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Abstract Computational Intelligence (CI) techniques are receiving increasing atten-
tion by the industrial and academic communities involved in the design of automatic
systems for industrial and environmental monitoring and control applications. CI
techniques are able to aggregate inputs from several heterogeneous sensors, adapt
themselves to wide ranges of operational and environmental conditions, and cope
with incomplete or noise-affected data. With current computing architectures evolv-
ing towards smaller size, higher computational power, and more affordable cost, a
great number of devices can embed CI techniques to support different kinds of ap-
plications. In this paper, we present a survey of the recent CI methods designed for
the main processing steps of industrial and environmental monitoring systems.

1 Introduction

In industrial and environmental monitoring and control applications, experts in
the field usually design physical models and perform a statistical analysis to infer
knowledge about the observed phenomena. With such knowledge, it is possible to
design and implement the corresponding monitoring and control methods. However,
taking into account all the variables of the observed phenomenon can make the mod-
eling and design process complex, with the result of obtaining inaccurate systems.
Variations in the observed processes may also occur (e.g., wearing of the industrial
machinery during the monitoring of industrial processes and meteorological anoma-
lies while performing environmental monitoring), introducing the need of manual
and complex adjustments to the models, or even making the system inadequate.
Monitoring and control systems for industrial and environmental applications are
frequently implemented in non-ideal operational conditions, which introduce noise
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in the signals acquired by the sensors and increase the complexity of the designed
model [29].

Computational Intelligence (CI) techniques permit to design and implement in-
telligent systems for industrial and environmental monitoring and control applica-
tions that i) do not require any modeling of the process based on expert knowledge
and ii) can infer a model by learning from examples. The CI methods most com-
monly used are Artificial Neural Networks (ANN) (such as, feed-forward networks,
radial basis function networks, self-organizing maps, and convolutional neural net-
works), Support Vector Machines (SVM), Fuzzy Logic, and Evolutionary Compu-
tation (EC) [54].

These techniques can dynamically update the parameters of the model as the
system is running, for instance by providing more recent examples from which the
model can be updated. Intelligent monitoring systems have also the advantage of
increasing the robustness to noisy data with respect to traditional approaches. The
constant increase of computational power of processing architectures, along with
the reduced size and cost of the devices, permits to use a higher number of sen-
sors [48,70] and therefore a more widespread diffusion of CI-based intelligent moni-
toring systems for a greater number of applications [22,113]. Examples of industrial
applications include production monitoring [10], control of robots [77], detection of
faults in the machinery [52,84], and control of the quality of industrial processes [9].
In environmental scenarios, applications include forecasting [51,73] and detection
of hazardous situations (e.g., oil spill [92]).

Intelligent monitoring and control systems based on CI techniques share a similar
architecture that comprises the following steps: i) data acquisition, ii) data prepro-
cessing, iii) feature extraction and selection, iv) data fusion, v) classification, regres-
sion, or clustering, vi) system optimization and evaluation. Studies in the literature
proposed applications of CI techniques for each of these steps [9, 13,72]. Fig. 1 il-
lustrates the steps of the intelligent monitoring and control systems, together with
the main applications of CI techniques.

This paper presents an overview on CI techniques for the design of intelligent
monitoring systems in industrial and environmental scenarios. The paper is orga-
nized in as follows. Section 2 overviews the main CI techniques proposed in the lit-
erature. Section 3 presents applications of industrial and environmental monitoring.
Section 4 describes the architecture of intelligent monitoring and control systems,
by overviewing the methods in the literature using CI techniques for each step of
the systems. Section 5 concludes the paper.

2 Overview of Computational Intelligence techniques

CI techniques are methods that enable intelligent behavior in monitoring and control
systems, with the features of being flexible and adaptive [35]. Among the advantages
of CI techniques, there are the capabilities of working with noisy or incomplete data,
providing approximate solutions, adapting to changes in operational and environ-
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Fig. 1 Outline of an intelligent monitoring system for industrial and environmental applications.
The figure enumerates the main applications of CI techniques for each step of monitoring systems

mental conditions, and featuring a low computational complexity. These advantages
have altogether contributed to the increasing use of CI techniques for industrial and
environmental applications [9,61].

This section presents the CI techniques mostly used in the field of industrial
and environmental monitoring, such as Artificial Neural Networks (ANN), Support
Vector Machines (SVM), Fuzzy Logic, and Evolutionary Computation (EC) [54].

