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Abstract 

Post-translational modification of histone tails plays a critical role in chromatin regulation, 

gene activity and nuclear architecture. The addition or removal of post-translational 

modifications from histone tails is fairly dynamic and is achieved by a number of different 

histone modifying enzymes. Given the fundamental roles of histone modifications in gene 

regulation and expression, it is not surprising that aberrant patterns of histone marks are found 

in cancer. Such modifications include histone lysine methylation, which can either promote or 

repress gene activity depending on the extent of methylation and its context. Histone lysine 

methylation is maintained by dynamic opposition of methyltransferase and demethylase 

enzymes, both of which are implicated in normal embryonic development and tumorigenesis. 

LSD1 is a flavin-containing amine oxidase that, by reducing the cofactor FAD, demethylates 

H3K4me1/2 and H3K9me1/2 at target loci in a context-dependent manner. LSD1 can act as 

either a transcriptional co-repressor, as a part of several chromatin complexes such as 

CoREST and NuRD, or as a co-activator in association with androgen and estrogen receptor.  

In cancer cells, it has been shown that LSD1 is required for the development and maintenance 

of acute myeloid leukemia (AML) and cooperate with the oncogenic fusion protein MLL-AF9 

to sustain leukemic stem cells (LSCs). LSD1 inhibition impaired the proliferation potential of 

murine and human AML cells and was accompanied by induction of differentiation. 

Moreover, LSD1 inhibitors unlocked the ATRA-driven therapeutic response in AML by 

increasing H3K4me2 level and reactivating the retinoic acid signaling pathway. LSD1 could 

be an attractive target for cancer therapy because of its deregulation in a number of cancers, 

including lung, breast, melanoma and hematological malignancies. Despite recent diagnostic 

and technological improvements, cancer continues to retain its heavyweight status as one of 
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the most challenging diseases to treat. It is a heterogeneous disease that often results in 

different clinical outcomes for patients with the same affected tissue. And as such, the 

disparateness of this disease makes it extremely difficult to fight. The ability to anticipate the 

clinical behavior of cancers is essential in determining the most suitable therapeutic 

interventions. Considering that cancer is so diverse and clinical outcome predictions often 

vary from patient to patient, a considerable amount of effort is being invested to discover 

molecular biomarkers that can categorize cancer patients with distinct clinical outcomes to 

expand prognostic capabilities. Given the unsatisfactory clinical outcome associated with 

standard chemotherapy in acute myeloid leukemia (AML) and melanoma treatment, there is 

an essential need for new targets. Recently LSD1 have gained great interest for their use as 

anticancer therapeutics. However, the efficacy of LSD1 inhibitors is limited to a substantial 

subset of cancer cells. Thus, identification of good predictive biomarkers for sensitivity to 

treatment with LSD1 inhibitors will be of great value in determining the most suitable 

therapeutic setting. 

Two lines of evidence have provoked our interest in LSD1. First, LSD1 inhibition impaired 

the proliferation potential of a subset of solid tumors and AML cells. second, LSD1 inhibitors 

unlocked the ATRA-driven therapeutic response in AML cells. 

Our lab, in collaboration with prof. Antonello Mai and prof. Andrea Mattevi, previously 

developed a new compound working as an LSD1 specific inhibitor, MC2580. By taking 

advantage of this inhibitor, we have previously shown that LSD1 inhibition sensitizes NB4 

cells to retinoic acid (RA) treatment and induces cell growth arrest and differentiation when 

combined with a physiological concentration of RA (RA low). Starting from these 

observations, we hypothesized that LSD1 inhibition sensitize UF1 cells, that were established 

from a patient who was clinically resistant to RA treatment and harbor a point mutation in 
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ligand binding domain (LBD) of RARα moiety. Surprisingly LSD1 inhibition in UF1 cells led 

to cell growth inhibition, induced cell differentiation and promoted G1 phase arrest, as a single 

agent. we performed a genome-wide expression analysis comparing gene expression profiling 

of the two cell lines (NB4 vs UF1) which differently response to LSD1 inhibitor, before and 

after MC treatment. We found that p21 highly expressed in UF1 cells and MC-treatment led to 

further upregulation of p21 in UF1 cells but not in NB4. High level of p21 in UF1 cells, is 

consistent with the fact that UF1 cells are in higher percentage in G1 phase and lower growth 

rate. We also showed that induction of p21 by HDAC inhibitors sensitized resistant cells 

(NB4) to LSD1 inhibitor which further confirmed our observation. Knockdown of p21, 

rescued UF1 cells from cell growth inhibition, cell differentiation and G1 phase arrest 

mediated by LSD1 inhibitor. Similar to APL cells, Knock-down of p21 in non-APL AML, 

SCLC and melanoma cells, rescued cells from the effects of MC. Furthermore, we observed 

that p21 by binding to CDK leads to G1 cell cycle arrest and sensitizes resistant cells to LSD1 

inhibitor. Given modest efficacy of LSD1 inhibitors against a subset of cancer cells, 

combination therapy with LSD1 inhibitors will be a critical approach for therapeutic 

intervention. In this study we showed that forced cell cycle inhibition either with p21 

induction by HDAC inhibitors or directly by CDK inhibitors (Palbociclib) presents a 

promising therapeutic strategy in solid and hematologic cancers. In conclusion: 

• Inhibition of LSD1 suppresses G1 to S phase transition and cell proliferation in a p21-

dependent manner. 

• Loss of p21 enables progression of cell cycle and rescues the LSD1 inhibitor 

phenotypes.  
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• P21 provoked by LSD1 inhibitor could serves as a biomarker to verify 

pharmacological activity and a prognostic tool reflecting responsiveness to LSD1 

inhibitor. 

• Forced cell cycle inhibition either with p21 induction by HDAC inhibitors or directly 

by CDK inhibitors sensitized tumor cells to LSD1 inhibition. 
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 Introduction 

1. Epigenetic 

The field of epigenetics in its current form is relatively new, however the term was established 

in 1947 by Conrad Waddington, as “the branch of biology which studies the causal 

interactions between genes and their products which bring the phenotype into being” 

[Jablonka&Lamb, 2002]. In 2009 this definition was revised as to “An epigenetic trait is a 

stably heritable phenotype resulting from changes in a chromosome without alterations in the 

DNA sequence” [Berger, 2009]. As far apart these two definitions might seem they both 

classify epigenetics as a step beyond classical genetics and closer to how one genotype can be 

translated into many different phenotypes. Epigenetics now is understood as the study of 

mitotically and/or meiotically heritable changes in gene expression without changing gene 

sequence [Bird, 2002; Butler& Dent, 2013]. The word “epi” comes from the Greek and means 

the same as “over”, “above” or “in addition to”, so the epigenetic code can be seen as a second 

layer of information on top of the genetic code. Epigenetics, in a broad sense, is a connection 

between genotype and phenotype that alters the final outcome of genomes without changing 

the underlying DNA sequences. This includes covalent and non-covalent modifications of 

DNA and histone proteins by which the overall chromatin structure is influenced. Epigenetic 

modifications can be passed from one cell generation to the next (mitotic inheritance) and in 

some cases between generations of a species (meiotic inheritance). [Kouzarides, 2007; 

Bannister&Kouzarides, 2011]. It is now well understood that cancer, alone with genetic 

perturbations, can be characterized by gross alterations within the epigenome. These changes 

manifest in the nucleus with unique chromatin structure, which in turn leads to global 

differences in gene expression patterns compared to the normal cell. 
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2. Mechanisms of epigenetic regulation 

The enormous complexity of life even at the cellular level requires a complex traffic of 

information between external and internal signals and a coordinated response mediated by 

systems to read the information and execute the response. Probably one of the best examples 

to understand what epigenetics refers to is found in the heterogeneity of human body itself. 

Not only do the cells making up different tissues express unique sets of genes that define their 

characteristics and functions, but we now understand that there are additional levels of control 

superimposed upon the genome. Although the genetic information that determines the 

response is contained in the sequence of nucleotides of DNA, the structure of chromatin is 

crucial in the way this information is read. It has always been amusing that this same genetic 

information is able to give rise to many diverse cellular phenotypes and specific functions. 

More important here, cellular differentiation processes are regarded as epigenetic phenomena. 

Even though cells of a multicellular organism share the same genetic instruction sets, a great 

diversity of cell types with very different terminal phenotypes is generated from the originally 

totipotent cell. During this development the cell undergoes changes in its epigenetic state, a 

fact that has been famously illustrated as the epigenetic landscape by Conrad H. Waddington 

in 1957 [Goldberg, 2007]. The epigenetic landscape is a metaphor displaying the process of 

cellular decision-making, with a marble (representing a cell) rolling down a hill into one of 

several valleys (Figure 1). The cell can follow different permitted trajectories, finally reaching 

its destination at the bottom of a certain valley, reflecting a terminally differentiated state. 

From today’s point of view, we know that at each point in this slope the cell has a specific 

epigenetic state which is causal for the cell’s gene expression profile.  
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Figure 1. C.H. Waddington’s epigenetic landscape model. Waddington first proposed the concept of 
epigenetic landscape in 1957; this figure represents the process of cellular differentiation and different 
trajectories that the cell (demonstrated by a marble) can undertake toward differentiation. Adapted 
from Goldberg et al. Cell 2007. 

 

Thus, the epigenetic information of a cell (epigenome) displays a stable, heritable, and 

changeable, layer of information which instructs cell fates by defining the activity of genes. 

This is achieved by epigenetic alterations which regulate both chromatin structure and the 

accessibility of the DNA. The most fundamental epigenetic mechanisms are DNA methylation 

and histone tail modifications. There are additional epigenetic mechanisms such as the 

presence of histone variants, and displacement and reposition of nucleosomes. Non-coding 

RNAs (ncRNAs) among which are the small interference RNA (siRNA) and microRNA 

(miRNA), are also considered an epigenetic mechanism [Murr, 2010]. 

The combined effects of these processes define the structure of chromatin at a particular locus 

and thus, its transcriptional activity. Countless mechanisms involving effectors, players and 

presenters have been identified in years of intensive research, some of which will be 

introduced in the following section. 
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3. DNA methylation 

The best known epigenetic mechanism of gene regulation is DNA methylation. DNA 

methylation does not occur in a stochastic manner. It is targeted to specific bases in the 

genome. In the mammalian genome DNA methylation takes place at the 5´ position of the 

pyrimidine ring of a cytosine located adjacent to a guanine (5´-CpG-3´) and is mediated by 

DNA methyl transferases (DNMTs) [Liyanage, 2014]. Approximately 3–5% of the cytosine 

residues in the genome of mammalian cells are modified as 5-methyl cytosine, and 70–80% of 

them are found in CpG residues [Weber, 2007]. The CpG residues are often clustered in the 

promoter/regulatory regions of the genes as CpG islands. This covalent methylation 

modification of cytosine residues represents a reversible but heritable change which can alter 

gene expression and is ultimately responsible for a diverse array of biological responses 

[Mellen, 2012; Booth, 2012]. 

Three active DNMTs (DNMT1, DNMT3a, and DNMT3b) have been identified in human. 

DNMT3a and DNMT3b are responsible for de novo methylation whereas DNMT1 is 

responsible for maintenance of DNA methylation and copies the methylation patterns from the 

parental to daughter strands of DNA during DNA replication by methylating the 

hemimethylated strands [Okano, 1998].  

Differential DNA methylation at CpG islands has been shown to be associated with regulation 

of gene expression and is essential for normal embryonic development, X chromosome 

inactivation, imprinting, chromatin modification, suppression of parasitic DNA sequences, and 

aberrant silencing of tumor suppressor genes or over-activation of oncogenes in cancer [Jones, 

2001]. Having these global functions, it is not surprising that DNA methylation has been 

implicated in several diseases, especially in cancer. Regarding DNA methylation, two 
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different phenomena occur in cancer cells: first there is a global DNA hypomethylation that 

affects mainly repetitive sequences, coding regions and introns and produces chromosomal 

instability; second there is a DNA hypermethylation at CpG islands that are present at the 

promoter of many genes. The CpG islands are normally unmethylated in normal cells but 

become methylated in cancer leading to the repression of tumor suppressor genes [Tuck-

Muller, 2000]. 

4. Chromatin Organization 

A high degree of organization is required to confine the eukaryotic genome with more than 

three billion base pairs and nearly 2 meter of deoxyribonucleic acid (DNA) into the nucleus 

with an average diameter of 5–10 µ m. In order to achieve this, DNA is associated with 

proteins that extensively fold and condense it into a highly organized structure, known as 

chromatin, composed of DNA and its intimately associated histone proteins, non-histone 

proteins such as High Mobility Group (HMG) proteins and Heterochromatin Protein 1(HP1) 

and RNAs, such as long ncRNAs. The fundamental unit of chromatin, termed the nucleosome, 

is composed of 145–147 base pairs (bp) of DNA wrapped nearly twice around an octamer of 

histone proteins, constructed from two copies of each of the core histones, histone H2A, 

histone H2B, histone H3, and histone H4 [Kornerber, 1974; Oudet, 1975; Luger, 1997; 

Kornberg &Lorch, 1999]. Each nucleosome core is connected to an adjacent nucleosome core 

through a segment of linker DNA to form the chromatin polymer with a repeat length ranging 

from 160 to 240 bp. Approximately 20 bp of this linker DNA is typically found in association 

with the linker histone H1 (also H5). The nucleosome core together with the linker histone is 

called the chromatosome [Robinson, 2006; Kornberg &Lorch, 1999].  

Chromatin is generally classified into either euchromatin or heterochromatin, depending on its 
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level of compaction (Figure 2, 4). Euchromatin is ‘open’ and poised for gene expression, 

while heterochromatin is compact and refractory to transcription. Euchromatin is best 

described by the ‘beads on a string’ model, which is thought to represent the lowest level of 

chromatin compaction (10 nm fiber). Heterochromatin is formed by the addition of linker 

histone H1 (also H5) and various non-histone proteins (such as HP1), which further compact 

nucleosomes into higher order structures (30 nm fiber and beyond). Finally, chromatin reaches 

its most condensed state during mitosis (Figure 2) [Maresca, 2005; Shogren-Knaak, 2006; 

Maresca, 2006]. 

The core histones are well conserved in eukaryotes and are lysine- and arginine-rich proteins 

(the basic amino acids) that are involved in the formation of nucleosomes. Each core histone 

has a molecular weight from 11 to 15 kDa and 17∼ 20 positive charges at pH 7. All of the four 

core histones carry the N-terminal tail regions which are rich in lysine residues. These lysine-

rich tail regions bind to negatively charged DNA, and play a role in nucleosome-nucleosome 

interactions. Linker histones (H1, H5) are also major components of metaphase chromosome, 

and occupy 5.8% of the total protein amount. These linker histones carry more lysine residues 

than the core histones and have a core domain in the middle part that binds to a nucleosome. 

While chromatin plays a structural role, its regulation is highly dynamic that can adopt many 

different conformations and substructures and allows DNA to be accessed as needed while 

simultaneously being packaged. This implies that chromatin density plays an important role in 

regulating gene expression involving a dynamic competition between transcription factors and 

nucleosomes for critical genomic loci (Figure 3). 

Different critical factors contribute to chromatin dynamics, the post-translational modification 

(PTM) of histones, ATP-dependent chromatin remodeling factors, Poly(ADP-Ribose) 

Polymerase-1 (PARP-1), histone chaperones, and the incorporation of specialized histone 



 
	

27	

variants into chromatin.  

                                 

 

Figure 2. DNA is packaged into chromatin. The DNA double helix, which is 2 nm in width, is 
wrapped around an octamer of histone proteins to form a nucleosome. The nucleosomes are then 
packaged to form a chromatin fiber of 30 nm in width. Consequently, the chromatin fiber is condensed 
to ultimately form a chromosome of approximately 1,400 nm in width. Adapted from Tonna et al. Nat 
Rev Nephrol 2010. 

 

Histone variants, which have a different amino-acid sequence from canonical histone and non-

histone proteins (such as High Mobility Group (HMG) proteins and Heterochromatin Protein 
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1, HP1) are incorporated to modify the structure and properties of chromatin composition, 

making chromatin a versatile template that can adapt, and provides a means to regulate various 

DNA based processes such as replication, transcription, recombination, and repair. Histone 

variants are classified as either replicative or replacement histones, and exist for the three core 

histones H3, H2A, and H2B, and for the linker histone H1, but not for the core histone H4. For 

example, the canonical histone H3 (H3.1) is replaced at the centromere region by the 

centromere-specific variant CENH3 (CENP-A), which directs the assembly of the kinetochore 

ensuring proper segregation of the sister chromatids to the daughter cells. Histones H2A.Z and 

H2A.X are variants of histone H2A. Histone H2A. X plays a role in double-strand break 

repair, whereas H2A.Z is functional in different processes including gene activation and 

repression [Tachiwana, 2011; Buschbeck, 2017]. 

ATP-driven chromatin remodeling complexes that act as molecular machines coupling ATP 

hydrolysis play an important role in alterations of chromatin structure and so gene regulation. 

These chromatin remodeling complexes are distinguished from other chromatin factors by 

their use of the energy of ATP hydrolysis to promote their functions such as (1) phasing and 

spacing of nucleosomes, (2) altering the path of the DNA wrapped around nucleosomes, (3) 

transferring the histone octamer to DNA molecules, (4) exchanging the canonical histones of 

the core with variants (Chromatin Editing) [Clapier, 2017]. 

Histone chaperones provide another level of complexity of chromatin organization. Histone 

chaperones are the histone interacting factors that stimulate histone transfer reaction without 

being a part of the final product. They are involved in the storage of histone pools, 

transporting the histones from the cytoplasm to the nucleus, histone presentation for histone 

modification, and nucleosome assembly/disassembly by transiently shielding the positively 

charged histones to regulate their interaction with negatively charged DNA [Lai, 2017; 
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Hammond, 2017]. 

 

Figure 3. Chromatin dynamics. Histone modifications, non-coding RNA, histone variants and 
remodeling alter chromatin structure. Adapted from Allis et al. Nat Rev Genet 2016. 

 

Poly(ADP-ribose) polymerase-1 (PARP-1) is a ubiquitous and abundant nuclear protein, that 

by interaction with chromatin and chromatin-modulating proteins alters chromatin structure 

and nucleosome stability. Although PARP-1 has firstly been studied as a DNA damage 

detection and repair protein, more recent studies have demonstrated a clear role for PARP-1 as 

a modulator of chromatin structure. PARP-1catalyze the polymerization of ADP-ribose 

(ADPR) units from donor NAD+ molecules on target proteins through a process called 

poly(ADP-ribosyl) ation (or PARylation). Multiple chromatin proteins are targets for 

PARylation, including histone proteins, especially histones H1 and H2B, some high-mobility 
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group (HMG) proteins, and other DNA-binding proteins such as DNA ligases and 

topoisomerases. PARylation may alter the activity of these proteins, thereby changing the 

way, they interact with chromatin and alter chromatin structure. For example, PARylation of 

H1, a key target of PARP-1 activity in vivo, may block H1 binding to nucleosomes and inhibit 

chromatin compaction by H1 [Ray Chaudhuri, 2017]. 

PTMs are particularly abundant on the N-terminal histone tails, which protrude from the 

nucleosomal core. However, PTMs also exist within the core and on certain C-terminal tails, 

for example, H2A. Histone PTMs can result in ‘on’ or ‘off’ chromatin states regarding 

transcriptional status, including acetylation at lysines (K), methylation at lysines and arginines 

(R), phosphorylation of serines (S) and threonines (T), O -glycosylation of serines and 

threonines, formylation and crotonylation of lysines, deimination of arginines (R), 

arginine(R), and proline(P) isomerization, and glutamate poly-ADP ribosylation and 

hydroxylation of serines but also ubiquitination, citrullination, SUMOylation and ADP 

ribosylation is observed [Kouzarides, 2007]. All these modifications constitute a complex 

language that governs the structure of chromatin and the transcriptional status of the genes 

contained in a particular locus.  Whereas acetylation, phosphorylation and ubiquitination are 

readily reversible, lysine and arginine methylation are comparatively more stable marks. Such 

modifications could play a direct role in modulating histone-DNA interactions within the 

nucleosome, thereby determining the ease with which a nucleosome can be translocated along 

DNA. In terms of transcription, modifications can be grouped in those that correlate with 

activation of transcription and those that correlate with repression of transcription.  

It is thought that specific combinations of modifications in one or more histones form a ‘code’ 

which is recognized by particular regulatory proteins and trans-acting factors including ATP-

dependent remodelling enzymes. This “histone code” hypothesis states that PTMs can act 
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through two mechanisms: (1) by structurally changing the chromatin fiber through inter 

nucleosomal contacts, thus regulating DNA accessibility, and (2) by serving as docking sites 

for effector molecules (generally referred to as ‘readers’) that initiate distinct biological 

processes [Yun, 2011]. However, each modification has its own meaning in a defined context 

and the same modification can be associated to gene activation or repression depending on the 

context. Two good examples are methylation of H3K36 and H3K9 that have a positive effect 

on gene transcription when they are located in the coding region but a negative effect if they 

are located in the promoter of the gene [Vakoc, 2005].  

Histone modification profiles allow the identification of distal enhancer regions, as they show 

relative H3K4me1 enrichment and H3K4me3 depletion. Interestingly, the chromatin patterns 

at enhancer regions seem to be much more variable and cell type specific than chromatin 

patterns at core promoter or insulator regions. Enhancer regions also show enrichment for 

H3K27 acetylation, H2BK5me1, H3K4me2, H3K9me1, H3K27me1 and H3K36me1, 

suggesting redundancy in these histone marks. 

5. Histone Modifications 

Histone PTMs comprise diverse chemical types, primarily acetylation, methylation, 

phosphorylation, and ubiquitination. Posttranslational modifications to histone tails govern the 

structural status of chromatin and the resulting transcriptional status of genes within a 

particular locus. These modifications are reversible and controlled by a group of enzymes. 

Usually, those enzymes that create histone modifications are called “writers,” such as histone 

acetyltransferases, histone methyltransferases, and kinases, while enzymes that eliminate 

histone modifications are called “erasers,” such as histone deacetylases, histone demethylases, 

and phosphatases (Figure 4). These counteracting histone-modifying enzymes usually work in 
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a site- and type-specific manner to establish certain histone PTM patterns along the chromatin 

fiber. In addition, large families of “reader” modules exist in the cell to specifically recognize 

histone PTMs or their combinations, by specific PTM-binding domains thereby functioning to 

translate the “histone code” to particular downstream events.  About fifteen distinct structural 

folds of histone-binding modules have been identified so far. These modules contain various 

domains, such as chromo, PHD, Tudor, WD40, ADD, MBT, and Zf-CW. Thus, there is an 

abundance of writers, erasers, and readers that determine the dynamics of histone 

modifications and subsequently their effects on various processes [Musselman, 2012; Patel, 

2013; Wysocka, 2006; Bannister 2001; Taverna, 2007; Vermeulen, 2010; Bartke, 2010 

Mujtaba, 2007; Maurer-Stroh, 2003; Champagne, 2009]. 

 

                           

Figure 4. Writers, erasers, and readers in epigenetics. Adapted from Dawson. Science 2017. 

 

In contrast to DNA methylation that is generally linked to gene silencing, histone 

modifications can be associated with either transcriptional repression or activation. 



 
	

33	

Particularly, variations in acetylation/ deacetylation and methylation/ demethylation patterns 

at several histone residues (mainly studied those of histones H3 and H4) play essential roles in 

conferring defined transcriptional potential (Figure 5) [Jones, 2005].  

The acetylation of histones H3 and H4 mediated by the HATs leads to opening of the 

chromatin, providing local access of transcription factors and other proteins to the regulatory 

regions of genes and enabling the active histone code. On the contrary, deacetylation of the 

lysine residues, mediated by HDACs, results in the compaction of chromatin, rendering it 

inaccessible to transcription factors and leading to the establishment of a silenced histone code 

[Thiagalingam, 2003].  

Other less well-characterized PTMs, include phosphorylation, SUMOylation, deamination, 

and ubiquitination. Histone phosphorylation on residues such as serines, threonines, and 

tyrosines is also a highly dynamic process that is regulated by kinases and phosphatases. 

Protein kinases, classified into groups based on substrates they act upon, transfer phosphoryl 

groups from ATP to the hydroxyl groups of the residues, which add negative charges. This 

ultimately can lead to significant changes in chromatin structure, and consequently has been 

shown to play roles in processes such as mitosis, apoptosis, and gametogenesis [Perez-

Cadahia, 2010; Sawicka&Seiser, 2012]. Phosphorylation of histone H3 on at least two serine 

residues (Ser10 and Ser28), and on Thr11, is associated with chromosome condensation and 

segregation during mitosis and meiosis. Phosphatases, also subdivided based upon their 

substrate specificity, remove phosphate groups, and as a consequence influence chromatin 

structure [Clayton, 2000; Cerutti&Casas-Mollano, 2009; Khan, 2013; Healy, 2012].  

Deimination is a reaction catalyzed by PADI4 that converts arginine, to a citrulline, 

neutralizing the positive charge of arginine [Cuthbert, 2004]. 
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Another component of the histone code involves the ubiquitination of C-terminal lysine 

residues of histones H2A and H2B. This modification is added via the sequential action of 

three enzymes, E1, E2, and E3, and is removed via a de-ubiquitin isopeptidase. It is involved 

in gene silencing, as well as transcriptional initiation and elongation. Although 

polyubiquitination targets proteins for degradation by the proteosome, mono-ubiquitination is 

a stable protein modification that does not affect the half-life of the protein [Cole, 2014; 

Davie&Murphy, 1990; Wright, 2012].  

