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Balancing building and maintenance costs in growing transport networks
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The costs associated to the length of links impose unavoidable constraints to the growth of natural and artificial
transport networks. When future network developments cannot be predicted, the costs of building and maintaining
connections cannot be minimized simultaneously, requiring competing optimization mechanisms. Here, we study
a one-parameter nonequilibrium model driven by an optimization functional, defined as the convex combination
of building cost and maintenance cost. By varying the coefficient of the combination, the model interpolates
between global and local length minimization, i.e., between minimum spanning trees and a local version known
as dynamical minimum spanning trees. We show that cost balance within this ensemble of dynamical networks is
a sufficient ingredient for the emergence of tradeoffs between the network’s total length and transport efficiency,
and of optimal strategies of construction. At the transition between two qualitatively different regimes, the
dynamics builds up power-law distributed waiting times between global rearrangements, indicating a point of
nonoptimality. Finally, we use our model as a framework to analyze empirical ant trail networks, showing its
relevance as a null model for cost-constrained network formation.

DOI: 10.1103/PhysRevE.96.032316

I. INTRODUCTION

From roads, railways, and power grids, to ant trails, leaf
veins, and blood vessels, transportation structures support the
functions necessary to many natural and manmade systems
[1–9]. Transport systems are typically represented as spatial
networks, where nodes are distinct locations—such as cities
or ant nests—and links are physical connections between
these locations—such as roads or trails [10]. As transport
networks are embedded in a metric space, the length of links
is used to quantify the cost of building and maintaining the
connections [11]. These costs pose an unavoidable constraint
to transport networks, independent of their specific functions
and intrinsically tied to their spatial nature. Together with
the need for efficient transportation and for fault tolerance,
costs affect the growth and the topology of transport networks,
having profound impact on the systems that rely on them [11].

A great deal of theoretical and empirical research in
physics, quantitative geography, and transport engineering has
been devoted to understand how these constraints influence
the evolution of transport networks and to identify minimal
ingredients underlying the emergence of complex topologies
[12–17]. The effects of competing design criteria have been
explored: average shortest path versus link density [18] or
total length [19], and total length versus synchronizability [20]
or centrality [21]. Other models balance the length of newly
added links with the gain in centrality [22] or efficiency [4],
or analyze the costs and benefits entailed by their creation
[23]. However, most of the existing models assume that
(i) the network is static and/or constituted by a known set
of nodes, (ii) it is either planned by a central authority,
or the result of a completely self-organized process, and
(iii) the length of a link is a proxy for both the costs of
building and maintaining it [11]. Therefore, they neglect that
(i) transport systems are typically built iteratively, often lack-

ing information about future developments as these may be be-
yond the time horizon of planners [10,11]; (ii) due to such dy-
namic evolution, in long-lived infrastructures global planning
has to compromise with local constraints and competing inter-
ests [10], and to alternate with local optimization processes;
(iii) building costs and maintenance costs act on different
time scales, constituting unavoidable constraints that cannot
be optimized simultaneously.

These three aspects are strongly related. In a static scenario,
the network of minimum length spanning a fixed set of
nodes (the minimum spanning tree, MST) minimizes both
maintenance and building costs [11]. In a dynamic setting,
instead, when future node additions are not known ahead, or
when the task of building links is partially delegated to local
entities, these costs cannot be minimized simultaneously. On
one side, building cost is minimized by iterating the local
rule of “linking each new node to the closest node in the
network.” However, the obtained structure (called dynamical
minimum spanning tree, dMST [22]) does not minimize the
total length of the network [17], thus attaining a sub-optimal
maintenance cost. On the other side, globally rearranging the
network to a MST every time a node is added does minimize
the total length, but it requires to destroy old links and rebuild
new ones, increasing building cost. Moreover, maintenance
costs must be sustained until links are abandoned or destroyed
[24,25], constraining the network on a longer time scale.

In this paper, we address these open issues by formulating
an out-of-equilibrium model for the growth of transport
networks in the context where the position of new nodes
cannot be predicted. By combining the global, centrally
planned MST, and the local, decentralized dMST, the model
explores the antagonism between the constraints associated
with building and maintenance costs. (Such competing design
goals have been suggested to be relevant also in nonspatial
systems [26].)
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FIG. 1. At each time step, the model grows a network by adding
a new node (NN) at a random position. Depending on what move
minimizes the convex combination of total built length LB and total
length variation �L, NN is either connected to the closest node in
the network (dMST move) or the network is rewired to minimize the
total length (MST move). In both cases only one link is added.