ANN s exploit several layers of interconnected neurons to reproduce and mimic
the reasoning ability of the human brain [8]. A learning procedure permits to adjust
the weights associated to each neuron and the corresponding transfer functions. In
this manner, the ANN can adapt itself to the training examples and process data to
achieve approximate solutions with fault tolerance capabilities and low computa-
tional complexity. Several topologies of ANNs appear in the literature, presenting
differences in the structure of the network and in the interconnections between the
neurons. The topologies mostly used are feed-forward neural networks, radial ba-
sis function networks, and self-organizing maps [36, 49]. Recently, convolutional
neural networks and other deep learning approaches have also been attracting the
attention of the academic and industrial communities [64].

SVMs are a particular type of kernel-based methods that have the purpose of
projecting the input data onto a space with a higher dimensionality to facilitate the
learning process. In particular, the learning process in SVMs optimizes a convex sur-
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face without ending in local optima. One of the main advantages of SVMs consists
in having a limited number of parameters, resulting in a faster tuning process [19].

Methods based on Fuzzy Logic have the peculiarity of dealing with information
expressed with various degrees of uncertainty. For this reason, they are especially
well suited to deal with incomplete or imprecise data. Advantages of Fuzzy systems
include the use of linguistic concepts and the capability to deal with conflicting
objectives by designing knowledge bases [97].

Methods using EC perform a global optimization by mimicking the biological
evolution. In particular, the algorithms start with an initial population of solutions
that iteratively interact among themselves by following principles derived from nat-
ural evolution, to improve their overall quality. The process of creating the initial
population involves the assignment of random values to the parameters, or the use
of heuristics tailored for the application scenario. Methods for updating the popula-
tion include random permutations, crossover, or selection. Several algorithms based
on EC have been proposed in the literature, including genetic algorithms and swarm
intelligence (e.g., ant colony optimization and particle swarm optimization) [91].

3 Applications of industrial and environmental monitoring

Hardware processing architectures nowadays feature increased computing power,
reduced size, and limited cost. For example, current smartphones and mini-PCs
can easily exceed the computational capacity of desktop workstations made few
years ago [82]. This increased availability of powerful and low-cost architectures
allowed a greater number of monitoring infrastructures to be deployed in several
novel scenarios [22, 113]. Furthemore, advances in the manufacturing of CMOS
sensors have enabled the use of long-range vision systems using off-the-shelf equip-
ment [20, 111]. Current devices have high computational power, extended battery
life, and advanced networking capabilities [42], which are key factors to enable
the deployment of sensors for intelligent monitoring in novel scenarios such as
industrial and environmental applications, where resilience and robustness are of
paramount importance. Therefore, the research is moving towards a greater use of
CI techniques, due to their capability to aggregate inputs from different sensors and
learn the relationship between the sensed data and the parameters of the observed
phenomenon. At the same time, CI methods can adapt to variations in operational
conditions. Thanks to these characteristics, CI techniques permit an accurate, ro-
bust, and fast detection of anomalies in industrial and environmental monitoring
applications [9,37,61].



Computational Intelligence in Industrial and Environmental Scenarios 5

3.1 Industrial monitoring

Intelligent monitoring systems can be classified according to their architecture in
two main categories: i) centralized systems and i7) distributed systems.

Centralized monitoring systems typically employ vision-based sensors (e.g.,
CMOS cameras) to sense data at long distances. Vision-based systems are used
since they can perform a touchless and non-destructive monitoring of the indus-
trial process [90]. A single pan-and-tilt camera could cover a large area [46], thus
reducing the need of having multiple sensing nodes. Moreover, it is possible to ex-
tract multiple features from the images captured, further reducing the need and cost
of deploying multiple sensors. For instance, vision-based systems can monitor vol-
ume [30], surface defects [44,83], or analyze the particle size distribution [27,31,38]
of raw materials used in manufacturing processes.

Distributed monitoring systems often use Wireless Sensor Networks (WSNs) to
build low-cost, robust, and pervasive monitoring networks composed by several in-
expensive sensor nodes. The use of multiple and redundant sensor nodes allows the
WSN to reconfigure itself in cases of changes of the physical placement of the nodes
or sensor failures [48,52].

CI techniques have widely shown their suitability to perform monitoring tasks
in industrial environments. Examples of their applications include the detection of
anomalies in tools and machinery [14, 52,53, 84, 103], analysis of quantities of in-
terest of raw materials or final products (e.g., shape, volume, or weight) [27,30,38],
analysis of the quality of the manufactured product [4,7,28,40,44,83,85, 86].

