph (Kadokawa et al. 2014; Pandey et al. 2016). We observed a strong and
175	localized GnRHR-positive staining signal as aggregation on the plasma membrane of
176	gonadotrophs (Kadokawa et al. 2014). We used the anti-GnRHR as well as a mouse
177	monoclonal anti-LH β (LH β) subunit antibody (clone 518-B7; Matteri <i>et al.</i> 1987) for
178	immunohistochemical analysis of AP tissue and cultured AP cells. This antibody does not
179	cross-react with other pituitary hormones (Iqbal et al. 2009). Also we used a mouse
180	monoclonal anti-FSH β (FSH β) subunit antibody (clone A3C12) that does not cross-react
181	with other pituitary hormones (Borromeo et al. 2004) for immunohistochemical analysis
182	of AP tissue.

183

Western Blotting for AMHR2 184

Briefly, we extracted protein from the AP (n = 3) or ovary (n = 3, used as positive185

186	control) samples and performed western blotting using the previously described method
187	(Kadokawa <i>et al.</i> 2014). The extracted protein sample (33.4 μ g of total protein in 37.5 μ l)
188	was mixed in 12.5 μl of 4x Laemmli sample buffer (Bio-rad) containing 10% (v/v) β -
189	mercaptoethanol, then boiled for 3 min at 100 °C. The boiled protein samples were
190	quickly cooled down in ice, then the protein samples (4, 8, or 16 μ g of total protein) were
191	loaded onto a polyacrylamide gel along with a molecular weight marker (Precision Plus
192	Protein All Blue Standards; Bio-Rad), and resolved by electrophoresis on sodium dodecyl
193	sulfate polyacrylamide gels at 100 V for 90 min. Proteins were then transferred to
194	polyvinylidene fluoride (PVDF) membranes. Immunoblotting was performed with the
195	anti-AMHR2 chicken antibody (1:25,000 dilution) after blocking with 0.1% Tween 20
196	and 5% non-fat dry milk for 1 h at 25 °C. Incubation with the primary antibody was
197	performed overnight at 4 °C. Following washes with 10 mM Tris-HCl (pH 7.6)
198	containing 150 mM NaCl and 0.1% Tween 20, the PVDF membrane was incubated with
199	horseradish peroxidase (HRP)-conjugated anti-chicken IgG goat antibody (Bethyl
200	laboratories, Inc., Montgomery, TX, USA; 1:50,000 dilution) at 25 °C for 1 h. Protein
201	bands were visualized using an ECL-Prime chemiluminescence kit (GE Healthcare) and
202	CCD imaging system (Fujifilm, Tokyo, Japan). Previous studies utilizing western blotting
203	for AMHR2 reported that human and mouse AMHR2 are present as dimers, full-length

204	monomers, or cleaved monomers (Faure et al. 1996; Hirschhorn et al. 2015). Thus, we
205	defined bovine AMHR2 bands based on mobility as one of these structure types. After
206	antibodies were removed from the PVDF membrane with stripping solution (Nacalai
207	Tesque Inc., Kyoto, Japan), the membrane was used for immunoblotting with the anti- β -
208	actin mouse monoclonal antibody (A2228, 1:50,000 dilution; Sigma-Aldrich, St. Louis,
209	MO, USA).

210

211 Fluorescent immunohistochemistry and confocal microscopic observation

212After storage in 4% paraformaldehyde PBS at 4°C for 16 h, the AP (n = 35) or ovary (n = 5) tissue blocks were placed in 30% sucrose PBS until the blocks were infiltrated 213with sucrose. The methods for immunofluorescence analysis of AP tissue have been 214described previously (Kadokawa et al. 2014). Briefly, we prepared 15-µm sagittal 215sections and mounted them on slides. The sections were treated with 0.3 % Triton X-100 216217in PBS for 15 min, then, incubated with 0.5 mL of PBS containing 10% normal goat serum (Wako Pure Chemicals, Osaka, Japan) for blocking for 1 h. Incubation with a 218cocktail of primary antibodies (anti-GnRHR guinea pig antibody, anti-AMHR2 chicken 219220antibody, and either anti-LHB or anti-FSHB mouse antibody [all diluted as 1:1,000]) for 12 h at 4°C was followed by incubation with a cocktail of fluorochrome-conjugated 221

222	secondary antibodies (Alexa Fluor 488 goat anti-chicken IgG, Alexa Fluor 546 goat anti-
223	mouse IgG, and Alexa Fluor 647 goat anti-guinea pig IgG [all from Thermo Fisher
224	Scientific and diluted as 1 μ g/mL]) and 1 μ g/mL of 4', 6'-diamino-2-phenylindole (DAPI;
225	Wako Pure Chemicals) for 2 h at room temperature. Moreover, we prepared 15- μ m ovary
226	sections, incubated with anti-AMHR2 chicken antibody (1:1,000), and then incubated
227	with 1 μ g/mLAlexa Fluor 488 goat anti-chicken IgG and DAPI to use as positive controls
228	to verify the anti-AMHR2 antibody.
229	The stained sections on slides were observed by confocal microscopy (LSM710; Carl
230	Zeiss, Göttingen, Germany) equipped with a diode laser 405 nm, argon laser 488 nm,
231	HeNe laser 533 nm, and HeNe laser 633 nm. Images obtained by fluorescence microscopy
232	were scanned with a 40× or 63 × oil-immersion objective and recorded by a CCD camera
233	system controlled by ZEN2012 black edition software (Carl Zeiss). GnRHR, AMHR2,
234	and LH β or FSH β localization were examined in confocal images of triple-
235	immunolabeled specimens. In the confocal images obtained after immunohistochemistry
236	analysis, the GnRHR is shown in green, AMHR2 is shown in red, and LH β or FSH β is
237	shown in light blue. Therefore, the yellow coloration on the surface of light blue-colored
238	cells indicates the colocalization of AMHR2 and GnRHR. The percentage of AMHR2
239	single (red)-labeled light blue-colored cells, or the percentage of double (yellow)-labeled

light blue-colored cells, among all of the AMHR2-positive light blue-colored cells (sum 240of the numbers of red-labeled and yellow-labeled light blue-colored cells), were 241determined from 12 representative confocal images per pituitary gland. Moreover, the 242243percentage of GnRHR single (green)-labeled light blue-colored cells, or the percentage of double (yellow)-labeled light blue-colored cells, among all of the GnRHR-positive 244light blue-colored cells (sum of the numbers of green-labeled and yellow-labeled light 245246blue-colored cells), were determined from 12 representative confocal images per pituitary gland. To verify the specificity of the signals, we included several negative controls in 247248which the primary antiserum had been omitted or pre-absorbed with 5 nM of the same antigen peptide, or in which normal chicken IgG (Wako Pure Chemicals) was used 249instead of the primary antibody. 250

251

252 AP cell culture and immunocytochemical analysis of cells

Enzymatic dispersal of the AP cells from 5 heifers was performed using a previously described method (Suzuki *et al.* 2008) and confirmation of cell viability of greater than 90% was determined via Trypan blue exclusion. Total cell yield was $19.8 \times 10^6 \pm 0.8$ $\times 10^6$ cells per pituitary gland. The dispersed cells were then suspended in Dulbecco's Modified Eagle's Medium (DMEM; Thermo Fisher Scientific) containing $1 \times$

258	nonessential amino acids (Thermo Fisher Scientific), 100 U/mL penicillin, 50 µg/mL
259	streptomycin, 10% horse serum (Thermo Fisher Scientific), and 2.5% fetal bovine serum
260	(Thermo Fisher Scientific). The cells $(2.5 \times 10^5 \text{ cells/mL}, \text{ total} = 0.15 \text{ mL per lane})$ were
261	cultured in the culture medium at 37 °C in 5% CO ₂ for 82 h, using a microscopy chamber
262	(μ -Slide VI 0.4, Ibidi, Planegg, Germany). We cultured the AP cells for 82 h (3.5 days),
263	as previously described (Hashizume et al. 2003; Kadokawa et al. 2008; Hashizume et al.
264	2009; Kadokawa et al. 2014; Nakamura et al. 2015). We supplied recombinant human
265	activin A (final concentration, 10 ng/ml; R&D systems, Minneapolis, MN, US) to
266	stimulate FSH synthesis at 24 h prior to fixation. Mature activin A of bovines
267	(NP_776788.1) and ovines (NP_001009458.1) have 100% homology with that of humans
268	(CAA40805.1), and the 24 h culture with the same concentration of same recombinant
269	human activin A product stimulates FSH expression in cultured ovine AP cells (Young et
270	al. 2008).