II. MODEL

Our model grows spatial networks starting from a single
node and adding one node and one link at a time, so that
the resulting networks are trees (see Fig. 1). (In real-world
transport networks, fault tolerance is often achieved by relying
on cycles [27,28]. Here we restrict to trees for simplicity.)
Nodes appear with the flat measure on the unit square. When
the N th node at position xN is added to the existing nodes
having positions {x1, . . . ,xN−1}, either it is linked to the closest
node (“dMST move”), or a number of links are destroyed
and rebuilt to obtain the (unique) MST spanning all nodes at
positions {x1, . . . ,xN } (“MST move”). The move is chosen
such that the functional

H (β,N ) = β�L(N ) + (1 − β)LB(N ) (1)

is minimum. Here, LB is the total length that needs to be
built between N − 1 and N , and �L is the variation in the
network’s total length L (these are not equal, as �L includes
negative contributions from the deleted links). For a spatial
network G built on N nodes, the total length is defined as
L(G) = ∑

e∈E(G) le, where e is a link belonging to E(G), the
set of links of G, and le is the Euclidean length of the link.
Every time a node is added, H is computed both for a MST
and for a dMST move, then the MST move is performed if
H MST < H dMST, and the dMST move otherwise. β is the only
parameter of the model, taking values in [0,1]: we name it
“strategy.” Indeed, setting β = 0 prioritizes the minimization
of LB (as expected if building costs are dominant), and
the network grows only by local dMST moves. Conversely,
β = 1 minimizes �L (which is desirable when maintenance
costs dominate), and the network is globally rewired to a
MST at each step. When the two costs are comparable,
intermediate values of β account for both global and local
length minimization and the model can alternate between MST
and dMST moves. It is useful to express the growth condition
H MST ≷ H dMST in terms of the sum of the lengths of newly

built and newly destroyed links, LB and LD, respectively, as

LMST
B − βLMST

D ≷ LdMST
B . (2)

This is obtained by writing the explicit form of H MST(N ) and
H dMST(N ), as shown in Appendix A 1.

III. RESULTS

For each value of β from 0 to 1 (by steps of 0.02),
we numerically grow 70 networks up to Nf = 1000 nodes
by the rules of the model. Results are averaged over these
70 networks. For each network, we measure the normalized
Hamming distance, defined as the number of links that one
has to create (and destroy) to turn the network G into the MST
spanning the same set of nodes (denoted Ĝ), divided by the
size of the network N :

d = |A(G) − A(Ĝ)|
4N

, (3)

where A indicates the adjacency matrix. This is the matrix
extension of the well-known Hamming distance used in com-
puter science to measure the distance between strings [29]. We
will consider d as a (random) function d(β,N ) of the strategy
β and the number of nodes N . The normalized Hamming
distance identifies three classes of strategies separated by
two transition points, β1 ≈ 0.45 and β2 ≈ 0.82 [Fig. 2(a)].
“MST-like” strategies (β > β2) grow networks at very small
Hamming distance from the corresponding MST (β = 1).
“dMST-like” strategies (β < β1) grow networks similar to
the ones grown by iterating dMST moves only (β = 0).
“Crossover” strategies (β1 < β < β2) smoothly interpolate
between these two extremes. The phase boundaries and the
value of d(β,N ) do not depend sensibly on network size after
N ≈ 200 [see Fig. 6 in Appendix A 2].

The existence of three classes is further confirmed by
the scaling of the total length L and efficiency E with β,
normalized by the corresponding MST values [Figs. 2(b)
and 2(c)]. For a spatial network G built on N nodes, efficiency
can be written as [30]

E(G) = 1

N (N − 1)

∑

i �=j∈G

de
i,j

di,j

, (4)

where i and j are nodes in G, de
i,j is their Euclidean distance,

and di,j is the length of the shortest path connecting them
on the network G. It quantifies how quickly information and
resources are exchanged over a transport network [30,31],
and is often regarded as one of the main design goals in
planning and building these networks [8,12]. It is known
that maximizing efficiency competes with minimizing total
length [32].