The small ubiquitin-related modifier (SUMO) can also reversibly modify transcription factors, 

cofactors, and chromatin-modifying enzymes such as HDACs. SUMOylation of HDAC1 

increases both its deacetylase activity and its transcriptional repressor activity. This PTM can 

prevent the acetylation and ubiquitylation at specific lysine residues, and has been linked to 

transcriptional repression [Shiio&Eisenman, 2003; Dhall, 2014].  

Mono- and poly-ADP ribosylation has been known to occur on histone glutamate and arginine 

residues. The addition of poly-ADP ribosylation occurs via the poly-ADP-ribose polymerase 

(PARP) family of enzymes, and the poly-ADP-ribose-glycohydrolase family of enzymes 

catalyzes the removal of the mark. As this PTM confers a negative charge, it has been 

generally linked to a relaxed chromatin state, and therefore to transcriptional activation. 

Histone mono-ADP-ribosylation occurs via the mono-ADP-ribosyltranferases, and has been 

linked to the DNA damage response as this modification is increased upon DNA damage 

[Allis, 2007; Messner&Hottiger, 2011; Rouleau, 2010].  

Lastly, O-GlcNAc is a histone PTM that occurs on serine and threonine residues. This PTM is 

added via the O-GlcNAc transferase that utilizes the donor substrate UDP-GlcNAc, and is 

removed via the β-N-acetylglucosaminidase [Sakabe, 2010].  
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The large number of histone modifications and the possible interplay between them led to the 

proposition of the so-called “histone code hypothesis” in which “multiple histone 

modifications, acting in a combinatorial or sequential fashion on one or multiple histone tails, 

specify unique downstream functions”. There are multiple ways by which cross-talk between 

modification marks are though to occur. One way is that there could be competition for 

modifications at one particular residue. Another way cross-talk can occur is if the addition of 

one modification mark is dependent on the addition of another modification mark. Cross-talk 

can also occur if a modification mark disrupts or enhances the binding of a protein to another 

modification mark. Any particular histone modifying enzyme’s activity can also potentially be 

perturbed if a particular modification results in its gene activation or repression. Lastly, cross-

talk occurs if modifications work in a cooperative manner in the recruitment of a specific 

factor. Such cross-talk between histone modifications can be further influenced by the effects 

of DNA methylation, underscoring the potential for complexity in epigenetics [Bannister, 

2011]. 

Global alterations in histone modifications have been associated with cancer. Global 

hypoacteylation of H4 in a number of cancer types is mediated by the overexpression of 

HDACs, leading to the aberrant repression of transcriptional activity [Halkidou, 2004]. 

Furthermore, histone methylation patterns throughout the genome are often altered during 

tumorigenesis. Aberrant increases in H3K9 or H3K27 methylation result in the repression of 

key genes; similarly, cancer specific decreases in promoter H3K4 methylation have also been 

found at these repressed loci [Valk-Lingbeek, 2004, Cloos, 2008, Fraga, 2005]. These changes 

are mediated by perturbations to either the HMTs responsible for placing these marks, or the 

KDMs responsible for removing them. For example, overexpression of the H2K27 

methyltransferase EZH2 has been observed in a number of cancers [Valk- Lingbeck, 2004]. 

Similarly, overexpression of the H3K4 demethylases KDM1A and the KDM5 family of 
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proteins have also been described in several cancer types (Figure 5) [Hosseini&Minucci, 

2017]. The role of the KDM1A (LSD1) proteins in tumorigenesis will be discussed in greater 

detail in the following sections. 

6. Histone methylation 

6.1. Histone methyltransferases 

Histone methylation is due to the action of histone methyltransferases that are divided into two 

major families based upon their amino acid substrate, the lysine methyltransferases (KMTs) 

and arginine methyltransferases (PRMTs) [Copeland, 2009; Bedford, 2005]. Methylation is 

unique among the histone post-translational modifications because up to three methyl groups 

can be added to a single lysine residue. Arginine can be methylated with one or two groups, 

and the dimethylated form can occur in a symmetrical and asymmetrical conformation, 

Lysine, on the other hand, can undergo mono, di and tri- methylation [Barski, 2007]. The 

functional consequences of the different degree of methylation result in various biological 

outcomes including transcriptional activation, elongation or repression, imprinting, DNA 

replication and DNA-damage repair. These enzymes transfer a methyl group, from the 

cofactor S-adenosyl-L-methionine (SAM) to either the ε-amino group of lysine or to the 

guanidino group of arginine, and is mainly found on histones H3 and H4. 

Enzymes acting on arginine belong to the protein arginine methyltransferases PRMTs family. 

Nine enzymes that catalyze arginine methylation have been described and include PRMT1, 

PRMT2, PRMT3, CARM1, PRMT5, PRMT6, PRMT7, PRMT8 and PRMT10 [Di Lorenzo, 

2011; Richon, 2011]. Generally, arginine methyltransferases are divided into two different 

classes: type I and type II. The type II enzymes (PRMT 5, 7, and 9) catalyze mono- and di-

symmetric methylation of the arginines (R), whereas, the formation of mono- and di-
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asymmetric tails is achieved by type I enzymes (PRMT 1–4, 6, and 8). 

KMTs have been grouped in two main different classes: lysine-specific SET domain 

containing histone methyltransferases, characterized by a 130-amino-acid catalytic domain 

known as SET [Su(var)3-9, Enhancer of Zeste, Tritorax], and the non-SET-containing lysine 

methyltransferases (the DOT1 family) [Allis, 2007]. DOT1 methylates lysine-79 within the 

core domain of H3 only in nucleosomal substrates and not in free histones [Feng, 2002]. The 

SET domain containing KMTs catalyze mono-, di-, and trimethylation of their target lysine 

residue localized on histone tails and are classified into six subfamilies: SET1, SET2, SUV39, 

EZH, SMYD, and PRDM. Of note, a small number of SET-containing KMTs that do not fall 

into the above six subfamilies due to an absence of conserved sequences flanking their SET 

domains include Set8/PR-Set7, SUV4-20H1, and SUV4-20H2, Set7/9, as well as MLL5, RIZ 

(retinoblastoma protein-interacting zinc-finger) and SMYD3 (SET- and MYND-domain 

containing protein 3) [Allis, 2007]. 

While histone acetylation generally correlates with transcriptional activation, histone 

methylation can be either an activating or repressive mark, depending on the location and 

degree of methylation. The most studied histone lysine methylation sites are H3K4, H3K9, 

H3K27, H3K36, H3K79 and H4K20. Methylations of histone H3 at lysine 4, 36 and 79 are 

generally considered as activation marks, whereas methylations on histone H3 lysine 9, 27 and 

H4K20 are linked to repression (Figure 5) [Martin, 2005]. It is worth mentioning that the final 

effect on transcription and chromatin structure is not strictly dependent in most cases on one 

single histone modification, but it influenced by the interplay of several histone modifications 

together [Martin, 2005]. 
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Figure 5. Histone modifications affect chromatin structure and cellular identity. (A) Active 
chromatin are enriched for H3K27ac and H3K4me3. Repressive chromatin are enriched for 
H3K27me3 and H3K9me3. (B) Chromatin modification reinforce cell states and affect responsive to 
external and internal signals. Normal chromatin facilitates appropriate responses to development or 
environmental signal. Genetic, environmental and metabolic insults that disrupt chromatin can lead to 
either restrictive or overly permissive chromatin states. Adapted from Flavahan et al. Science 2017. 

 

H3K4 methylation is associated with an open chromatin structure which enables access to 

transcription factors (Figure 5) [Sims, 2006]. There are at least 13 H3K4 human 

methyltransferases (KMT2A (MLL1), KMT2D (MLL2), KMT2C (MLL3), KMT2B (MLL4), 

KMT2E (MLL5), KMT2H (Ash1), KMT7 (Set7/9), KMT2F (Set1A), KMT2G (Set1B), 

KMT3D (SMYD1), KMT3C (SMYD2), KMT3E (SMYD3) and KMT8B(PRDM9)) that are 

activators of gene expression [Hamamoto, 2004; Abu-Farha, 2008; Tan, 2006; Ruthenburg, 

2007; Kouzarides, 2007]. H3K4 methylation generally can be found at transcription start sites 

(TSS) and on genes that are maintained in a transcriptionally poised state [Barski, 2007].  
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Methylation of histone 3 at Lysine 9 is generally associated with transcriptional silent 

chromatin. Seven methyltransferases (KMT1C (G9a), KMT1D (, GLP), KMT1A (Suv39H1), 

KMT1B (Suv39H2), KMT1E (SETDB1), KMT1F (SETDB2), and KMT8 (PRDM2)) known 

to act upon this mark. Methylation of H3K9 is generally associated with transcriptional 

repression but monomethyl H3K9 is associated with active promoters surrounding the TSS 

[Barski, 2007]. H3K9 methylation also is a hallmark of both facultative and constitutive 

heterochromatin [Krishnan, 2011]. 

EZH1 and EZH2 are catalytic subunits of polycomb repressive complex 2 (PRC2) deposit 

methyl group onto H3K27 [Margueron 2008]. The genome-wide analyses of histone 

modifications in ES cells have identified H3K27me3-enriched gene promoters that are also 

associated with H3K4me3 marks and are, therefore, called bivalent domains. The genes that 

have bivalent promoters in ES cells are associated with the developmentally regulated loci 

which are kept repressed in the pluripotent cells, but their fates are determined in the course of 

development. This can be achieved by resolving into a monovalent structure in the course of 

differentiation in which the resolution to H3K4me3 mark results in transcriptional activation 

and the resolution to H3K27me3 mark results in a more stable repression. Therefore, the 

chromatin conformation of bivalent promoters keeps them poised for fate determination at the 

later stages of differentiation [Bernstein, 2006]. Moreover, their dysregulation can cause 

different types of cancers. 

H3K36 methylation is catalyzed by at least six methyltransferases (KMT3B (NSD1), KMT3F 

(NSD2), KMT3G (NSD3), KMT3C (SMYD2), KMT3A (SETD2), and SETMAR) which is an 

activating mark [Li, 2009]. Dysregulation of H3K36 methylation has been observed in several 

cancers [Angrand 2001; Wang 2007]. 

Unlike other histone modifications that are situated in the N-terminal histone tails, H3K79 
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methylation which is catalyzed by DOT1L, occurs on the core of histone H3 [Gao, 2007]. 

H3K79 is supposed to regulate positively gene expression. DOT1L is linked to oncogenic 

transformation in MLL-rearranged leukemias. MLL fusion proteins, by recruiting DOT1L, 

increase transcription of MLL fusion target genes [Krivtsov, 2007]. All the histone 

methyltransferases mentioned above methylate lysine at histone H3 but KMT5A (SETD8), 

KMT5B (Suv420H1), KMT5C (Suv420H2), and KMT3B (NSD1) methylate histone H4 at 

lysine 20 which are considered as transcriptional repressors [Kouzarides, 2007].   

Histone methylation represents a mechanism of “marking” the histone in order to recruit 

several effector proteins with recognition domains specific for different methylated lysine 

residues. For instance, plant homeodomain (PHD) of bromodomain-PHD transcription- factor 

(BPTF) binds to H3K4 trimethylated/dimethylated (H3K4me3/me2) and recruits the 

nucleosome remodeling factor (NURF) complex to the target gene leading to gene activation. 

In contrast, the chromodomain of heterochromatin protein 1 (HP1) binds H3K9 trimethylated 

(H3K9me3) leading to heterochromatin formation and gene silencing [Yun, 2011]. 

 

6.2. Histone demethylases 

Histone methylation is a dynamic modification with enzymatic conversion of methylated 

arginine residues to citrulline and with lysine demethylases that can remove the mono-, di- and 

tri-methylated groups from lysine. 

The peptidyl-arginine deiminases (PADs) catalyse the hydrolysis of the guanidino arginine 

side chain to the urea group of citrulline. There are two peptidyl-arginine deiminases, PAD2 

and PAD4 which catalyse citrulline formation at multiple positions on histone tails [Zhang, 

2012; Wang, 2004]. Furthermore, the Jumonji family of histone demethylases is able to 
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demethylate tri-methylated form of H3 as well as methylated arginine residues. 

Lysine demethylating enzymes have been subdivided into two main families: KDM1 (lysine 

(K) demethylase 1) family which are FAD-dependent amine oxidases, acting only on mono- 

and dimethylated lysine [Mosammaparast 2010], and the JMJC domain contain proteins which 

are Fe(II) and 2-oxoglutarate-dependent enzymes able to remove all methylation states 

[Hausinger, 2004; McDonough, 2010; Klose, 2007]. 

The first KDM family, lysine-specific demethylase 1 (LSD1) and LSD2 (also known as 

KDM1B or AOF1), are flavin-dependent amine oxidase domain-containing enzymes [Shi, 

2004]. Subsequent to the discovery of LSD1, another family of more than 30 histone 

demethylases structurally different from LSD1 was described, all of which sharing a motif 

designated the Jumonji C (JmjC) domain and revealing a substrate specificity [Kooistra, 

2012]. These Fe(II) dependent enzymes catalyze the demethylation of mono-, di- and 

trimethylated lysines using 2-oxoglutarate and oxygen, converting the methyl group in the 

methyllysine to a hydroxymethyl group, which is subsequently released as formaldehyde [Tao 

2014; Pappano 2015; Sun 2014; Rodriguez-Paredes 2014]. The JMJC domain-containing 

proteins, comprising more than 30 proteins of which 15 have confirmed demethylase activity, 

are divided into subfamilies based on sequence similarity: KDM2 (FBXL), KDM3 (JMJD1), 

KDM4 (JMJD2/JHDM3), KDM5 (Jarid1), KDM6(UTX/JMJD6), KDM7 and Jumonji 

clusters.  

KDM1A (LSD1), KDM1B (LSD2), KDM2B (JHMD1B), KDM5A (JARID1A), KDM5B 

(JARID1B), KDM5C (JARID1C) and KDM5D (JARID1D)) are transcriptional repressors by 

demethylating K4 at H3. 

Seven demethylases (KDM1A (LSD1), KDM3A (JHDM2a), KDM3B (JHDM2b), KDM4A 
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(JHDM3A), KDM4B (JMJD2B), KDM4C (JMJD2C), and KDM4D (JMJD2D)) known to 

demethylate Lysine 9 at histone 3. 

Demethylation of H3K27 is principally carried out by UTX (KDM6A) and JMJD3 (KDM6B) 

and results in the activation of gene expression. several mechanisms leading to increased 

H3K27me3 such as EZH2 overexpression, EZH2 gain of function mutation, UTX loss of 

function mutations and PRC2 subunit overexpression are associated with many human 

cancers. Additionally, a close association between H3K27 methylation patterns and DNA 

methylation have been described, as promoter regions marked by H3K27 methylation, and/or 

bivalent chromatin in ES cells are commonly aberrantly DNA hypermethylated in cancer. 

H3K36 methylation erased by at least 6 demethylases (KDM2A (JHDM1a), KDM2B 

(JHDM1b), KDM3A (JHDM3A), KDM4B (JMJD2B), KDM4C (JMJD2C), and KDM8 

(JMJD5)). 

As with the lysine methyltransferases, the histone demethylases possess a high level of 

substrate specificity with respect to their target lysine and appear sensitive to the degree of 

lysine methylation. The substrate specificity of histone demethylase can be further influenced 

by the association of additional proteins. For example, the specificity of LSD1 for H3K9 when 

in complex with steroid receptors changes to H3K4 when the protein is in a complex with Co-

Rest [Metzger, 2005]. Interestingly, this substrate switching also correlates with a switching of 

the role of LSD1 from activator to repressor of gene transcription. 

Identification of these enzymes opened a new era in understanding how chromatin dynamic is 

regulated and a further understanding of the regulation of these enzymes will provide 

significant insight into fundamental mechanisms of many biological processes and human 

diseases including cancers (Figure 6). 
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Figure 6. Molecular hallmarks of epigenetic control. Deregulation of the epigenome is an important 
mechanism involved in the development and progression of human diseases such as cancer. Adapted 
from Allis et al. Nat Rev Genet 2016. 

 

Deregulation of the epigenome is an important mechanism involved in the development and 

progression of human diseases such as cancer. As opposed to the irreversible nature of genetic 

events, which introduce changes in the primary DNA sequence, epigenetic modifications are 

reversible and can be pharmacologically targeted (Figure 6).  
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7. Lysine-specific demethylase 1 (LSD1)  

Discovered a decade ago, lysine-specific demethylase 1 (LSD1) was the first histone 

demethylase reported. The discovery of LSD1 disproved the notion that histone methylation is 

a stable and static modification. Since then, other histone demethylases have been identified, 

such as LSD2. The LSD family is composed of only two members: LSD1(KDM1A, AOF2) 

and LSD2(KDM1B, AOF1). LSD1 is a flavin-containing amine oxidase that, by reducing the 

cofactor FAD, catalyzes the cleavage of the α-carbon bond of its substrate to generate an 

imine intermediate. The imine intermediate spontaneously hydrolyzes to release a 

formaldehyde molecule resulting in a mono-methylated lysine. This H3K4me1 can also 

undergo the same reaction to become unmethylated [Forneris, 2005; Edmondson, 2007].  

 

Figure 7. Mechanism of lysine demethylation catalyzed by LSD1. 

Three methyl groups from H3K4 cannot be cleaved by LSD1 due to a requirement of an 

electron pair on the lysine amino group in the first step of the LSD1 demethylation reaction, 

which involves an oxidation by FAD of the amine to an iminium cation intermediate 

[Højfeldt, 2013].  

The second step of the LSD1 demethylation reaction involves the attack of the iminium cation 

by a water molecule, after which the formed hemiaminal collapses to release the demethylated 
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substrate and a formaldehyde molecule. The reduced cofactor, FADH, is then re-oxidized back 

to FAD by molecular oxygen, releasing hydrogen peroxide as a byproduct (Figure 7) 

[Forneris, 2005; Edmondson, 2007]. 

7.1. Structure of LSD1  

LSD1 is highly conserved in organisms ranging from Schizosaccharomyces pombe to human. 

LSD1 crystal structure consists of three major domains with 852 amino acids: The N-terminal 

SWIRM (Swi3p/Rsc8p/Moira) domain, a C-terminal AOL (amine oxidase-like) domain, and a 

central protruding Tower domain (Figure 8) [Chen, 2006]. The SWIRM and the AOL 

domains are tightly knit through hydrophobic interactions, forming the core structure of LSD1 

while the Tower domain consists of a pair of long helices that adopts a typical antiparallel 

coiled-coil conformation. The SWIRM domain is thought to bind LSD1 to the nucleosome 

through its interaction with DNA [Anand, 2007].  The AOL domain folds into a compact 

structure which shares structural topologies with other flavin-containing monoamine 

oxidase(MAO) enzymes [Rotili, 2011].  The AOL domain, separated into two lobes by a 105 

aa Tower domain insert, is the catalytic domain. One lobe of the AOL binds FAD, while the 

other lobe of the AOL binds the substrate. The space between these two sub-modules defines a 

large and deep pocket where the process of demethylation takes place [Zheng, 2015].   

The Tower domain acts as hub for the interaction with other protein, such as the RE1-

silencing transcription factor corepressor 1 (CoREST or RCOR1), owing to that LSD1 is able 

to express its demethylating activity on nucleosomal substrates and to be protected from 

proteosomal degradation. The Tower domain by itself is sufficient for a stable interaction with 

CoREST, in fact a deletion mutant of LSD1 (LSD1ΔTower), in which the Tower domain was 

replaced by a pentaglycine loop, is unable in reducing the methylation level at K4 on histone 

H3. These evidences indicate that the SWIRM and AOL domains of LSD1 do not significantly 
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contribute to the interaction with CoREST and that the tower domain represents the binding 

site for it as well as for other molecular partners.  In addition to the three domains, LSD1’s N-

terminal region has recently been found to also play an important role. The N-terminal 

SWIRM domain seems to be important to localize LSD1 to the nucleus [Hou, 2010; Wang, 

2007; Stavropoulos, 2006].  

 

 

Figure 8.Structure of lysine-specific demethylase1. The SWIRM and the AOL domains are tightly 
knit through hydrophobic interactions, forming the core structure of LSD1. AOL domain (blue), 
SWIRM domain (red), TOWER domain (green). Adapted from Hosseini&Minucci. epigenomics 2017. 
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7.2. LSD1 functions as a context-dependent transcriptional co-regulator 

LSD1 plays a central role in several key cellular processes in normal and cancer cells such as 

control of stemness, differentiation, cell motility, epithelial-to-mesenchymal transition and 

metabolism. To achieve these multiple biological functions, LSD1 through its presence in 

multi-protein complexes and its association with different partners acts as a context-dependent 

co-regulator, being able to act as either a co-activator or co-repressor (Figure 9). Additionally, 

LSD1 has been found to be part of transcription elongation protein complexes that act as both 

transcriptional activators and repressors, including the MLL and the ELL complexes [Biswas, 

2011; Nakamura, 2002].  

Four mammalian isoforms of LSD1 have been described as resulting from single or double 

inclusion of two alternatively spliced exons, E2a and E8a. The inclusion of exon 8a has been 

reported to generate a docking site that facilitates an interaction between supervillain (SVIL) 

and LSD1 to convert LSD1 into an H3K9 demethylase during neuronal differentiation 

[Toffolo, 2014]. A neuronal-specific LDS1 isoform which results from an alternative splicing 

is associated with altered substrate specificity towards histone H4K20 [Zibetti, 2010; Wang, 

2015]. This shows the diversity of different interactions LSD1 can have, all of which are in 

need of further study to decipher the full extent of LSD1’s role in each complex. 

In addition, other post translational modifications of histones affect the LSD1 H3K4 

demethylase activity: in fact, H3K9 acetylation and H3S10 phosphorylation negatively affect 

the H3K4 demethylase activity of LSD1 [Lee, 2006; Shi, 2005]. 
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Figure 9. LSD1 functions as a context-dependent transcriptional co-regulator. (A) LSD1 act as a 
co-repressor. (B) LSD1 act as a co-activator. (C) A neuronal-specific LSD1 isoform. Adapted from 
Hosseini&Minucci. epigenomics 2017. 

 

 

7.3. LSD1 as a transcriptional co-repressor 

Complexes containing LSD1 that act as repressors of transcription include CoREST and 

NuRD. Originally LSD1 was identified as a component of transcriptional repressor complexes 

comprising transcriptional co-repressor protein (CoREST) and HDAC1/2 [Klose, 2007; 

Hakimi, 2003]. Several other transcription factors have been described that recruit LSD1 to 

their target genes. Recruitment of LSD1 is mediated by its ability to bind to the SNAG domain 

of the transcription factors such as GFI1, GFI1b, SNAI1, SNAI2 and INSM1. The sequence of 

the SNAG domain mimics that of the N-terminus of histone H3 for binding to the catalytic 
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cavity of LSD1 [Lin, 2010].  LSD1 regulates specific cell processes such as control of 

stemness, differentiation, cell motility, epithelial-to-mesenchymal transition and metabolism 

through its co-repressor function. Such studies show the extensive range of roles LSD1 can 

participate in, as well as potential use of LSD1 inhibitors against various serious diseases. 

7.3.1. Role of LSD1 in hematopoietic differentiation 

LSD1 plays many roles in hematopoiesis, mainly by binding to the regulatory regions 

controlling the expression of key hematopoietic factors and regulating their expression, 

depending on the differentiation stage. Mechanistically, LSD1 and its CoREST partners 

control differentiation of various hematopoietic lineages in association with growth factor 

independence (Gfi)-1, (Gfi)-1b and TAL1. These transcription factors (TFs) control 

hematopoietic-restricted gene expression by interacting with several co-repressors. In 

hematopoietic cells, two other CoREST (RCOR1) paralogs have been found to bind LSD1 

including RCOR2 and RCOR3. RCOR2 acts as CoREST where it facilitates LSD1-mediated 

demethylation of H3K4. On the other hand, RCOR3 competitively inhibits LSD1 

demethylation of H3K4, ultimately inhibiting differentiation of the hematopoietic cells, 

indicating that LSD1 and RCOR1/3 levels play a role in differentiation [Upadhyay, 2014].  

7.3.2. Role of LSD1 in development and stem cell maintenance 

LSD1 plays a crucial role in higher eukaryotes as genetic deletion of LSD1 from mice has 

been shown to result in embryonic lethality, with the arrest of embryonic development at or 

before embryonic day 6. Embryonic stem cells derived from LSD1 knockout mice revealed 

severe growth impairment due to increased cell death, impaired cell cycle progression and 

defects in differentiation [Wang, 2009; Wang, 2007].  LSD1 is highly expressed in 

undifferentiated human embryonic stem cells (ESCs) and is down regulated during 



 
	

50	

differentiation. LSD1 contributes to repression of lineage specific developmental programs 

and is involved in the maintenance of pluripotency by regulating the critical balance between 

H3K4 and H3K27 methylation at the regulatory regions of key genes such as BMP2 and 

FOXA2 [Adamo, 2011; Foster, 2010]. Moreover, LSD1 regulates the expression and 

appropriate timing of key developmental regulators during early embryonic development. 