276microscopy chamber were treated following one of the aforementioned methods. For the PFA-Triton method, the fixed cells were incubated with 0.1 mL of the same cocktail of 277primary antibodies for 2 h at room temperature. Incubation with Triton X-100 allowed 278279both anti-GnRHR and anti-AMHR2 antibodies to bind to target proteins in the cytoplasm and at the cell surface. For the CellCover method, the fixed cells were incubated with 280only guinea pig anti-GnRHR and chicken anti-AMHR2 antibodies (both 1:1,000) for 2 h 281282at room temperature. Since the cells were not treated with Triton X-100, the antibodies 283bound only to the extracellular domains of the respective receptors in most cells, although 284some cytoplasmic labeling occurred in broken cells. For both PFA-Triton and CellCover methods, cells were incubated with fluorochrome-conjugated secondary antibody 285cocktail and DAPI. The cells were visualized by confocal microscopy and fluorescence 286287micrographs and differential interference contrast (DIC) images were obtained on a single plane. Signal specificity was confirmed using negative controls in which the primary 288antiserum was omitted or pre-absorbed with 5 nM antigen peptide, or in which the normal 289chicken IgG replaced the primary antibody. Eight randomly selected images of cells 290prepared by CellCover method were analyzed for co-localization utilizing the ZEN 2012 291292black edition software (Carl Zeiss) to calculate overlap coefficients (Manders et al. 1993) for the Alexa Fluor 488 and Alexa Fluor 647 fluorophores. 293

295	Pituitary cell	culture and	analysis	of the	effects of	of AMH	on LH ar	nd FSH s	ecretion

296	The AP cells derived from 8 heifers were prepared using the protocol described above.
297	After the cells (2.5×10^5 cells/mL, total 0.3 mL) had been plated in 48-well culture plates
298	(Sumitomo Bakelite, Tokyo, Japan), they were maintained at 37°C in a humidified
299	atmosphere of 5% CO_2 for 82 h. We supplied the recombinant human activin A (final
300	concentration, 10 ng/ml) to stimulate FSH synthesis at 24 h prior to the AMH test.
301	In the test to evaluate the effect of AMH in the absence of GnRH, the old medium
302	was replaced by 295 μL DMEM containing 0.1% BSA and 10 ng/ml activin A and
303	incubated for 2 h. Treatment was performed by adding 5 μ L of DMEM alone or 5 μ L of
304	DMEM containing various concentrations of human recombinant AMH (R & D systems;
305	final concentration of 0, 1, 10, 100, or 1000 pg/ml AMH).
306	The bioactive region in the carboxyl-terminal region of mature AMH (Belville et al.
307	2004) of bovines (NP_776315.1) and goat (XP_017906255.1) has 96% homology with
308	that of humans (NP_000470.2), and the same recombinant human AMH product shows
309	the biological effect for goat follicles (Rocha et al. 2016).
310	After incubation for further 2 h, the medium from each well was collected for

311 radioimmunoassay (RIA) analyses of LH and FSH levels. The physiological

concentration of AMH in blood ranged between 5 and 300 pg/ml in Japanese Black cows 312in our previous study (Koizumi and Kadokawa 2017). Therefore, we used the above-313 mentioned AMH concentration in this study. 314315In the test to evaluate the effect of AMH in the presence of GnRH, the old medium was replaced by 290 µL DMEM containing 0.1% BSA and 10 ng/ml activin A and 316 incubated at 37°C for 2 h. Pretreatment was performed by adding 5 µL of DMEM alone 317318 or 5 µL of DMEM containing various concentrations (0, 60, 600, 6000, and 60000 pg/ml) of the human recombinant AMH. The cells were incubated while gently shaking for 5 319 320 min, and then, cells were treated with 5 µL of 60 nM GnRH (Peptide Institute Inc., Osaka, 321Japan) dissolved in DMEM for 2 h in order to stimulate LH and FSH secretion. The pretreatment plus the GnRH treatment yielded a final concentration of 0, 1, 10, 100, or 3221000 pg/ml AMH. The final concentration of GnRH was 1 nM in all treatments 323 (Kadokawa et al. 2014), except the "control". Control wells were treated with 5 µL of 324325DMEM, but were not incubated with GnRH. "GnRH" wells were pre-treated with 5 µL of DMEM for 5 min and were then incubated with GnRH for 2 h. After incubation for 2 326 h, the medium from each well was collected for LH and FSH RIAs. 327 328

329 RIAs to measure gonadotropin concentration in culture media

330	LH concentrations in the culture media were assayed in duplicate by double antibody
331	RIA using ¹²⁵ I-labeled bLH and anti-oLH-antiserum (AFP11743B and AFP192279,
332	National Hormone and Pituitary Program of the National Institute of Diabetes and
333	Digestive and Kidney Diseases [NIDDK], Bethesda, CA, USA). The limit of detection
334	was 0.40 ng/mL. At 2.04 ng/mL, the intra- and inter-assay coefficients of variation were
335	3.6% and 6.2%, respectively. FSH concentrations in the culture media were assayed in
336	duplicate by double antibody RIA using ¹²⁵ I-labeled bFSH, reference grade bFSH, and
337	anti-oFSH antiserum (AFP5318C, AFP5346D, and AFPC5288113, NIDDK). The limit
338	of detection was 0.20 ng/mL. At 4.00 ng/mL, the intra- and inter-assay coefficients of
339	variation were 4.3% and 7.1%, respectively.

340

Statistical analysis 341

The statistical significance of differences in LH or FSH concentration were analyzed 342by one-factor ANOVA followed by post-hoc comparisons using Fisher's protected least 343 significant difference (PLSD) test using StatView version 5.0 for Windows (SAS Institute, 344 Inc., Cary, NC, USA). The level of significance was set at P < 0.05. Data are expressed 345as mean \pm standard error of the mean (SEM). 346

348 **Results**

349 Expression of AMHR2 mRNA in AP of post-pubertal heifers

The expected PCR products (size 340 bp, 320 bp, and 277 bp) were observed in the 350351agarose gel after electrophoresis (Fig. 1). Homology searching in the gene databases for the obtained sequence of amplified products using the first, second and third primer pair 352respectively revealed that the best match alignment was bovine AMHR2 353354(NM 001205328.1), which had a query coverage of 100%, an e-value of 0.0, and a maximum alignment identity of 99%. No other bovine gene was found to have a 355356homology for the obtained sequences of amplified products, leading to the conclusion that the sequences of the amplified products were identical with the sequence of bovine 357358AMHR2.

