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Abstract  

Purpose 

Evaluation of target coverage and verification of safety margins, in motion management strategies 

implemented by Lung Optimezed Treatment (LOT) module in CyberKnife system. 

Methods  

Three fiducial-less motion management strategies provided by LOT can be selected according to 

tumour visibility in the X-ray images acquired during treatment. In 2-view modality the tumor is 

visible in both X-ray images and full motion tracking is performed. In 1-view modality the tumor is 

visible in a single X-ray image, therefore motion tracking is combined with an internal target volume 

(ITV)-based margin expansion. In 0-view modality the lesion is not visible, consequently the 

treatment relies entirely on an ITV-based approach. 

Data from 30 patients treated in 2-view modality were selected providing information on the three-

dimensional tumor motion in correspondence to each X-ray image. Treatments in 1-view and 0-view 

modalities were simulated by processing log files and planning volumes. Planning target volume 

(PTV) margins were defined according to the tracking modality: end-exhale clinical target volume 

(CTV) +3 mm in 2-view and ITV + 5 mm in 0-view. In the 1-view scenario, the ITV encompasses only 

tumor motion along the non-visible direction. Then, non-uniform ITV to PTV margins were applied: 3 

mm and 5 mm in the visible and non-visible direction, respectively.  

We defined the coverage of each voxel of the CTV as the percentage of X-ray images where such 

voxel was included in the PTV. In 2-view modality coverage was calculated as the intersection 

between the CTV centred on the imaged target position and the PTV centred on the predicted target 

position, as recorded in log files. In 1-view modality, coverage was calculated as the intersection 

between the CTV centred on the imaged target position and the PTV centred on the projected 
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predictor data. In 0-view modality coverage was calculated as the intersection between the CTV 

centred on the imaged target position and the non-moving PTV. 

Similarly to dose-volume histogram, CTV coverage-volume histograms (defined as CVH) were derived 

for each patient and treatment modality. The geometric coverages of the 90% and 95% of CTV 

volume (C90, C95 respectively) were evaluated. Patient-specific optimal margins (ensuring C95ш95%) 

were computed retrospectively.  

Results 

The median ± interquartile-rage of C90 and C95 for upper lobe lesions was 99.1 ± 0.6 % and 99.0 ± 

3.1 %, whereas they were 98.9 ± 4.2 % and 97.8 ± 7.5 % for lower and middle lobe tumours.  

In 2-view, 1-view and 0-view modality, adopted ŵaƌgiŶs eŶsuƌed Cϵϱшϵϱ% iŶ ϳϬ%, ϴϱ% aŶd ϲϯ% of 

Đases aŶd CϵϱшϵϬ% iŶ ϵϬ%, ϴϴ% aŶd ϴϯ% of Đases ƌespeĐtiǀelǇ. IŶ Ϯ-view, 1-view and 0-view a 

reduction of margins still ensured Cϵϱшϵϱ% iŶ ϯϯ%, ϳϴ% aŶd ϱϵ% of Đases ƌespeĐtiǀelǇ. 

Conclusions 

CTV coverage analysis provided an a-posteriori evaluation of the treatment geometric accuracy and 

allowed a quantitative verification of the adequacy of the PTV margins applied in CyberKnife LOT 

treatments offering guidance in the selection of CTV margins.  

 

Introduction 

Stereotactic body radiotherapy (SBRT) is the preferred treatment option for inoperable lung 

tumours, given its limited treatment-related toxicity and its good local control rates [1-4]. Moreover, 

it is recently considered as a viable treatment option also for operable lung patients [5]. However, 

lung tumours are prone to motion (mainly caused by respiration) that affects both intrafractional 

and interfractional radiation delivery [6]. The management of respiratory motion in lung SBRT is 

essential to achieve high therapeutic ratio, ensuring adequate coverage of the moving target volume 
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while sparing the surrounding critical structures. The amount of irradiated volume depends on the 

applied motion management strategy and on the adopted safety margins [7].  

The main aim of the present study was providing a quantitative evaluation of target coverage, as a 

function of planning target volume margins, in the three fiducial-less motion management strategies 

implemented by Lung Optimezed Treatment (LOT) module in CyberKnife® system (Accuray, Inc., 

Sunnyvale, CA). We pursued such aim through retrospective analysis of pre-treatment information 

derived from 4DCT-based planning and in-treatment data extracted from log files.  