LSD1 also serves as a key regulator of neural stem cell proliferation via modulation of TLX 

signaling and demethylation of TLX target gene promoters including the PTEN tumor 

suppressor gene and cell cycle-related factors such as p21, a cyclin-dependent kinase inhibitor 

[Sun, 2010; Hakimi, 2002; Ballas, 2005]. The constitutive transrepressor TLX forms a 

complex with LSD1-CoREST-HDAC1 via interactions with the amine oxidase and SWIRM 

domains of LSD1, and this interaction is indispensable for Y79 retinoblastoma cells 

proliferation through regulation of PTEN expression [Yokoyama, 2008]. In addition, LSD1 is 

required for stem cell maintenance and proper differentiation of several other cell types, such 

as skeletal muscle, adipogenesis, anterior pituitary gland, and for normal function of oocytes 

and bone marrow cells [Kim, 2015; Musri, 2010; Choi, 2010]. 

7.3.3. Role of LSD1 in epithelial–mesenchymal transition (EMT) 

The process of epithelial–mesenchymal transition (EMT), that is the acquisition by epithelial 

cells of the phenotype of mesenchymal cells, is required for cancer cell invasion and 

metastasis [Lamouille, 2014]. It has been proposed that LSD1 is involved in the regulation of 

EMT in breast cancer. By binding to SNAI1, LSD1 represses the expression of E-cadherin, via 

H3K4 demethylation [Ferrari-Amorotti, 2013]. NURD regulates several cellular signaling 

pathways that are critically involved in cell proliferation, survival, and epithelial-to-

mesenchymal transition. In the NuRD complex, or the nucleosome remodeling and 

deacetylation complex, LSD1 is clustered with HDAC1/2, a chromodomain containing DNA-
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binding helicase protein (CHD3 or CHD4), a metastasis tumor antigen (MTA) relative called 

MTA2, BRCA2, and a few other proteins. Such complexes have been shown to protect LSD1 

from degradation, bind it to chromatin, and allow LSD1 to recognize nucleosomes as 

substrates, as in vitro, LSD1 is efficiently able to demethylate core histones but not 

nucleosomes [Lee, 2005; Shi, 2005].  

7.3.4. Role of LSD1 in cell metabolism 

Regarding metabolic control, inhibiting LSD1 has been shown to stimulate de novo glucose 

synthesis and reduce intracellular glycogen regulation. Cancer cells undergo a metabolic shift 

from mitochondrial to glycolytic metabolism, in order to maintain their proliferative potential 

[Pan, 2013]. In pancreatic cancer and hepatocellular carcinoma (HCC) cells, LSD1 is required 

for the glycolytic shift [Sakamoto, 2015; Qin, 2014].  

In lipid homeostasis, Prospero-related homeobox (Prox1) can interact with LSD1 to recruit 

LSD1 to repress CYP7A1 gene expression. As CYP7A1 is responsible for catalyzing the first 

step in bile acid synthesis in the liver, targeting LSD1 can impact lipid regulation [Ouyang, 

2013]. In addition, blood pressure sensitivity to dietary salt intake was found to be affected by 

LSD1 by the alteration of renal Na+ handling [Krug, 2013]. Additionally, it was found that 

feeding mice a high-fat diet increased levels of LSD1 in the white adipose tissue and induced 

mitochondrial activity to regulate metabolism, ultimately limiting weight gain. This has linked 

LSD1 to metabolic adaptation in white adipose tissues as there was LSD1- dependent 

expression of genes, such as those involved in oxidative phosphorylation, which promoted the 

formation of islets of metabolically active brown-like adipocytes in white adipose tissue 

[Duteil, 2014].  
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7.4. LSD1 as a transcriptional co-activator 

Complexes containing LSD1 that act as activators of transcription include androgen or 

estrogen receptor complexes. In such complexes, LSD1 has been proposed to change its 

substrate specificity from H3K4me2 to H3K9me2, activating gene transcription, as 

unmethylated H3K9 is usually associated with active transcriptional states [Garcia-Bassets, 

2007; Metzger, 2005]. To change the substrate specificity of LSD1, the hormone receptors 

have been suggested to induce a change in the structure of the active site of LSD1. How this 

might happen is puzzling as structures of LSD1 and H3K4 substrate analogs show well-

defined molecular recognition for the major H3K4 substrate. One protein that has been 

hypothesized to influence LSD1’s substrate specificity is the proline glutamic acid and 

leucine-rich protein 1, PELP1, which was reported to bind concurrently to an estrogen 

receptor, ERα, and LSD1, facilitating LSD1-catalyzed demethylation of H3K9 [Yang, 2006; 

Nair, 2010]. Metzger et al. demonstrated that, following hormone treatment, AR and LSD1 

colocalize on promoters in both normal human prostate and prostate tumor and stimulate 

H3K9 demethylation without altering the H3K4 methylation status, and promote ligand 

dependent transcription of AR target genes thus resulting in enhanced tumor cell growth 

[Metzger, 2005]. Another mechanism that has been reported to switch LSD1 demethylation 

specificity from H3K4me2 to H3K9me2 involves the action of protein kinase C, which is 

recruited to the androgen nuclear receptor target promoters, and is then able to phosphorylate 

Thr6 of histone H3 after hormone treatment [Wissmann, 2007; Hu, 2009]. Additionally, LSD1 

actions release hydrogen peroxide, that in turn drive the recruitment of base excision repair 

enzymes that can loop chromatin and allow LSD1 to access H3K9me2 [Perillo, 2008]. This is 

an underexplored mechanistical aspect of LSD1 function that deserves further analysis. Other 

H3K9-specific histone demethylases could be recruited by LSD1. For example, JMJD2C 
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colocalizes with androgen receptor and LSD1 in normal prostate and in prostate carcinomas. 

JMJD2C and LSD1 interact and both demethylases cooperatively stimulate androgen receptor-

dependent gene transcription [Wissmann, 2007]. 

7.5. Nonhistone substrates of LSD1 

LSD1 also demethylates non-histone proteins, including P53, DNA methyltransferase 1 

(DNMT1), transcription factors like E2F1 and STAT3, the myosin phosphatase MYPT1, 

modulating their cellular activities [Huang, 2007; Kontaki, 2010; Yang, 2010; Cho, 2011]. 

LSD1 can directly interact with P53 to confer P53-mediated transcriptional repression. These 

findings reveal that LSD1 is targeted to chromatin by P53 in a gene-specific manner, and 

define a molecular mechanism by which P53 mediates transcriptional repression. LSD1 blocks 

the pro-apoptotic activity of P53 and represses P53-mediated transcriptional activation by 

demethylating the dimethylated lysine 370 residue which is required for efficient binding to 

the transcriptional co-activator p53-binding protein-1(53BP1). This activity of LSD1 implies 

the involvement of LSD1 in the DNA damage response pathway via modulation of P53 

activity [Huang, 2007]. LSD1 also regulate DNA damage induced cell death in P53-deficient 

tumor cells via protection of E2F1 (E2F transcription factor 1) from ubiquitination and 

degradation [Kontaki, 2010]. LSD1 controls DNA methylation by regulating the methylation 

status of DNMT1 and modulating its stability. Thus LSD1 coordinates not only histone 

methylation but also DNA methylation to regulate chromatin structure and gene activity 

[Wang, 2009]. It has been shown that LSD1 promoted cell cycle progression through 

Demethylation of MYPT1 at Lys 442 which in turn enhances RB1 phosphorylation [Cho, 

2011]. 

 



 
	

54	

7.6. Role of LSD1 in Cancer 

LSD1 could be an attractive target for cancer therapy because of its high level of expression in 

neuroblastomas, retinoblastoma, prostate, breast, lung, pancreatic, bladder cancers and 

hematological malignancies.  

7.6.1. LSD1 in hematological malignancies 

Epigenetic changes are linked to many hematopoietic malignancies, such as acute leukemias, 

which are disorders where there is an uncontrolled self-renewal, proliferation, and impaired 

differentiation of leukemic stem cells (LSCs). LSD1 was shown to be essential in regulating 

LSC by activating LSC associated oncogenic target genes [Somervaille, 2006; Harris, 2012]. 

Higher expression level of LSD1 in c-kit+ (a marker enriching for cells endowed with self-

renewal) AML in comparison with c-kit- AML cells suggested its down regulation with 

differentiation and preferential expression in LSCs. 

This was further verified by showing that knockdown of LSD1 resulted in AML cell 

impairment of differentiation and apoptosis, as well as the inability to form colonies and 

transplanting leukemia in secondary mice recipients in vivo, which is consistent with LSC 

potential loss. Thus, LSD1 inhibition may have promise in combating AML.  

The re-expression of genes as a result of LSD1 inhibition in cancer cell lines may antagonize 

LSD1’s role in tumorigenesis, and several studies have investigated these mechanisms. For 

example, E-cadherin has been shown to re-expressed by chemically inhibiting LSD1 in several 

human acute myeloid leukemia cell lines [Murray-Stewart, 2014]. Such changes in gene 

expression show that inhibiting LSD1 may result in the re-expression of important genes that 

may have the ability to inhibit cancer cell growth. Finally, other reports showed that depletion 

and inhibition of LSD1 impairs proliferation in Myelodysplastic syndrome (MDSs), acute 
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erythroleukemia (AEL) and acute megakaryoblastic leukemia (AMKL) by induction of cell 

differentiation [Sugino, 2017; Ishikawa, 2017]. 

7.6.2. LSD1 in solid tumors 

High levels of LSD1 expression has been proposed as a biomarker for aggressive in 

hepatocellular carcinoma (HCC), prostate cancer, bladder carcinomas and ER-negative breast 

cancers.  LSD1 is highly expressed in ER-negative breast cancers, and that inhibiting LSD1 

results in growth inhibition of breast cancer cells by induction of p21[Lim, 2010]. The bladder 

cancer cell proliferation was proposed to be due to LSD1 co-localizing with bladder cancer 

stem cells in the basal layer of bladder carcinoma tissue, ultimately playing a role in 

maintaining the pluripotency. Lan et al found that LSD1 to be elevated in bladder cancer, and 

that knockdown of LSD1 suppressed bladder cancer cell lines proliferation [Lan, 2013]. 

The re-expression of genes as a result of LSD1 inhibition in cancer cell lines may antagonize 

LSD1’s role in tumorigenesis, and several studies have investigated these mechanisms. For 

example, Knockdown of LSD1 increased E-cadherin expression resulting in suppressed 

proliferation of non small cell lung cancer (NSCLC) [Nair, 2010]. Additionally, in the 

HCT116 (colon carcinoma) cell line, tumor suppressors SFRPs and GATA have been 

implicated [Huang, 2007]. 

In prostate cancer specimens, LSD1 expression was correlated with known mediators of 

prostate cancer progression such as VEGF-A. Both siRNA depletion and chemically inhibiting 

of LSD1 in prostate cancer cells decreased VEGF-A, which blocked androgen induced PSDA 

and Tmprss2 expression and reduced proliferation of both androgen (LnCaP) and androgen-

independent cells (LnCaP: C42, PC3) [Kashyap, 2013].  

Consistent with the role of LSD1 in the epithelial-to-mesenchymal transition (EMT), LSD1 
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expression correlated with metastasis in colon and ovarian cancer. The knockout of LSD1 in 

colorectal cancer cells (HCT116) resulted in an increased population of cells in the G1-phase 

of the cell cycle, as well as reduced cell proliferation and tumorigenicity [Jin, 2013; Huang, 

2013]. 

Qin et al found pancreatic cancer patient tissue samples to have increased levels of LSD1 

protein levels, and that Knock-down of LSD1 not only repressed proliferation and 

tumorigenicity of pancreatic cancer cells but also arrested glycolysis, which is critical to 

sustain the growth of cancer cells. The growth of the pancreatic cancer cells was shown to be 

due to LSD1 synergizing with the Hypoxia Inducible Factor-1alpha (HIF1alpha), which 

together maintain the glycolytic process that contribute to increased proliferation [Qin, 2014].  

It has been shown that LSD1 plays a role in carcinoma and sarcoma pathology and its elevated 

level is associated with tumor size, pathological grade, and reduced survival of patients.  

Yu et al found high expression of LSD1 to correlate with the severity of esophageal squamous 

cell carcinoma (ESCC) in patients, as well as dose dependent attenuation in migration of 

ESCC cells in vitro after LSD1 inhibition [Yu, 2013]. LSD1 was also found to be 

overexpressed in tongue squamous cell carcinoma samples, rhabdomyosarcoma, synovial 

sarcoma, chondrosarcoma, Ewing’s sarcoma, and osteosarcoma [Yuan, 2014; Bennani-Baiti, 

2012]. Taken together, these results are consistent with an oncogenic role of LSD1 in solid 

tumors as well as hematological tumors, and therefore LSD1 is an intriguing target for novel 

therapeutics. 

 

 

 



 
	

57	

7.7. Targeting LSD1 

Synthetic inhibitors of LSD1’s catalytic activity are predicted to reactivate gene expression of 

silenced genes, such as tumor suppressors, and thus to be beneficial in the treatment of 

diseases, including cancer. Motivated by the similarities in the enzymatic properties of LSD1 

and MAO-A/B, McCafferty and coworkers screened a focused group of irreversible MAO 

inhibitors against LSD1. The antidepressants TCP were found to weakly inhibit recombinant 

LSD1 demethylation of nucleosomes, whereas the propargylamines tested were inactive. 

Subsequent studies validated that TCP is a covalent, FAD-directed inhibitor of LSD1 and 

LSD2 with a mechanism of the formation of TCP-FAD adducts, and provided insight to 

rational design of TCP analogs [Lee, 2006; Schmidt, 2007]. TCP was reported to inhibit the 

colony forming activity of AML cells in mouse models of MLL-AF9 leukemias. OG86, A 

TCP derivative, impaired the proliferation potential of murine and human AML cells, 

accompanied by induction of differentiation. Harris et al. by using two analogs of 

tranylcypromine which were more potent and selective inhibitors of LSD1, found that these 

compounds phenocopied both LSD1 KD and TCP treatment [Somervaille, 2009; Somervaille, 

2006; Harris, 2012]. 

The amine oxidase domains of LSD1/2 and MAO-A/B are homologous (37-45% sequence 

identity). The active sites of LSD1/2 feature an open cleft that accommodates the H3 N-

terminal tail and other large substrates, whereas MAO-A/B feature internal cavities that are 

gated by surface loops. These structural differences have been exploited to design TCP 

analogs with improved potency and selectivity for LSD1 over MAO-A/B, which is paramount 

for studies of LSD1 function in diseases. There have since been many different 

tranylcypromine analogs developed as LSD1 inhibitors. In 2009, Ueda et al first synthesized 

tranylcypromine analogs that linked a homoserine with the phenyl ring of tranylcypromine 
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through an ether bond. Such compounds gave IC50 values of 1.9 to 22 µM and showed 

various cancer cell line growth inhibitory effects [Ueda 2009]. In 2010, Binda et al also 

synthesized tranylcypromine analogs with additional phenyl rings added to the 

tranylcypromine phenyl ring through an amide bond. The compounds displayed Ki values as 

low as 1.1 µM, and showed growth inhibition of acute promyelocytic leukemia cells that acted 

synergistically with retinoic acid. This cotreatment in NB4 acute promyelocytic leulemia 

(APL) cells resulted in synergistic inhibition of proliferation through induction of 

differentiation and apoptosis [Binda, 2010]. TCP also unlocked the ATRA-driven therapeutic 

response in non-APL AMLs by increasing H3K4me2 level and expression of myeloid-

differentiation–associated genes such as CD11b and LY96 [Schenk, 2012]. The combination 

of TCP, ATRA and cytarabine (a chemotherapic drug) is in phase I/IIa study in AML and 

MDS patients. By using both reversible(GSK90) and irreversible(RN-1), LSD1 inhibitors in a 

panel of all AML subtype cell lines, McGrath et al. found cells bearing RUNX1-

RUNX1T1(AML-ETO) translocation were especially among the most sensitive. Both 

inhibitors did not change global level of H3K4me2 and H3K9me2 but dispossess LSD1 from 

chromatin specially at promoter of myeloid-differentiation-associated gene [McGrath, 2016]. 

TCP and its derivatives are irreversible inhibitors, and reversible LSD1 inhibitors have 

attracted considerable interest since they may alleviate some of the possible side effects of 

irreversible inhibitors, though it is not clear whether efficacy will be maintained. 

GlaxoSmithKline has disclosed a reversible LSD1 inhibitor (GSK354 or GSK690) with both 

high selectivity and cellular activity [Vankayalapati, 2014]. GSK2879552 induces 

differentiation and inhibits cell growth in AML and small cell lung cancer (SCLC), and 

entered phase trials in AML and SCLC. By testing GSK2879552 on small cell lung carcinoma 

cell lines (SCLC), Mohammad et al. found a correlation of DNA hypomethylation of a 

signature set of probes with sensitivity to LSD1 inhibitors [Mohammad, 2015]. Sugino et al 
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recently demonstrates that a novel LSD1 inhibitor, NCD38, exert an anti-tumor effect not only 

in AMLs harboring MLL-AF9 but also in erythroleukemia, megakaryoblastic leukemia and 

MDS overt leukemia cells. Mechanistically, NCD38 treatment and LSD1 inhibition increases 

H3K27ac levels at super enhancers of LSD1 target genes, such as GFI1 and ERG, thus 

inducing differentiation and an anti-leukemic effect [Sugino, 2017]. 

Drug combination therapies have many advantages, including lowering doses of toxic agents, 

reducing the potential for drug resistance, and inhibiting multiple independent pathways that 

converge on a single essential molecular process. Histone modifying enzymes are great 

candidates for drug combinations as they work close together in changing chromatin structure, 

and consequently gene expression. Additionally, it has been previously shown that affecting 

one histone modifying enzyme can have effects on others. For example, Meng et al showed 

that treating ovarian cancer cells (SKOV3) with trichostatin A (TSA) and decitabine, HDAC 

and DNMT1 inhibitors respectively, lowered the expression levels of LSD1 and increased 

H3K4me2 levels [Meng, 2013]. Vasilatos et al also showed that knockdown of LSD1 in breast 

cancer cells decreased mRNA levels of HDAC isozymes. Thus, targeting LSD1 and other 

epigenetic enzymes simultaneously offers therapeutic promise [Vasilatos, 2013]. As 

mentioned, LSD1 and HDAC1/2 are found in cellular complexes, thus inhibiting both LSD1 

and HDACs simultaneously has potential to yield additive or synergistic pharmacologic 

impact. In fact, previous studies have shown that targeting both LSD1 and HDAC1/2 in cells 

results in synergistic cell proliferation inhibition. For example, it was found that treating 

triple-negative breast cancer cells with both pargyline, a potential LSD1 inhibitor, and SAHA, 

an established HDAC inhibitor, lead to synergistic growth inhibition and apoptosis [Vasilatos, 

2013].  Additionally, Fiskus et al. found that the combination of a reversible LSD1 inhibitor 

(SP2509) and of the pan-HDAC inhibitor panobinostat was synergistically lethal against 

cultured primary AML blasts with low toxicity [Fiskus, 2014]. Other combination therapies 
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targeting LSD1 have also been shown to have promise. For example, Xu et al looked at the 

combined effect of retinoic acid and LSD1 siRNA inhibition on cell death in a human 

neuroblastoma cell line, SH-SY5Y [Xu, 2013]. It was found that combined treatment led to 

higher rates of cell death than single agent targeting, implying that neuroblastoma can be 

better treated with the addition of an epigenetic drug inhibitor, such as an LSD1 inhibitor [Xu, 

2013]. Targeting two different enzymes with one compound is another interesting strategy that 

has shown promise. Rotili et al synthesized compounds that combine the moiety of an LSD1 

inhibitor, tranylcypromine, with that of JMJD2 inhibitor 2- oxoglutarate templates [Rotili, 

2014]. The compounds were able to in fact target both LSD1 and JMJD2 enzymes in vitro, 

and showed significant inhibition of both LNCaP and HCT116 cell proliferation. Such a 

strategy has potential to be applied to other drug combinations, such as by combining moieties 

of LSD1 inhibitors with those of various HDAC inhibitors. 

Recently, compounds targeting lysine-specific demethylase 1 (LSD1) have entered in clinical 

trials for cancer treatment, and the results will help to further validate the multiple roles of 

LSD1 in cancer. Further work will be necessary to find biomarkers for sensitivity to treatment 

with LSD1 inhibitors in determining the most suitable therapeutic setting. 
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8. Acute Myeloid Leukemia (AML) and Acute Promyelocytic 

Leukemia(APL) 

Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by a block in the 

differentiation of progenitor cells and an accumulation of immature cells in the bone marrow 

and blood [Henderson, 2002]. Rather than a single disorder, AML represents a set of related 

malignancies. The French-American-British (FAB) classification recognizes 8 major subtypes 

of AML, based on cellular morphology and cytochemical staining [Bennett, 1976]. Although 

the system is widely accepted internationally, an exclusively cytogenetic/molecular analysis-

based classification of acute leukemias, could be better define biologic and prognostic groups 

[Harris, 1997; Vardiman, 2002]. The majority of patients present with a hypercellular bone 

marrow due to the proliferation of malignant blasts or promyelocytes. According to the 

original FAB classification scheme, a diagnosis of acute leukemia is made when immature 

blasts count for at least 30% of all nucleated marrow cells. The recent World Health 

Organization (WHO) Classification system requires that blasts account for higher than 20% of 

all nucleated marrow cells to render a diagnosis of acute leukemia [Jaffe, 2001]. A marrow 

containing increased blasts, but accounting for less than 30% of all nucleated marrow 

elements (or less than 20% in the WHO Classification), usually indicates the presence of a 

myelodysplastic syndrome (MDS), a diverse group of related disorders characterized by clonal 

stem cell proliferation, ineffective hematopoiesis, and increased risk to evolve into AML. 

Clonal cytogenetic abnormalities are identified in 60 - 80% of AMLs and can frequently be of 

clinical value [Mrozek, 1997]. This is particularly true of cases with the t (15;17) translocation 

that is consistently associated with acute promyelocytic leukemia (APL) and often has distinct 

clinical and morphologic features [Bitter, 1987]. The reciprocal translocation involves the 

PML gene on chromosome 15 and the retinoic acid receptor-alpha (RARα) gene on 
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chromosome 17, and the resulting fusion mRNA product inhibits maturation of the affected 

cells leading to a proliferation of atypical promyelocytes [Grimwade, 1999]. 

The fusion product, PML-RARα, encodes a functionally altered transcription factor that is the 

initiating event in APL leukemogenesis. As such, it represents a unique opportunity for 

modeling the development of leukemia. 

8.1. PML-RARα fusion protein 

PML-RARα fusion protein contains the N-terminus of PML fused to the DNA and hormone-

binding domain of RARα [de Thé, 1991; Kakizuka, 1991]. The breakpoint on chromosome 17 

is located at the second intron of RARα while those on chromosome 15 are found at two 

different introns of PML, intron 3 and 6. PML-RARα mRNA is found in almost all (>95%) of 

the APL cases while the reciprocal RARα-PML is observed in about two thirds of APL 

patients [Grimwade, 1999]. The detection of specific fusion transcripts of PML-RARα and 

RARα-PML by reverse-transcriptase polymerase chain reaction (RT-PCR) hence allows for 

precise diagnosis of APL and identification of residual or recurrent disease [Lo Coco, 1999]. 

A dominant-negative function of the PML-RARα fusion protein on PML and RARα pathways 

has been proposed. The individual moieties of PML-RARα retain their abilities to 

heterodimerise with PML and RXR respectively. The PML moiety of PML-RARα binds to 

PML through its homodimerisation domain while the RARα moiety dimerises with RXR and 

binds to DNA and its ligand. PML-RARα can also homodimerise. These homodimers can 

bind to the RAREs in the regulatory region of target genes required for differentiation of 

granulocytes and repressed transcription of these genes by recruiting corepressors such as N-

CoR and SMRT. PML-RARα also recruits methylating enzymes and hypermethylates 

promoters of RA target genes resulting in transcriptional repression [Lo Coco, 2006]. In 

contrast to previously held belief of its dominant-negative function, a gain-of-function has 
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been described for PML-RARα. PML-RARα acquires aberrant DNA binding activity through 

the PML moiety, allowing PML-RARα homodimers to bind to DNA consensus sites that are 

not recognized by RARα/RXR heterodimer, thus allowing the repression of genes not 

regulated by RARα (Figure 10) [Kamashev, 2004]. 

PML-RARα has domains that allow protein-protein interactions in both the RARα and PML 

portions. Like wild-type RARα, PML-RARα can recruits the NCor/SMRT/HDAC corepressor 

complex [Grignani, 1998; Guidez, 1998; He, 1998; Lin, 1998]. Histone deacetylation causes 

chromatin to adopt a “closed” conformation that is less accessible to the transcriptional 

machinery, therefore silencing gene expression. In contrast to RARα, PML-RARα does not 

dissociate from the corepressor complex in the presence of physiological concentrations of 

ATRA, but requires pharmacological doses to relieve transcriptional repression. This strong 

association of PML-RARα with the co-repressors and the ability to retain the deacetylase 

complex, enable the fusion protein to maintain the repression of myeloid gene expression at 

physiological doses of ATRA. In fact, the affinity of PML-RARα for the co-repressors is 

much higher than wild-type RARα, requiring an ATRA concentration of 10-6mol/L for 

dissociation. Binding of ATRA to the PML-RARα homodimer results in a conformational 

change, thus allowing the HDAC-containing complex to dissociate, thereby opening the 

chromatin structure and relieving transcriptional repression. PML-RARα, unlike RARα, can 

self-dimerize and form higher order oligomers; it has been suggested that oligomerization 

allows for increased corepressor binding (Figure 10) [Grignani, 1999].  