359

360 Western blotting for AMHR2

361 The presence of AMHR2 in the AP and ovarian tissue was analyzed by western 362 blot, using anti-AMHR2 antibody (Fig. 2). The anti-AMHR2 antibody revealed similar 363 bands in the two tissues, with few differences (Fig. 2A). The major difference was that 364 AP tissue showed weaker bands than ovarian tissue did. Nevertheless, β -actin bands 365 showed weaker staining in both tissue types (Fig. 2B). Finally, another difference was

366	that the full-length monomer in the ovary appeared as a single band, whereas in AP cells,
367	it appeared as a doublet (Fig. 2A). No bands were observed in the negative control
368	membranes, where the primary antiserum was pre-absorbed with the antigen peptide.
369	
370	Immunofluorescence analysis of AMHR2 expression in bovine granulosa cells
371	Fig. 3 shows the immunofluorescence in the granulosa cells of small (about 5 mm)
372	follicles in the ovary tissues of post-pubertal heifers. Strong AMHR2 staining appeared
373	to be aggregated, not evenly dispersed.
374	
375	Immunofluorescence analysis of AMHR2 expression in bovine AP tissue
375 376	Immunofluorescence analysis of AMHR2 expression in bovine AP tissue Expression of LHβ, FSHβ, GnRHR, and AMHR2 in bovine AP tissue was
375 376 377	<i>Immunofluorescence analysis of AMHR2 expression in bovine AP tissue</i> Expression of LHβ, FSHβ, GnRHR, and AMHR2 in bovine AP tissue was investigated by immunohistochemistry (Fig. 4). AMHR2 and GnRHR colocalized in the
375 376 377 378	<i>Immunofluorescence analysis of AMHR2 expression in bovine AP tissue</i> Expression of LHβ, FSHβ, GnRHR, and AMHR2 in bovine AP tissue was investigated by immunohistochemistry (Fig. 4). AMHR2 and GnRHR colocalized in the majority of both LHβ-positive (Fig. 4A) and FSHβ-positive (Fig. 4B) cells. Focus depth
375 376 377 378 379	<i>Immunofluorescence analysis of AMHR2 expression in bovine AP tissue</i> Expression of LHβ, FSHβ, GnRHR, and AMHR2 in bovine AP tissue was investigated by immunohistochemistry (Fig. 4). AMHR2 and GnRHR colocalized in the majority of both LHβ-positive (Fig. 4A) and FSHβ-positive (Fig. 4B) cells. Focus depth of the high magnification lens used in this study are thin, thus, the best focus for GnRHR
375 376 377 378 379 380	Immunofluorescence analysis of AMHR2 expression in bovine AP tissue Expression of LHβ, FSHβ, GnRHR, and AMHR2 in bovine AP tissue was investigated by immunohistochemistry (Fig. 4). AMHR2 and GnRHR colocalized in the majority of both LHβ-positive (Fig. 4A) and FSHβ-positive (Fig. 4B) cells. Focus depth of the high magnification lens used in this study are thin, thus, the best focus for GnRHR and AMHR2 on plasma membrane was quite different from both the best focus for
375 376 377 378 379 380 381	Immunofluorescence analysis of AMHR2 expression in bovine AP tissue Expression of LHβ, FSHβ, GnRHR, and AMHR2 in bovine AP tissue was investigated by immunohistochemistry (Fig. 4). AMHR2 and GnRHR colocalized in the majority of both LHβ-positive (Fig. 4A) and FSHβ-positive (Fig. 4B) cells. Focus depth of the high magnification lens used in this study are thin, thus, the best focus for GnRHR and AMHR2 on plasma membrane was quite different from both the best focus for nucleus and the best focus for cytoplasmic LHβ or FSHβ. Thus, we could know both
375 376 377 378 379 380 381 381	<i>Immunofluorescence analysis of AMHR2 expression in bovine AP tissue</i> Expression of LHβ, FSHβ, GnRHR, and AMHR2 in bovine AP tissue was investigated by immunohistochemistry (Fig. 4). AMHR2 and GnRHR colocalized in the majority of both LHβ-positive (Fig. 4A) and FSHβ-positive (Fig. 4B) cells. Focus depth of the high magnification lens used in this study are thin, thus, the best focus for GnRHR and AMHR2 on plasma membrane was quite different from both the best focus for nucleus and the best focus for cytoplasmic LHβ or FSHβ. Thus, we could know both membrane receptors are on the cell-surface. Percentages of single- and double-labeled

384	images per pituitary gland. In each pituitary gland, there was an average of 52.4 ± 2.4
385	GnRHR-positive cells, 44.6 ± 1.2 AMHR2-positive cells, and 33.6 ± 1.3 double-positive
386	cells; 64.5% \pm 3.2% of GnRHR-positive cells were AMHR2-positive, whereas 78.4% \pm
387	1.8% of AMHR2-positive cells were GnRHR-positive.
388	
389	AMHR2 and GnRHR aggregate on the surface of cultured AP cells
390	In the AP cells prepared by the CellCover method, AMHR2 aggregated on the surface
391	of GnRHR-positive cells (Fig. 5). The overlap coefficient between AMHR2 and GnRHR
392	was 0.76 ± 0.05 on the cell surface of cultured AP cells.
393	
394	AMHR2 expression in cultured gonadotrophs
395	Among the AP cells prepared by the PFA-Triton method, we observed AMHR2 in both
396	LHβ-positive and FSHβ-positive cells (Fig. 6).
397	
398	Effects of AMH on gonadotropin secretion from cultured AP cells
399	Fig. 7 shows the effect of various concentrations of AMH on LH secretion from the
400	AP cells derived from post-pubertal heifers cultured in the absence (A) or presence (B)
401	of GnRH. In the absence of GnRH (Fig. 7A), 100 pg/ml and 1000 pg/ml of AMH

increased (P < 0.05) LH secretion, when compared with the controls $(17.6 \pm 2.4 \text{ ng/ml})$. 402 403 Conversely, there was no effect of AMH on the GnRH-induced LH secretion (Fig. 7B). Fig. 8 shows the effect of various concentrations of AMH on FSH secretion from the 404 405AP cells derived from post-pubertal heifers cultured in the absence (A) or presence (B) of GnRH. The effect of different concentrations of AMH was significant (P < 0.05) in the 406 absence of GnRH (Fig. 8A). The wells with 10 pg/ml (P < 0.05), 100 pg/ml (P < 0.05), 407408 and 1000 pg/ml (P < 0.05) of AMH, but not 1 pg/ml of AMH, had higher FSH concentrations than those without AMH (8.4 \pm 1.2 ng/ml). The effect of different 409 410 concentrations of AMH was significant (P < 0.05) in the presence of GnRH (Fig. 8B). FSH concentrations in the medium of GnRH wells were higher (P < 0.05) than those in 411 the medium of control wells. There was no effect of 1 pg/ml or 10 pg/ml of AMH on the 412GnRH-induced FSH secretion. There was a suppressing effect of 100 pg/ml (P < 0.05) 413and 1000 pg/ml (P < 0.05) of AMH on the GnRH-induced FSH secretion. 414

415

416 **Discussion**

To the best of our knowledge, this study is the first to report that AP cells express AMHR2 in ruminants and that AMH significantly affects LH and FSH secretion from AP cells. Fluorescent immunohistochemistry using the anti-AMHR2 antibody showed the

420	strong signal located on the surface of granulosa cells in small antral follicles, where
421	AMHR2 mRNA is expressed (Poole et al. 2016). Therefore, the anti-bovine AMHR2 is
422	the first developed tool that can be used for immunohistochemistry in bovine samples.
423	In this study, treatment with 10–1000 pg/ml of AMH stimulated FSH secretion in the
424	absence of GnRH. This agrees with in vivo experiments on rats, where AMH stimulates
425	the secretion and expression of FSH (Garrel et al. 2016). These data suggested that AMH
426	might bind with AMHR2 to increase FSH secretion from gonadotroph in ruminants as
427	well. Garrel et al. (2016) recently reported that AMH increases both FSHB expression
428	and phosphorylates SMAD 1/5/8 in L β T2 cells, but such increases are blocked by GnRH.
429	In this study, 1–10 pg/ml AMH did not change GnRH-stimulated FSH secretion; however,
430	100-1000 pg/ml AMH suppressed GnRH-stimulated FSH secretion. Therefore, further
431	studies are required to clarify the molecular mechanisms controlling FSH secretion from
432	ruminant gonadotrophs by AMH and GnRH, especially whether the SMAD 1/5/8
433	pathways have important roles.
434	Multiparous (third parity or higher) Japanese Black cows have significantly higher

blood AMH concentrations (100 pg/ml level) than primiparous cows (1–10 pg/ml level)
throughout the postpartum period (Koizumi and Kadokawa 2017). The multiparous
Japanese Black cows have larger number of days from parturition to postpartum first