Interestingly, our approach reveals that balancing building
and maintenance costs entails a tradeoff between total length
and efficiency at large scale [Figs. 2(b) and 2(c)]. Notice that,
in our model, this tradeoff depends on the size of the network,
since the dMST is more efficient than the corresponding MST
at large scale (N � 300), but less efficient at small scale
(N � 300) [see Fig. 6 in Appendix A 2]. Thus, our model
suggests that the bias toward efficient transport observed in
real networks may emerge under more general conditions, via
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FIG. 2. Structural properties and evolution of networks grown
with different strategies β. The normalized (a) Hamming distance,
(b) total length, and (c) efficiency reveal three classes of strategies:
MST-like, crossover, and dMST-like, separated by two transition
points β1 and β2. (d) Probability distribution of the waiting time to
the first MST move and between two consecutive MST moves P (τ )
for different windows of network size. In β2, P (τ ) is a power law
of exponent ≈ −1.5 (highlighted box). (e) Realizations of the model
(black thin line) for values of β in the three classes of strategies and
for β = β2 on the same 50-nodes sequence (black dots), superposed
to the corresponding MST (light bold line).

optimization of a function of length alone, and may also be
dependent on the typical size of the observed network.

To better characterize the observed classes of strategies,
we introduce the waiting time τ , defined as the number of
steps from N = 1 to the first MST move, and then between
two consecutive MST moves. Due to the nonstationarity of
the process, the probability distribution function P (τ ) of the
waiting time depends not only on β, but also on the network’s
size N [Fig. 2(d)]. Before β1 the typical waiting times are
larger than those attained by our simulations (Nf = 1000).
Accordingly, the total length is never minimized through a
MST move, and networks in this regime share only a few
links with the corresponding MST, typically the shortest ones
[Fig. 2(e), first box]. An estimate of β1 can be obtained by using
the condition for choosing a MST move LMST

B − βLMST
D <

LdMST
B [Eq. (2)], and assuming that, when β is close to β1

from above, a MST move destroys and re-builds most of the
network’s links [Fig. 2(e)]. The average length of a link in

a MST of N randomly placed nodes can be estimated as√
1/cN , where c is some constant. Thus, LMST

B ∼ N
√

1/cN =√
N/c and LdMST

B ∼ √
1/cN , while LMST

D ∼ ∑N
n=1

√
1/cn ∼

2
√

N/c (See also Appendix A 3). The left-hand side of
the growth condition Eq. (2) becomes (1 − 2β)

√
N/c. Since

LdMST
B goes to zero for large N , the condition for at least one

MST move to occur in this limit becomes β > 1/2, which is
not far from the observed β1 ≈ 0.45.

Equation (2) also suggests that, at the onset of the crossover
regime, the occurrence of a MST event is tied to the destruction
of long links to build short ones. This condition is likely to be
achieved at large N , when the links built at the beginning of the
process are likely to be very long (∼√

1/c) with respect to
the ones that would be found in a MST at the same network size
(∼√

1/cN ). Once a MST rewiring has occurred, no long links
are left, and LdMST

B tends to zero at increasing N , explaining
why when β is close to β1 it is unlikely to observe more than
one MST event. Accordingly, P (τ ) shows that MST events
are rare and happen typically at large network size [Fig. 2(d),
first box]. Increasing β reduces the relevance of long links for
satisfying the MST condition; indeed, the probability of shorter
waiting times increases at small network size, making MST
events more likely [Fig. 2(d), second box]. In the MST-like
phase (β � β2), the growth condition is often satisfied, and
P (τ ) decays subpolynomially (exponentially for β = 1) at all
network sizes [Fig. 2(d), fourth box].

Remarkably, the dynamics displays long-range memory at
the transition to the minimum-length phase β2. Here P (τ )
is a power law of exponent ≈ −1.5 at all sizes [Fig. 2(d),
third box], and the waiting time τ has no typical scale (except
the cut-off) contrary to the MST-like and dMST-like phases.
As a consequence, the occurrence of a MST event is highly
unpredictable at β2. Interestingly, −1.5 appears as a critical
exponent in several models and empirical systems, e.g., in
critical branching processes, self-organized criticality, firing
neurons, priority queues, and human activity [33–35].