Of interest, a NB4 resistant cell-line, NB4-R4, containing a mutation in PML-RARα that 

impairs ligand binding, is able to partially differentiate in response to ATRA when exposed to 

TSA, a histone deacetylation inhibitor. TSA also restores ATRA-induced transactivation of an 

RARE-containing reporter [Lin, 1998]. Restoration of differentiation in PML-RARα 
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expressing cells, NB4 cells, is achieved by overexpressing specific N-CoR fragments. 

Interaction of overexpressed fragments with the fusion proteins blocks their interaction with 

N-CoR/SMRT, disrupts HDAC1 complex formation and targets the fusion protein for 

degradation. The investigators confirmed that the induced differentiation is not due to 

degradation of PML-RARα. Addition of proteasome inhibitors to restore PML-RARα does not 

inhibit the differentiation [Racanicchi, 2005]. Also, it has been shown that demolishing the N-

CoR/HDAC3 complex using siRNA against HDAC3 in PML-RARα-expressing 293T cells 

can re-activate the expression of RA responsive genes [Atsumi, 2006]. Lastly, N-

CoR/HDAC3 complex has been proposed to help in silencing of PML-RARα targeted genes 

by recruiting MBD1, a methyl-CpG binding protein which is able to methlyate DNA [Villa, 

2006]. 

A report demonstrated that PML-RARα can also recruit the polycomb repressor complex 2 

(PRC2) to target genes [Villa, 2007]. PRC2 includes the proteins EZH2, SUZ12 and histone 

binding proteins. PRC2 recruitment results in H3K27 histone methylation by EZH2, another 

epigenetic modification associated with transcriptional repression. It is not yet known whether 

PRC2 recruitment is essential for PML-RARα induced leukemogenesis or immortalization. 

Additionally, there is evidence that PML-RARα can recruit histone methyltransferases directly 

[Carbone, 2006]. In summary, PML-RARα appears to drive repression through three distinct 

mechanisms: histone deacetylation, DNA methylation, and histone methylation. Accordingly, 

PML-RARα bound regions undergo epigenetic modification, including decreases in histone 

H3 acetylation and increases lysine 9 trimethylation. Upon ATRA treatment, H3 acetylation 

increases in most PML-RARα bound regions as well as globally [Martens, 2010]. The global 

DNA methylation profile of APL samples is also distinct from that of other AMLs [Figueroa 

2010]. Since PML-RARα target genes include chromatin modifying enzymes such as JMJD3 

(H3K27 demethylation), SETDB1 (H3K9 methylation), and DNMT3a (DNA methylation) 
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[Martens, 2010; Wang, 2010], it is likely that the global changes reflect both direct 

recruitment of modifying enzymes by PML-RARα and effects on expression of the enzymes. 

8.2. APL treatment  

Prior to the development of targeted therapies, the prognosis of APL was among the worst of 

all AML subtypes, with a 5-year survival of only 25-30 percent [Soignet, 2001]. Death 

occurred in up to 15 percent of patients undergoing induction chemotherapy, and those who 

achieved a complete remission invariably relapsed within 2 years [Fenaux, 2007]. However, in 

the mid 1980s, based on the observation that retinoic acid could induce differentiation of APL 

cells in vitro, Huang et al performed a small trial of all ATRA alone or in combination with 

traditional chemotherapy in 24 APL patients [Huang, 1988]. The success of this study and 

subsequent trials [Castaigne, 1997; Tallman, 1997; Warrell, 1991] led to the adoption of 

ATRA therapy in combination with anthracycline based chemotherapy as the standard 

treatment for APL. Currently, the 5-year disease free survival of APL patients treated with 

combination chemotherapy and ATRA is approximately 75 percent [Tallman, 2007]. 

ATRA releases the transcriptional repression exerted by PML-RARα. This allows the 

activated receptors to bind to the RAREs, leading to differentiation in APL (Figure 10) 

[Warrell, 1993]. Another effect of ATRA in APL is to induce the degradation of PML-RARα 

through caspase-mediated cleavage [Nervi, 1998]. Arsenic trioxide (ATO) is an effective 

therapy in some of the relapsed patients previously treated with the ATRA/chemotherapy 

[Chen, 1996; Soignet, 2001; Niu, 1999]. Combination therapy of ATRA/ATO shows excellent 

results when used on newly diagnosed patients, achieving complete remission (CR) at a 

shorter time with faster recovery of white blood cell count [Shen, 2004]. ATO shows different 

responses at different concentrations in cell culture conditions. It promotes differentiation of 

APL cells at low concentrations while inducing mitochondria-mediated intrinsic apoptotic 
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pathway at high concentrations [Chen, 1997]. PML-RARα and wild-type PML are degraded in 

APL cells in vitro and in vivo after ATO treatment [Chen, 1997].  

 

 

                         

Figure 10. PML-RARα, ATRA and ATO treatment. (A) PML-RARα fusion protein. (B) RA 
treatment in vivo elicits the differentiation of leukemia cells. (C) mechanism of ATRA and ATO action 
in treatment of APL. Adapted from de Thé et al. J Cell Biol 2012. 

 

8.3. Rationale for novel therapeutics for APL 

Despite the success of ATRA therapy of APL, many challenges remain in the treatment of 

APL patients. Up to 30 percent of APL patients will eventually experience a relapse of their 

leukemia despite ATRA and chemotherapy treatment [Tallman, 2007]. Relapsed APL is 

frequently resistant to ATRA [Gallagher, 2002]. Relapsed or refractory APL may be treated 

with chemotherapy in combination with arsenic trioxide, histone deacetylase (HDAC) 

inhibitors, hematopoeitic stem cell transplantation and various experimental drugs currently in 

clinical trials [Tallman, 2007; Tallman, 1997; Soignet, 2001]. Despite these advances, 
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approximately 40-50 percent of patients will die within 2 years of relapse [Sanz, 2006]. These 

facts underscore the need for development of novel therapeutic agents.  

ATRA resistance can also be a result of mutations in the DNA binding domain [Ding, 1998] 

or the ligand binding domain (LBD) of the RARα gene [Zhou, 2002]. ATO is also implicated 

in the leukocyte activation syndrome [Camacho, 2000] and in arrhythmia [Unnikrishnan, 

2001]. New therapeutic agents which specifically target APL cells, but work by different 

pathways to those of current commonly used therapeutic agents might give us a breakthrough 

in finding a cure for APL. 

9. Melanoma 

Melanoma is a skin cancer arising from the uncontrolled proliferation and invasion of 

melanocytes. Melanoma is an aggressive disease, but if metastasis is limited to local invasion 

of the skin, surgical resection is adequate. However, if distant metastasis has occurred, 

prognosis is poor and only 5 -22 % of patients survive beyond 5 years. Melanoma is largely 

attributable to somatic mutations caused by ultraviolet (UV) radiation exposure [Bandarchi, 

2010]. More than 80 % of melanomas arising in the skin have activating mutations in either B-

RAF or N-RAS, highlighting the importance of MAPK pathway in melanoma [Curtin, 2005]. 

However, these mutations are always mutually exclusive [Gray-Schopfer, 2005]. In addition, 

genetic polymorphisms in the Cdkn2a (p16), MC1R, PTEN, EGFR and MITF genes can result 

in a predisposition to the disease [Yokoyama, 2011; Hussussian, 1994; Beaumont, 2005; 

Garraway, 2005]. Initially dysplastic nevi are formed, the nevi proliferate within the 

epidermis. Then the lesion switches to a vertical growth phase and invades into the lower 

epidermis, dermis and underlying basement membrane (Figure 11). As the disease progresses, 

angiogenesis increases vascular density and promotes spread to distant organs, resulting in 
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metastatic melanoma [Miller&Mihm, 2006]. Distant metastases are subsequently initiated 

through the motility and invasion of melanoma cells into lymphatic or blood vessels and 

growth at secondary organs.  

In addition to gene deletion and mutational alteration of protein activity, epigenetic alterations 

in DNA and histones have recently become a part of melanoma genetic aberrations. 

Epigenetic alterations are regarded to be related to transcriptional deregulation leading to loss 

of tumor suppressor genes expression and/or up-regulation of oncogenes [Howell, 2009; 

Klose, 2006]. Epigenetic regulation of gene expression has been associated with silencing of 

tumor suppressor genes in melanoma, more prominently genes like CDKN2A, RASSF1A and 

PTEN [Woodman, 2012; Hocker, 2008, Garraway, 2005]. The transcriptional silencing by 

aberrant promoter methylation is associated with di-methylated lysine 9 in histone 3 

(H3K9me2), resulting from activity of H3K9 histone methyltransferases like SETDB1 and 

EHMT2 and counteracted by H3K9 histone demethylase LSD1 [Miura, 2014]. The 

transcriptional repression is believed to require for binding of methyl CpG binding protein 2 

(MECP2) and methyl CpG domain binding protein 1 and 2 (MBD1 and MBD2) activity 

[Klose, 2006]. 

Loss of gene regulation in melanoma may be association to epigenetic regulation or as a result 

of mutations in genes coding for epigenetic regulators. Alterations in EZH2 or SETDB1 are 

found in 37% of all cutaneous malignant melanoma (CMM) tumors accounting increased 

mRNA transcription, gene amplification and mutation. 
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Figure 11. The steps of melanoma progression. Adapted from Miller&Mihm. N Engl J Med 2006. 

 

9.1. Melanoma treatment 

Although early detection and surgical removal of melanoma does, in almost 90% of diagnosed 

cases, when surgery is not sufficient to remove the melanoma cells, risk for metastatic spread 

of the disease is high. Six drugs have been approved by the US Food and Drug Administration 

(FDA); Dacarbazine (1975), Ipilimumab (2011), Vemurafenib (2011), Dabrafenib (2013), 

Trametinib (2013) and Pembrolizumab (Keytruda) (2014) for the treatment of patients with 

advanced melanoma [Palathinkal, 2014].  

Recently, approval of two promising more specifically targeted therapeutic approaches, 

ipilimumab and vemurafenib, have led to increasing understanding of melanoma characteristic 
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and biology. Ipilimumab is a monoclonal antibody that blocks cytotoxic T-lymphocyte-

associated antigen 4 (CTLA4) on lymphocytes and thereby stimulating the immune system 

against the cancer cells. Vemurafenib and Dabrafenib are inhibitors of V600E mutant BRAF 

that limit the activity of the MAPK/ERK signalling pathway. Treatment with Vemurafenib has 

resulted in complete or partial tumor regression in the majority of melanoma patients carrying 

B-RAF V600E mutations [Hamid, 2013; Finn, 2012]. Trametinib is an inhibitor against 

MEK1/2 that has been approved as a single agent treatment of B-RAF V600E or V600K 

mutation-positive metastatic melanoma. 

The therapeutic alternatives for patients with N-RAS mutations have so far been limited, since 

designing drugs that directly target N-RAS has been a challenge. Likewise, finding eligible 

strategies to treat melanomas that are B-RAF/N-RAS wild type have proven even more 

elusive [Fedorenko, 2015]. Clinical trials are assessing the treatment potential of MEK 

inhibitors in these patient groups; however, the responses appear to be sub-optimal. Aiming to 

improve the response, combined inhibition of MEK and PI3K, Akt, cyclin D/CDK4 and cyclin 

D3/CDK6, are currently being investigated (ClinicalTrials.gov). 

9.2. Rationale for novel therapeutics for melanoma 

Although targeted treatment and immunotherapy have in many cases led to promising 

antitumor effect, development of resistance and adverse effects are a major problem. In 

general, the high mutational rate observed in malignant melanoma cells is a potential source of 

therapy resistance. The heterogeneity inducers other than diversity in genetic aberrations may 

include hypoxia, tumor microenvironment, selection by therapeutic agents and may be 

executed by reversible alterations of epigenetic changes in histone modifications and be seen 

as adaptations [Siegel, 2013].  Despite initial response, resistance to B-RAF and MEK 

inhibitors develops at a median time of 6 months after treatment initiation, and have been 



 
	

71	

associated with reactivation of the MAPK signaling pathway, or activation of compensatory 

pathways such as the PI3K network. For traditional chemotherapy, therapy resistance has been 

shown to largely depend on loss of p16 and alterations in p53 pathway. Conventional 

chemotherapies and radiotherapies target proliferating cells and require active cycling for 

induction of apoptosis. The slow-cycling nature of many cancer stem cell (CSC) pools is 

therefore an inherent mechanism for resistance and cell survival in response to conventional 

therapies. The connections between therapy resistance and quiescence and slow cycling rate of 

CSCs was explored in the work conducted by Roesch et al. in melanoma [Roesch, 2010].  

The transition from general cytotoxic therapies (chemotherapies) to targeted therapies has led 

to a change in therapy-associated resistance: from intrinsic resistance to acquired resistance. 

Whether the recent advances in combination therapy and novel epi-drug can help to avoid the 

acquired therapy resistance is to be seen.  
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 Aims of the project 

Post-translational modification of histone tails plays a critical role in chromatin regulation, 

gene activity and nuclear architecture. The addition or removal of post-translational 

modifications from histone tails is fairly dynamic and is achieved by a number of different 

histone modifying enzymes. Given the fundamental roles of histone modifications in gene 

regulation and expression, it is not surprising that aberrant patterns of histone marks are found 

in cancer. Such modifications include histone lysine methylation, which can either promote or 

repress gene activity depending on the extent of methylation and its context. Histone lysine 

methylation is maintained by dynamic opposition of methyltransferase and demethylase 

enzymes, both of which are implicated in normal embryonic development and tumorigenesis. 

LSD1 is a flavin-containing amine oxidase that, by reducing the cofactor FAD, demethylates 

H3K4me1/2 and H3K9me1/2 at target loci in a context-dependent manner. In cancer cells, it 

has been shown that LSD1 is required for the development and maintenance of acute myeloid 

leukemia (AML) and cooperate with the oncogenic fusion protein MLL-AF9 to sustain 

leukemic stem cells (LSCs). LSD1 inhibition impaired the proliferation potential of murine 

and human AML cells and was accompanied by induction of differentiation. Moreover, LSD1 

inhibitors unlocked the ATRA-driven therapeutic response in AML by increasing H3K4me2 

level and reactivating the retinoic acid signaling pathway. LSD1 could be an attractive target 

for cancer therapy because of its deregulation in a number of cancers, including lung, breast, 

melanoma and hematological malignancies. Despite recent diagnostic and technological 

improvements, cancer continues to retain its heavyweight status as one of the most 

challenging diseases to treat. It is a heterogeneous disease that often results in different clinical 

outcomes for patients with the same affected tissue. And as such, the disparateness of this 

disease makes it extremely difficult to fight. The ability to anticipate the clinical behavior of 
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cancers is essential in determining the most suitable therapeutic interventions. Considering 

that cancer is so diverse and clinical outcome predictions often vary from patient to patient, a 

considerable amount of effort is being invested to discover molecular biomarkers that can 

categorize cancer patients with distinct clinical outcomes to expand prognostic capabilities. 

Given the unsatisfactory clinical outcome associated with standard chemotherapy in acute 

myeloid leukemia (AML) and melanoma treatment, there is an essential need for new targets. 

Recently LSD1 have gained great interest for their use as anticancer therapeutics. However, 

the efficacy of LSD1 inhibitors is limited to a substantial subset of cancer cells. Thus, 

identification of good predictive biomarkers for sensitivity to treatment with LSD1 inhibitors 

will be of great value in determining the most suitable therapeutic setting. 

Three lines of evidence have provoked our interest in LSD1. First, LSD1 could be an 

attractive target for cancer therapy because of its deregulation in a number of solid and 

hematological malignancies. Second, LSD1 inhibition impaired the proliferation potential of a 

subset of solid tumor and AML cells. Third, LSD1 inhibitors unlocked the ATRA-driven 

therapeutic response in cancer cells. In this study we aim to: 

• Identify predictive biomarkers for sensitivity to LSD1 inhibition by using resistant vs. 

sensitive APL cells.  

• Broaden our observation to other type of cancers such as non-APL AML, small cell 

lung carcinoma (SCLC) and melanoma.  

• Explore the synergistic potential of LSD1 inhibitors in combination with other 

inhibitors (HDACi and Palbociclib (CDK4/6i)) based on identified biomarkers. 
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Materials & methods 

Cell lines and growing conditions. 

NB4 cells, were established from an APL patient by Lanotte and colleagues, have 

characteristics similar to APL blasts [Lanotte, 1999]. NB4 cells were grown in RPMI-1640 

medium with 10% of (FBS) fetal bovine serum, 2mM glutamine and 1% 

Penicillin/Streptomycin. 

UF1 cells were established from a patient who was clinically resistant to RA and were grown 

in RPMI-1640 medium with 15% of (FBS) fetal bovine serum, 2mM glutamine and 1% 

Penicillin/Streptomycin [Kizaki, 1996]. 

Kasumi AML (FAB M2) cells with an 8;21 chromosome translocation (AML-ETO 

chromosomal translocation), were established from the peripheral blood of a 7-year-otd boy 

suffering from acute myeloid leukemia (AML). Kasumi cells were grown in RPMI-1640 

medium with 10% of (FBS) fetal bovine serum, 2mM glutamine and 1% 

Penicillin/Streptomycin [Asou, 1991]. 

NCI-H69 small cell lung carcinoma (SCLC) cell line was grown in Iscove MDM with 10% of 

(FBS) fetal bovine serum, 2mM glutamine, 1mM Sodium pyruvate (NaP).  

293T cells are human embryonic kidney cells, which was originally established by stable 

transfection with Ad5 sheared DNA and carry a temperature sensitive mutant of SV-40 large 

T-antigen (tsA1609neo) [Graham, 1977; DuBridge, 1987]. 293T cells used for the production 

of lentiviruses due to their high transfection efficiency [Pear, 1993].  The 293T cells were 

cultured in DMEM (Lonza) supplemented with 10% FBS, SA (Microgem), 2 mM L-

Glutamine (Lonza), 100 U/ml penicillin and 100 U/ml streptomycin (Pen/Strep stock, Lonza). 
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These cells were used to generate pLKO Lentiviral vectors. All cells were grown in a 

humidified incubator at 37 °C with 5% CO2 environment. 

Cell culture of Human Primary melanoma cells 

Human primary melanoma cells were grown in RPMI-1640 medium with 10% of (FBS) fetal 

bovine serum, 2mM glutamine and 1% Penicillin/Streptomycin. Confluent cells were first 

washed with 1X phosphate buffered saline (PBS) (8.0 mg/mL NaCl, 1.4 mg/mL Na2HPO4, 

0.2 mg/mL KCl, 0.2 mg/mL KH2PO4, pH 7.2(Lonza)). Trypsin/EDTA (0.025% trypsin, 

0.05% EDTA, 1XPBS, pH7.6 (Lonza)) was next added to cells and incubated for 5 to 10 

minutes inside cell culture incubator until cells were detached from culture dish. 10% serum 

supplemented culture medium was added to trypsinized-cells to inactivate trypsin. Cells were 

resuspended thoroughly for further passaging at ratio of 1:5 in new dish with fresh culture 

medium. 

Stocking and thawing cells 

Cells were centrifuged at 1,200 rpm for 5 minutes and cell pellets were resuspended in anti-

freezing medium (10% DMSO and 90% FBS). 1mL anti-freezing medium was added per 

12x106-2x106 cells. Resuspended cells were placed in 1 mL cryogenic vials in cryogen box 

filled with isopropanol and frozen at -80oC for 24 hours prior to storage in liquid nitrogen. To 

thaw cells from frozen stock, cells in cryogenic vials were thawed in 37oC water bath for 30 

seconds. Thawed cells were washed with 1XPBS and centrifuged. Cell pellets were lastly 

resuspended in appropriate culture medium for plating in culture dish. 
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Lysine-specific demethylase1 inhibitor (LSD1i) 

We have previously characterized a novel LSD1 inhibitor, MC2580, showing high specificity 

(100 fold more than TCP) and acting at relatively low concentrations [Binda, 2010]. Despite 

similarity in the catalytic and structural properties with other FAD-dependent amine oxidases, 

the ligand-binding subdomain of LSD1 is much larger than in MAO-A and MAO-B. This 

compound is an analog of tranylcypromine/Parnate (TCP) with increasing larger substituents 

that contained a mix of hydrophobic and hydrophilic group. By taking advantage of this 

inhibitor we have been able to investigate the mechanistic role of LSD1 in different kind of 

cancers. Compounds were dissolved to 10mM in dimethyl sulfoxide (DMSO). 

Assay of cell proliferation 

Approximately 400,000 of cell lines were plated in triplicates in the presence of compound at 

day 1, and the number of cells were counted using the hemocytometer every day. Three cell 

suspension samples were prepared for triplicate independent counting and average of three 

readings represented the cell count. Medium containing the compound was refreshed every 2-

3 days, and the cell concentration was kept under 1-2 million per ml as recommended. 

10,000 primary melanomas cells/well were plated in triplicate in 12 well-plates in the presence 

of compound at day 1, and the number of cells were counted using the hemocytometer every 

two days. Three cell suspension samples were prepared for triplicate independent counting and 

average of three readings represented the cell count.  

Cell suspension was diluted with Trypan Blue dye (Sigma) at 1:1 ratio and incubated for 5 

minutes. 10 µL of stained cell mixture was gently loaded into the hematocytometer to avoid 

air bubbles. Viable cells (non-stained) were counted in each of the five 1mm2 squares in the 

center, on top right, bottom right, top left and bottom left of the hematocytometer under phase 
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contrast microscope. Cell concentration (number of cells per mL) was calculated with the 

following equation: Number of cell count in 5 square units /5 x 104. 

Colony Forming Unit (CFU) Assay 

Approximately 1000-5000 cells were initially plated in triplicates in the methylcellulose 

medium (MethoCultTM GF H4435 Enriched; StemCell Technologies) and (MethoCultTM GF 

H3434; StemCell Technologies) pre-added with DMSO or compound. For serial replating, 

cells isolated from colonies in the previous plating were seeded again in the same semi-solid 

medium. CFUs were scored and the cells were used for immunoblotting and morphological 

analysis by direct quantification every 7 to 10 /days’ post seeding.  

Morphological characterization (Wright-Giemsa staining) 

The cells collected from methylcellulose or culture plates were spun onto a cytological slide 

by using a cytospin centrifuge (Cytospin™ 4 Cytocentrifuge). Cytospins were stained using 

the May-Grünwald-Giemsa staining method. The fixed cells were stained for 8 minutes in 

May-Grünwald stain, then slides were sequentially washed 6 times in deionized water and 

then incubated for 30 min with Giemsa stain and diluted with 19 volumes of distilled water. 

After this step the cytological slides were rinsed again 3 times in distilled water and air-dried. 

For long time storage, a cover slip was attached to the slides by Eukitt ® mounting medium, 

which is an adhesive and specimen preservative that can be used manually and in automated 

cover slipping equipment.  

This method of coloration represents the most common way to stain peripheral blood and bone 

marrow smears. The two solutions contain a basic dye (methylene blue) and an acid dye 

(eosin). The first carrying a basic net positive charges stain nuclei because of the negative 

charges of phosphate groups of DNA and RNA molecules, basophil granules and RNA 
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molecules within the cytoplasm varying shades of blue to purple. The eosin carries a net 

negative charge and stains red blood cells and granules of eosinophil granulocytes an orange 

to pink color. Mature populations were defined based on their morphology: (1) a reduced 

nucleus-to-cytoplasm ratio; (2) the dark blue cytoplasm became lighter and often contained 

granules; and (3) segmented/multi-lobular nuclei.  

Annexin V and Propidium Iodide (PI) staining 

Indicated cells were subjected to cell cycle and apoptosis analysis by means of Fluorescence 

Activated Cell Sorting (FACS) taking advantage of specific dye intercalating the DNA 

(Propidium Iodide) and phosphatidylserine (Annexin V). PI is used as a DNA stain or DNA 

content in cell cycle analysis. PI is membrane impermeable and can be used for identifying 

dead cells. Annexin V can be used to detect and measure early apoptosis by binding to 

phosphatidylserine residues. During apoptosis, phosphatidylserine is translocated from the 

cytoplasmic face of the plasma membrane to the cell surface. 

Annexin V analysis of cells was performed using annexin V-FITC (annexin V- fluorescein 

isothiocyanate). Briefly, cells were treated as indicated, pelleted, washed with PBS, and 

counted. Then 500,000 cells were resuspended in 50µl annexin V binding buffer (HEPES 

10mM, NaCl 150mM, MgCl2 1mM, CaCl2 3.6mM, KCl 5mM) labled with annexin V-FITC 

and incubated for 1 hour at room temperature. Cells were resuspended in 500 µl PBS and 1 µl 

PI (50 µg/ml0 and then analyzed by flow cytometry using BD FACSCalibur instrument. Here 

propidium iodide (PI) is used as a dye for detecting apoptotic events. 