438	ovulation than the primiparous cows (Koizumi and Kadokawa 2016). Therefore, the
439	suppressing effect of 100–1000 pg/ml of AMH on GnRH-stimulated FSH secretion may
440	have an important role in the follicular growth and delayed postpartum first ovulation in
441	multiparous cows.
442	Intraperitoneal injection with AMH increases FSH concentration in blood collected
443	18 h later, but only in pre-pubertal female rats (Garrel et al. 2016). In contrast, this study
444	shows the significant effect of AMH on FSH secretion from the AP of post-pubertal
445	heifers in vitro. Therefore, further studies are required to clarify whether there are any
446	differences in AMH effects on FSH secretion among species.
447	The pituitary gland is located outside the blood-brain barrier unlike the hypothalamus
448	(Nussey and Whitehead 2001); therefore, the AMHR2 on gonadotrophs may bind AMH
449	secreted from preantral and small antral follicles. Our data suggested that AMH, like the
450	other TGF- β family members such as inhibin and activin (Kushnir et al. 2017), can affect
451	FSH secretion from gonadotrophs. However, little is known about the changes occurring
452	in the blood AMH concentration during the estrous cycle in ruminants (Pfeiffer et al.
453	2014; Koizumi and Kadokawa 2017). The blood AMH concentration is influenced by age
454	and parity (Koizumi and Kadokawa 2017); however, the concentration may not show a
455	considerable change during the estrous cycle in ruminants in vivo (Pfeiffer et al. 2014;

456	Koizumi and Kadokawa 2017). Therefore, we must be cautious when concluding that
457	AMH contributes largely in controlling LH and FSH secretion from gonadotrophs in vivo.
458	Our results suggested that preantral and small antral follicles may control
459	gonadotropin secretion from the AP in post-pubertal heifers. Conversely, FSH suppresses
460	AMH secretion from bovine granulosa cells (Rico et al. 2011). Therefore, there may be
461	feedback mechanisms between gonadotrophs and granulosa cells in preantral and small
462	antral follicles. AMH locally decreases the sensitivity of FSH in follicles in multiple
463	species including the mouse and sheep (Durlinger et al. 2001; Campbell et al. 2012;
464	Visser and Themmen 2014). Recently, Ilha et al. (2016) reported that AMH mRNA levels
465	decrease in both dominant and subordinate follicles during follicular deviation in cows.
466	Thus, both dominant and subordinate follicles become more sensitive to FSH and can be
467	recruited to enter the pool of follicles which may then become dominant (Visser and
468	Themmen 2014). Therefore, AMH may have an important role in both the ovary and
469	gonadotrophs during follicular selection in monovulatory species.
470	Gonadotrophs are a heterogeneous cell population comprising LH and FSH
471	monohormonal and bihormonal subsets in rats, equines, and bovines (Townsend et al.
472	2004; Pals et al. 2008; Kadokawa et al. 2014). The fluorescent immunohistochemistry
473	showed the AMHR2 expression in LH β -positive cells as well as FSH β -positive cells. In

474	this study, 100 pg/ml and 1000 pg/ml of AMH stimulated LH secretion weakly. Therefore,
475	AMH may control also LH secretion, but weakly. Intraperitoneal injection with AMH
476	increases FSH concentration in blood collected 18 h later in rats; however, AMH injection
477	does not significantly increase LH concentration in the same blood samples (Garrel et al.
478	2016). Therefore, the effect of AMH on LH secretion <i>in vivo</i> may not become significant.
479	It is well known that GPCR proteins can form functionally active homomers and
480	heteromers with different receptors (Ritter and Hall 2009). We obtained the strong
481	positive overlap coefficient between AMHR2 and GnRHR on the cell-surface. This
482	overlap coefficient was greater than that reported between GnRHR and flotillin-1 in
483	cultured L β T2 cells (0.50; Wehmeyer <i>et al.</i> 2014) and similar to that we previously found
484	between GnRHR and GPR61 (0.71; Pandey et al. 2017a) and GPR153 (0.75; Pandey et
485	al. 2017b) in bovine gonadotrophs. Heterodimerization among paralogs of GnRHRs of a
486	protochordate results in the modulation of ligand-binding affinity, signal transduction,
487	and internalization (Satake et al. 2013). Thus, it is possible that AMHR2 forms a
488	heteromer, affecting ligand-binding affinity, signal transduction, and internalization of
489	GnRHR, and thus the synthesis and secretion of LH and FSH in AP of vertebrates.
490	Furthermore, a recent study (Hossain et al. 2016) suggested that GPR61 form heteromers

with other GPCRs. Therefore, further studies are required to clarify whether GnRHR form
heteromers with GPR61, GPR153, and AMHR2.

In this study, we observed multiple, not single, bands of AMHR2 in western 493494blotting, which has been reported previously. For example, Faure et al. (1996) reported three bands (82, 73, and 63 kDa) of dimers, full-length monomers, and cleaved monomers. 495Hirschhorn et al. (2015) reported more bands (~58 kDa, ~69 kDa, and ~71 kDa) of dimers, 496 497 full-length monomers, and cleaved monomers. AMHR2 is present as dimers, full-length monomers, and cleaved monomers in bovine ovaries and APs. Treatment with N-498499glycosidase F shows a further two bands (68 kDa and 61 kDa) by cutting down by 500approximately 5 and 2 kDa, because AMHR2 is O-glycosylated (Faure et al. 1996). The full-length monomers in APs appeared as a doublet, whereas those in the ovary appeared 501502as a single band in this study. Therefore, this study suggests that bovine AMHR2 is glycosylated, and the difference in the number of full-length monomers between the AP 503and ovary might be because of the glycosylation differences. 504The anti-AMHR2 antibody revealed similar bands in the two tissues in the western 505blot. However, AP tissue showed weaker bands than ovarian tissue did. Nevertheless, β-506

- actin bands showed weaker staining in both tissue types. This suggests that the AP cell
- 508 lanes were loaded with a lower amount of proteins than expected. A second difference

509	between AP and ovarian cells was the absence of the dimeric AMHR2 band in AP cells.
510	However, this might be the consequence of the lower protein amount used in the AP cell
511	western blot. In fact, the high molecular weight band was detectable in the ovarian tissue
512	extract only at the highest dose (i.e., 16 µg/lane).
513	We found that approximately 20% of AMHR2-positive cells were non-gonadotrophs.
514	At the time of our manuscript preparation, no reports published on AMHR2 in non-
515	gonadotrophs. An AMHR2 polymorphism (482 A>G) was associated with lower
516	prolactin levels in women with polycystic ovary syndrome (Georgopoulos et al. 2013).
517	Therefore, lactotrophs may express AMHR2 to play an important role in polycystic ovary
518	syndrome, which is a possibility that bears further consideration in future investigations.
519	In conclusion, AMHR2 is expressed in the gonadotrophs of post-pubertal heifers to
520	control gonadotropin secretion.
521	