3.2 Environmental monitoring

Environmental monitoring systems can be classified according to their architecture
into three types [10,22,23]: i) centralized systems, ii) distributed systems, and iii)
remote sensing systems.

Centralized systems typically employ a single vision-based sensing node, to pro-
vide long-range detection capabilities in situations that require to monitor wide en-
vironments. Example of centralized environmental monitoring systems are wildfire
detection technologies based on a low-cost camera [32,47].

Distributed systems often use WSNs since large-scale sensor networks composed
by small and inexpensive nodes can be deployed easily in areas difficult to reach
(e.g., volcanos and oceans) or on wide environments (e.g., mountain range). The
advanced networking capabilities of the nodes and a battery life sufficient to carry
out the monitoring task for long time periods allow the sensor nodes to self-organize
even if they are deployed automatically from a distance, for example, when launched
from an airplane [61, 70]. Environmental monitoring systems using a distributed
architecture can monitor climate change [68], structural health [106], water quality
[78,79, 105], or meteorology [51].
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Remote sensing systems acquire data using satellite imagery to monitor environ-
mental phenomena on a planetary scale. Examples of remote sensing systems for
environmental monitoring include methods for detecting seismic activity [107], air
pollution [110], and water pollution [92]. Satellite imagery can also detect meteoro-
logical phenomena and perform weather forecasts [73].

CI techniques are often used for environmental monitoring. They are widely
used to classify features extracted from sensed data [32,73,92, 107, 110], perform
forecasts from time series [51, 79], and aggregate data obtained from heteroge-
neous sensors (e.g., humidity, vibrations, temperature, chemical concentrations) in
WSNs [61,68,78,106].

4 Architecture of intelligent monitoring and control systems

The structure of industrial and environmental monitoring systems typically includes
six main steps [9], as illustrated in Fig. 1. CI techniques can be used to perform or
enhance each step of the system. In the following, we overview the applications of
ClI for each single step:

1. Data acquisition: the monitoring system usually collects one-dimensional sig-
nals, two-dimensional signals, three-dimensional models, or frame sequences. In
this step, CI techniques can perform data linearization, sensor calibration, and
system diagnosis.

2. Data preprocessing: the noise in the collected data is reduced, and the pattern of
interest is extracted from the input multi-dimensional signals (e.g., image seg-
mentation).

3. Feature extraction and selection: the features of interest for the monitoring ap-
plication are extracted from the enhanced data. In this step, CI techniques can
be used to obtain a synthetic representation of the phenomenon and reduce the
dimensionality of the extracted features.

4. Data fusion: the system aggregates data or features coming from different sources,
obtaining a compact description of the phenomenon of interest. In this step, CI
techniques can increase the accuracy of traditional methods and reduce the un-
certainty of virtual measurements.

5. Classification, regression or clustering: the monitoring system analyzes the fea-
tures to derive patterns of interest for the monitored phenomenon. In this step, CI
techniques can be used to perform fault detection, quality estimation, or predic-
tion.

6. System optimization and evaluation: the parameters of the monitoring system
are adjusted to improve its performance. In this step, CI techniques can be used
to tune the parameters of the system, modify the used model according to new
operational conditions, or evaluate the performance of the system by exploring
different test cases.
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Note. ANN: Artificial Neural Network; FF: Feed-Forward Neural Network; RBF: Radial Basis Function Neural
Network; SOM: Self-Organizing Maps; CNN: Convolutional Neural Network; SVM: Support Vector Machine; EC:
Evolutionary Computation.

Table 1 Summary of the different CI techniques used for each step of monitoring systems and the
corresponding industrial and environmental applications

Table 1 summarizes the different CI techniques that have been proposed for each
step performed by the monitoring systems and the corresponding industrial and en-
vironmental applications. In the remainder of this section, we elaborate more on the
use of CI techniques in the different steps.

4.1 Data acquisition

The data acquisition step collects information in the form of one-dimensional (e.g.,
time series) or multi-dimensional signals (e.g., images, three-dimensional models,
frame sequences). To collect data, industrial and environmental monitoring systems
can use sensors mimicking the human senses and sensors collecting physical quan-
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tities, including pressure, humidity, temperature, acceleration, or presence of chem-
icals. CI techniques can be used to enhance the data acquisition step by performing
sensor calibration [24, 57, 74, 89] and sensor fault detection [37, 75, 80]. CI tech-
niques widely used in this contex are ANNs [24,57], SVMs [74], Fuzzy Logic [75],
and EC [89].