Lentiviral shRNA costructs  

ShRNA-based lentiviral plasmids were generated by ligating synthetic oligo nucleotides 

targeting the indicated mRNA into a modified pLKO vector in which the cDNA for 
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puromycin selection had been replaced with that encoding for enhanced GFP. The shRNA 

sequences are in the format: target sequence sense (underlined)–loop-target sequence 

antisense (underlined). The target sequences, added with specific oligonucleotides allowing 

the insertion and the formation of the hairpin structure, were cloned into pLKO backbone 

previously co-digested by AgeI and EcoRI restriction enzymes by means of T4 DNA ligase 

(Invitrogen). 

shRNAs sequences used in this study: 

LSD1-shRNA-1, 

5’-CCGGGCCTAGACATTAAACTGAATACTCGAGTATTCAGTTTAATGTCTAGGCTTTTTG-3’ 

LSD1-shRNA-2, 

5’- CCGGGCTACATCTTACCTTAGTCATCTCGAGATGACTAAGGTAAGATGTAGCTTTTTG-3’ 

P21-shRNA-1,  

5’- CCGG GTCACTGTCTTGTACCCTTGT CTCGAG ACAAGGGTACAAGACAGTGACTTTTTG-3’ 

P21-shRNA-2,   

5’-CCGGCGCTCTACATCTTCTGCCTTACTCGAGTAAGGCAGAAGATGTAGAGCGTTTTTG-3’ 

 

P21-WT, P21-PCNAm, P21-CDKm expression plasmid 

P21 wild-type, PCNA mutant and CDK mutant expression pWPI vector kindly provided by 

prof. Pelicci. In p21-CDK mutant, amino-acids W49, F51 and D52 were changed to R49, S51 

and A52 while in p21-PCNA mutant, residues M147, D149 and F150 were changed to A147, 

A149 and A150. A triple hemagglutinin (HA) tag has been introduced in frame with p21 
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coding sequence at the carboxy-terminus. All constructs were sequenced to verify that the 

triple HA tag had been correctly inserted and that the desired mutations had been introduced 

with no additional mutations. P21 wild-type, PCNA mutant and CDK mutant expression 

vector in vector pWPI have been described previously [Cayrol, 1998]. 

Transformation & Mini-, midi-, maxi-preparation of plasmid DNA  

The plasmids were heat-shock transformed into competent Stbl3 cells by adding the plasmids 

into 100 µL competent cells, ice incubated for 15 minutes and heat shocked at 42oC for 20 

seconds. The transformed competent cells were further snap-cooled on ice for 2-4 seconds and 

inoculated with 1 mL Luria Bertani (LB) broth for incubating at 42oC with gentle shaking. 

Transformed cells were spread on LB agar plate containing Ampicillin. Agar plates were 

placed in 37oC incubator overnight. single bacterial clone was picked for further culture 

expansion.  

For minipreparation of plasmid DNA, single bacterial clone was expanded by inoculating with 

1.5 mL LB broth containing appropriate antibiotic and cultured at 37oC shaking incubator for 

8 hours. The culture was centrifuged at 13,000 rpm for 3 minute at room temperature to pellet 

the bacteria. Minipreparation of plasmid was performed using NucleoSpin plasmid Kit 

(MACHEREY-NAGEL) according to manufacturer’s protocol. Bacterial pellet was 

resuspended completely in 250 µL cold buffer A1 (RNAse A added) and lysed with 250 µL 

buffer A2 (alkaline lysis buffer) by gentle inversion of tubes several times for 5 min in room 

temperature. 300 µL buffer A3 was added to completely stop the lysing and the lysis mixture 

was centrifuged at 11,000 x g for 10 minutes. Supernatant was transferred to new spin column 

and washed with 500 µL Buffer AW and 600 µL Buffer A4. Plasmid DNA was eluted in 50 

µL water or AE.  
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For midipreparation of plasmid DNA, 2 mL bacterial starter culture was inoculated with 150 

mL LB broth containing appropriate antibiotic and cultured at 37oC shaking incubator 

overnight. The culture was centrifuged at 6,000 x g for 5 minutes at 4oC to pellet the bacteria. 

Midipreparation of plasmid was performed using NucleoSpin plasmid Kit (MACHEREY-

NAGEL) according to manufacturer’s protocol. Bacterial pellet was resuspended completely 

in 8 mL buffer RES-EF, lysed with 8 mL buffer LYS-EF by gentle inversion of tubes and 

incubation at room temperature for 5 minutes. 8 mL buffer NEU-EF was added to stop lysing 

completely. The lysis mixture was loaded on pre-wet column during column equilibration. 

Then the column and the filter washed in three subsequent washing step with buffer FIL-EF, 

buffer ENDO-EF and buffer WASH-EF. Finally, plasmid eluted with 5 mL of buffer ELU-EF 

into a clean centrifuge tube containing 3.5 mL of isopropanol. Plasmid DNA was pelleted by 

centrifugation at 15,000 x g for 30 minutes at 4oC. The DNA pellet was washed with 70% 

ethanol, air-dried and dissolved in 150 µL H2O. Quantity and quality of plasmid DNA was 

determined by spectrophotometer, verified by restriction enzyme digestion and sequencing. 

For maxipreparation of plasmid DNA, 2 mL bacterial starter culture was inoculated with 500 

mL LB broth containing appropriate antibiotic and cultured at 37oC shaking incubator 

overnight. The culture was centrifuged at 6,000 x g for 5 minutes at 4oC to pellet the bacteria. 

Midipreparation of plasmid was performed using NucleoSpin plasmid Kit (MACHEREY-

NAGEL) according to manufacturer’s protocol. Bacterial pellet was resuspended completely 

in 15 mL buffer RES-EF, lysed with 15 mL buffer LYS-EF by gentle inversion of tubes and 

incubation at room temperature for 5 minutes. 15 mL buffer NEU-EF was added to stop lysing 

completely. The lysis mixture was loaded on pre-wet column during column equilibration. 

Then the column and the filter washed in three subsequent washing step with buffer FIL-EF, 

buffer ENDO-EF and buffer WASH-EF. Finally, plasmid eluted with 15 mL of buffer ELU-

EF into a clean centrifuge tube containing 3.5 mL of isopropanol. Plasmid DNA was pelleted 
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by centrifugation at 15,000 x g for 30 minutes at 4oC. The DNA pellet was washed with 70% 

ethanol, air-dried and dissolved in 500 µL H2O. Quantity and quality of plasmid DNA was 

determined by spectrophotometer (ND1000 NanoDrop). 

Calcium phosphate transfection 

The day before transfection the packaging cells (293T cells) were plated at the density such 

that the day of transfection they were 50% to 60% confluent. Co-transfection of the lentiviral 

expression vector with packaging plasmids encoding the gag, pol and rev proteins were 

necessary for the assembly of infectious lentivirus in 293T cells. For the transfection two 

solutions were prepared: Solution A: DNA of packaging plasmid (pCMV-dR8.2 8µg/10 cm 

plate), DNA of envelope plasmid (pCMV-VSV-G 5 µg/10 cm plate), DNA (10 µg/10 cm 

plate), 625 µl CaCl2 and water in a final Volume of 500 µl; Solution B: 500 µl of 2x HBS 

(HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid). pCMV-VSV-G expresses the 

G glycoprotein of the vesicular stomatitis virus (VSV-G) under the control of the CMV 

immediate-early promoter. pCMV-dR8.2 provides all of the proteins essential for transcription 

and packaging of an RNA copy of the expression construct into recombinant pseudoviral 

particles. The solution A was slowly added drop wise to the 2X HBS while bubbling air 

through it with a Pasteur pipette. After 10- 20 minutes the formed DNA-calcium precipitates 

were added to the media of the 293T cells. The cells were incubated at 37˚C in a humidified 

CO2 incubator for 12-16 hours, and then the media was removed and replenished with fresh 

one. Forty-eight and 72 hours’ post-transfection the first and second viral supernatant were 

filtered and collected. 

Viral concentration 

In order to concentrate lentivirus -based particles, 48 hours and 72 hours’ post-transfection the 
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first and second viral supernatant respectively were filtrated through 0.45 µm Millipore 

syringe filters and transferred into sterile 50mL falcons, and 1 volume of cold 5x PEG solution 

(System Bioscience) was added to every 4 volumes of lentivirus-containing supernatant. Then 

it was refrigerated overnight at 4˚C, and the next day it was centrifuged at 1500x g for 30 

minutes at 4˚C. After centrifugation the lentivirus particles appeared as a white pellet at the 

bottom of the falcon all traces of fluid were removed by aspiration and the retroviral pellet 

was resuspended 1:100 of original volume using cold, sterile PBS, aliquoted into cryogenic 

vials and immediately stored at -80˚C. 

Infection of the cells 

Cells were put in 24 well-plates and plated at a density 500,000 cells in 500 µl of medium per 

well. Virus was diluted in RPMI 10% serum pen/strep in order to add 500 µl to the cells. Two 

rounds of infection were carried out in the presence of 5ug/mL of polybrene (Sigma). Cells 

were infected simply by adding the concentrated rentivirus supernatant (20-35µL/well) onto 

the cells; the plate was centrifuged for 45 minutes at 4˚C in 1800rpm and then incubated at 

37˚C overnight. Eight hours later 500 µl virus-free medium were added to the virus 

incubations to dilute the polybrene. The second round of infection was performed the day after 

by adding (20-35µL/well) of concentrated retroviral supernatant to the cells and centrifugation 

for 45 minutes at 4˚C in 1800rpm. At the end of the two cycles, the medium with viral 

particles was removed and substituted with virus-free medium. Infected cells expressed 

shRNA against the mRNA of the protein of interest and GFP as the selection marker. 

Therefore, the selection of cells expressing the shRNA was done by sorting of GFP positive 

cells by fluorescence-activated cell sorting (FACS) instrument (FACSVantage instrument, 

BC). Cells were also collected for RNA and protein extraction to confirm the successful 

knockdown of target gene. 
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Protein extraction  

This method allows the detection of protein of interest and relative post translational 

modification in a sample extract. Protein extracts were obtained from cell pellets after lysis 

with 100µL to 200µL of sodium-dodecyl-sulfate (SDS) lysis buffer (2% SDS, 10% glycerol, 

50mM of Tris HCL) plus protease inhibitor cocktail. Cell lysate was then sonicated for 30 

seconds by Branson Sonifier 250. After sonication, samples were centrifuged for 15 min at 

4°C, 13000 rpm. Protein was quantified by a Bio-rad Bradford assay. 1X volume of Bradford 

reagent was diluted with 4X volume of MilliQ water to prepare a working Bradford solution. 

For measuring protein concentration of sample at absorbance 595 nm, SDS buffer was first 

measured as blank, and 1 µL sample in 999 µl Bradford (dilution factor 1: 20) was measured. 

Western blot analysis and Antibodies 

Proteins can be separated based on their molecular size, net charge and shape in a 

polyacrylamide gel electrophoresis (PAGE). Acrylamide can be polymerized under the 

presence of bis-acrylamide into chains to form meshwork of polyacrylamide and by adjusting 

the concentration of acrylamide, polyacrylamide gel with different resolution can be casted to 

obtain efficient separation of protein molecules. The polymerization is catalyzed by addition 

of ammonium persulfate (APS) as source of free radicals and N,N,N’,N’-

tetramethylethylenediamine (TEMED) to form and stabilize the free radicals. Proteins are 

denatured by detergent such as sodium dodecyl sulfate (SDS) to become negatively charged. 

SDS binds to hydrophobic regions of the proten molecules, causing them to unfold. During 

PAGE, denatured proteins are separated primarily by their molecular size but not structure and 

isoelectric charges. A stacking gel is casted on top of the resolving gel in the PAGE system. 

The purpose of stacking gel, which is usually of lower acrylamide concentration and pH than 
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the resolving gel, is to focus all protein molecules of various molecular sizes into the same 

thin layer for entering into another gel boundary. Separated proteins in the PAG can then be 

transferred for Western blotting or visualized by direct staining. 

50-80 µg of proteins were mixed with Laemmli (b-mercaptoethanol and bromophenol blue) 

and denaturated for 10 min at 95°C. Cell lysates were loaded onto each lane of an acrylamide, 

bis-acrylamide gel, and a sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE). 10 µL of dual-color Pre-stained Protein ladder (BIO-RAD) was also loaded per gel 

for reference of protein molecular size. 

Gel-separated proteins were transferred to a nitrocellulose membrane (Whatman) in a 1X 

transfer buffer containing 20% methanol, at 100V for 1 hour at 4˚C. The gel/membrane was 

compressed with layers of filter papers and sponge to ensure close contact between the gel and 

the membrane. Protein molecules, which were negatively charged, were transferred to the 

membrane in 1X transfer buffer (25 mM Tris base, 192 mM glycine, 20% methanol) at 

constant voltage of 100 volts for 1 hour.  

 Ponceau S was used for staining of membrane, which allows the visualizing of proteins and 

thus the quality of the transfer. After a brief wash in water and 1% Tris-buffered Saline-Tween 

(TBS-T), Membranes were blocked with a solution of in TRIS-buffered saline (TBS: 20mM 

TRIS/HCl, pH 7.4, 137 mM NaCl, 2.7 mM KCl) plus 0.1% Tween (TBS-T) containing 5% 

non-fat dried milk. Pre-blocking of the membrane can prevent non-specific binding of 

antibodies which may result in a high background or false positive detection. 

The same milk/TBS-T solution was prepared to dilute primary antibodies, which were 

incubated for one hour at room temperature or overnight at 4 °C. The next day, after 3 washes 

with 1% TBS-T (each wash 10 minutes), membrane was incubated with the proper 
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horseradish peroxide (HRP)-conjugated secondary antibody or secondary antibodies labeled 

with IRDye near-infrared (NIR) fluorescent dyes, diluted in 5% milk, for 30-60 minute at 

room temperature. Following three further washes in TBS-T, the bound secondary antibody 

was revealed by ECL method (enhanced chemiluminenscence, Amersham) or ECL-plus 

(Amersham) or fluorescence Detection (Odyssey, Licor). 

The antibodies used in the study were anti-LSD1 Antibody (Cell signalling #2139); anti-PML 

(H-238) (Biotechnology Inc, Santa Cruz, CA); anti-Tubulin T8328 Sigma; anti-P21 (C-19) 

(Biotechnology Inc, Santa Cruz, CA). 

Total RNA Extraction and Complementary DNA (cDNA) Synthesis 

For Total RNA extraction, 1 mL TRIZOL reagent was added to cell pellet harvested from 

confluent cells grown. Cells were gently pipetted up and down for complete cell lysing in 

TRIZOL. TRIZOL/cell mixture was next transferred into clean microcentrifuge tube and total 

RNA was purified using RNeasy Mini Kit (QIAGEN, Valencia, CA) and quantified by 

spectrophotometer (ND1000 NanoDrop). RNA quantity and quality was assessed by A260 (1 

OD260 = 40 µg/ml for single stranded RNA), A260/A280 ratio (> 1.6). RNA sample was 

stored at -80°C for later use. 

Then RNA reverse transcribed to cDNA with one script plus reverse trascriptase (abm) 

according to the manufacturer’s instructions. Briefly, 1 µg RNA was mixed with 1 µl random 

primer (10 µM), 1 µl dNTP mix (10mM) and reachet to 14.5 µl with nuclease-free H2O and 

denatured at 65oC for 5 minutes and snap-frozen on ice for 5 minutes. Reverse transcription 

(RT) was performed in a 20 µl-reaction mixture containing 4 µl 5X RT buffer, 0.5 µl 

RNaseOFF Ribonuclease inhibitor(40u/µl) and 1µl EasyScript Plus RTase (200U/µl). The 

denatured RNA was incubated with the RT reaction mixture for 10 minutes at 25oC. The 
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reaction was stopped by heating it at 85oC for 5 min. cDNA sample was stored at -20 °C for 

later use. 

Quantitative polymerase chain reaction (qPCR) 

From 5 to 10 ng of cDNA were used to perform quantitative polymerase chain reaction using 

SYBR Green Reaction Mix (Perkin Elmer, Boston, MA). mRNA levels were normalized 

against GAPDH mRNA. All the qPCR amplifications were performed in the CFX96TM real-

time system (BIO RAD): 95oC hold for 10 minutes followed by 40 cycles of 95oC for 15 

seconds and 60oC for 60 seconds. The sequences of the primers used in this study are listed in 

the table 1. 

Table 1.Primers for quantitative PCR used in this study. 

Primer 

name 

Forward primer (Fw) Reverse primer (Rv) 

GAPDH  GCCTCAAGATCATCAGCAATGC CCACGATACCAAAGTTGTCATGG 

ITGAM AACCCCTGGTTCACCTCCT CATGACATAAGGTCAAGGCTGT 

LSD1 AGACGACAGTTCTGGAGGGTA TCTTGAGAAGTCATCCGGTCA 

P21 TCACTGTCTTGTACCCTTGTGC GGCGTTTGGAGTGGTAGAAA 

Ccl5 CCTCATTGCTACTGCCCTCT GGTGTGGTGTCCGAGGAATA 

BMP2 CGGACTGCGGTCTCCTAA GGAAGCAGCAACGCTAGAAG 

 

RNA-seq protocol 

RNA-Sequencing (RNA-Seq) allows for quantitative measurement of expression levels of 

genes and their transcripts. RNA-seq was performed according to the True-seq Low sample 
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protocol selecting only polyadenylated transcripts. In brief, before starting mRNA isolation 

and library preparations the integrity of the total RNA was evaluated by running samples on a 

Bioanalyzer instrument by picoRNA Chip (Agilent), then converted into libraries of double 

stranded cDNA appropriate for next generation sequencing on the Illumina platform. The 

Illumina TruSeq v.2 RNA Sample Preparation Kit was used following manufacturer’s 

recommendations. Briefly, 0.1-1 µg of total RNA were subjected to two rounds of mRNA 

purification by denaturing and letting the RNA bind to Poly-T oligo-attached magnetic beads. 

Then fragmentation was performed exploiting divalent cations contained in the Illumina 

fragmentation buffer and high temperature. First and second strand cDNA is reverse 

transcribed from fragmented RNA using random hexamers. First strand cDNA was 

synthesized by SuperScript II (Invitrogen) reverse transcriptase transcriptase and random 

primers and second strand cDNA synthesized by DNA polymerase I and Rnase H. The 

subsequent isolation of the cDNA was achieved by using AMPure XP beads (depending on 

the concentration used, these beads can efficiently recover PCR products of different sizes). 

The product recovered contained overhanging strands of various length due to the 

fragmentation procedure. The 5’ and 3’ ends of cDNA are repaired by the 3’-5’ exonuclease 

activity and the polymerase activity and adenylated at 3’ extremities before ligating specific 

Illumina oligonucleotides adapters followed by 15 cycles of PCR reaction using proprietary 

Illumina primers mix to enrich the DNA fragments. Prepared libraries were quality checked 

and quantified using Agilent high sensitivity DNA assay on a Bioanalizer 2100 instrument 

(Agilent Technologies). 

RNA sequencing data analysis 

RNA-seq analysis was performed with the TopHat and Cufflinks algorithm [Trapnell, 2010]. 

Cufflinks is able to re-assemble transcripts to give a quantitative estimation of their presence 
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and to calculate differential gene regulation among several samples. The number of reads 

obtained was comparable among the samples. The values considered to quantify the relative 

expression of a given gene correspond to the number of reads aligned per kilobases of the 

transcript per million map able fragment detected (FPKM, fragment per kilobase of exon per 

million fragments mapped). These values were used for all the comparative analysis. The 

threshold set to consider a gene as being regulated was FDR≤ 0.05, FPKM ≥ 0.5 and Fold 

change greater than absolute Log2(1.5). 

ChIP-Seq and ChIP- qPCR  

ChIP (chromatin immunoprecipitation) technique is used to investigate protein-DNA 

interaction studies. The fundamental principle is the cross-linking between DNA and DNA-

associated proteins that can be achieved by fixing cells with formaldehyde. Cross-linked 

chromatin is sheared by sonication to generate fragments of 300-1000 base pairs (bp) in 

length. Through immunoprecipitation, proteins of interest coupled to DNA are isolated by 

specific antibodies. Antibodies that recognize a protein or protein modification of interest can 

be used to determine the relative abundance of protein or modification. Chemical cross-linking 

is reversible, thus DNA can be separated from associated proteins and analyzed, both by high 

throughput sequencing and real time quantitative PCR.  

Cells were cross-linked in culture medium by adding 37% formaldehyde to a final 

concentration of 1% and the reaction was stopped after 10 min at RT by adding 2M glycine to 

a final concentration of 0.125M for 5 min. The cells were washed twice with cold PBS and 

collected by centrifuge for 5 min at 1500rpm. At this step the Pellets can be stored at -80° in 

SDS buffer (50 mM Tris•HCl pH 8.1, 0.33% SDS, 150mM NaCl, 5 mM EDTA, and protease 

inhibitor cocktail) or directly processed with sonication in IP buffer (100mM tris ph 8.6 0.3% 

SDS 1.7% TRITON x-100 and 5mM EDTA).  
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Chromatin was then fragmented to obtain 200-500 bp in length by using a Branson Sonifier 

250.  

Then protein A sepharose beads (GE Healthcare, cat. 170780-01; 30 µl slurry per milligram of 

sonicated chromatin; 0.5-1 mg of chromatin was used for each precipitation; 100 µl were used 

for histone PTMs) were added and incubated 2 h at 4°C, to remove DNA or proteins which 

might bind non-specifically to the Protein G beads. This was followed by three washes with 

“low salt” wash buffer (20 mM TRIS/HCl pH8.0, 2 mM EDTA, 150 mM NaCl, 0.1% SDS, 

1% TRITON X-100), and one in “high salt” wash buffer (20 mM TRIS/HCl pH8.0, 2 mM 

EDTA, 500 mM NaCl, 0.1% SDS, 1% TRITON X-100) were performed. Then, the 

supernatant was immunoprecipitated overnight in the presence of 30-50 microL of protein G 

magnetic beads. For histone modification 1 ml corresponding to 3x106 cells per each IP and 

4ug/ml primary antibody were used while for LSD1 Chip-Seq 40x106 cells per each IP and 

10ug/ml of LSD1 antibody were used. Before IP 2.5% of input was stored at 4% prior to the 

decrosslinking procedure. We used anti-IgG as mock antibody (negative control) of the ChIP 

assay. Decrosslinking was performed for all the IP samples and corresponding inputs, over 

night in 0.1%SDS and 0.1% NaCOH3. The day after, the enriched DNA was treated with 

proteinase K at 56°C for 40 min and purified with QIAquick PCR purification kit (Qiagen). 

The obtained DNA was then quantified by picogreen and 5-10ng were processed for ChIP-Seq 

library preparation or used for quantitative real-time PCR (qPCR). The DNA retrieved from 

ChIP experiments were used for ChIPseq libraries preparation with the Illumina ChIPSeq 

Sample Prep kit (IP-102-1001) and multiplexing oligonucleotide kit (PE-400-1001) by our 

internal genomic facility. DNA libraries were quantified using a high sensitivity DNA Chip on 

Bioanalyzer instrument (Agilent) and used for cluster generation and sequencing using the 

HiSeq 2000 pltaform (Illumina) following the protocol of the manufacturer. 
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For the validation of specific regions, ChIP-qPCR were performed as follows. 

Immunoprecipitated DNA was diluted in 9,6µl of H2O per reaction, plus 400 nM primers in a 

final volume of 20µl in SYBR Green. Each ChIP experiment was performed at least three 

times with biological replicates.  

Abs used for ChIP qPCR/Seq: anti-LSD1 antibody (Abcam – ab17721), anti- H3K4me2 

antibody (Abcam-ab32356) and anti- H3K27ac antibody (Abcam-ab4729), IgG sc-2027. 

PicoGreen(pcg) quantification of ChIP DNA. 

This protocol was established with a Glomax fluorometer. PicoGreen dsDNA Quantitation 

Reagent is an ultra-sensitive fluorescent nucleic acid stain for quantitating double-stranded 

DNA (dsDNA) in molecular biological procedures, allows the detection and quantitation of 

DNA concentrations as low as 25pg/mL of dsDNA. PicoGreen 2x solution was prepared by 

diluting 200x stock in TE (final volume 200µL). A standard DNA curve was performed by 

using genomic DNA as a reference. ChIP DNA generally has a low concentration; therefore, 

standard DNA dilutions should range from 25pg/ml up to 25ng/ml. We prepared a reference 

sample of 2µg/ml of genomic DNA, which was then diluted 40x in TE this stock to get a final 

50ng/ml solution. This is further diluted and then by serial dilution you may obtain 1/10-

1/100-1/1000 the last of which corresponds to a 25pg/ml concentration. Briefly, we routinely 

took 2µl from ChIP samples, brought the volume to 200µL TE - to have a replica - including 

total control and mock. We then added 100 µL/ml of pcg to each well and incubated 2-5 

minutes, mixed and further incubated for 2 to 5 minutes at RT, protected from light. After 

reading, we plot a low-range standard curve corrected against the reagent blank fluorescence 

value. 
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ChIP-Seq analysis 

Sequencing data generated from the Illumina platforms were aligned were mapped to Human 

NCBI36/hg18 using Bowtie version 0.12.7 [Langmead, 2009]. Only sequences showing 

unique alignment were used for peak detection, allowing for a maximum of two 

mismatches. Peaks calling was performed with MACS with the threshold of -log10(p)=5 for 

all the ChIP-seq except LSD1 both in NB4 and UF1, for which we perform ChIP- qPCR and 

set a more stringent threshold. For the validation of LSD1 positive regions we selected regions 

with several p-values (obtained with MACS peak calling) and perform ChIP-qPCR assay. For 

LSD1 ChiP-Seq in NB4 and UF1 cells according to our validation analysis we set a stringent 

threshold; pvalue ≤ 0.017, while for the all other ChIP-seq p-value ≤ 0.05. Using intergenic 

region negative for LSD1 as control and anti-IgG antibody as mock control we set the 

minimum value for positive true enrichment as the enrichment of negative control plus three 

times the relative SD. 26 out of 30 regions tested were considered as validated and thus we set 

as MACS score threshold the minimum score among these 26 validated regions. With this new 

threshold of -log10(p)=16.9 we obtained 15187 and 33515 LSD1 peaks in NB4 and UF1 

respectively.  Reads from each sample were normalized to the respective input. Peaks were 

associated to Refseq annotated genes according to GIN (Cesaroni et al. Bioinformatics 2008) 

while intergenic regions were considered as having more than 22kb of distance from the 

nearest gene. UCSC Genome tracks were generated normalizing each sample to the same 

sequencing depth. The intersection among the peaks datasets was performed with bedtools 

intersect tool, peaks are considered overlapping if they share at least 1bp. 
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Statistical analysis: 

Statistical analyses were performed using the unpaired sample 2-tailed Student t test 

(GraphPad software) unless otherwise specified. 