We analyze the long-term total cost of different growth
strategies by means of three time-integrated quantities
LB, LD, LM, defined as

L∗(Nf ,β) =
Nf∑

N=1

L∗(N,β)/
Nf∑

N=1

L∗(N,β = 1). (5)

These quantities measure how much length was built (∗ = B),
destroyed (∗ = D), or maintained (∗ = M) up to Nf = 1000 by
each strategy β. LB(N,β) and LD(N,β) are the instantaneous
lengths built and destroyed between step N − 1 and step N ,
and LM(N,β) is the total length of the network at size N . All
the measures are normalized by the values they take in a pure
MST dynamics (i.e., at β = 1) with the same realization of the
point process.

In the simple scenario where the costs of maintenance and
building per unit length have ratio h, the final cost of a network
is given by LB + hLM. Plotting this total cost against β

produces a cost landscape for each value of h [Fig. 3(a)]. Each
cost landscape has an absolute minimum, which identifies the
optimal strategy βopt(h) for the given ratio h. Notice that the
location of the minimum is more well-defined than appears in
the plot, where curves appear flat due to the extended y axis, as
can be better appreciated in Fig. 3(b). Interestingly, crossover
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FIG. 3. The integrated (up to Nf = 1000) total cost landscapes
(solid lines) for (a) building (LB) and maintaining (LM), at different
values of the ratio h between their unit costs, (b) the same quantity
with selected landscapes are plotted on same-scale axes to show the
robustness of optimal strategies in the crossover regime; (c) building,
maintaining, and destroying (LD) for h = 1. k ∈ [−1,1] is the unit
cost of destroying material (if k < 0) or the advantage of recycling
(if k > 0). The minimum of each cost landscape (dots) is the optimal
strategy βopt for the given value of h and k, often belonging to the
crossover regime. (d) The total number of links that are destroyed
and rebuilt (ND) during the growth of the network is maximum in
β2, revealing high nonextensive costs. Strategies above the horizontal
dashed line destroy more links than the pure strategy β = 1.

strategies are optimal for a wide range of values of the ratio h

(0.3 � h � 5.2), suggesting that these strategies would result
optimal even in the presence of strong fluctuations or large
uncertainties in the value of costs.

More complicated cost scenarios can be analyzed as well.
For example, one may consider that building costs during a
MST move may be reduced by recycling the material obtained
from destroyed links. On the contrary, when recycling is not
possible, disposing destroyed material may bear additional
costs. In such scenarios, long-term costs can be expressed by
means of the quantities defined above as LB + hLM − kLD.
The coefficient k ∈ [−1,1] is the fraction of destroyed material
that can either be recycled (if k > 0) or bears additional
disposal costs (if k < 0). Also in this scenario, crossover

strategies play an important role in minimizing the total costs
of transport networks [Fig. 3(c), particular case of h = 1],
realizing nontrivial tradeoffs between the competing costs. It
is worth noticing that the optimal strategy is in the crossover
regime even when destroying is as expensive as building and
maintaining (k = −1), while MST-like strategies are optimal
only when recycling strongly lowers the total cost.

All cost functions considered above are extensive in
the length of the connections involved. However, length-
independent costs may also be present, for instance, associated
to setting up the sites for building and dismantling connec-
tions. More in general, we argue that building a transport
network will also involve “fixed” costs that depend on the
number of links modified at each step, regardless of their
length. We quantify these nonextensive costs via the total
number of links that were destroyed (and rebuilt) ND(N,β) =∑N

n=1 ND(n,β)/
∑N

n=1 ND(n,β = 1). ND is the number of
links destroyed at each step, and the sum is normalized by
the corresponding MST value, as in Eq. (5). Unexpectedly, β2

is the strategy requiring the largest number of link deletions,
and is therefore a point of nonoptimality in terms of fixed costs.
Also, it is interesting to notice that strategies with β � 0.75
require to destroy (and thus to rebuild) more links than in the
pure MST strategy [Fig. 3(d)].

IV. APPLICATION TO ANT TRAIL NETWORKS

In nature, a striking example of cost-constrained transport
networks are the trails built by ant colonies to connect the
nests that are iteratively built as the colony gets populous
[3]. In this case, costs reflect the resources the colony has
to spend to build and maintain the trails. These costs appear
to vary for different species depending on the mechanisms
underlying network formation, on environmental conditions,
and on the kind of trails built [9,17,32,36]. For example, under
laboratory conditions, the Argentine ant Linepithema humile
builds pheromone-based trails, arranging them in globally
optimized transport networks that resemble MSTs or even
Steiner trees (minimum spanning trees where the set of nodes
is allowed to be enlarged) [36] [Fig. 4(a), (i) and (ii)]. In
the field, Argentine ants form instead more robust networks,
possibly due to the necessity of resilience against predation
and to environmental constraints [37]. While building costs
are difficult to quantify for these pheromone-based networks,
maintenance costs reflect the number of ants (and their energy
consumption) needed to deposit the amount of pheromone
necessary to maintain the trails [36].