To achieve a more pervasive monitoring, the extracted information can be ex-
changed using cloud-based infrastructure and internet of things. We note, however,
that they can introduce security and privacy concerns, especially regarding industrial
trade secrets [21].

4.2 Data preprocessing

Data acquired in industrial and environmental scenarios can be affected by noise
introduced by different non-ideal conditions, such as adverse operational conditions,
variations in the environmental parameters, and interferences in the communication
channels. The preprocessing step has then the purpose of enhancing the quality of
the acquired data, remove the noise in the signals, and extract the pattern of interest.

Typically, ad-hoc filters process one-dimensional or multi-dimensional signals to
enhance the quality of the data according to the characteristics of the monitoring
application, by removing frequencies that do not represent the information to be
analyzed or by restoring the original signal from the acquired noisy data. CI tech-
niques are also adopted for data filtering, using methods based on ANNs [5,6,17,98],
SVMs [102], Fuzzy Logic [96], and EC [81].

In systems based on multi-dimensional signals (e.g., images or frame sequences)
it is particularly important to segment the regions of interest from the background,
so that the subsequent processing steps can avoid to consider unnecessary informa-
tion [54]. To this purpose, CI techniques can be applied to train a model able to
recognize the foreground from the background by learning from examples. In par-
ticular, ANNs have been used to extract regions of interest of bee foraging using
images acquired from satellites [88], and methods based on Fuzzy Logic have been
applied to select wood particles for panel production [27] or periods of interest from
time-series of chemical processes [2].

4.3 Feature extraction and selection

Data captured by the sensors have usually a high dimensionality (e.g., acquisitions
of long time series or large images from a high number of sensors) and cannot be di-
rectly processed to accurately infer the model of the observed phenomena. The fea-
ture extraction and selection steps have then the purpose of reducing the dimension-
ality of the preprocessed data to obtain a synthetic representation, usually called a
feature vector [54]. Feature extraction and selection methods based on CI techniques
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permit to significantly reduce the amount of data to be processed by the subsequent
steps of the systems, thus reducing the probability of overfitting problems and the
need of computational resources [26]. Feature extraction and feature selection are
typically performed in sequence. First, feature extraction methods compute a feature
set with lower size with respect to the input multidimensional signal (e.g., the entire
size of the captured image). Second, feature selection methods further reduce the
dimensionality of the feature space by selecting a subset of the most discriminative
features.

Traditional techniques for feature extraction include the linear discriminant anal-
ysis, principal component analysis, independent component analysis, polynomial
approximation, and multidimensional scaling [54]. In industrial and environmen-
tal monitoring, examples of feature vectors include abstract representations of the
gray-level variations that describe irregularities of a surface [34], the shape of a
moving region [32], and anomalies in frequency ranges of the input signal [28, 72].

CI techniques based on ANNs have been widely used to perform feature extrac-
tion in industrial and environmental monitoring applications, with methods using
feed-forward neural networks [43, 65, 116], self-organizing maps [67, 87, 104], ra-
dial basis function networks [15], and convolutional neural networks [53,115].

Feature selection techniques search for the subset of features that best describes
the observed phenomenon, by using strategies more efficient with respect to the
exhaustive search, which can be unfeasible in terms of computational complexity
in the case of feature vectors with high dimensionality. Traditional techniques are
frequently based on Sequential Floating Search or Sequential Forward (Backward)
Selection [54]. CI techniques can also perform feature selection: in particular, meth-
ods based on EC are especially well suited for this purpose [58, 108, 109].

4.4 Data fusion

In monitoring applications, the data fusion step can reduce uncertainty in the col-
lected data, for instance, by aggregating information obtained from several sensors
of the same type [56], and reducing possible problems due to conflicting data and
outliers. Data fusion techniques can increase the accuracy of the monitoring process
by fusing information of heterogeneous sensors to achieve a more comprehensive
description of the phenomenon [39]. Data fusion methods can also create virtual (or
soft) sensors to indirectly measure physical quantities by inferring knowledge from
the fusion of other information [41].