Contents of general buffers used in this study: 

Phosphate-Buffered Saline (PBS), pH 7.4: 

137 mM NaCl 

2.7 mM KCl 

8.1 mM Na2HPO4  

1.76 mM KH2PO4 

Tris-Buffered Saline (TBS)-Tween: 

150 mM NaCl 

2.7 mM KCl 

25 mM Tris base 

0.1% Tween 20 

Tris-Acetate-EDTA (TAE): 

40 mM Tris acetate 

1 mM EDTA pH 8. 

Urea lysis buffer: 

8 M Urea 

25 mM Tris-HCL pH 6.8 

1 mM EDTA 

10% glycerol 
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Resolving gel mix (1 gel at 12%): 

Acrilamide/Bis-acrylamide solution 30 %: 2.52 mL for 12% gel 

Tris-HCl, pH 8.8 (1.5 mL) 

ddH2O (1.7 mL) 

SDS 10% (60 µL) 

APS 10% (50 µL) 

TEMED (2 µL) 

Stacking gel mix (1 gel): 

Acrilamide/Bis-acrylamide stock solution – 30%: 0.8 ratio at 30% (0.52 mL) 

Tris-HCl, pH 6.8 (1.25 mL) 

ddH2O (3.10 mL) 

SDS 10% (50 µL) 

APS 10% (50 µL) 

TEMED (5 µL) 

Laemmli loading buffer (5X): 

100mM Tris-HCl pH 6.8  

20% Glycerol 

2% SDS 

5% β-mercaptoethanol 

Western blot transfer buffer: 

25 mM Tris base 

192 mM Glycine 

20% Methanol 
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Western blot Stripping buffer: 

62.5 mM Tris-HCl, pH 7.6 

2% SDS 

100 mM β-mercaptoethanol 

SDS buffer: 

50 mM TRIS-Cl 

0.5% SDS 

100 mM NaCl 

5mM EDTA pH 8 

0.02% NaN3 

Triton dilution buffer: 

5% Triton X-100 

100 mM TRIS-Cl PH 8.6 

100 mM NaCl 

5mM EDTA pH 8 

0.02 % NaN3 

Mixed Micelle wash buffer: 

5.2% Sucrose 

1% Triton X-100 

20 mM TRIS-Cl PH 8.1 

150 mM NaCl 

5mM EDTA pH 8 

0.02 % NaN3 

0.2% SDS 
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Li/Cl detergent buffer: 

250mM LiCl 

0.5% Deoxycholic acid 

10 mM TRIS-Cl PH 8 

0.5% NP-40 

1mM EDTA pH 8 

0.02 % NaN3 

 

Decrosslinking solution: 

0.1M NaHCO3 

1% SDS 
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                                         Results 

LSD1 inhibition in APL cell lines 

We have previously characterized a novel LSD1 inhibitor, MC2580, showing high specificity 

(100 fold more than TCP) and acting at relatively low concentrations [Binda, 2010]. By taking 

advantage of this inhibitor (we will refer to this as MC) we have been able to investigate the 

mechanistic role of LSD1 in APL. As a model system we used two APL cell lines: i) NB4 

cells, isolated from an APL patient, that have characteristics similar to APL blasts and are 

sensitive to RA; and ii) UF1 cells, that were established from a patient who was clinically 

resistant to RA [Lanotte ,1999; Kizaki, 1996].   

We have previously shown that LSD1 inhibition sensitizes NB4 cells to retinoic acid (RA) 

treatment and induces cell growth arrest and differentiation when combined with a 

physiological concentration of RA (RA low) [Binda, 2010] (Figure 12A, B). We hereafter 

refer to physiological (0.01 µM) and pharmacological (1 µM) dose of RA with RA low and 

RA high respectively.  

To strengthen our observations, we performed colony forming unit assay (CFU) as a surrogate 

read-out for the self renewal ability of leukemic cells. NB4 cells were treated with the LSD1 

inhibitor also in combination with RA low and RA high. Both co-treatment and RA high 

significantly reduced the number of colonies and led to differentiation in 1st plating. While RA 

high-treated colonies gave rise to higher number of secondary colonies, co-treatment 

maintained the reduction when they were cultured in the absence of the drugs, suggesting that 

co-treatment more efficiently reduce clonogenic activity of NB4 cells (Figure 13).  
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Figure 12. LSD1 inhibition sensitizes NB4 cells to physiological dose of retinoic acid (RA). (A) 
Relative proliferation of NB4 cells treated with MC and/or RA low (10nM) and RA high (1µM). Data 
are presented as mean of triplicates ± SD. (B) Representive light micrograph show Wright-Giemsa 
staining of NB4 cells treated with indicated inhibitors for 6 days. P value < 0.05 (✱), P < 0.01 (✱ ✱) and 
P <0.001 (✱ ✱ ✱). 

 

 

Figure 13. LSD1 inhibition sensitizes NB4 cells to physiological dose of retinoic acid (RA). 
Analysis of the proliferative potential of treated NB4 cells with indicated inhibitors by serial replating 
assay. Data are presented as mean of triplicates ± SD. P value < 0.05 (✱), P < 0.01 (✱ ✱) and P <0.001 
(✱ ✱ ✱). 
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These results prompted us to evaluate whether LSD1 inhibitor sensitizes RA-resistant cell line, 

UF1 cells, to RA. To this end, UF1 cells were treated with MC also in combination with RA 

low. Surprisingly MC as a single agent inhibited UF1 cell proliferation and as expected, RA 

had no effect on cell proliferation (Figure 14).  

                  

Figure 14. LSD1 inhibition inhibits proliferation of UF1 cells. Relative proliferation of UF1cells 
treated with MC and/or RA low (10nM). Data are presented as mean of triplicates ± SD. P value < 0.05 
(✱), P < 0.01 (✱ ✱) and P <0.001 (✱ ✱ ✱). 

 

We next evaluated the effect of MC in UF1 cell differentiation. Cell differentiation was 

evaluated in all samples after Wright-Giemsa staining. Relative to DMSO, MC and co-treated 

cells display a more mature morphology as observed by several features: 1) they contained a 

reduced nucleus to cytoplasm ratios and 2) nuclear lobulation (Figure 15A). This induction of 

differentiation was further confirmed by induction of CD11b expression, a surface marker 

belonging to the integrin family that is expressed specifically in differentiated granulocytes 

(Figure 15B). As expected RA low had no effect on UF1 cells differentiation.  
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Figure 15. LSD1 inhibition promotes differentiation in UF1 cells. (A) Representive light 
micrograph show Wright-Giemsa staining of UF1 cells treated with indicated inhibitors for 6 days. (B) 
LSD1 inhibition induces expression of the CD11b gene. Values were normalized against GAPDH. 

 

It has been shown that pharmacological doses of RA (RA high) induces differentiation of APL 

cells by PML-RARα fusion protein degradation, which has been proposed as a crucial goal in 

order to eradicate APL. We observed that LSD1 inhibition induces cell differentiation without 

inducing PML-RARα degradation (Figure 16). Thus LSD1 inhibition can overcome PML-

RARα expression to reach differentiation and growth arrest of APL-UF1 cells.  

                                

Figure 16. LSD1 inhibition promotes differentiation of UF1 cells without PML-RARα 
degradation. Western blot analysis of PML-RAR⍺ and tubulin (serves as loading control) in UF1 cells 
after 6 days treatment with indicated inhibitors. 
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To further understand the basis of the observed decrease in cell growth caused by MC 

treatment, we studied cell death in control and MC-treated UF1 cells. We performed trypan 

blue staining, which is incorporated specifically in dead cells, and found an increased rate of 

cell death in MC-treated cells as compared to control cells. We next used Annexin V / PI 

staining followed by FACS analysis to study whether this increase in basal cell death was 

caused by apoptosis. During apoptosis, phosphatidylserine is translocated from the 

cytoplasmic face of the plasma membrane to the cell surface. Annexin V can be used to detect 

and measure early apoptosis by binding to phosphatidylserine residues. PI is used as a DNA 

stain or DNA content in cell cycle analysis. PI is membrane impermeable and can be used for 

identifying dead cells. MC-treatment for 6 days increased the G1 cell cycle arrest and induced 

apoptosis (Figure 17A, B). The increased number of cells in G1 phase was accompanied by 

reduced proportion of cells in S phase. 

 

Figure 17. LSD1 inhibition in UF1 cells, induces cell cycle arrest and apoptosis. (A) Summary of 
cell-cycle status of UF1 cells after 6 days treatment with indicated inhibitors. (B) Percentage of live 
and apoptotic UF1 cells after 6 days treatment with indicated inhibitors. 

To corroborate these cell viability data, we took advantage of two other LSD1 inhibitors 

which are reversible and irreversible LSD1 inhibitors. Both inhibitors inhibited cell 

proliferation in a time and dose-dependent manner (Figure 18A, B). 
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Figure 18. LSD1 inhibitors inhibit UF1 cell proliferation in a time and dose-dependent manner. 
(A) Growth inhibition in response to reversible LSD1 inhibitor. (B) Growth inhibition in response to 
irreversible LSD1 inhibitor. Data are presented as mean of triplicates ± SD. 

 

 Mirroring the results in liquid culture, treatment with MC drastically reduced the number of 

colonies and this reduction was maintained in 2nd plating. Following treatment with MC, and 

not DMSO, UF1 cells exhibited a dramatic morphologic alteration from the primarily large 

and compact colonies to the small and diffuse one, characteristic of differentiated cell clusters 

(Figure 19A, B).  

Taken together, LSD1 inhibitor as a single agent in UF1 cells in contrast to NB4 cells leads to 

cell growth inhibition, induced cell differentiation without PML-RAR degradation. Treatment 

of UF1 cells with MC promoted G1 cell cycle arrest and apoptosis. 
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Figure 19. LSD1 inhibition efficiently inhibits clonogenic activity of UF1 cells. (A) Analysis of the 
proliferative potential of treated UF1 cells with indicated inhibitors by serial replating assay. Data are 
presented as mean of triplicates ± SD. (B) Colony morphology of treated UF1 cells with indicated 
inhibitors. P value < 0.05 (✱), P < 0.01 (✱ ✱) and P <0.001 (✱ ✱ ✱). 

 

LSD1 depletion mimics the effect of LSD1 inhibition 

To modulate levels of LSD1 protein, we transfected LSD1-directed short hairpin RNA 

(shRNA) constructs into UF1 cells and monitored knockdown by western blot and qPCR. We 

used two independent shRNA constructs that efficiently downregulated LSD1 mRNA and 

protein levels. 

As shown in Figure 20, both shRNAs effectively reduced the protein and mRNA levels of 

LSD1 compared with control shRNA (Figure 20A, B).  

Knock-down of LSD1 led to a significant cell growth inhibition of UF1 cells (Figure 21).  
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Figure 20. LSD1 depletion in UF1 cells. (A) Analysis of LSD1 mRNA relative levels in UF1 cells, 
transduced with the indicated lentiviral vectors. Values were normalized against GAPDH and referred 
to SCR. (B) Immunoblot analysis of LSD1 expression in UF1 cells. Vinculin was used as a loading 
control. 

 

                                  

Figure 21. LSD1 depletion inhibits proliferation of UF1 cells. Relative proliferation of UF1cells 
infected with SCR or LSD1 shRNAs. Data are presented as mean of triplicates ± SD. P value < 0.05 
(✱), P < 0.01 (✱ ✱) and P <0.001 (✱ ✱ ✱). 
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We next investigated the effect of LSD1 depletion in cell differentiation. Wright-Giemsa 

staining revealed alteration by LSD1 depletion in cell morphology from leukemic myeloblasts 

to differentiated cells which was concurrent with the increased expression of differentiation 

marker (Figure 22A, B).  

 

Figure 22. LSD1 depletion promotes differentiation in UF1 cells. (A) Representive light micrograph 
show Wright-Giemsa staining of UF1 cells infected with indicated shRNA. (B) LSD1 depletion 
induces expression of the CD11b gene. Values were normalized against GAPDH and referred to SCR. 

 

Like MC-treated cells, KD of LSD1 led to G1 cell cycle arrest (Figure 23A). PI and annexin 

V binding assays also demonstrated that some LSD1-KD cells underwent apoptosis (Figure 

23B). 
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Figure 23. LSD1 depletion in UF1 cells, induces cell cycle arrest and apoptosis. (A) Summary of 
cell-cycle status of UF1 cells infected with indicated shRNA. (B) percentage of live and apoptotic UF1 
cells infected with indicated shRNA.  

 

Together these data demonstrate on-target effects of MC as LSD1 depletion effectively 

mimics the effect of LSD1 inhibition. 

Underlying molecular mechanism for the different responses of NB4 and 

UF1 APL cell lines to LSD1 inhibition 

To dissect underlying molecular mechanisms for different response to LSD1 inhibition in NB4 

and UF1 cells, we performed a genome-wide expression analysis comparing basal gene 

expression profiling of the two cell lines. While RNA-seq results showed high correlation in 

gene expression profiling in both APL cell lines, 86 genes and 101 genes were found up and 

down-regulated respectively in UF1 cells in comparison with NB4 cells (Figure 24, 25).  
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Figure 24. Gene expression profiling in UF1 and NB4 cells. (A) high correlation in gene expression 
profiling in UF1 and NB4 cells. (B) There are 86 genes and 101 genes up and down-regulated 
respectively in UF1 cells compared with NB4 cells. 

 

Figure 25. 86 and 101 genes up and down-regulated respectively in UF1 cells compared with NB4 
cells. Heatmap representation of gene expression in UF1(2 replicates) compared with NB4 cells. The 
data are presented as the average log2 fold change. The magnitude of the changes is indicated by a 
color scale, with shades of red indicating increase and shades of blue indicating decrease in expression.  
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Additionally, we validated the RNA-seq results by qRT-PCR for two upregulated genes, KIT, 

p21 and two downregulated genes, CCL5 and BMP2 (Figure 26).   

 

Figure 26. Validation of the RNA-seq results by qRT-PCR.  (A, B) Expression of KIT, p21, CCL5 
and BMP2 were measured in UF1 and NB4 cells by real-time RT-qPCR. Values were normalized to 
GAPDH. 

One of those up-regulated genes was CDKN1A (p21) (Figure 27), and this high level of p21 

was further confirmed by qRT-PCR (Figure 26). In addition, as illustrated in Figure 27, p21 

were further upregulated in UF1 cells but not in NB4 cells after treatment with MC (Figure 

27). 

 

Figure 27.UF1 cells expressed high level of p21 compared with NB4 cells. Snapshot of the p21 gene 
and its expression (RNA-Seq tracks in blue) in UF1 and NB4 cells treated with DMSO (control) or MC 
for 24 hours. Tracks were obtained using MACS and scaled to the same sequencing depth using 
custom scripts. 
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High level of p21 in DMSO-treated UF1 cells, is consistent with the fact that UF1 cells are in 

higher percentage in G1 phase and lower growth rate compared with NB4 cells. Furthermore, 

we observed that LSD1 inhibition leads to further p21 expression in UF1 cells, suggesting that 

the induction of p21 was associated with the induction of G1 phase arrest and inhibition of cell 

growth.  

LSD1 inhibition induced expression of myeloid differentiation markers 

To investigate the transcriptional changes caused by LSD1 inhibition, we performed RNA- 

sequencing in UF1 cells in the absence or presence of the LSD1 inhibitor MC. Treatment with 

MC for 24 hours results in a number of genes that were consistently and significantly altered 

(>2-fold change). Consistent with the role of LSD1 in transcriptional repression, almost all 

genes that expression changes upon LSD1 inhibition were upregulated (Figure 28A) and 90% 

of thease genes were LSD1 target genes. LSD1 inhibition markedly downregulated the 

expression of proteinas 3 (PRTN3), which is involved in the differentiation arrest of leukemic 

cells and are highly expressed under undifferentiated conditions. PRTN3 also is one of the 

tumour-associated antigens (TAAs). It has been reported that the expression of TAAs might 

play a critical role in the control of minimal residual disease (MRD) in acute myeloid 

leukemia (AML). 

Given the potentiation of differentiation observed upon treatment with MC; one prediction 

would be that LSD1 is involved in controlling the expression of genes required for 

hematopoietic differentiation. LSD1 inhibition increased expression of genes involved in 

myeloid differentiation, such as CD86, CD53, CD34, CD11b and LY96 (Figure 28B-E).  
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Figure 28. LSD1 inhibition induced expression of myeloid differentiation markers. (A) gene 
expression changes in UF1 cells upon treatment with MC for 24 hours. (B, C, D,E) Snapshot of the 
CD86 gene (B), CD34 gene (C), CD53 gene (D) and CD11b gene (E) and their expression (RNA-Seq 
tracks in blue) in UF1 cells treated with DMSO (control) or MC for 24 hours. Tracks were obtained 
using MACS and scaled to the same sequencing depth using custom scripts. 

 

To further investigate the mechanisms of LSD1 efficacy in UF1 cells, epigenetic changes in 

response to MC were evaluated. LSD1 inhibition is predicted to be associated with increase in 

H3K4 methylation and since it has been shown that there is interplay between histone 

acetylation and methylation; therefore, changes in the levels of H3K4me2 and H3K27ac were 

evaluated by ChIp-sequencing studies in the absence and presence of MC. Although we found 

no genome-wide increase in H3K4me2 in response to LSD1 inhibitor, we found unique 

increase in H3K4me2 and specially H3K27ac at promoter of myeloid-differentiation 

associated genes (Figure 29A, B). Overall, these results suggest that LSD1 inhibition 
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increases the H3K4me2 and H3K27ac at promoter of myeloid-differentiation-associated genes 

and increases their expression.  

 

Figure 29. Gene-specific increases in H3K4me2 and H3K4ac induced by treatment with MC. (A) 
Increases in H3K4me2 and H3K27ac at promoter of LY96 gene upon MC treatment. (B) Increases in 
H3K4me2 and H3K27ac at promoter of CD86 gene upon MC treatment. SE is indicated by horizontal 
bars. 

 

Growth inhibition and cell differentiation mediated by LSD1 inhibition is 

P21-dependent in UF1 cells 

To evaluate the direct role of p21 expression on cell growth inhibition and differentiation in 

UF1 cell treated with MC, knockdown of p21 was performed by using two specific shRNA 

constructs. As shown in Figure 30, p21 RNA and protein levels were reduced by 80% and 

60% in UF1 cells infected with shRNA #1 and shRNA #2 respectively, compared with control 

(Figure 30A, B). ShRNA #1 was used for further experiments because of its greater 

effectiveness. 
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Figure 30. P21 depletion in UF1 cells. (A) Immunoblot analysis of p21 expression in UF1 cells 
infected with indicated shRNA. Tubulin was used as a loading control. (B) Analysis of p21 mRNA 
relative levels in UF1 cells, transduced with the indicated lentiviral vectors. Values were normalized 
against GAPDH and referred to SCR.  

 

 

 

In p21KD-UF1 cells, there was a decrease in the G1 phase population when compared with 

control cells, with an increase of S phase cells, suggesting that the presence of p21 at its 

constitutive levels exerts a modest inhibitory effect regulating G1/S transition in UF1 cells 

(Figure 31). This effect was corroborated by a trend toward increased cell proliferation in 

p21-KD UF1 cells (Figure 32). 
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Figure 31. Suppression of p21 decrease the G1 phase population. (A, B, C) Cell cycle analysis of 
UF1 cells infected with control siRNA (SCR), and siRNA targeting p21. (A) SCR siRNA (B) 1st p21-
siRNA (C) 2nd p21-siRNA. (D) Summary of cell-cycle status of UF1 cells infected with indicated 
shRNA. 

 

The results of cell viability demonstrated that p21 acts as a key regulator of the MC-induced 

cell growth inhibition since knockdown of p21 reversed the antiproliferative activity of LSD1 

inhibitor (Figure 32).  
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Figure 32. Suppression of p21 rescued UF1cells from cell growth inhibition induced by inhibition 
of LSD1. Relative proliferation of UF1cells stably transduced with either control shRNA (SCR) or 
shRNA targeting p21 following treatment with MC or DMSO. Data are presented as mean of 
triplicates ± SD. P value < 0.05 (✱), P < 0.01 (✱ ✱) and P <0.001 (✱ ✱ ✱). (NI: Not Infected). 

 

 

Cell cycle and morphologic analysis in UF1 cells showed that MC induced a G1 phase arrest 

and cell differentiation but knockdown of p21 rescued UF1 cells from these effects induced by 

LSD1 inhibitor (Figure 33A, B). 
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Figure 33. Suppression of p21 rescued UF1cells from induction of differentiation and cell cycle 
arrest induced by inhibition of LSD1. (A) Representive light micrograph show Wright-Giemsa 
staining of UF1 cell stably transduced with either control shRNA (SCR) or shRNA targeting 
p21following treatment with MC or DMSO. (B)  Summary of cell-cycle status of UF1 cells stably 
transduced with either control shRNA or shRNA targeting p21 following treatment with MC or 
DMSO. (NI: Not Infected). 

 

Together, these results indicate that suppression of p21 inhibits the G1 cell cycle arrest caused 

by MC. This finding of inhibition was supported by the higher rate of proliferation observed in 

p21KD cells treated with MC compared with corresponding control cells. Hence, repression of 

p21 by LSD1 promotes cell cycle progression. 

LSD1 inhibition led to further upregulation of P21 protein level but not in p21KD cells and 

p21 shRNA could suppress p21 induction under these conditions (Figure 34A). This 

upregulation was further confirmed by comparing RNA-seq results before and after LSD1 

inhibition (Figure34B). 
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Figure 34. Suppression of p21 inhibits the p21 induction induced by inhibition of LSD1. (A) 
Immunoblot analysis of p21 expression in UF1 cells stably transduced with either control shRNA 
(SCR) or shRNA targeting p21 following treatment with MC or DMSO. Tubulin was used as a loading 
control. (B) Snapshot of the p21 gene and its expression (RNA-Seq tracks in blue) in UF1 and NB4 
cells treated with DMSO (control) or MC for 24 hours. Tracks were obtained using MACS and scaled 
to the same sequencing depth using custom scripts. 

 

Overall these results suggest that p21 expression and its induction is associated with cell 

growth inhibition, cell differentiation and G1 phase arrest mediated by LSD1 inhibitor and 

knockdown of p21 notably suppressed these phenotypes. 

Overexpression of p21 sensitizes resistant cells to LSD1 inhibition 

Parallel to the knockdown experiments in UF1 cells, gain of function studies were also carried 

out to verify the role of p21. We thus generated a p21KD-UF1 cells that stably overexpressed 

p21 and the corresponding control cell line (infected with an empty vector). Since our p21-HA 
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plasmid contained GFP as a reporter, we were able to evaluate the effect of MC in the cells 

expressing the highest levels of p21 by sorting out the GFP positive population. We then 

performed cell growth and differentiation assays by treating control and p21-overexpressing 

cells with MC. Restored expression of p21 increased cell growth inhibition and G1 cell cycle 

arrest following MC administration (Figure 35). 

 

Figure 35. Suppression of p21 rescued UF1cells from cell growth inhibition and cell cycle arrest 
induced by inhibition of LSD1 and these effects reversed by restored expression of p21. 
(A)Relative proliferation of UF1cells stably transduced with shRNA targeting p21 following 
transfection with empty or p21 expression vector following treatment with MC or DMSO. Data are 
presented as mean of triplicates ± SD. (B) Summary of cell-cycle status of UF1 cells stably transduced 
with shRNA targeting p21 following transfection with empty or p21 expression vector following 
treatment with MC or DMSO. P value < 0.05 (✱), P < 0.01 (✱ ✱) and P <0.001 (✱ ✱ ✱). (NI: Not 
Infected). 

 

Morphology evaluation of treated cells showed that p21 overexpression increased the cell 

differentiation potential following MC administration. On the other hand, p21 overexpression 

did not change the differentiation status in basal conditions. It should be noticed that, in the 

absence of MC, the amount of differentiated cells in cells infected with empty plasmid is 

already low (Figure 36). 
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Figure 36. Suppression of p21 rescued UF1 cells from induction of differentiation induced by 
inhibition of LSD1. Representive light micrograph show Wright-Giemsa staining of UF1 cells stably 
transduced with shRNA targeting p21 following transfection with empty or p21 expression vector 
following treatment with MC or DMSO. (NI: Not Infected). 