The Australian meat ant Iridomyrmex purpureus builds
physical trails that are kept clear of debris and vegetation and
that can be up to 80 or 90 meters long [38] [Fig. 4(a), (iii) and
(iv)]. These trails require a certain number of ants and an effort
in terms of energy to cut the grass and to remove gravels and
debris both at the time of building and during maintenance.
Although there is no experimental evidence indicating whether
meat ant colonies put more effort in building or in maintaining
their trails, it appears that each newly built nest gets connected
to the closest one in the colony, as happens in the dMST move
[17]. It has also been observed that, during colony growth,
meat ants may progressively abandon suboptimal connections
and substitute them with shorter ones [38].
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FIG. 4. (a) Examples of ant networks: (i), (ii) Argentine ants in
laboratory conditions connect their nests through the shortest path.
Courtesy of Tanya Latty. (iii) A Meat ant’s nest with departing trails.
Courtesy of Nathan Brown. (iv) Part of a meat ant’s trail network
from Google Earth. (b, c, d) Analysis of empirical networks through
comparison with our model. Meat ants [39] are squares, other species
[37,40–45] are diamonds, circles represent the model. (b) A value of
β is assigned to each ant network by comparing its rescaled Hamming
distance with the prediction of our model. See Tables I and II. (c, d) For
each ant network, the empirical values of the normalized efficiency
(c) and normalized total length (d) are matched with the value of β

assigned as in panel (b), and plotted above the trend predicted by
our model for N = 30. Notice that networks with the same rescaled
Hamming distance (and thus β) in (b) may have different values of
efficiency and total length and thus correspond to distinct shapes in
(c) and (d).

Altogether, these observations seem to suggest that building
and maintenance costs have different impact on different
species’ construction strategies, also depending on environ-
mental conditions. A better understanding may be obtained
through manipulative experiments where, for example, the
substrate where ants move is changed to substantially modify
the relative cost of building and maintenance. The structural
outcomes should then be observed and quantified at different
ratios and for different species, likely making the whole
experiment expensive and lengthy.

TABLE I. Summary of the structural properties of Meat ant’s
transportation networks from Ref. [39] [squares in Figs. 4(b), 4(c)
and 4(d)]. First column: reference number. Ant networks with the
same rescaled Hamming distance and β correspond to the same
reference number. Second column: number of nodes. Third column:
number of links. Fourth column: rescaled hamming distance d . Fifth
column: estimated β. Sixth column: normalized efficiency. Seventh
column: normalized total length. * indicates that the network is a tree;
i.e., E = N − 1.

� Meat ant data from Ref. [39].

Data N E d β E/EMST L/LMST

[1] 12 11* 0.42 ND 0.93 1.2
[2] 13 12* 0.38 0 0.93 1.26
[3] 14 14* 0.36 0.46 0.9 1.11
[4] 15 16 0.34 0.58 0.94 1.14

15 14* 0.34 0.58 0.96 1.14
12 11 0.34 0.58 0.96 1.15

[5] 14 14 0.29 0.62 0.95 1.08
14 15 0.29 0.62 1.04 1.05

[6] 16 16 0.25 0.68 1.02 1.11
16 17 0.25 0.68 0.95 1.07
12 11* 0.25 0.68 0.99 0.18
12 13 0.25 0.68 0.98 1.11

[7] 14 15 0.21 0.7 0.86 1.16
[8] 15 15 0.22 0.7 1.02 1.18
[9] 12 13 0.17 0.74 0.98 1.11

12 12 0.17 0.74 0.99 1.02
[10] 17 18* 0.12 0.76 1.03 1.08
[11] 12 11* 0.08 0.78 0.97 1.04

12 12 0.08 0.78 1 1.07

Thus, studies on ant transport networks have so far assumed
building and maintenance costs to be proportional to the length
of trails [9,17,31,32], and maintenance cost in particular to be
proportional to the total length of the network [36]. More
in general, robustness and efficiency are usually assumed
to have a role in constraining network growth and topology
[9,17,31,32]. Conversely, our model provides a minimal,
general description of cost-constrained network growth where
the topological tradeoff between total length and efficiency
naturally arises from simply distinguishing between building
and maintenance costs.