 

Materials and Methods 

Lung Optimized Treatment (LOT) module of CyberKnife system  

Recently, CyberKnife® system (Accuray, Inc., Sunnyvale, CA) has been equipped with Lung Optimized 

Treatment (LOT) module (Fig. 1). It provides three fiducial-less motion management strategies, to be 

selected according to tumour visibility in the X-ray images acquired during treatment: (i) dynamic 

tumour tracking (2-view modality), (ii) internal target volume (ITV)-based approach (0-view 

modality) and (iii) combined tracking and ITV-based approach (1-view modality). 

In 2-view modality, the tumour is localized in both orthogonal X-ray images and three dimensional 

(3D) motion tracking is performed as in Xsight Lung Tracking™ [8, 9]. In 0-view modality, the tumour 

cannot be detected in either of the X-ray images and consequently the treatment relies entirely on 

an ITV-based approach, using Xsight Spine tracking™ for patient alignment [10, 11]. The irradiated 

volume encompasses tumour motion, as detected by pre-treatment four-dimensional computed 

tomography (4D-CT). In 1-view modality, the tumour is visible in only one of the X-ray projections (A 

or B) and dynamic tumour tracking compensates the target motion only in the detectable plane. 

Non-visible motion is compensated with an ITV-based strategy. Therefore, less normal tissue is 

exposed to radiation compared to the ITV-based approach. Usually, the visibility of the target in the 

X-ray images, and thus the selection of motion management modalities, depends on target size, 
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density and location [10, 8, 12]. At our Institution about 55% of lung patients undergoing CyberKnife 

SBRT are treated in 0-view modality, 27% in 1-view modality and 18% in 2-view-modality [13]. 

Patient data 

This study included data from 30 patients, treated for lung tumours with CyberKnife in 2-view 

modality from November 2014 to February 2017. The study was performed within the Institutional 

Ethics Committee notification regarding stereotactic body radiotherapy and image-guided 

radiotherapy (notifications n° 93/11). The patients gave written informed consent for radiotherapy 

and for the use of their anonymized data for educational and research purposes. 

At the time of radiation treatment, the median patient age was 76 years (range: 46-87 years). 

Thirteen patients reported respiratory disorders, mainly chronic obstructive pulmonary disease. 

Planning 4D-CT was acquired by GE Optima CT580 W scanner (GE Healthcare, Chicago, IL, US) 

featuring 1.25 mm slice thickness and 1.27 mm pixel spacing. The Real-time Position Management 

system (RPM, Varian, Palo Alto, US) was used for amplitude-based sorting. Full-inhale and full-exhale 

phases were considered for treatment planning. At our Institution, the planning target volume (PTV) 

in 2-view modality was defined as 3 mm isotropic expansion of the exhale clinical target volume 

(CTV). We choose the exhale phase as a reference state as it is the most reproducible and 

representative phase of free breathing since tumor spent more time in the exhalation than in the 

inhalation phase [14]. All patients were positioned using a customized external vacuum-type cast. 

The size of the CyberKnife collimator varied between 25- 60 mm and was comparable to the size of 

the lesion ensuring the PTV irradiation along its entire movement. Treatment consisted of 3-5 

fractions to a total dose ranging from 18 to 54 Gy, prescribed to the isodose of 80% of prescription 

dose.  

Data including the 3D coordinates of the target over the course of treatment were extracted from 

the treatment log files and used to determinate the actual target motion in the three anatomical 

directions (latero-lateral (LL), anterior-posterior (AP) or superior inferior (SI)). [6, 12, 15-21]. 
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Multiplan (version 5.2 Accuray) was used for treatment planning and data analysis was performed 

with MATLAB® (MathWorks, Natick, MA) and Plastimatch [22]. 

Tumor motion evaluation  

The amplitude of respiratory motion was measured in 4D-CT data as the distance between the 

centre of mass of the CTV in the exhale and inhale positions. During treatment, peak-to-peak 

respiratory amplitude was derived from the tumour positions estimated by the correlation model, 

according to the method proposed by Lu et al. [23].  

The Kruskal-Wallis and Wilcoxon rank sum tests at 1% significance level investigated differences 

among motion amplitudes in different anatomical directions, as well as the correspondence 

between pre-treatment motion amplitude and the median motion amplitude during treatment. 