Acknowledgments 522

Both Onalenna Kereilwe and Kiran Pandey were supported by MEXT (Ministry of 523Education, Culture, Sports, Science, and Technology) with the provision of a scholarship. 524This research was partly supported by a Grant-in Aid for Scientific Research from 525Yamaguchi University Foundation (Yamaguchi, Japan) to Hiroya Kadokawa. The authors 526

527	thank Dr. A. F. Parlow of National Hormone & Peptide Program (Harbor-UCLA medical			
528	center Torrance, CA, U.S.A.) for supplying the RIA kits.			
529				
530	Conflicts of Interest			
531	The authors declare no conflicts of interest.			
532				
533	References			
534	Bédécarrats, G. Y., O'Neill, F. H., Norwitz, E. R., Kaiser, U. B., and Teixeira, J. (2003).			
535	Regulation of gonadotropin gene expression by Mullerian inhibiting substance. Proc.			
536	Natl. Acad. Sci. U. S. A. 100, 9348-9353. doi: 10.1073/pnas.1633592100			
537	Belville, C., Van, Vlijmen, H., Ehrenfels, C., Pepinsky, B., Rezaie, A. R., Picard, J. Y.,			
538	Josso, N., di Clemente, N., and Cate, . RL. (2004). Mutations of the anti-mullerian			
539	hormone gene in patients with persistent mullerian duct syndrome: biosynthesis,			
540	secretion, and processing of the abnormal proteins and analysis using a three-			
541	dimensional model. Mol. Endocrinol. 18, 708-721. doil: 10.1210/me.2003-0358			
542	Bhide, P., and Homburg, R. (2016). Anti-Müllerian hormone and polycystic ovary			
543	syndrome. Best. Pract. Res. Clin. Obstet. Gynaecol. 37, 38-45. doi:			
544	10.1016/j.bpobgyn.2016.03.004			

545	Borromeo, V., Amsterdam, A., Berrini, A., Gaggioli, D., Dantes, A., and Secchi, C.
546	(2004). Characterization of biologically active bovine pituitary FSH purified by
547	immunoaffinity chromatography using a monoclonal antibody. Gen. Comp.
548	Endocrinol. 139, 179-189. doi: 10.1016/j.ygcen.2004.09.005
549	Campbell, B.K., Clinton, M., and Webb, R. (2012). The role of anti-Mullerian hormone
550	(AMH) during follicle development in a monovulatory species (sheep).
551	Endocrinology 153, 4533-4543. doi: 10.1210/en.2012-1158.
552	Dewailly, D., Andersen, C. Y., Balen, A., Broekmans, F., Dilaver, N., Fanchin, R.,
553	Griesinger, G., Kelsey, T. W., La Marca, A., Lambalk, C., Mason, H., Nelson, S. M.,
554	Visser. J. A., Wallace, W. H., and Anderson, R. A. (2014). The physiology and
555	clinical utility of anti-Mullerian hormone in women. Hum. Reprod. Update 20, 370-
556	385. doi: 10.1093/humupd/dmt062
557	Durlinger, A. L., Gruijters, M. J., Kramer, P., Karels, B., Kumar, T. R., Matzuk, M. M.,
558	Rose, U. M., de Jong, F. H., Uilenbroek, J.T., Grootegoed, J.A., and Themmen, A.
559	P. (2001). Anti-Mullerian hormone attenuates the effects of FSH on follicle
560	development in the mouse ovary. Endocrinology 142, 4891-4899. doi:
561	10.1210/endo.142.11.8486

562 Faure, E., Gouédard, L., Imbeaud, S., Cate, R., Picard, J. Y., Josso, N., and di Clemente,

- N. (1996). Mutant isoforms of the anti-Müllerian hormone type II receptor are not
 expressed at the cell membrane. *J. Biol. Chem.* 271, 30571-30575. doi:
 10.1074/jbc.271.48.30571
- Garrel, G., Racine, C., L'Hôte, D., Denoyelle, C., Guigon, C. J., di Clemente, N., and
 Cohen-Tannoudji, J. (2016). Anti-Müllerian hormone: a new actor of sexual
 dimorphism in pituitary gonadotrope activity before puberty. *Sci. Rep.* 6, 23790. doi:
 10.1038/srep23790
- 570 Georgopoulos, N. A., Karagiannidou, E., Koika, V., Roupas, N. D., Armeni, A., Marioli,
- 571 D., Papadakis, E., Welt, C. K., and Panidis, D. (2013). Increased frequency of the
- anti-mullerian-inhibiting hormone receptor 2 (AMHR2) 482 A>G polymorphism in
- 573 women with polycystic ovary syndrome: relationship to luteinizing hormone levels.

574 *J. Clin. Endocrinol. Metab.* **98**, E1866-E1870. doi: 10.1210/jc.2013-2458

- Hashizume, T., Horiuchi, M., Tate, N., Nonaka, S., Kojima, M., Hosoda, H., and
 Kangawa, K. (2003). Effects of ghrelin on growth hormone secretion from cultured
- 577 adenohypophysial cells in cattle. *Endocr. J.* 50, 289-295. doi:
 578 10.1507/endocrj.50.289
- 579 Hashizume, T., Onodera, Y., Shida, R., Isobe, E., Suzuki, S., Sawai, K., Kasuya, E., and
- 580 Nagy, G. M. (2009). Characteristics of prolactin-releasing response to salsolinol

- (SAL) and thyrotropin-releasing hormone (TRH) in ruminants. *Domest. Anim. Endocrinol.* 36, 99-104. doi: 10.1016/j.domaniend.2008.11.001
- 583 Head, B. P., Patel, H. H., and Insel, P. A. (2014). Interaction of membrane/lipid rafts with
- 584 the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators
- of cytoskeletal arrangement and cell signaling. *Biochim. Biophys. Acta.* **1838**, 532-
- 586 545. doi: 10.1016/j.bbamem.2013.07.018
- 587 Hernandez-Medrano, J. H., Campbell, B. K., and Webb, R. (2012). Nutritional influences
- on folliculogenesis. Reprod. Dom. Anim. Suppl. 4, 274-282. doi: 10.1111/j.1439-
- 589 0531.2012.02086
- 590 Hirokawa, T., Boon-Chieng, S., and Mitaku, S. (1998). SOSUI: classification and
- 591 secondary structure prediction system for membrane proteins. *Bioinformatics* 14,
- 592 378-379. doi: 10.1093/bioinformatics/14.4.378
- 593 Hirschhorn, T., di Clemente, N., Amsalem, A. R., Pepinsky, R. B., Picard, J. Y.,
- 594 Smorodinsky, N. I., Cate, R. L., and Ehrlich, M. (2015). Constitutive negative
- 595 regulation in the processing of the anti-Müllerian hormone receptor II. J. Cell Sci.
- 596 **128**, 1352-1364. doi: 10.1242/jcs.160143
- Hopp, T. P., and Woods, K. R. (1981). Prediction of protein antigenic determinants from
- 598 amino acid sequences. Proc. Natl. Acad. Sci. U. S. A. 78, 3824-3828. doi:

59910.1073/pnas.78.6.3824

600	Hossain, M. S., Mineno, K., Katafuchi, T. (2016). Neuronal orphan G-protein coupled
601	receptor proteins mediate plasmalogens-induced activation of ERK and Akt
602	signaling. PLoS One 11, e0150846. doi: 10.1371/journal.pone.0150846
603	Iqbal, J., Latchoumanin, O., Sari, I. P., Lang, R. J., Coleman, H. A., Parkington, H. C.,
604	and Clarke, I. J. (2009). Estradiol-17beta inhibits gonadotropin-releasing hormone-
605	induced Ca2+ in gonadotropes to regulate negative feedback on luteinizing hormone
606	release. Endocrinology 150, 4213-4220. doi: 10.1210/en.2009-0092
607	Ilha, G. F., Rovani, M. T., Gasperin, B.G., Ferreira, R., de Macedo, M. P., Neto, O. A.,
608	Duggavathi, R., Bordignon, V., and Goncalves, P. B. (2016). Regulation of Anti-
609	Mullerian Hormone and Its Receptor Expression around Follicle Deviation in Cattle.
610	Reprod. Domest. Anim. 51,188-194. doi: 10.1111/rda.12662
611	Ireland, J. L., Scheetz, D., Jimenez-Krassel, F., Themmen, A. P., Ward, F., Lonergan, P.,
612	Smith, G. W., Perez, G. I., Evans, A. C., and Ireland, J. J. (2008). Antral follicle
613	count reliably predicts number of morphologically healthy oocytes and follicles in
614	ovaries of young adult cattle. Biol. Reprod. 79, 1219-1225. doi:
615	10.1095/biolreprod.108.071670
616	Kadokawa, H., Suzuki, S., and Hashizume, T. (2008). Kisspeptin-10 stimulates the

secretion of growth hormone and prolactin directly from cultured bovine anterior 617 pituitary cells. Reprod. 105, 404-408. 618 Anim. Sci. doi: 10.1016/j.anireprosci.2007.11.005 619 Kadokawa, H., Pandey, K., Nahar, A., Nakamura, U., and Rudolf, F. O. (2014). 620 Gonadotropin-releasing hormone (GnRH) receptors of cattle aggregate on the 621surface of gonadotrophs and are increased by elevated GnRH concentrations. Anim. 622Reprod. Sci. 150, 84-95. doi: 10.1016/j.anireprosci.2014.09.008 623 Koizumi, M., Nahar, A., Yamabe, R., and Kadokawa, H. (2016). Positive correlations of 624 625 age and parity with plasma concentration of macrophage migration inhibitory factor in Japanese black cows. J. Reprod. Dev. 62, 257-263. doi: 10.1262/jrd.2015-144 626 Koizumi, M., and Kadokawa, H. (2017). Positive correlations of age and parity with 627 628 plasma anti-Müllerian hormone concentrations in Japanese Black cows. J. Reprod. Dev. 63, 205-209. doi: 10.1262/jrd.2016-088 629 630 Kushnir, V. A., Seifer, D. B., Barad, D. H., Sen, A., and Gleicher, N. (2017). Potential therapeutic applications of human anti-Müllerian hormone (AMH) analogues in 631 reproductive medicine. J. Assist. Reprod. *Genet.* **34**, 1105-1113. doi: 632

- 633 10.1007/s10815-017-0977-4
- Manders, E. M. M., Verbeek, F. J., and Aten, J. A. (1993). Measurement of co-localization

635

636

of objects in dual-colour confocal images. J. Microscopy 169, 375-382. doi: 10.1111/j.1365-2818.1993.tb03313.x

- 637 Martin, T. L., Fogwell, R. L., and Ireland, J. J. (1991). Concentrations of inhibins and
- steroids in follicular fluid during development of dominant follicules in heifers. *Biol. Reprod.* 44, 693-700. doi: 10.1095/biolreprod44.4.693
- 640 Matteri, R. L., Roser, J. F., Baldwin, D. M., Lipovetsky, V., and Papkoff, H. (1987).
- 641 Characterization of a monoclonal antibody which detects luteinizing hormone from
- diverse mammalian species. *Domest. Anim. Endocrinol.* 4, 157-165. doi:
 10.1016/0739-7240(87)90011-7
- 644 Miyamoto, Y., Skarzynski, D.J., Okuda, K. (2000). Is tumor necrosis factor alpha a trigger
- 645 for the initiation of endometrial prostaglandin F(2alpha) release at luteolysis in 646 cattle? *Biol. Reprod.* **62**, 1109-1115. doi: 10.1095/biolreprod62.5.1109

- Monniaux, D., Baril, G., Laine, A. L., Jarrier, P., Poulin, N., Cognié, J., and Fabre, S.
- 648 (2011). Anti-Mullerian hormone as a predictive endocrine marker for embryo
- 649 production in the goat. *Reproduction* **142**, 845-854. doi: 10.1530/REP-11-0211
- Nakamura, U., Rudolf, F.O., Pandey, K., and Kadokawa, H. (2015). The non-steroidal
- 651 mycoestrogen zeranol suppresses luteinizing hormone secretion from the anterior
- 652 pituitary of cattle via the estradiol receptor GPR30 in a rapid, non-genomic manner.

653	Anim. Reprod. Sci.	156, 118-127. doi:	10.1016/j.anireprosci.2015.03.009	
	1	,	J 1	

- Navratil, A. M., Song, H., Hernandez, J. B., Cherrington, B. D., Santos, S. J., Low, J. M.,
- Do, M. H., and Lawson, M. A. (2009). Insulin augments gonadotropin-releasing
- hormone induction of translation in LbetaT2 cells. *Mol. Cell. Endocrinol.* 311, 4754. doi: 10.1016/j.mce.2009.07.014
- 658 Nett, T.M., Cermak, D., Braden, T., Manns, J., and Niswender, G. (1987). Pituitary
- receptors for GnRH and estradiol, and pituitary content of gonadotropins in beef
- 660 cows. I. Changes during the estrous cycle. *Domest. Anim. Endocrinol.* **4**, 123-132.
- 661 doi: 10.1016/0739-7240(87)90006-3
- 662 Nussey, S. S., and Whitehead, S. A. (2001). The pituitary gland. In 'Endocrinology: an
- 663 integrated approach.' (Eds. S. S. Nussey and S. A. Whitehead) pp. 283-334. (BIOS
 664 scientific publishers, Oxford, UK.)
- Pals, K., Roudbaraki, M., and Denef, C., (2008). Growth hormone-releasing hormone
- and glucocorticoids determine the balance between luteinising hormone (LH) beta-
- and LH beta/follicle-stimulating hormone beta-positive gonadotrophs and
- somatotrophs in the 14-day-old rat pituitary tissue in aggregate cell culture. J.
- 669 Neuroendocrinol. 20, 535-548. doi: 10.1111/j.1365-2826.2008.01698.x
- 670 Pandey, K., Nahar, A., and Kadokawa, H. (2016). Method for isolating pure bovine

671	gonadotrophs from anterior pituitary using magnetic nanoparticles and anti-
672	gonadotropin-releasing hormone receptor antibody. J. Vet. Med. Sci. 78, 1699-1702.
673	doi: 10.1292/jvms.16-0157
674	Pandey, K., Kereilwe, O., Borromeo, V., and Kadokawa, H. (2017a). Heifers express G-
675	protein coupled receptor 61 in anterior pituitary gonadotrophs in stage-dependent
676	manner. Anim. Reprod. Sci. 181, 93-102. doi: 10.1016/j.anireprosci.2017.03.020
677	Pandey, K., Kereilwe, O., and Kadokawa, H. (2017b). Heifers express G-protein coupled
678	receptor 153 in anterior pituitary gonadotrophs in stage-dependent manner. Anim.
679	Sci. J. (in press)
680	Pfeiffer, K. E., Jury, L. J., and Larson, J. E. (2014). Determination of anti-Müllerian
681	hormone at estrus during a synchronized and a natural bovine estrous cycle. Domest.
682	Anim. Endocrinol. 46, 58-64. doi: 10.1016/j.domaniend.2013.05.004
683	Poole, D. H., Ocón-Grove, O. M., and Johnson, A. L. (2016). Anti-Müllerian hormone
684	(AMH) receptor type II expression and AMH activity in bovine granulosa cells.
685	Theriogenology 86, 1353-1360. doi: 10.1016/j.theriogenology.2016.04.078
686	Ribeiro, E. S., Bisinotto, R. S., Lima, F. S., Greco, L. F., Morrison, A., Kumar, A.,
687	Thatcher, W. W., and Santos, J. E. (2014). Plasma anti-Müllerian hormone in adult
688	dairy cows and associations with fertility. J. Dairy Sci. 97, 6888-6900. doi:

689 10.3168/jds.2014-7908

```
690 Rico, C., Médigue, C., Fabre, S., Jarrier, P., Bontoux, M., Clément, F., and Monniaux, D.
```

- 691 (2011). Regulation of anti-Müllerian hormone production in the cow: a multiscale
- study at endocrine, ovarian, follicular, and granulosa cell levels. *Biol. Reprod.* 84,
 560-571. doi: 10.1095/biolreprod.110.088187
- Ritter, S. L., and Hall, R. A. (2009). Fine-tuning of GPCR activity by receptor-interacting
- 695 proteins. Nat. Rev. Mol. Cell. Biol. 10, 819–830. doi: 10.1038/nrm2803
- 696 Rocha, R. M., Lima, L. F., Carvalho, A. A., Chaves R. N., Bernuci, M. P., Rosa-e-Silva,
- 697 A. C., Rodrigues, A. P., Campello, C. C., and Figueiredo, J. R. (2016).
- 698 Immunolocalization of the Anti-Müllerian Hormone (AMH) in Caprine Follicles
- and the Effects of AMH on In Vitro Culture of Caprine Pre-antral Follicles Enclosed
- 700 in Ovarian Tissue. *Reprod. Domest. Anim.* **51**, 212-219. doi: 10.1111/rda.12668
- 701 Sakalar, C., Mazumder, S., Johnson, J. M., Altuntas, C. Z., Jaini, R., Aguilar, R., Naga
- 702 Prasad, S. V., Connolly, D. C., and Tuohy, V. K. (2015). Regulation of Murine
- 703 Ovarian Epithelial Carcinoma by Vaccination against the Cytoplasmic Domain of
- Anti-Müllerian Hormone Receptor II. J. Immunol. Res. 2015, 630287. doi:
- 705 10.1155/2015/630287

706 Satake, H., Matsubara, S., Aoyama, M., Kawada, T., and Sakai, T. (2013). GPCR

- 707 heterodimerization in the reproductive system: functional regulation and implication for biodiversity. Front. Endocrinol. (Lausanne) 4, 1-8. doi: 708 10.3389/fendo.2013.00100. eCollection 2013 709 Seifer, D. B., and Merhi, Z. (2014). Is AMH a regulator of follicular atresia? Assist. 710 Reprod. Genet. 31, 1403-1407. doi: 10.1007/s10815-014-0328-7 711 Simons, K., and Tooter, D., (2000). Lipid rafts and signal transduction. Nat. Rev. Mol. 712 Cell Biol. 1, 31-39. doi: 10.1038/35036052 713 Suzuki, S., Kadokawa, H., and Hashizume, T. (2008). Direct kisspeptin-10 stimulation 714 715on luteinizing hormone secretion from bovine and porcine anterior pituitary cells. Anim. Reprod. Sci. 103, 360-365. doi: 10.1016/j.anireprosci.2007.05.016 716Townsend, J., Sneddon, C. L., and Tortonese, D. J. (2004). Gonadotroph heterogeneity, 717 density and distribution, and gonadotroph-lactotroph associations in the pars distalis 718 of the male equine pituitary gland. J. Neuroendocrinol. 16, 432-440. doi: 719 10.1111/j.1365-2826.2004.01174.x 720 Visser, J. A., and Themmen, A. P. (2014). Role of anti-Mullerian hormone and bone 721 morphogenetic proteins in the regulation of FSH sensitivity. Mol. Cell. Endocrinol. 722 723 **382**, 460-465. doi: 10.1016/j.mce.2013.08.012
- Wehmeyer, L., Du Toit, A., Lang, D. M., and Hapgood, J. P. (2014). Lipid raft- and

725	protein kinase	C-mediated	synergism	between	glucocorticoid-	and gonad	lotrop1n-
726	releasing horm	none signalin	g results in	decrease	d cell proliferat	ion. J. Bio	l. Chem.

- 727 **289**, 10235-10251. doi: 10.1074/jbc.M113.544742
- Young, J. M., Juengel, J. L., Dodds, K. G., Laird, M., Dearden, P. K., McNeilly, A. S.,
- 729 McNatty, K. P., and Wilson, T. (2008). The activin receptor-like kinase 6 Booroola
- mutation enhances suppressive effects of bone morphogenetic protein 2 (BMP2),
- BMP4, BMP6 and growth and differentiation factor-9 on FSH release from ovine
- primary pituitary cell cultures. J. Endocrinol. 196, 251-261. doi: 10.1677/JOE-07-
- 733 0148.

Table 1. Details of the three primers used for PCR to detect AMHR2 mRNA in bovine

736 anterior nituitaries		•	• .	• .	•
100 anterior preatantes	736	anterior	piti	ııta	ries.

Primer	Sequence	5'-3'	Position		Size
pair					(bp)
			Nucleotide	Exon	
1st	up	GATTTGCGACCTGACAGCAG	1273-1292	9-10	340
	down	CGGGAGGAGTGGAGAAATGG	1593-1612	11	
2nd	up	AGATTTGCGACCTGACAGCAG	1272-1292	9-10	320
	down	CTTCCAGGCAGCAAAGTGAG	1572-1591	11	
3rd	up	GTGCTTCTCCCAGGTCATACG	606-626	5-6	277
	down	GGTGTGCTGGGTCAAGTAGT	863-882	7	

740 Figure Legends

Fig. 1. Expression of anti-Müllerian hormone (AMH) receptor type 2 (AMHR2) mRNA detected by RT-PCR. Electrophoresis of PCR-amplified DNA products using 1 of 3 pairs of primers for bovine AMHR2 and cDNA derived from anterior pituitary (AP) of postpubertal heifers. The lanes labeled as AMHR2 demonstrate that the DNA products obtained were of the size that had been expected—340 bp, 320bp, and 277 bp, respectively. Other two lanes (Marker) are the DNA marker.

747

Fig. 2. Results of western blotting using extracts (4, 8, or 16 μ g of total protein) from the AP or ovary of post-pubertal heifers and anti-AMHR2 antibody (A) or anti- β -actin antibody (B). We defined bovine AMHR2 bands based on size as dimers, full length monomers, or cleaved monomers, according to previous studies utilizing western blotting for human and mouse AMHR2 (Faure et al. 1996; Hirschhorn et al. 2015).

Strong AMHR2 staining appeared to be aggregated (orange arrows), not evenly dispersed.
(scale bars = 20 μm)

760

761	Fig. 4. Triple-fluorescence immunohistochemistry of AP tissue of post-pubertal heifers
762	for AMHR2, gonadotropin-releasing hormone receptor (GnRHR) and either luteinizing
763	hormone (LH) (A) or follicle stimulating hormone (FSH) (B). Images were captured by
764	laser confocal microscopy for AMHR2 (red), GnRHR (green) and LH or FSH (light blue)
765	with counter-staining by DAPI (dark blue). Yellow indicates the colocalization of
766	AMHR2 and GnRHR on the surface of LH-positive cells (blue arrow) and FSH-positive
767	cells (orange arrows). Both AMHR2 and GnRHR appeared to be aggregated, not evenly
768	dispersed. Note that the focus depth of the high magnification lens is thin; thus, the best
769	focus for the membrane receptors was quite different from both the best focus for the
770	nucleus and the best focus for cytoplasmic LH. Therefore, this image was taken using the
771	best focus for the membrane receptors while using strong laser power and strong CCD
772	sensitivity for DAPI and cytoplasmic LH. Scale bars are 10 μ m.
773	