 

 Given the identified role for p21, we sought that we can sensitize NB4 cells to MC by 

overexpression of p21. To this end, we generated a NB4 cells that stably overexpressed p21 

and the corresponding control cell line (infected with an empty vector). Then cells were 

treated with MC for a six-day time course. Consistent with observed phenotype in UF1 cells, 

p21 overexpression increased MC-induced differentiation, cell growth arrest and G1 cell cycle 

arrest (Figure 37).   
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Figure 37. Overexpression of p21 sensitize NB4 cells to LSD1 inhibition. (A) Relative proliferation 
of NB4 cells stably transduced with empty or p21 expression vector following treatment with MC or 
DMSO. Data are presented as mean of triplicates ± SD. (B) Summary of cell-cycle status of NB4 cells 
stably transduced with empty or p21 expression vector following treatment with MC or DMSO. (C) 
Representive light micrograph show Wright-Giemsa staining of UF1 cells stably transduced with 
empty or p21 expression vector following treatment with MC or DMSO. P value < 0.05 (✱), P < 0.01 
(✱ ✱) and P <0.001 (✱ ✱ ✱). 

 

Overall, these genetic rescue experiments demonstrate that WT p21 mediates increased MC-

induced cell cycle arrest, cell growth inhibition and cell differentiation. 

Pharmacological induction of p21 sensitizes resistant cells to LSD1 

inhibition 

The efficacy of LSD1 inhibitor as a single agent is limited to a few cell lines. Given the 

identified role for p21, we reasoned that we can sensitize a resistant cell line (such as NB4 

cells) to LSD1 inhibitor by p21 induction through drugs. We used HDAC inhibitors, well 

known to lead to an upregulation of p21. NB4 cells were treated with two HDAC inhibitors, 

Vorinostat (SAHA) and Trichostatin A (TSA) for a short time to induce p21 expression. 

Finally, cells were treated with MC (Figure 38A). P21 upregulation by HDAC inhibitors was 

comparable with the basal level of p21 in UF1 cells (Figure 38C).  
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Figure 38. Pharmacological induction of P21 sensitizes NB4 cells to LSD1 inhibition. (A) 
Schematic representation of co-treatment of HDACis with LSD1 inhibitor in NB4 cells. (B) Analysis 
of p21 mRNA relative levels in UF1 cells, transduced with the indicated lentiviral vectors. Values were 
normalized against GAPDH and referred to SCR. (C) Analysis of p21 mRNA relative levels in UF1 
cells, transduced with either control shRNA (SCR) or shRNA targeting p21 following treatment with 
SAHA, TSA or DMSO. 

 

 

While SAHA and TSA treatment with relatively lower concentrations and short time were 

well tolerated, p21 induction by HDAC inhibitors sensitized NB4 cells to LSD1 inhibitor 

(Figure 39).  
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Figure 39. P21 induction by HDACis sensitizes NB4 cells to LSD1 inhibitors.  Relative proliferation 
of NB4 cells stably transduced with either control shRNA (SCR) or shRNA targeting p21 following 
treatment with SAHA or TSA for 24 h following treatment with MC or DMSO. Data are presented as 
mean of triplicates ± SD. P value < 0.05 (✱), P < 0.01 (✱ ✱) and P <0.001 (✱ ✱ ✱). 

 

This combination therapy inhibited cell proliferation, induced G1 phase arrest and promoted 

cell differentiation and knockdown of p21 significantly decreased the effects of this 

combination therapy (Figure 39, 40).  
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Figure 40. P21 induction by HDACis sensitizes NB4 cells to LSD1 inhibitors.  (A) Representive 
light micrograph show Wright-Giemsa staining of NB4 cells stably transduced with either control 
shRNA (SCR) or shRNA targeting p21 following treatment with SAHA or TSA for 24 h following 
treatment with MC or DMSO. (B) Summary of cell-cycle status of NB4 cells stably transduced with 
either control shRNA (SCR) or shRNA targeting p21 following treatment with SAHA or TSA for 24 h 
following treatment with MC or DMSO. 

 

Collectively, these finding strongly support that induction of p21 sensitize resistant cells to 

LSD1 inhibitor. 

Effects mediated by LSD1 inhibition in non-APL AML and SCLC cell lines 

is p21-dependent 

To broaden our observation to other cancers, we performed additional experiment on two 

sensitive cell lines to LSD1 inhibitors, Kasumi cells which is an AML cell line with AML-

ETO chromosomal translocation and NCI-H69 which is small cell lung carcinoma (SCLC) 



 
	

123	

cell line [McGrath, 2016; Mohammad, 2015].  

Multiple days of treatment required to elicit the maximal effects of antiproliferative activity of 

MC in Kasumi cells (Figure 41). 

 

Figure 41. Suppression of p21 rescued Kasumi cells from cell growth inhibition induced by 
inhibition of LSD1. Relative proliferation of Kasumi cells stably transduced with either control 
shRNA or shRNA targeting p21 following treatment with MC or DMSO. Data are presented as mean 
of triplicates ± SD. P value < 0.05 (✱), P < 0.01 (✱ ✱) and P <0.001 (✱ ✱ ✱). (NI: Not Infected). 

 

 LSD1 inhibition increased the G1 cell population, promoted myeloid differentiation and 

induced p21 expression (Figure 42).  

To evaluate the direct role exerted by the activation of p21 in the MC-induced cell growth 

inhibition and cell cycle arrest, we performed knockdown of p21(Figure 43). To this end, 

Kasumi cells were infected with shRNA#1 because of its greater effectiveness (Figure 30). 
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Figure 42. Suppression of p21 rescued Kasumi cells from induction of differentiation, cell cycle 
arrest and p21 induction induced by inhibition of LSD1. (A)  Summary of cell-cycle status of 
Kasumi cells stably transduced with either control shRNA or shRNA targeting p21 following treatment 
with MC or DMSO. (B) Representive light micrograph show Wright-Giemsa staining of Kasumi cell 
stably transduced with either control shRNA (SCR) or shRNA targeting p21following treatment with 
MC or DMSO. (C) Immunoblot analysis of p21 expression in Kasumi cells stably transduced with 
either control shRNA (SCR) or shRNA targeting p21 following treatment with MC or DMSO. Tubulin 
was used as a loading control. (NI: Not Infected). 

  

 

Figure 43. P21 depletion in Kasumi cells. (A)  Analysis of p21 mRNA relative levels in Kasumi cells, 
transduced with either control shRNA (SCR) or shRNA targeting p21. Values were normalized against 
GAPDH and referred to SCR. (B) Immunoblot analysis of p21 expression in Kasumi cells. Tubulin 
was used as a loading control.  
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Like UF1 cells, knockdown of p21 rescued Kasumi cells from the cell growth inhibition, G1 

cell cycle arrest and differentiation mediated by MC (Figure 41, 42).  

SCLC is a highly prevalent, rarely cured tumor type representing approximately 15% of all 

lung cancers. It has been shown that some SCLC cell lines are sensitive to LSD1 inhibition 

which prompted us to evaluate the role of p21 in effect of LSD1 inhibitor in this type of 

cancer. NCI-H69 cells were treated for up to 10 days with MC, growth inhibition was not 

detected until 4 days of treatment, after which antiproliferative activity was apparent (Figure 

44A). Like Kasumi cells multiple days of dosing led to G1 phase arrest (Figure 44 B).  

 

Figure 44. Suppression of p21 rescued NCI-H69 cells from cell growth inhibition and cell cycle 
arrest induced by inhibition of LSD1. (A) Relative proliferation of NCI-H69 cells stably transduced 
with either control shRNA or shRNA targeting p21 following treatment with MC or DMSO. Data are 
presented as mean of triplicates ± SD. (B) Summary of cell-cycle status of NCI-H69 cells stably 
transduced with either control shRNA or shRNA targeting p21 following treatment with MC or 
DMSO. P value < 0.05 (✱), P < 0.01 (✱ ✱) and P <0.001 (✱ ✱ ✱). (NI: Not Infected). 

 

To check the impact of LSD1 inhibitor in SCLC differentiation, the expression of 

neuroendocrine marker gene was interrogated in NCI-H69 cells. LSD1 inhibitor 

downregulated GRP expression in a time dependent manner. This loss of expression of GRP, a 
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marker that reflects the neuroendocrine origin of SCLC, is reminiscent of the differentiation 

state (Figure 45).  

 

Figure 45. Suppression of p21 rescued NCI-H69 cells from induction of differentiation induced by 
inhibition of LSD1. Analysis of GRP mRNA relative levels in NCI-H69 cells stably transduced with 
either control shRNA or shRNA targeting p21 following treatment with MC or DMSO.  Values are 
normalized against GAPDH and referred to SCR.  (NI: Not Infected). 

 

 

Like Kasumi cells, knockdown of p21in NCI-H69 (Figure 46), rescued cells from cell growth 

inhibition, induction of differentiation and cell cycle arrest mediated by MC (Figure 44,45).  
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Figure 46. Suppression of p21 inhibits the p21 induction induced by inhibition of LSD1. (A)  
Analysis of p21 mRNA relative levels in NCI-H69 cells, transduced with either control shRNA (SCR) 
or shRNA targeting p21. Values are normalized against GAPDH and referred to SCR. (B) Immunoblot 
analysis of p21 expression in NCI-H69 cells stably transduced with either control shRNA (SCR) or 
shRNA targeting p21 following treatment with MC or DMSO. Tubulin was used as a loading control. 
(NI: Not Infected). 

 

LSD1 regulates p21 expression 

The finding reported above strongly suggest that LSD1 suppress the expression of p21. To 

further understand the regulation of p21 by LSD1, we took advantage of chromatin 

immunoprecipitation (ChIP) coupled to high-throughput DNA sequencing (ChIP-seq) using 

specific antibodies against LSD1, H3K4me2 and H3K27ac, in NB4 and UF1 cells treated with 

DMSO or MC.  

We could identify three regulatory elements defined as LSD1, H3K4me2 and H3K27ac peaks 

in the p21 locus. Element A is the promoter of p21 while element B and element C were 

thought to be putative enhancers because of location far from the gene body and elevated 

H3K27ac peaks, which are a marker of active enhancers (Figure 47). The analyses of LSD1-
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ChIP sequencing data showed the differential deposition patterns, as shown by the genomic 

snapshots retrieved by UCSC genome browser in UF1 and NB4 cells. 

 

 

Figure 47. LSD1 regulates p21 expression.  ChIP-seq profiles of LSD1, H3K4me2 and H3K27ac in 
the CDKN1A (p21) locus in UF1 and NB4 cells treated with DMSO or MC.SE is indicated by 
horizontal bars. 

 

LSD1 was enriched at the promoter (element A) and element B in both cells While on element 

C, LSD1 was only enriched in UF1 cells.  Consistent with the high basal level of p21 in UF1 

cells the level of H3K27ac at promoter (element A) was higher compared with NB4 cells and 

MC treatment significantly increased the H3K27ac level (more than 2 fold) specially after 12 

hours’ treatment in UF1 cells but not in NB4. Similarly, MC treatment increased the level of 
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H3K27ac on element B and element C in UF1 cells but not in NB4 cells. To validate the 

ChIP-seq results, ChIP-qPCR was performed checking the level of LSD1, H3K27ac and 

H3K4me2 before and after MC treatment on all the elements and neg region as a negative 

control. These ChIP-qPCR confirmed that LSD1 only occupied the element C in UF1 cells 

(Figure 48). 

 

Figure 48. ChIP-qPCR occupancy analysis of LSD1 on p21 genomic loci in UF1 and NB4 cells 
treated with DMSO or MC for 24 hours. (For each element we used two different primers). 

 

Consistent with the ChIP-seq results, MC treatment increased the level of H3K27ac at element 

A, B and C in UF1 cells but not in NB4 cells (Figure 49). One mechanism proposed to 

explain the interplay between histone acetylation and methylation is the physical association 

of HDAC1 and LSD1 by which each enzyme influences the activity of the other. As both 

demethylation and deacetylation are essential epigenetic mechanisms in controlling gene 

transcription, interplay between deacetylation and demethylation is a logical scenario. Indeed, 
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past studies have indicated that optimal deacetylation of nucleosomes requires the 

demethylase activity of LSD1. 

 

Figure 49. ChIP-qPCR occupancy analysis of H3K27ac on p21 genomic loci in UF1 and NB4 cells 
treated with DMSO or MC for 12h, 24h and 36h. (For each element we used two different primers). 

 

Finally, we analyzed the dimethylation of histone H3 on lysine 4 (H3K4me2), on element A, 

B and C in the presence of DMSO or MC (Figure 50). In contrast to H3K27ac, no significant 

difference in the level of the active mark, H3K4me2, was detected after MC treatment on 

element A and B but on element C, MC treatment increased the level of H3K4me2 only in 

UF1 cells.  



 
	

131	

 

Figure 50. ChIP-qPCR occupancy analysis of H3K4me2 on P21 genomic loci in UF1 and NB4 
cells treated with DMSO or MC for 12h, 24h and 36h. (For each element we used two different 
primers). 

 

Overall these results demonstrate that LSD1 associated with the p21 promoter and putative 

enhancers and can regulate p21 expression. Furthermore, the element C was only enriched for 

LSD1 occupancy in UF1 cells compared with NB4 cells and MC treatment increased the level 

of H3K4me2 and H3K27ac on this element. NB4 cells were resistant to MC-mediated growth 

inhibition, in which expression of p21 was not induced after exposure to MC. Induction of 

H3K27ac at promoter and putative enhancers as well as H3K4me2 on element C were not 

prominent in NB4 cells after exposure to MC. This may be a reason why MC failed to induce 

expression of p21 in NB4 cells.  

 

 



 
	

132	

P21 by binding to CDK sensitize cells to LSD1 inhibitor 

P21-mediated growth inhibition depends on two non-overlapping structural domains: PCNA 

binding domain and CDK binding domain [Abbas, 2009] (Figure 51A). We performed a 

detailed analysis of growth inhibition mediated by LSD1 inhibition. On the basis of previous 

studies that have identified p21 residues critical for interaction with CDKs and PCNA in the 

amino- and carboxy-terminal halves of the protein respectively, we used p21 mutants impaired 

in either one or the other interaction. 

To this end, p21 was knockdown in UF1 cells, since the NB4 cells express very low levels of 

endogenous p21, can thus be considered functionally equivalent to p21-/- cells. Then both NB4 

and UF1 cells were infected with the three expression vectors for full length of p21 (P21 WT), 

p21 CDK mutant (CDKm) and p21 PCNA mutant (PCNAm) following treatment with MC or 

DMSO (Figure 51B).  

In a mutant called p21CDKm, referring to the loss of interaction with CDKs, residues 

tryptophane 49, phenylalanine 51 and aspartic acid 52 were replaced by arginine, serine, and 

alanine respectively. In the mutant called p21PCNAm, residues methionine 147, aspartic acid 

149 and phenylalanine 150 were mutated to alanine in order to abolish the interaction with 

PCNA.  A triple hemagglutinin (HA) tag was also introduced in frame with the p21 sequence 

at the carboxy-terminus to allow the detection of the protein products and to determine their 

intracellular localization (Figure 51C).  
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Figure 51. P21 has two non-overlapping structural domains: PCNA binding domain and CDK 
binding domain. (A, B) Schematic representation of experiment. (C) Expression constructs of p21-
WT, p21-CDK mutant and p21-PCNA mutant. 

 

 

LSD1 inhibitor in NB4 and UF1cells which were infected with p21WT and PCNAm 

expression vectors significantly led to cell cycle arrest, cell growth inhibition and induction of 

differentiation but had less effect in cells were infected by CDKm expression construct 

(Figure 52, 53).  
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Figure 52. P21 by binding to CDK leads to cell cycle arrest and sensitize cells to LSD1 inhibitor. 
(A)Relative proliferation of UF1cells stably transduced with shRNA targeting p21 following 
transfection with empty or p21-WT, p21-PCNAm, p21- CDKm expression vector following treatment 
with MC or DMSO. Data are presented as mean of triplicates ± SD. (B) Summary of cell-cycle status 
of UF1 cells stably transduced with shRNA targeting p21 following transfection with empty or p21-
WT, p21-PCNAm, p21- CDKm expression vector following treatment with MC or DMSO. (C) 
Representive light micrograph show Wright-Giemsa staining of UF1 cell stably transduced with 
shRNA targeting p21 following transfection with empty or p21-WT, p21-PCNAm, p21- CDKm 
expression vector following treatment with MC or DMSO.  P value < 0.05 (✱), P < 0.01 (✱ ✱) and P 
<0.001 (✱ ✱ ✱). (NI: Not Infected). 
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Figure 53.  P21 by binding to CDK leads to cell cycle arrest and sensitize cells to LSD1 inhibitor. 
(A) Relative proliferation of NB4 cells stably transduced with empty or p21-WT, p21-PCNAm, p21-
CDKm expression vector following treatment with MC or DMSO. Data are presented as mean of 
triplicates ± SD. (B) Summary of cell-cycle status of NB4 cells stably transduced with empty or p21-
WT, p21-PCNAm, p21-CDKm expression vector following treatment with MC or DMSO. (C) 
Representive light micrograph show Wright-Giemsa staining of UF1 cell stably transduced with empty 
or p21-WT, p21-PCNAm, p21- CDKm expression vector following treatment with MC or DMSO. P 
value < 0.05 (✱), P < 0.01 (✱ ✱) and P <0.001 (✱ ✱ ✱). 

 

These results suggest that p21 by binding to CDK leads to cell growth inhibition and G1 cell 

cycle and sensitize resistant cells to LSD1 inhibitor. 

Forced cell cycle inhibition sensitizes resistant cells to LSD1 inhibitor 

We observed that p21 by binding to CDK leads to G1 cell cycle arrest and sensitizes resistant 

cells to LSD1 inhibitor which prompted us to evaluate a new combination therapy of CDK 

inhibitor with LSD1 inhibitor. To address this hypothesis, we used Palbociclib, a CDK4/6 

inhibitor in AML cell lines. To this end, we incubated NB4 cells with increasing 

concentrations of Palbociclib for 24 hours. Increase in G1 cell cycle arrest were observed after 
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24 hours’ exposure to Palbociclib in a dose dependent manner. While 50nM Palbociclib did 

not induce cell growth arrest but mediate cell-cycle arrest at G1-S checkpoint comparable to 

UF1 cells. Thus we decided to use 50 nM Palbociclib for further experiments (Figure 54). 

 

                                    

Figure 54. Palbociclib increased G1 phase in a dose dependent manner. NB4 cells were treated 
with Palbociclib at increasing concentration for 24 hours and then analyzed for viability (A) and cell 
cycle (B). 

 

NB4 cells were infected by p21 shRNA and 48 hours after sorting, GFP+ cells were treated 

with 50nM palbociclib for 24 hours to induce cell cycle arrest following treatment with MC 

for a six-days time course (Figure 55).  

Pretreatment with Palbociclib, increased percentage of cells population in G1 phase and 

sensitize NB4 cells to MC and this co-treatment significantly inhibited cell growth (Figure 

56).  

This results suggest that forced cell cycle inhibition sensitize resistant cells to LSD1inhibitor 

to inhibit cell growth, induce cell cycle arrest and differentiation. 



 
	

137	

 

Figure 55. Co-treatment of NB4 cells with LSD1 inhibitor and palbociclib. (A) Schematic 
representation of co-treatment of Palbociclib with LSD1 inhibitor in NB4 cells. (B) Analysis of p21 
mRNA relative levels in NB4 cells, transduced with the indicated lentiviral vectors. Values are 
normalized against GAPDH and referred to SCR. 

 

Figure 56. Force cell cycle inhibition sensitizes NB4 cells to LSD1 inhibitor. (A) Relative 
proliferation of NB4 cells stably transduced with either control shRNA (SCR) or shRNA targeting p21 
following treatment with Palbociclib for 24 h following co-treatment with MC or DMSO. Data are 
presented as mean of triplicates ± SD. (B) Summary of cell-cycle status of NB4 cells stably transduced 
with either control shRNA (SCR) or shRNA targeting p21 following treatment with Palbociclib for 24 
h following co-treatment with MC or DMSO. (C) Representive light micrograph show Wright-Giemsa 
staining of NB4 cells stably transduced with either control shRNA (SCR) or shRNA targeting p21 
following treatment with Palbociclib for 24 h following co-treatment with MC or DMSO. P value < 
0.05 (✱), P < 0.01 (✱ ✱) and P <0.001 (✱ ✱ ✱). 
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LSD1 inhibition in primary melanoma cells 

In order to validate our findings obtained in cell lines by using more sophisticated models, we 

performed additional experiments in human primary melanoma cells. We used six different 

primary melanoma cells according to their cell growth rate (doubling time) and the level of 

p21(Figure 57). 

    

Figure 57. Slow-cycling melanoma cells have high level of p21. Analysis of p21 mRNA relative 
levels in primary human melanoma cells. Values are normalized against GAPDH. 

 

 Mirroring the results in cell lines, primary cells that have high level of p21 and slower cell 

growth were more sensitive to MC compared with fast growing cells with low level of 

p21(Figure 58).  



 
	

139	

 

Figure 58. Slow-cycling melanoma cells are more sensitive to LSD1 inhibitor. Relative proliferation 
of primary human melanoma cells treated with MC or DMSO. Data are presented as mean of 
triplicates ± SD. P value < 0.05 (✱), P < 0.01 (✱ ✱) and P <0.001 (✱ ✱ ✱). 

 

 

Effects mediated by LSD1 inhibition in human primary melanoma cells is 

p21-dependent 

To determine whether the upregulation of p21 induced by MC contributes to growth and cell 

cycle arrest, we utilized RNA interference to suppress p21 induction. P21 was depleted 

efficiently with a lentivirally derived shRNA. In p21 KD melanoma cells, there was a slight 

but consistent decrease in the G1 phase population when compared with control cells, with an 
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increase of S phase cells, indicating that the presence of p21 at its constitutive levels exerts a 

modest inhibitory effect regulating the G1/S transition. This effect was corroborated by a trend 

toward increased cell proliferation in p21-depleted cells (Figure 59, 60).  

 

Figure 59. P21 depletion in Melanoma cells. (A) Analysis of p21 mRNA relative levels in melanoma 
cells, transduced with either control shRNA (SCR) or shRNA targeting p21. Values are normalized 
against GAPDH and referred to SCR. (B) Summary of cell-cycle status of melanoma cells infected 
with either control shRNA (SCR) or shRNA targeting p21. 

 

We then inhibited LSD1 in these stable cells and showed that p21 shRNA could suppress p21 

induction under these conditions. While in control cells MC treatment resulted in an increase 

of G1 phase population, in p21-Kd cells the G1 population slightly increased. The difference 

between the percentage of MC treated cells with and without p21 was significant (Figure 60).  
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Figure 60. Suppression of p21 rescued human primary melanoma cells from cell growth 
inhibition, cell cycle arrest and p21 induction induced by inhibition of LSD1. (A) Relative 
proliferation of melanoma cells stably transduced with either control shRNA or shRNA targeting p21 
following treatment with MC or DMSO. Data are presented as mean of triplicates ± SD. (B) Summary 
of cell-cycle status of melanoma cells stably transduced with either control shRNA or shRNA targeting 
p21 following treatment with MC or DMSO. (C) Immunoblot analysis of p21 expression in melanoma 
cells stably transduced with either control shRNA (SCR) or shRNA targeting p21 following treatment 
with MC or DMSO. Tubulin was used as a loading control. P value < 0.05 (✱), P < 0.01 (✱ ✱) and P 
<0.001 (✱ ✱ ✱). 

 

Together, these data indicate that suppression of p21 inhibits the G1 cell cycle arrest caused 

by LSD1 inhibition. Hence, repression of p21 by LSD1 promotes cell cycle progression. 

Forced cell cycle inhibition sensitize resistant primary melanoma cells to 

LSD1 inhibitor 

To determine if cell cycle inhibition sensitize resistant melanoma cells to MC, the resistant 

cells were pre-treated with Palbociclib. MC was administrated at 24 hours after adding 

Palbociclib, when G1 phase enrichment was achieved (Figure 61).  
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Figure 61. Co-treatment of melanoma cells with LSD1 inhibitor and palbociclib. Schematic 
representation of co-treatment of Palbociclib with LSD1 inhibitor in melanoma cells. 

The sensitization effect was observed when cells pre-treated with Palbociclib at dose that had 

minor effects in the single-agent treatment (Figure 62).   

 

Figure 62. Force cell cycle inhibition sensitizes resistant melanoma cells to LSD1 inhibitor. 
Relative proliferation of treated-melanoma cells with Palbociclib for 24 h following co-treatment with 
MC or DMSO. Data are presented as mean of triplicates ± SD. P value < 0.05 (✱), P < 0.01 (✱ ✱) and P 
<0.001 (✱ ✱ ✱). 