Dependence of respiratory motion amplitudes on tumour location and CTV volume was evaluated 

using Spearman correlation coefficient.  

Correlation and overall tracking error 

The correlation error was defined as the discrepancy between the target position estimated by the 

correlation model and the position measured by the X-ray images during treatment delivery. The 

overall tracking error considered the predicted target position, thus including both correlation and 

temporal prediction uncertainties. The dependency of such errors on target motion amplitude in 

each anatomical direction was investigated through Spearman correlation coefficient. 

Coverage evaluation 

CTV coverage was investigated in order to provide a quantification of the treatment geometric 

accuracy. It was calculated in correspondence to each control image acquired during irradiation as 

the intersection between the CTV centred on the imaged target position (serving as ground-truth) 

and the PTV centred on the predicted target position, as recorded in log files. In this way, we define 

the coverage of each voxel of the CTV as the percentage of control images where such voxel was 

included in the irradiated volume (i.e. PTV), as exemplified in Figure 2A and 2B. 
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The coverage analysis was carried out for the 2-view modality as described above and for simulated 

1-view and 0-view modalities. In order to simulate 1-view and 0-view treatment delivery modalities 

we took advantage of the 2-view tracking data extracted from the treatment log files providing 3D 

coordinates of the target over the course of treatment . CTV coverage in 1-view and 0-view was 

calculated as described hereafter.  

In the 1-ǀieǁ Đase, tƌaĐkiŶg is ƌestƌiĐted oŶ the plaŶe peƌpeŶdiĐulaƌ to the aĐtiǀe Đaŵeƌa’s aǆis ;iŶ-

plane directions). Consequently, the ITV-1-view was defined as the envelope of the CTV volume at 

inhale and exhale positions along the camera axis, i.e. encompassing only the out-of-plane target 

motion, which cannot be imaged since it is parallel to the camera axis (out-of-plane direction). In this 

scenario, the PTV was obtained, according to the protocol of our Institution, through an anisotropic 

margin applied to the ITV-1-view: 3 mm in-plane and 5 mm in out-of-plane directions. To simulate 

planar tracking, predicted target locations extracted form log files were projected on in-plane 

directions. Then, coverage was calculated as the intersection between the CTV centred on the 

imaged target position and the PTV centred on the projected predictor data. 

In 0-view treatments, tracking is disabled. Therefore, the ITV was defined as the envelope of the CTV 

at the inhale and the exhale phase of the planning 4D CT. Then, the PTV was derived by 5 mm 

isotropic margin expansion from the ITV. In this case, we computed CTV coverage as the intersection 

between the CTV centred on the imaged target position and the non-moving PTV. 

Similarly to cumulative dose-volume histograms, coverage-volume histograms (CVH) were derived 

from volumetric coverage distributions. The coverage of the 90% and the 95% of CTV volume (C90 

and C95) were chosen as a CVH evaluation metrics (Figure 2C). CVH, C90 and C95 values were 

derived for each patient and for the three LOT modalities: 2-view, 1-view (simulating both 1-View-A 

and 1-View-B scenarios depending on the active camera) and 0-view.  

We considered the coverage of 95% of CTV volume greater than 95% (C95 ш 95%) as a threshold to 
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determine whether the applied margin ensured adequate coverage of the target volume [7, 12, 17]. 

The Kruskal-Wallis test was applied to C90 and C95 distributions to compare target coverage 

obtained with the different modalities. Furthermore, the influence of tumour position on coverage 

was investigated with the Wilcoxon rank sum test.  

Margin optimization 

We adopted the above-ŵeŶtioŶed ŵaƌgiŶ eǀaluatioŶ ĐƌiteƌioŶ ;Cϵϱ ш ϵϱ%Ϳ to applǇ aŶ a-posteriori 

margin optimization on a patient-specific basis.  

In the 2-view modality, the CTV volume was gradually expanded by adding 1 mm isotropic margins 

until reaching Cϵϱ ш ϵϱ%. The Ϭ-view modality was treated in the same way, but the incremental 

margins were applied to the ITV. 