In what follows, we ask if our model can be utilized
as a good “null-hypothesis” model in the attempt of better
understanding the constraints acting on network construction
in ants. We do not aim at a microscopic model of colony
growth, but we use the model as a minimal description of the
relevant optimization principles. Therefore, we do not intend
to draw definite conclusions about the details of ants’ behavior,
but rather to give a minimal explanation of the observed
empirical trends.

To this end, we collect 30 published networks constructed
by the ant species Linepithema humile [37], Iridomyrmex pur-
pureus [39–42], Formica lugubris [43,44], and Camponotus
gigas [45] (Tables I and II). Ant networks are typically small
(13 to 34 nodes), so one should be careful when analyzing
them. For each network, we compute the rescaled Hamming
distance by comparing the minimum-length skeleton (i.e., the
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TABLE II. Summary of the structural properties of ant networks
data from Refs. [37,40–45] [diamonds in Figs. 4(b), 4(c) and 4(d)].
First column: reference in the figure and reference in the bibliography.
Other columns as in Table I. * indicates that the network is a tree;
i.e., E = N − 1.

♦ Other data from Refs. [37,40–45].

Data N E d β E/EMST L/LMST

A [37] 16 18 0.31 0.54 0.98 1.07
B [40] 32 38 0.28 0.62 0.86 1.11
C [44] 19 24 0.26 0.66 0.99 1.21
D [44] 14 15 0.21 0.7 0.93 1.03
E [44] 14 16 0.21 0.7 0.94 1.03
F [41] 13 12* 0.23 0.72 0.96 1.1
G [44] 22 21* 0.23 0.72 0.93 1.09
H [45] 24 28 0.13 0.76 0.97 1.02
J [42] 13 13 0.08 0.78 1 1.05
K [43] 34 34 0.06 0.8 0.99 1
L [44] 13 12* 0 1 1 1

minimum spanning tree on the original network) with the MST
built on the same set of nodes, and dividing by the size of the
network [as prescribed by Eq. (3)]. Then, we assign a value
of β to each empirical network by comparing the obtained
value of d with the trend predicted by our model [Tables I
and II, third and fourth columns, and Fig. 4(b)]. To test the
compatibility between empirical structural properties and the
value of β assigned through our model, for each minimum-
length skeleton we compute the normalized efficiency and total
length (Tables I and II, last two columns). For each ant network
we thus have two points, (β, E/EMST) and (β, L/LMST).
Superposing them to the trends for E/EMST and L/LMST

predicted by our model at small network size (N = 30)
[Fig. 4(c)(d)] allows us to test whether β alone can predict
the structural properties of real transport networks. Finally, we
apply the same procedure to randomized ant networks to have a
benchmark for our analysis (Fig. 6). Randomized networks are
obtained in 4E rewiring steps (where E is the number of links)
starting from the adjacency matrix of empirical networks, and
have the same set of degrees.

Figures 4 and 5 allow us to draw three main observations.
First, the rescaled distance d from the corresponding MST
departs from the MST at most as much as the typical dMSTs
(d ≈ 0.38) [Fig. 4(b)] in all analyzed trail networks (the only
outlier is off by only a few percents). This was not to be
expected a priori since, for example, in randomized networks
the rescaled Hamming distance is systematically larger than
the maximum value obtained by our model [Fig. 5(a)]. As
a consequence, it is not possible to assign a strategy β to
most random networks, which reasonably reflects the fact
that random networks are not cost-constrained. Second, for
27 colonies out of 30, the estimated strategy β is in the
crossover regime [Fig. 4(b)]. Third, empirical networks tend
to cluster around our model (except for two out-layers) for
both efficiency and total length [Figs. 4(c) and 4(d)]. Of
course, it is likely that Hamming distance and distance in
length to some reference model are correlated in any network,
i.e., networks that are dissimilar from a given network in
terms of Hamming distance will be dissimilar also in terms of
total length. However, the figure points out that empirical ant
networks display a specific (albeit possibly null) relationship
between total length and efficiency, which is well captured by
the model and summarized by the assigned β value.