Fig. 5. Fluorescence immunocytochemistry was used to confirm the colocalization(yellow in the merge panel) of AMHR2 and GnRHR on the surface of cultured AP cells

776	(prepared by CellCover method) of post-pubertal heifers. Images were captured by laser
777	confocal microscopy for AMHR2 (red), GnRHR (green), DNA (dark blue), and DIC on
778	cultured AP cells which did not receive Triton X-100 treatment for antibody penetration.
779	Thus, antibody could only bind AMHR2 and GnRHR on the surface of gonadotrophs.
780	The blue arrows indicate the colocalization of aggregated GnRHR and aggregated
781	AMHR2. (scale bars = 5 μ m).
782	
783	Fig. 6. Triple-fluorescence immunocytochemistry of cultured AP cells (prepared by PFA-
784	Triton method) of post-pubertal heifers for AMHR2, GnRHR and either LH (A) or FSH
785	(B). Images were captured by laser confocal microscopy for AMHR2 (green), GnRHR
786	(light blue) and LH or FSH (red) with counter-staining by DAPI (dark blue). Yellow
787	(shown by arrows) indicates the colocalization of AMHR2 and LH of FSH in LH-positive
788	cells (A) and FSH-positive cells (B). This image was taken using the best focus for the
789	membrane receptors while using strong laser power and strong CCD sensitivity for DAPI
790	and cytoplasmic LH. Note that the cells prepared by the PFA-triton method are thinner
791	than those prepared by the CellCover method. Scale bars are 10 μ m.
792	

793	Fig. 7. Comparison of the effects of various concentrations of AMH in media with (A)
794	and without (B) 1 nM GnRH on LH secretion from cultured AP cells of post-pubertal
795	heifers. The concentrations of LH in the control cells (cultured in medium alone without
796	AMH and GnRH) were averaged and set at 100%, and the mean LH concentration for
797	each treatment group is expressed as a percentage of the control value. Different letters
798	indicate statistical differences ($P < 0.05$).

Fig. 8. Comparison of the effects of various concentrations of AMH in media with (A) and without (B) 1 nM GnRH on FSH secretion from cultured AP cells of post-pubertal heifers. The concentrations of FSH in the control cells (cultured in medium alone without AMH and GnRH) were averaged and set at 100%, and the mean FSH concentration for each treatment group is expressed as a percentage of the control value. Different letters indicate statistical differences (P < 0.05).

AMHR2	Marker	AMHR2	Marker	AMHR2
	10000		10000	
	7000		7000	
25 2	5000		- 5000	
	210(010)		- 4(0)0(0)	
	- B000		- 3(0,0)0	
			2000	
	2000		2000	
	1500		- 1(50)0)	
	1131010		113(0)0	
	01000		1000	
	700		700	
	500		500	
240	400	000	400	
340	300	320	300	277
	200		200	
C. C. Starting	100		200	
	100		100	Dimer
The loss of the second			1 10 10 10 10 10 10 10 10 10 10 10 10 10	Contract of the local division of the

Fig. 1. Expression of anti-Müllerian hormone (AMH) receptor type 2 (AMHR2) mRNA detected by RT-PCR. Electrophoresis of PCR-amplified DNA products using 1 of 3 pairs of primers for bovine AMHR2 and cDNA derived from anterior pituitary (AP) of post-pubertal heifers. The lanes labeled as AMHR2 demonstrate that the DNA products obtained were of the size that had been expected—340 bp, 320bp, and 277 bp, respectively. Other two lanes (Marker) are the DNA marker.

44x38mm (300 x 300 DPI)

807

Fig. 2. Results of western blotting using extracts (4, 8, or 16 µg of total protein) from the AP or ovary of post-pubertal heifers and anti-AMHR2 antibody (A) or anti-β-actin antibody (B). We defined bovine AMHR2 bands based on size as dimers, full length monomers, or cleaved monomers, according to previous studies utilizing western blotting for human and mouse AMHR2 (Faure et al. 1996; Hirschhorn et al. 2015).

56x48mm (300 x 300 DPI)

809

Fig. 3. Fluorescence immunocytochemistry was used to confirm the expression of AMHR2 on the surface of granulosa cells of small (approximately 5 mm) follicles in the ovaries of post-pubertal heifers. Images were captured by laser confocal microscopy for AMHR2 (red), DNA (dark blue), and differential interference contrast (indicated as DIC). Strong AMHR2 staining appeared to be aggregated (orange arrows), not evenly dispersed. (scale bars = 20 µm)

51x57mm (300 x 300 DPI)

Fig. 4. Triple-fluorescence immunohistochemistry of AP tissue of post-pubertal heifers for AMHR2, gonadotropin-releasing hormone receptor (GnRHR) and either luteinizing hormone (LH) (A) or follicle stimulating hormone (FSH) (B). Images were captured by laser confocal microscopy for AMHR2 (red), GnRHR (green) and LH or FSH (light blue) with counter-staining by DAPI (dark blue). Yellow indicates the colocalization of AMHR2 and GnRHR on the surface of LH-positive cells (blue arrow) and FSH-positive cells (orange arrows). Both AMHR2 and GnRHR appeared to be aggregated, not evenly dispersed. Note that the focus depth of the high magnification lens is thin; thus, the best focus for the membrane receptors was quite different from both the best focus for the nucleus and the best focus for cytoplasmic LH. Therefore, this image was taken using the best focus for DAPI and cytoplasmic LH. Scale bars are 10 μm.

54x51mm (300 x 300 DPI)

Fig. 5. Fluorescence immunocytochemistry was used to confirm the colocalization (yellow in the merge panel) of AMHR2 and GnRHR on the surface of cultured AP cells (prepared by CellCover method) of postpubertal heifers. Images were captured by laser confocal microscopy for AMHR2 (red), GnRHR (green), DNA (dark blue), and DIC on cultured AP cells which did not receive Triton X-100 treatment for antibody penetration. Thus, antibody could only bind AMHR2 and GnRHR on the surface of gonadotrophs. The blue arrows indicate the colocalization of aggregated GnRHR and aggregated AMHR2. (scale bars = 5 μm).

38x20mm (300 x 300 DPI)

ig. 6. Triple-fluorescence immunocytochemistry of cultured AP cells (prepared by PFA-Triton method) of post-pubertal heifers for AMHR2, GnRHR and either LH (A) or FSH (B). Images were captured by laser confocal microscopy for AMHR2 (green), GnRHR (light blue) and LH or FSH (red) with counter-staining by DAPI (dark blue). Yellow (shown by arrows) indicates the colocalization of AMHR2 and LH of FSH in LH-positive cells (A) and FSH-positive cells (B). This image was taken using the best focus for the membrane receptors while using strong laser power and strong CCD sensitivity for DAPI and cytoplasmic LH. Note that the cells prepared by the PFA-triton method are thinner than those prepared by the CellCover method. Scale bars are 10 μm.

53x59mm (300 x 300 DPI)

Fig. 7. Comparison of the effects of various concentrations of AMH in media with (A) and without (B) 1 nM GnRH on LH secretion from cultured AP cells of post-pubertal heifers. The concentrations of LH in the control cells (cultured in medium alone without AMH and GnRH) were averaged and set at 100%, and the mean LH concentration for each treatment group is expressed as a percentage of the control value. Different letters indicate statistical differences (P < 0.05).

226x115mm (300 x 300 DPI)

819

Fig. 8. Comparison of the effects of various concentrations of AMH in media with (A) and without (B) 1 nM GnRH on FSH secretion from cultured AP cells of post-pubertal heifers. The concentrations of FSH in the control cells (cultured in medium alone without AMH and GnRH) were averaged and set at 100%, and the mean FSH concentration for each treatment group is expressed as a percentage of the control value. Different letters indicate statistical differences (P < 0.05).</p>

226x115mm (300 x 300 DPI)

821