For the 1-view modality, in accordance to the current clinical protocol, we adopted an anisotropic 

margin optimization approach: the ITV-1view (as defined in the previous paragraph) was 

progressively expanded evaluating each combination of in-plane and out-of-plane margin between 2 

aŶd ϭϮ ŵŵ, theŶ ĐhoosiŶg the ĐoŵďiŶatioŶ that satisfies the Cϵϱ ш ϵϱ% ĐƌiteƌioŶ ŵiŶiŵiziŶg the 

final volume of the PTV. 

For each patient, the optimal margin was computed for each modality and the resulting volume of 

PTV volume was compared against the CTV volume to provide a synthetic measurement of the 

expansion required to obtain adequate coverage.  

 

Results 

A total of 96 treatment fractions corresponding to an average total treatment time over fractions 

per patients of 64 minutes (range: 31-156 minutes, from the first to the last treatment node) were 

analysed. X-ray images were acquired periodically during treatment with a median time interval of 

57 s (range: 21-93 s).  
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In 19, 2 and 9 patients, tumours were located in the upper, middle and lower lobes, respectively. 

Fourteen tumours were left-sided while sixteen were right sided. Median ± interquartile range (IQR) 

of tumour distance from the spine was 76.9 ± 23.8 mm (range: 44.0-138.6 mm). Median ± IQR of CTV 

volume in the exhale phase was 19.6 ± 32.3 cm
3
 (range: 1.1-112.0  cm

3
). 

Tumor motion evaluation  

For all patients, the respiratory motion measured in the 4D-CT was 0.6 ± 1.0 mm (median ± IQR), 1.2 

± 1.7 mm and 4.2 ± 6.0 mm in LL, AP and SI direction, respectively. Respiratory amplitude during 

treatment was 0.9 ± 1.0 mm, 1.2 ± 1.6 mm and 4.6 ± 8.3 mm in LL, AP and SI direction, respectively. 

The predominant direction of tumour motion was SI both in the 4D-CT analysis and in treatment log 

files analysis (p<<0.01).  

Median SI motion amplitude was significantly larger in lower/middle lobes compared to the upper 

lobe both in 4D-CT scenario and during treatment (p<<0.01). Motion amplitude was not significantly 

different (p>0.09) between 4D-CT scenario and during treatment. 

No dependence of median motion amplitude on CTV volume was found (R<0.5, p>0.01) neither in 

4D-CT study nor during treatment. Similarly, no dependence on the distance from the spine was 

found (R<0.5, p>0.01). 

Correlation and overall tracking error 

The median ± IQR of the correlation error of all patients was 0.5 ± 0.7 (95
th

 percentile: 1.9) mm, 0.6 ± 

0.9 (2.7) mm, 0.7 ± 1.1 (3.6) mm in LL, AP and SI direction, respectively. Overall tracking errors were 

almost identical to correlation errors: 0.5 ± 0.7 (1.9) mm in LL direction, 0.6 ± 0.9 (2.7) mm in AP and 

0.8 ± 1.3 (3.7) mm in SI.  

Correlation was found between the correlation error and tumour motion amplitudes captured 

during irradiation in AP (R=0.57, p=0.001) and SI (R= 0.81, p<<0.01) directions. Similarly, correlation 

was found between overall tracking error and amplitudes during treatment in AP (R=0.54, p=0.002) 

and SI (R=0.84, p=<<0.01) directions.  
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Coverage evaluation 

The CVHs obtained for each LOT modality and each patient are shown in Figure 3 while the CVH 

evaluation metrics (C90 and C95) are summarized in Table 1 and extensively shown in 

Supplementary Table 1.  

Even if median C95 and C90 were slightly smaller for 2-view treatments with respect to 1-view and 

0-view, no statistically significant difference were observed among the C90 and C95 population 

corresponding to the three modalities (p= 0.42 and p=0.52 respectively). Target coverage was 

equally guaranteed in the different treatment modalities.  

Considering the treatment modalities altogether, we observed that C90 and C95 depended on the 

tumour position in the lung. The Wilcoxon rank sum test showed significant difference between the 

two populations corresponding to upper lobe and lower/middle lobe (p << 0.001 for both C90 and 

C95). The median ± IQR of C90 for upper lobe lesions was 99.1 ± 0.6 % (range: 55.0 – 99.1%), 

whereas it was 98.9 ± 4.2 % (range: 73.1 – 99.1%) for lower and middle lobe tumours. Similarly, the 

median ± IQR of C95 for upper lobe lesions was 99.0 ± 3.1 % (range: 52.9 – 99.1%), whereas it was 

97.8 ± 7.5 % (range: 60.9 – 99.1%) for lower and middle lobe tumors. 