V. DISCUSSION

Albeit simple, our interpolating model presents a rich
behavior, providing a general framework to understand the
competing nature of construction and maintenance costs in the
context of spatial networks. In doing so, it addresses the in-
terplay of central planning and local growth that characterizes
the evolution of many manmade transport networks, offering
insights into the long-term outcome of different construction
strategies. Intermediate growth strategies are optimal in many
cost scenarios, as they minimize the long-term total costs
entailed by the infrastructure. Moreover, we showed that
balancing competing costs is a minimal sufficient ingredient
for the emergence of the tradeoff between the total length of the
network and its transport efficiency, which is usually explained
by more system-specific principles. Finally, the model displays
a transition point with diverging characteristic time, similarly
to the phenomenon of critical slowing down close to phase

FIG. 5. Randomized network analysis. (a) The Hamming distance of randomized networks from the corresponding MST is larger than 0.5
with large probability, thus it is not possible to assign them a value of β. In this plot and the following ones they are plotted at arbitrary values
(full shapes) and together with original ant data (empty shapes) and our model (circles) for comparison. Also, (b) efficiency and (c) total length
of randomized networks assume values not compatible with ant data and with the model’s predictions.
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transitions in statistical mechanics, which maximizes the
long-term number of links rewired.

A key premise in the formulation of the model is that the
position of new nodes is not known beforehand. If the time
scale of the arrival of new nodes is much larger than that of
the transport processes on the network itself, then each new
node needs to be connected before the position of successive
nodes can be taken into account. A possible example in human
systems is the evolution of bus routes [46,47]. New areas can
be quickly connected by adding further segments to bus lines
stopping nearby (dMST move). However, if the whole network
becomes suboptimal in terms of running costs, it may become
necessary to redesign it globally (MST move). Our model
suggests there may be an optimal re-organization strategy that
minimizes the total costs entailed by the transport network.

Model-enabled analysis of ant trail networks data further
proves the potential of the framework. The Hamming distances
between the empirical networks and minimum spanning
trees connecting the nests lie in the range predicted by a
pure cost-optimization principle. This indicates that cost is
a fundamental constraint in biological network formation,
and that the structure of ant networks could in principle be
explained by a cost optimization paradigm alone.

The fact the estimated strategy is in the crossover regime
for most empirical networks seems to suggest that both
maintenance and building costs may be relevant in constraining
the growth of ant networks. However, the distribution of their
rescaled distances in the interval [0,0.4] does not appear to
be substantially different from the distribution of a set of
random numbers between the same extremes. This, together
with the observation that, in our model, the optimal strategy
is in the crossover regime for large fluctuations in the ratio of
building and maintenance unit costs (h) [Fig. 3(a)], prevents
us from drawing definitive conclusions on whether β reflects
the actual balance between building and maintenance costs in
these networks. Testing this hypothesis would require knowing
the growth history of empirical networks, which is a nontrivial
information in the case of ant networks, but may be easier to
retrieve for some manmade transport networks.

There is semiquantitative agreement between model and
data on the relation between the efficiency and the total length
of empirical networks and its departure from a MST. So
far, such a relationship has been explained and modelized
as an explicit tradeoff between these two quantities [17,32].
However, the compatibility between the empirical values of
efficiency and total length with the values predicted by our
model (which is even more evident when comparing with the
same values for randomized networks [Figs. 5(b) and 5(c)]),
seems to support our hypothesis that the balance between
efficiency and total length characterizing most empirical ant
networks [32] may be explained by cost constraints alone.

Finally, we do not observe a clear distinction between
different ant species in any of the analyzed plots. This may be
due to the fact that empirical ant networks are small (between
13 and 34 nodes), and thus subject to strong fluctuations, but it
could also be an indication that different species may share
common underlying building principles and optimization
strategies.

Drawing a definite conclusion on the biological mean-
ing of β as well as on the dominance of building and

maintenance costs in shaping the structural properties of
transport networks requires further investigation. However,
the comparison between empirical and randomized networks
supports the validity of the model as a null description relevant
for cost-constrained networks. The value of β alone (obtained
from a purely topological quantity) gives a null prediction for
metric quantities, such as efficiency and total length. In this
regard, our model is a simple null benchmark that may be
helpful in bringing out any positive phenomenology from the
data. Moreover, it provides a new perspective to understand and
analyze the growth of transport networks in diverse contexts.
Altogether, our results advocate that both this global/local
dichotomy, as well as the building and maintenance one,
should be taken into account in the analysis and modelization
of transport networks.
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APPENDIX