Taken together, our results indicate that forced cell cycle inhibition sensitizes resistant primary 

melanoma cells to LSD1 inhibitor.  
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Discussion 

Acute Myeloid Leukemia (AML) is a form of cancer that affects the myeloid blood cells 

produced in the bone marrow. AML is characterized by a rapid increase of immature blood 

cells that do not perform the normal function. In AML, myeloid progenitor cells in the bone 

marrow undergo a malignant transformation resulting in accelerated production of poorly 

differentiated myeloblasts that are not able to mature into more differentiated cell types but 

remain as immature cells [Estey& Dohner, 2006]. According to French-American-British 

(FAB) classification, AML has been classified into 8 subtypes (M0 to M7) defined by 

morphological, immune-phenotypic and cytochemical criteria [Bennett, 1976]. The different 

subclasses represent different states of maturation of the leukemic blast cells and what lineage 

that is engaged. Acute promyelocytic leukemias (APLs) represents 10-15% of AMLs in 

adults, characterized by a block of granulocytic differentiation and accumulation of 

promyelocytes in the bone marrow, blood and other extramedullary tissues. Although five 

different chromosome translocations have been associated with APL, about 99% of APL cases 

are PML-RARα positive [Saeed, 2011; Minucci, 2002; Mehdipour, 2017; Matthews, 2015]. 

The fusion product, PML-RARα, encodes a functionally altered transcription factor that 

recruits CoREST and other corepressor complexes at retinoic acid (RA) target genes, which in 

turn silence genes crucial for hematopoietic differentiation [Lokken& Zeleznik-Le, 2012]. The 

standard treatment regimen for non-promyelocytic AML includes chemotherapy with 

combination of different anti-cancer drugs depending on the leukemia subtype. Given the 

unsatisfactory clinical outcome associated with standard chemotherapy in acute myeloid 

leukemia (AML), there is an essential need for new targets. All-trans retinoic acid (ATRA) 

elicits complete remission by binding to RARα portion of PML-RARα-driven APLs at 

pharmacological doses, and has been successfully used in treatment of APLs. Pharmacological 
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dose of RA triggers the dissociation of co-repressor complexes by PML-RARα 

conformational change and degradation, promoting cell differentiation. However, a major 

obstacle to successfully treating APL patients is retinoic acid resistance, which often 

associated with mutations in the RARα moiety of PML-RARα [Gallagher, 2002]. Thus other 

clinical approaches, that could enhance ATRA clinical effect, like treatment with epi-drugs 

such as LSD1 inhibitors may be beneficial.  

LSD1 is a flavin-containing amine oxidase that act as a transcriptional co-repressor, as a part 

of CoREST complex [Shi Y, 2004; Forneris, 2005; Edmondson, 2007]. Deregulation of LSD1 

is a common feature of a number of cancers, including lung, breast, melanoma and 

hematological malignancies. Thus LSD1 has gained great interest for its use as anticancer 

therapeutic [Hosseini, 2017]. LSD1 shares a sequence similarity with MAO-A and MAO-B, 

therefore soon after its discovery, well-known MAOs inhibitors were tested on LSD1 to 

evaluate their activity. Among them was tranylcypromine (TCP), which previously used in 

treatment of depression. TCP inhibits LSD1 by covalently binding to FAD, forming a covalent 

adduct with the flavin ring as found in MAOs. Given the lack of potency and specificity of 

TCP versus LSD1, a number of TCP analogues have been developed. Despite the similarity in 

sequence and catalytic activity of LSD1 with other FAD-dependent amine oxidases, the 

substrate-binding subdomain is much larger than in other MAO-A and MAO-B. In this view 

many groups have made peripheral modification to the surrounding scaffold to improve 

affinity for LSD1 and increase selectivity to LSD1 over other MAOs. Our lab, in collaboration 

with prof. Antonello Mai and prof. Andrea Mattevi, previously developed a new compound 

working as an LSD1 specific inhibitor, MC [Binda, 2010]. This compound is an analog of 

tranylcypromine/Parnate (TCP) with increasing larger substituents that contained a mix of 

hydrophobic and hydrophilic group. By taking advantage of this inhibitor, we have previously 

shown that LSD1 inhibition sensitizes NB4 cells to RA treatment and induces cell growth 
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arrest and differentiation when combined with a physiological concentration of RA (RA low) 

[Binda, 2010]. Moreover, LSD1 inhibitors unlocked the ATRA-driven therapeutic response in 

non-APL AML by increasing H3K4me2 level and reactivating the retinoic acid signaling 

pathway [Schenk, 2012].  

Starting from these observations, we hypothesized that LSD1 inhibition sensitize UF1 cells, 

that were established from a patient who was clinically resistant to RA treatment and harbor a 

point mutation in ligand binding domain (LBD) of RARα moiety. Surprisingly LSD1 

inhibition in UF1 cells led to cell growth inhibition, induced cell differentiation and promoted 

G1 phase arrest, being active as a single agent. Additionally, we found that MC treatment 

inhibits colony forming activity of UF1 cells.  

As mentioned above, pharmacological doses of RA (RA high) induces differentiation of APL 

cells by PML-RARα fusion protein degradation, which has been proposed as a crucial goal in 

order to eradicate APL. We observed that LSD1 inhibition induces cell differentiation without 

inducing PML-RARα degradation. Thus LSD1 inhibition can overcome PML-RARα 

expression to reach differentiation and growth arrest of APL-UF1 cells.  

Moreover, depletion of LSD1 in UF1 cells by functional knock-down approach inhibited cell 

proliferation, induced cell cycle arrest and differentiation suggesting on-target effects of MC 

as LSD1 depletion effectively mimics the effect of LSD1 inhibitor.  

Considering that cancer is so diverse and clinical outcome predictions often vary from patient 

to patient, a considerable amount of effort is being invested to discover molecular biomarkers 

that can categorize cancer patients with distinct clinical outcomes to expand prognostic 

capabilities. These molecular biomarkers can play roles before cancer diagnosis, at diagnosis 

and after diagnosis for selecting additional therapy. These molecular biomarkers could also 
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potentially improve clinical prognosis and allow for the development of better therapeutic 

agents.  

Given the unsatisfactory clinical outcome associated with standard chemotherapy in some 

cancers such as acute myeloid leukemia (AML) and melanoma treatment, there is an essential 

need for new targets. Recently LSD1 have gained great interest for their use as anticancer 

therapeutics. However, the efficacy of LSD1 inhibitors is limited to a substantial subset of 

cancer cells. Thus, identification of good predictive biomarkers for sensitivity to treatment 

with LSD1 inhibitors will be of great value in determining the most suitable therapeutic 

setting.  

To this end, we performed a genome-wide expression analysis comparing gene expression 

profiling of the two cell lines which differently response to LSD1 inhibition, before and after 

MC treatment. Our RNA-seq results, comparing gene expression of UF1 cells with NB4 cells, 

showed high correlation in basal gene expression profiling. Though, there are 86 and 101 

genes which up regulated and down regulated respectively in UF1 cells in comparison with 

NB4 cells. One of those upregulated genes was p21 (CDKN1). High level of p21 in UF1 cells, 

is consistent with the fact that UF1 cells are in higher percentage in G1 phase and lower 

growth rate. Furthermore, we observed that LSD1 inhibition led to further p21 expression in 

UF1 cells, suggesting that the induction of p21 was associated with the induction of G1 phase 

arrest and inhibition of cell growth. To further explore this association, p21 has been knocked 

down to check the cell viability after LSD1 inhibition. Our results showed that Knockdown of 

p21, rescued UF1 cells from cell growth inhibition, cell differentiation and G1 phase arrest 

mediated by LSD1 inhibitor. Furthermore, rescue experiments demonstrated that p21 mediates 

increased MC-induced cell cycle arrest, cell growth inhibition and cell differentiation.  

we extended our study to non-APL AML and SCLC cell lines by using two sensitive cell lines 
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to LSD1 inhibitors, Kasumi and NCI-H69 cells. Similar to APL cells, Knock-down of p21 in 

non-APL AML and SCLC cell lines, rescued cells from the effects of LSD1 inhibitor. As 

compared with other cyclin-dependent kinase inhibitor genes, p21 is a more general inhibitor 

that targets multiple CDKs, which may explain why it is that repression of this particular 

target so potently rescues the LSD1 inhibitor phenotype [Lim & Kaldis, 2013]. 

Activation of p21 occurring upon LSD1 inhibition appears p53-independent as these cell line 

contains mutated p53 [Krejci, 2008; Ito, 2004]. Overall, increased expression of P21 mediated 

by LSD1 inhibitor, is associated with differentiation and cell growth inhibition in cancer cells 

and p21 provoked by LSD1 inhibitors could serves as a biomarker to verify pharmacological 

activity and a prognostic tool reflecting responsiveness to LSD1i in the clinic. 

Given that the efficacy of LSD1 inhibitor as a single-agent are limited in some AML cell lines 

and also exhibit toxicity and intolerable in vivo activity in the mouse models of AML, we 

reasoned that we can sensitize resistant cells to LSD1 inhibitor by p21 induction through 

drugs. We used two HDAC inhibitors, Vorinostat (SAHA) and Trichostatin A (TSA) for a 

short time to induce p21 expression. While SAHA and TSA treatment with relatively lower 

concentrations and short time were well tolerated, p21 induction by HDAC inhibitors sensitize 

NB4 cells to LSD1 inhibitor. The sensitization effect was observed when cells pre-treated with 

HDACis at dose that had minor effects in the single-agent treatments.  

The transcriptional regulation of p21 has been extensively studied. P21 is a transcriptional 

target of p53 and plays a crucial role in mediating growth arrest when cells are exposed to 

DNA-damaging agents [el-Deiry, 1993; el-Deiry, 1994]. P53 activates p21 transcription via 

two consensus binding sites located at -2285 and -1394 base pairs upstream from the 

transcription initiation site. 
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However, it has been shown that p21 is up-regulated in cells where p53 is mutated or silenced, 

indicating that other transcription factors and other stimuli such as growth factors, hormones, 

intracellular signaling molecules are involved. Many transcription factors have been shown to 

regulate p21 expression, such as Sp1/3, Egr1, SALL2, KLF4, c-Myc, STAT 1/3 and Smad3/4 

[Gartel, 1999; Choi, 2008; Li, 2004; Mori, 2012; Xie, 1997; Gartel, 2000; Moustakas, 1998; 

Kitaura, 2000]. The regulation of chromatin structure such as DNA modifications and histone 

modifications has been described as a second level of transcriptional regulation for p21. DNA 

hypermethylation of the p21 gene has been reported in p21-silenced cells in some cancer types 

[Chen, 2000; Roman-Gomez, 2002]. Another epigenetic mechanism shown to regulate p21 

transcription is histone acetylation and methylation [Nian, 2008; Wang, 2008; Duan, 2005]. 

For more than a decade now, histone deacetylase inhibitors have been investigated for their 

ability to increase acetylation and promote expression of p21 gene. Here in this study we 

demonstrated that LSD1 regulates p21 expression by binding to promoter and putative 

enhancers of p21 gene. LSD1 inhibition substantially increased histone acetylation (H3k27ac) 

and H3K4me2 at promoter and enhancers of p21 gene. The increase in histone acetylation 

could be due to loss of HDAC1 at p21. One mechanism proposed to explain the interplay 

between histone acetylation and methylation is the physical association of HDAC1 and LSD1 

by which each enzyme influences the activity of the other. Indeed, past studies have indicated 

that optimal deacetylation of nucleosomes requires the demethylase activity of LSD1 [Lee, 

2006; Mendenhall, 2013]. Additionally, it has been previously shown that affecting one 

histone modifying enzyme can have effects on others. For example, Meng et al showed that 

treating ovarian cancer cells (SKOV3) with trichostatin A (TSA) and decitabine, HDAC and 

DNMT1 inhibitors respectively, lowered the expression levels of LSD1 and increased 

H3K4me2 levels [Meng, 2013]. Vasilatos et al also showed that knockdown of LSD1 

expression in breast cancer cells decreased mRNA levels of HDAC isozymes [Vasilatos, 



 
	

149	

2013]. 

NB4 cells were resistant to MC-mediated growth inhibition, in which expression of p21 was 

not induced after exposure to MC. Induction of H3K27ac as well as H3K4me2 at promoter 

and putative enhancers were not prominent in NB4 cells after exposure to MC. This may be a 

reason why MC failed to induce expression of p21 in NB4 cells. We also found a unique 

enhancer (element C) was only enriched for LSD1 occupancy in UF1 cells compared with 

NB4 cells and MC treatment increased the level of H3K4me2 and H3K27ac on this element. 

The precise mechanism to determine how LSD1 regulates p21 require further investigation 

using techniques that enable exploration of long-range chromatin interactions. Our observation 

that LSD1 inhibitor in synergy with HDAC inhibitors activates p21 expression further through 

enhancing acetylation at p21 suggests a potential approach to cancer therapy.  

P21 also known as cyclin-dependent kinase inhibitor 1 or CDK-interacting protein 1 (CIP1) or 

wild-type p53-activated factor (WAF1) is a protein that is encoded by the CDKN1A gene 

located on chromosome 6 (6p21.2) in the human genome [Harper, 1993; Shin, 2011]. CDK 

inhibitors are negative regulators of cell proliferation and are often deregulated in human 

cancers. The p21 protein binds and inhibits the activity of CDK4/6 complexes, cyclin E-CDK2 

and cyclin B-CDK1, and thus functions as a regulator of cell cycle progression at G1 and S 

phase (Figure 63) [Bunz, 1998; Chan, 2000; Charrier-Savournin, 2004]. These kinases 

responsible for the phosphorylation of the retinoblastoma (Rb) protein. Specifically, 

phosphorylation of Rb on Ser780 allows dissociation of the transcription factor E2F from the 

Rb/E2F complexes and the subsequent transcription of E2F target genes, which are 

responsible for the progression through the G1 and S phase transition [Kitagawa, 1996; 

Lundberg, 1998; Chen, 2009; Classon, 2002]. A unique feature of p21 that sets it apart from 

the other CdkIs is that it can also bind to PCNA, that is essential for replication mismatch 
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repair and DNA replication thus blocking both DNA replication and repair (Figure 61) 

[Abbas, 2009]. We showed that expression of the N-terminal region of p21 inhibits G1 cell 

cycle as efficiently as full length of p21 in both NB4 and UF1 cells and sensitize both NB4 

and p21-KD UF1 cells to MC treatment.  

 

Figure 63 P21 function. (A)P21-mediated growth inhibition depends on two non-overlapping 
structural domains: PCNA binding domain and CDK binding domain. (B) P21 protein binds and 
inhibits the activity of cyclinD-CDK4/6 complexes, cyclin E-CDK2 and cyclin B-CDK1. Adapted 
from Abbas et al. Nat Rev Cancer 2009. 

 

This observation that p21 by binding to CDK leads to G1 cell cycle arrest and sensitizes 

resistant cells to LSD1 inhibitor prompted us to evaluate a new combination therapy of 

CDK4/6 inhibitor with LSD1 inhibitor. Further understanding of mechanism of CDK4 and 

CDK6 dysregulation in cancer led to the understanding that targeting these CDKs should 

specifically lead to cytostatic arrest in G1 phase, and directly suppress Rb initiated gene 
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expression and cell proliferation. Palbociclib (PD-0332991) is an orally available, highly 

selective inhibitor of CDK4/6 kinase activity, with a high level of specificity for these over 

other CDKs and other protein kinases that inhibits Rb phosphorylation and therefore prevents 

cellular DNA synthesis by inhibiting progression of the cell cycle from G1 to S phase (Figure 

64). Palbociclib binds to the ATP binding pocket of CDK4 and CDK6, with specific 

interaction with residues within the ATP binding cleft. This inhibition causes downstream loss 

of expression of S phase cycles, nucleotide biosynthesis, DNA replication machinery and cell 

cycle regulatory genes. Currently, palbociclib is approved by the US FDA (Food and Drug 

Administration), for the treatment of estrogen positive metastatic breast cancer [Asghar, 

2015]. Our results have shown that treatment of NB4 cells at nanomolar concentrations results 

in effective G1-phase arrest and sensitize cells to LSD1 inhibition.  

 

Figure 64. Palbociclib. Palbociclib is a small molecule inhibitor of CDK4/6, blocking the 
phosphorylation of Rb inducing cell cycle arrest and preventing cell proliferation. Adapted from 
Aleem& Arceci. Front Cell Dev Biol 2015. 
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 In order to validate our findings obtained in cell lines by using more sophisticated models, we 

performed additional experiments in human primary melanoma cells. Melanoma is an 

aggressive form of skin cancer originating from melanocytes, a cell type found in the basal 

layer of epidermis, hair bulbs, eyes, ears and meninges [Bandarchi, 2010]. A large number of 

genes have been found to be mutated or altered in melanoma, these are often subtype-specific 

and some occur more frequently than others. The majority of the commonly found mutations 

affect two signaling pathways MAPK/ERK and PI3K/Akt pathway that regulate proliferation 

and survival. More than 80 % of melanomas arising in the skin have activating mutations in 

either B-RAF (V600E) or N-RAS (Q61K), highlighting the importance of MAPK/ERK and 

PI3K/Akt pathways in melanoma. However, mutations in B-RAF and N-RAS are almost 

always mutually exclusive [Davies, 2002; Goel, 2006]. In addition to NRAS and BRAF 

mutations, a number of other genes have been found to be mutated in melanoma such as, 

CDKN2A (p16), PTEN, c-KIT, p53, MITF, MC1R, GRIN2A and EGFR [Woodman, 2012; 

Hocker, 2008, Garraway, 2005]. Melanoma is considered to be the deadliest form of skin 

cancer and is known for its resistance to conventional therapy. However, development of 

novel personalized targeted therapy strategies may bring new hope [Palathinkal, 2014].  

Vemurafenib and Dabrafenib are inhibitors of V600E mutant BRAF that limit the activity of 

the MAPK/ERK signaling pathway. Treatment with Vemurafenib has resulted in complete or 

partial tumor regression in the majority of melanoma patients carrying B-RAF V600E 

mutations. Unfortunately, melanoma is a heterogeneous disease and the modifications within 

the tumors and metastases make it difficult to treat by targeted therapy [Flaherty, 2010; 

Sosman, 2012].  

Conventional chemotherapies and radiotherapies target proliferating cells and require active 

cycling for induction of apoptosis. The slow-cycling nature of many cancer stem cell pools is 
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therefore an inherent mechanism for resistance and cell survival in response to conventional 

therapies. In melanoma, the slow-cycling cells identified by Roesch et al., repress notch 

signaling directly though JARID1B interaction with the Notch Ligand Jagged 1 promoter, 

consequently reducing intracellular Notch and controlling proliferation. This group found that 

primary melanoma cell lines contained a PKH26 label retaining population that was almost 

specifically identified by the H3K4 demethylase JARID1B. This population of cells was found 

to incorporate BrdU more slowly, retain it for a longer period of time, lack staining for the 

proliferation marker Ki67, and have a doubling time of up to 4 weeks in vitro. When GFP was 

placed under the control of the JARID1B promoter, GFP+ cells demonstrated increased sphere 

forming ability in vitro, suggesting increased CSC properties within these cells [Roesch, 

2010]. 

Quiescence regulation of a stem cell population is most comprehensively understood in the 

hematopoietic system. In the hematopoietic system, p21 has been found to control entry into 

quiescence and maintenance of the quiescent state, allowing cells to activate a DNA damage-

like response. Mice that are p21 null demonstrate an increase in the number of stem cells 

present and lose the ability to repopulate the bone marrow in serial transplant experiments, 

suggesting uncontrolled expansion and eventual exhaustion of the stem cell pool [Cheng, 

2000; Viale, 2009].  

Here we found a strong connection between high level of p21 and slow-cycling cells and their 

doubling time. Consistent with our obtained finding in cell lines, melanoma cells with high 

level of p21 and slow-cycling were more sensitive to LSD1 inhibition. Furthermore, in p21 

KD melanoma cells, there was a slight but consistent decrease in the G1 phase population 

when compared with control cells, with an increase of S phase cells, indicating that the 

presence of p21 at its constitutive levels exerts a modest inhibitory effect by itself. This effect 
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was corroborated by a trend toward increased cell proliferation in p21-depleted cells. 

Moreover, Suppression of p21 rescued human primary melanoma cells from cell growth 

inhibition, cell cycle arrest and p21 induction induced by LSD1 inhibitor. The existence of 

slow growing drug-resistant side populations, which have also been reported to have 

expression of JARID1B, might be effectively targeted by LSD1 inhibitors, which also kill 

non-proliferating cells. 

Interestingly, forced cell cycle inhibition with palbociclib sensitized resistant primary 

melanoma cells to LSD1 inhibitor. The sensitization effect was observed when cells pre-

treated with Palbociclib at dose that had minor effects in the single-agent treatments. These 

data provide tempting target for in vivo validation that we are currently investigating.  

Our data delineate a model whereby LSD1 drives unrestricted cycling of cancer cells by 

directing repressing CDKN1A (p21) gene, which allows unrestricted G1-S transition. 

Proliferation and cell cycle arrest is the dominant and most obvious effect of LSD1 inhibitor 

or LSD1 shRNA in our study. These effect was strongly and specifically linked to p21 

derepression. In line with the H3K9me1/2 demethylase activity of LSD1 in prostate cancer, 

He et al have recently shown that LSD1 promotes S-phase entry and tumorigenesis by 

increasing the expression of the cell cycle-promoting genes such as SKP2 and CDC25A [He, 

2017]. They showed that LSD1 significantly bind at S-phase genes in G1 phase and facilitate 

S-phase gene expression and G1-S phase transition and LSD1 inhibition either with inhibitor 

or shRNA significantly increased G1 phase arrest and inhibited cell proliferation, though 

mechanisms have not been clearly proposed. Here we demonstrated that LSD1 inhibition 

resulted in higher p21 expression and knock-down of p21 in sensitive cells rescued cells from 

LSD1 inhibitor phenotypes. Furthermore, p21 genetic rescue experiments or induction of p21 

by HDAC inhibitors sensitized resistant cells to LSD1 inhibitor which further confirmed our 
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observation (Figure 65A). LSD1 has been supposed to have a dual role in regulating 

transcription, both as a co-repressor and a co-activator. Transcriptional profiling in APL cells 

model provided strong support for a role of the LSD1 in transcriptional repression, by acting 

on H3K4me2 rather than H3K9me2. LSD1 inhibition increased level of H3K4me2 and 

H3K27ac modifications at promoter of myeloid-differentiation associated genes lead to 

expression of these genes such as CD11b, CD86 and LY96. These results were in accordance 

with a general repressive role of LSD1. These finding indicate that the selective demethylation 

of H3K4me or H3K9me by LSD1 occur in a manner dependent on cell type, the stage of 

development or the phases of the cell cycle. It’s important to note that LSD1 associated factors 

such as AR, ER and PELP1, play a pivotal role in tipping the activity of LSD1 away from 

H3K4 methylation toward H3K9 methylation in different cellular setting. As our results 

showed that LSD1 by inhibiting the expression of p21 leads to S-phase entry, in prostate 

cancer cell lines by increasing the expression of the cell cycle-promoting genes leads to S-

phase entry. 

Given modest efficacy of LSD1 inhibitors against a subset of cancer cells, combination 

therapy with LSD1 inhibitors will be in our opinion a critical approach for future therapeutic 

intervention. In this study we showed that forced cell cycle inhibition either with p21 

induction by HDAC inhibitors or directly by CDK inhibitors presents a promising therapeutic 

strategy in solid and hematologic cancers (Figure 65B). 
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Figure 65. Working model. (A) LSD1 inhibition resulted in higher p21 expression and knock-down of 
p21 in sensitive cells rescued cells from LSD1 inhibitor phenotypes. Furthermore, p21 genetic rescue 
experiments or induction of p21 by HDAC inhibitors sensitized resistant cells to LSD1 inhibitor. (B) 
Forced cell cycle inhibition either with p21 induction by HDAC inhibitors or directly by CDK4/6 
inhibitor(Palbociclib) sensitize cells to LSD1 inhibitor. 

 

 

This observation can be explained by the association of LSD1 to the chromatin of G1 phase 

cells to suppress the expression of its target genes and dissociation from the chromatin of S-

phase cells (Figure 66) [Zhang, 2013]. 
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Figure 66. LSD1 recruits and colocalize with other factors in a cell cycle-dependent manner. 
LSD1 bind to the chromatin of G1 phase cells and dissociate from the chromatin of S-phase cells. 
Adapted from Zhang et al. Genes Dev 2013. 

 

It has been shown that LSD1 recruits and colocalize with other factors in a cell cycle-

dependent manner [Nair, 2012; Zhang, 2013; Peng, 2017; Cho, 2011; Hayami, 2011]. Nair et 

al have shown that LSD1 recruits to the chromatin of G1/S/G2 cells, and displaces from the 

chromatin of M-phase cells. Interestingly, they observed a decrease in the level of CoREST 

protein in cells synchronized to G2/M phase without change in the stability of CoREST, 

suggesting that the reduction of CoREST is correlated with a decrease in the association 

between LSD1 and CoREST proteins. These associations of LSD1 to the chromatin of G1 

phase and dissociation from the chromatin of M-phase cell result in transcriptional repression 

and activation of LSD1 target genes respectively [Nair, 2012]. Occupancy of LSD1 with 

SFMBT1, is regulated during the cell cycle and correlates with the loss of RNA polymerase II 

at the promoter of their target genes. Zhang et al have shown that LSD1 and CoREST 

colocalize with SFMBT1 in chromatin of G1 phase but not S phase [Zhang, 2013].  Our 

knowledge of cell cycle-dependent manner functions of LSD1 will increase with further study. 

Furthermore, our data suggest that p21 loss of function or perhaps deregulation of CDK4/6 

could result in acquired resistance to LSD1 inhibitors and should be considered in patients 

who break through LSD1 inhibitor therapy.  
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