In 2-view scenario, the current prescription of 3 mm isotropic margins expansion around the CTV in 

end-eǆhale eŶsuƌed Cϵϱшϵϱ% iŶ Ϯϭ/ϯϬ ;ϳϬ%Ϳ patieŶts. AŵoŶg the ϵ patieŶts ǁho did Ŷot ŵeet the 

ĐƌiteƌioŶ of Cϵϱшϵϱ%, oŶlǇ ϯ patieŶts had Cϵϱ ч ϵϬ%. In these patients, tumours were located in the 

middle and lower lobes and motion excursion measured in the 4D-CT were greater than the median 

motion excursion of the population. These patients exhibited CϵϱчϵϬ% also in the other treatment 

modalities.  

In Figure 4, the CTV coverage in 2-view modality is reported for the patient showing the worst C95 

within the population (C95=77.2%). 
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In the simulated 1-view scenario, in-plane expansion of 3 mm and out-of-plane expansion of 5 mm 

eŶsuƌed adeƋuate CTV Đoǀeƌage ;Cϵϱшϵϱ%Ϳ iŶ ϱϭ/ϲϬ ;ϴϱ%Ϳ of ϭ-view cases (A-B).  In particular, 5 

patients exhiďited Cϵϱч ϵϬ%.  

Finally, in the simulated 0-view scenario, 5 mm isotropic margin expansion around the ITV ensured 

adequate CTV coverage in 19 (63%) patients. Among the 9 patients who did not meet the criterion of 

Cϵϱ ш ϵϱ%, ϱ patieŶts eǆhiďited CϵϬ aŶd CϵϱчϵϬ%.This was probably due to prolonged irregularities 

in the breathing pattern during irradiation).   

Margin optimization 

Margin optimization results are reported in Figure 5. 

In 2-view scenario, margin expansion of the CTV could be reduced to 2 mm, still eŶsuƌiŶg Cϵϱ ш ϵϱ% 

in 10 (33%) patients. However, in 9 (30%) patients, a larger margin (up to 7 mm) was required to 

meet the above-mentioned criterion.  

Considering the simulated 1-view scenario, 3 mm margin expansion in in-plane and out-of-plane 

directions allowed to achieve the desired converge in 71.7% of the cases (considering 1-view-A and 

1-view-B altogether). Nevertheless, in a single instance a very large margin (isotropic 10 mm) was 

required.  

Finally, in the simulated 0-view scenario, in 18 (60%) patients, margin expansion could be reduced 

still ensuring target coverage. However, in 11 (37%) patients larger margins were necessary to 

ensure at least 95% of coverage to the 95% of CTV volume. 

The Kruskal-Wallis test did not report any significant difference between volumes of PTV defined 

according to the current prescriptions and those obtained through patient-specific margin 

optimization for each treatment modalities (p>0.7). In both 2-view and 1-view modality, optimal 

margin resulted in slightly larger PTV volume, whereas the opposite behaviour was observed in 0-

view cases.  
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Discussion 

In this work, we considered data from 30 patients treated with CyberKnife LOT. Through the 

quantification of the CTV geometric coverage, we investigated the adequacy of the PTV margins 

applied in our Institution simulating different treatment modalities (2-view, 1-view and 0-view). 

Results showed that such margins ensure the required target coverage in the majority of the cases. 

A preliminary analysis of tumor motion was performed. The respiratory amplitude measured with 

planning 4D-CT and with online tumour tracking data was in agreement with previously published 

studies [12, 6, 14, 23, 24]. In addition, motion amplitudes captured with 4D-CT were representative 

of median excursions measured during treatment for each anatomical direction and in each lung 

lobe [25, 26, 23]. This confirms that the ITV, defined during treatment planning as the envelope of 

exhale and inhale CTV, is a robust approximation of tumour motion observed during irradiation, 

despite inter- and intra-fractional variations. 

Several retrospective studies calculated the uncertainty in radiation delivery (i.e. tumour tracking 

errors) by analysing dynamic tracking log files produced by the CyberKnife system [12,15-20, 28, 29]. 