1. Derivation of the growth condition

Starting from Eq. (1) we can write H MST(N ) =
β(LMST(N ) − L(N − 1,β)) + (1 − β)LMST

B (N,β) and
H dMST(N ) = LdMST

B (N ). LMST(N ) is the total length of
the minimum spanning tree at size N. L(N − 1,β) is the
total length of the network at size N − 1 and depends
on both N and β, as well as LMST

B (N,β), that is the
total length that needs to be built to get a MST at size
N from the network at size N − 1. LdMST

B (N ) is the
length of the link that will connect the new node to its
closest neighbor according to the dMST prescription.
The total length of the MST at size N can be written
as LMST(N ) = L(N − 1,β) + LMST

B (N,β) − LMST
D (N,β).

LMST
D (N,β) is the sum of the lengths of the links that need

to be destroyed during a global MST rewiring. Thus, the
equation governing the growth process can be written in a
more compact fashion as

LMST
B − βLMST

D ≷ LdMST
B . (A1)

2. Scaling of the structural properties
with network size N

At all values of β, the Hamming distance d = (|A(G) −
A(Ĝ)|)/4N is a linear increasing function of network size
[Fig. 6(a)]. After a short transient (N ∼ 100), the rescaled
hamming distance d = d/N is constant with respect to
network size N , and can be used as a size-independent measure
of the length optimization deriving from a certain strategy β.

The scaling of the total length as a function of N at different
values of β is shown in Fig. 6(b). At each value of β, the total
length scales as

√
N multiplied by a constant that depends on

β, as estimated in Appendix A 3. When divided by the total
length of the corresponding MST (built on the same set of
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FIG. 6. Structural properties of the transport networks built by
our model as a function of network size N and of the strategy β

(colors online). Full lines represent our model at different values of
β. Arrows indicate increasing values of β. Dashed lines corresponds
to the MST built on the same set of nodes. (a) Top: The Hamming
distance as a function of N at different values of β ∈ [0,1]. Bottom:
the rescaled Hamming distance as a function of N (left) and β (right)
for N = 1000. (b) Top: total network length as a function of N for
different values of β, and rescaled by the length of the MST built on
the same set of nodes (inset). Bottom: The rescaled total length as a
function of β at N = 1000. (c) Top: Efficiency as a function of N

at different values of β. Smaller plots: Efficiency normalized by the
corresponding MST value during three growth stages of the network
at N = 200, N = 350, and N = 1000 (counterclockwise).

nodes), L/LMST(N ) fluctuates around a constant value after
N ∼ 250 for all values of β. To summarize the asymptotical
behavior of the total length of the networks built by our model
we take the rescaled total length L/LMST at N = 1000 and
plot it against β.

Finally, the efficiency of our transport networks shows a
different behavior depending on network size [Fig. 6(c)]. When
the network is small (N ∼ 200) the dMST is less efficient
than the corresponding MST. The ratio converges to 1 with
increasing N . Around N ∼ 350 the efficiency of the networks
produced by our model is very close to the efficiency of a
MST. Interestingly, the Hamming distance shows that the same
efficiency is achieved by different network structures. At large
network size, the rescaled efficiency shows the same three
phases observed in the rescaled Hamming distance and in
L/LMST, with low values of β corresponding to highly efficient
networks.

3. Scaling of the mean total length with network size N

For a network built on a random set of N nodes the total
length can be written as L = E〈r〉, where E is the number of
links and 〈r〉 is the average length of links. For a Poisson
distribution in 2D the distance between two first nearest
neighbors is 〈r1〉 = 1

2
√

ρ
ρ = N/W is the density of points

in the area W . For a tree E = N − 1, therefore,

LMST = (N − 1)
1

2
√

ρ
∼

√
W

2

√
N. (A2)

The building prescription of the dMST implies that every
new node is linked to its first neighbor iteratively, so it seems
reasonable that

LdMST =
N∑

i=1

√
W

2
√

i
=

√
W

2
H

( 1
2 )

N ∼
√

W
√

N. (A3)

H
( 1

2 )
N is the generalized harmonic number: H

( 1
2 )

N = 2
√

N +
ζ (1/2) + . . . , and ζ is the Riemann Zeta function. At the first
order LdMST

TOT ∼ √
W

√
N . Therefore, the total length of the

MST and dMST have the same scaling as a function of N ,
what changes is a constant.
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