Our results were in agreement with these works: limited tracking errors (median < 1 mm) were 

observed in all directions and a significant correlation was found between the errors magnitude and 

motion amplitude. 

We relied on CTV coverage as a metric to quantify geometric treatment accuracy. In this way, 

tracking errors (in 2-view and 1-view modality along the visible directions) and non-tracked tumour 

motion (in 1-view modality along the non-visible direction and in 0-view) can be considered 

altogether and are effectively related to the adopted margins., Moreover, geometric tumour 

coverage is an essential requirement for dose coverage and our analysis could represent a 

preliminary examination for further investigation on dose distribution actually delivered to the CTV 

throughout the entire treatment taking into account the temporal interplay between the CTV 

motion inside the PTV and the temporal aspect of the actual dose delivery.  
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The safety margins adopted in our Institution ensured a median C95 greater that 95% in each LOT 

modality. This means that, considering the entire patient population, the margins met the coverage 

ĐƌiteƌioŶ of Cϵϱ ш ϵϱ%. CoŶseƋueŶtlǇ, patieŶt-specific margin optimization resulted in larger margins 

in less than 37% of patients considering all LOT modalities. In 2-view modality, larger margins are 

required in 30% of patients to compensate mostly for tracking errors. Indeed, in 2-view, C95 is 

strongly correlated with the overall tracking error (R=-0.9). Conversely, in 0-view modality C95 is 

strongly correlated with tumour motion measured during treatment (R=-0.8). Actually, 0-view 

modality is more sensitive to interfraction and intrafraction breathing pattern variations, which are 

likely to occur in patients with respiratory disease. Similarly to our work, Descovitch et al. [12] 

evaluated target coverage simulating 0-view modality treatments and concluded that a uniform 

margin of 4.5mm around the ITV was necessary to assure 95% target coverage for 95% of the 

fractions. With respect to Descovich et al, we further analysed target coverage in 1- and 2-view 

modality. In 1-view, C95, and consequently the optimal margin, depends on both tracking errors (R=-

0.7) and respiratory motion (R=-0.6). However, in some patients, safety margins could be reduced 

still ensuring CTV coverage, while enhancing treatment conformality by sparing a larger volume of 

healthy tissues.  

Irradiated volumes increases passing from 2-view to 1-view and 0-view modalities. Considering the 

saŵe CTV Đoǀeƌage ;Cϵϱ ш ϵϱ%Ϳ, the use of ϭ-view of 0-view modalities instead of 2-view resulted in 

PTV enlarged by 36.6 ± 25.8% and 82.9 ± 101.2%, respectively.  

The visibility of the target in the x-ray images acquired during treatment (and thus the selection of 

the suitable motion management modality) depends on target size, density and location. The 

patients included in this study were treated with 2-view tracking modality; hence all lesions had 

characteristics that made them visible in both X-ray images. The presented coverage analysis was 

then extended to simulated 1-view and 0-view modalities taking advantage of the complete 2-view 

tracking data extracted from the treatment log files. In clinical practice, the 1-view and 0-view 
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modalities are selected when the lesions are too small, not sufficiently dense or when they overlap 

organs at risk (OAR) in the x-ƌaǇ pƌojeĐtioŶs. This Đould oĐĐuƌ ƌegaƌdless of the tǇpe of patieŶt’s 

breathing motion. This means that the same lesion, characterized by the same movement during 

breathing, could turn out to be a 2-view, 1-view and 0-view case at varying its density and size 

resulting visible or not in the x-ray images acquired during treatment. From this point of view, the 

coverage analysis performed in simulated 1-view and 0-view cases could be considered realistic. 

However, in 0-view treatments tissue shifts between spine and lesion could occur and their effect on 

CTV coverage cannot be considered in our analysis and specific further investigation are advisable. 

In conclusion, safety margins allow compensating tracking errors and tumor motion in all LOT 

modalities ensuring adequate target coverage in the majority of patients. CTV coverage analysis 

provided an a-posteriori evaluation of the treatment geometric accuracy and allowed us to 

quantitatively verify the adequacy of the PTV margins applied in CyberKnife LOT treatments 

delivered at our Institution. Further investigations on dose distribution actually delivered to the CTV 

throughout the entire treatment will be addressed to fully evaluate the adequacy of safety margins.  

 

Figure Legends 

Figure 1: Exemplification of planning target volumes (PTVs) in different Lung Optimized Treatment (LOT) 

modalities as simulated on a 2-view patient. Axial, sagittal and coronal slices are shown in panels A, B and C 

respectively. Yellow, green, magenta and red contours refer to PTVs corresponding to 2-view, 1-view-A, 1-

view-B and 0-view modality, respectively. 

 

Figure 2: Exemplification of the CTV coverage calculation. Panel A: for each control image acquired during 

treatment (1, 2,...,N) the intersection between the CTV (green circle) and the PTV (red circle) is calculated and 

accumulated. Panel B: the coverage of a given voxel within the CTV expresses the percentage of control images 

where the PTV covers that voxel. Panel C: cumulative coverage-volume histogram (CVH). In this 

exemplification, about 17% of the volume receives 100% coverage, whereas 62% of the volume receives at 

least 66% coverage and 100% of the volume has a coverage equal or larger than 33%. C95 is 33%, meaning 

that 95% of the volume shows a coverage of at least 33%. 

 

Figure 3: Converge-volume histograms (CVH). Blue lines show CVH of individual patients, the patient-wise 

median is represented in red. Panels A, B and C refer to 2-view, 1-view and 0-view scenarios, respectively. In 

panel B, 60 CHV are reported, since each patient was simulated in both 1-view-A and 1-view-B cases. Panels C, 
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E and F show an expanded view of the 80% to 100% box in the upper-right corner of the CVH. Abbreviations: 

CTV = clinical target volume, CVH = coverage-volume histogram. 

 

Figure 4: Example of coverage distribution within the clinical target volume (CTV). Panel A: rendering of the 

patients anatomy, the red surface shows the planning target volume (PTV) in the right lower lobe. Axial and 

coronal slices intersecting in tumor center are also reported. Panel B: CTV coverage on the central axial slice 

color-coded as reported in the color bar. Magenta, red and green contours represent CTV, clinical PTV (CTV + 

ϯŵŵͿ aŶd optiŵal PTV eŶsuƌiŶg Cϵϱ ш ϵϱ% ;CTV + ϳŵŵͿ, ƌespeĐtiǀelǇ. PaŶel C: ĐeŶtƌal ĐoƌoŶal sliĐe. 
 

Figure 5: Margin optimization results. Panel A: optimal margins for 2-view treatments. The bar plot shows the 

frequency of a given optimal margin. Panel B: 1-view scenario. Each bar of the matrix corresponds to a 

combination of in-plane and out-of-plane margins. Frequency is color-coded from blue to yellow. Panel C: 0-

View scenario, represented as in panel A. In all panels, the margin prescription corresponding to the current 

clinical protocol is highlighted with a red box on the axes. 
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Table 1. Distribution of the selected evaluation metrics of the coverage volume histograms (CVH) in 

the three Lung Optimized treatment (LOT) modalities: C90 and C95 refer to the coverage of the 90% 

and 95% of the clinical target volume (CTV) obtained when clinical safety margins are used. In our 

Institution, planning target volume (PTV) is defined as end-exhale CTV + 3 mm in 2-View and as 

internal target volume (ITV) + 5mm in 0-View. In the 1-View, the ITV encompasses only tumor 

motion along the non-visible direction. Then, non-uniform ITV to PTV margins are applied: 3 mm and 

5 mm in the visible and non-visible direction, respectively. Percentage of patients satisfying coverage 

criteria are enlisted. 

Treatment 

modality 

C90 C95 

Median ± IQR (range) [%] 
C90≥90% C90≥95% 

Median ± IQR (range) [%] 
C95≥90% C95≥95% 

N pts (%) N pts (%) N pts (%) N pts (%) 

2-view 98.3 ± 2.4 ( 82.8 – 99.1) 28 (93) 26 (87) 97.0 ± 6.5 ( 77.7 – 99.1) 27 (90) 21 (70) 

1-view (A-

B) 
99.1 ± 0.6 ( 71.0 – 99.1) 57 (95) 52  (87) 98.8 ± 3.4 (68.6 – 99.1) 53 (88) 51 (85) 

0-view 99.1 ± 1.0 (55.0 – 99.1) 25 (83) 25 (83) 99.0 ± 4.9 (52.9 – 99.1) 25 (83) 19 (63) 
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