Fusion methods for uncertainty reduction are especially used in WSNs to aggre-
gate the data collected by the heterogeneous sensors. CI techniques are especially
suited to combine numerous sources of information to derive knowledge and per-
form an intelligent monitoring [61]. In industrial monitoring applications, Fuzzy
Logic has been used to detect faults [59]. In environmental monitoring scenarios,
self-organizing maps have been used to derive information about flood levels [63]
and Fuzzy Logic has been used to monitor the temperature [93].
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In industrial and environmental applications, several CI techniques have been
used to increase the accuracy of the monitoring process. In particular, methods based
on ANNSs are widely used in industrial scenarios to combine the information ob-
tained by different sensors. For example, ANNs have been used with the purpose of
detecting the wearing of the tools used in the production machinery [95]. Similarly,
methods based on SVM have been used to determine faults in the motors [14]. A
combination of ANNs and Fuzzy Logic has also been used to model and monitor
anomalies in hybrid energy systems [103]. In environmental monitoring, methods
for aggregating data to reduce uncertainty in detecting floods have applied both
ANNs and SVMs [69]. Techniques based on Fuzzy Logic have been used to detect
landslides by aggregating geophysical data [50].

CI techniques have also been applied for the creation of virtual sensors for the
indirect monitoring of physical quantities. When measuring the desired physical
quantity is too complex or expensive, CI techniques can be applied to infer knowl-
edge about the desired physical quantity, for example, by aggregating information
acquired by different sources. In industrial applications, virtual sensors based on a
Neuro-Fuzzy system have been proposed to monitor a hydrogen electrolyzer [55],
while in environmental scenarios ANNs have been used to perform the localization
of odor sources [71].

4.5 Classification, regression and clustering

The classification, regression, and clustering steps have the purpose of creating a
model of the industrial or environmental phenomenon under analysis. These steps
process the extracted features by associating to each observation a discrete label
(classification) or a continuous value (regression), or by grouping them according to
certain distance measures (clustering). CI techniques have extensively demonstrated
their suitability for these tasks, since they can obtain flexible and adaptive models
of the phenomenon through training and are robust to noisy or incomplete data. CI
methods can approximate a model by using a finite number of examples, provide so-
Iutions by using a limited amount of resources, and mimic the human generalization
ability [8,49].

In classification, a discrete label is assigned to sets of features sharing some
characteristics that differentiate them from the rest of the samples [101] (e.g., low-
quality products, machinery faults, and meteorological anomalies). In industrial
monitoring applications, CI techniques can detect low-quality outcomes of the pro-
duction processes. The techniques mostly used are ANNs [7,28], SVMs [85], and
Evolutionary-Fuzzy systems [60]. CI methods can also perform fault detection in
industrial scenarios, using convolutional neural networks [66], Neuro-Fuzzy sys-
tems [103] or SVMs [14]. As for environmental monitoring applications, ANNs
can predict natural disasters [32, 107] and pollution [92]. Recent applications based
on deep learning techniques have also addressed the problem of disaster predic-
tion [11,25].
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In regression tasks, the goal is to estimate a continuous value from the set of fea-
tures associated to each sample. In industrial monitoring applications, CI techniques
often use regression to predict energy levels or quality parameters. In particular,
ANNSs can predict energy consumption [12] and Fuzzy Logic can estimate quality
parameters in industrial processes [114]. Fuzzy Logic [55] and radial basis function
networks [3] using regression-based learning procedures have also been proposed
to create virtual sensors for industrial monitoring. As for environmental monitoring
applications, regression-based techniques can predict meteorological phenomena or
pollution levels, with ANNSs used to forecast the water quality in rivers [79] and a
combination of SVMs and EC used to predict air quality in urban areas [45, 105].

In clustering, the objective is to group samples according to certain distance mea-
sures. Differently from classification techniques, clustering algorithms typically use
unsupervised learning procedures that do not require any a-priori knowledge on the
semantics of the groups of similar data present in the considered set of samples. In
industrial monitoring applications, CI techniques using clustering procedures based
on Fuzzy Logic have been used to group the energy demands in different periods of
time for prediction purposes [76]. Techniques based on SVMs have also been used
to predict the optimal maintenance scheduling [62]. In environmental monitoring
applications, clustering techniques based on ANNs have been proposed to predict
seismic activities [16] and Fuzzy clustering methods have been used to estimate
pollution [33].

4.6 System optimization and evaluation

Monitoring and control systems for industrial and environmental applications may
include many models and a huge amount of parameters. Tuning these parameters
can became a very difficult process, because the variables can interact in unpre-
dictable ways. Therefore, tuning the systems based on the exhaustive exploration
of all the possible combinations of parameters is almost impossible. Other simple
techniques, such as trial and error, can only find sub-optimal configurations [9].
Differently, CI techniques based on EC, such as tabu search or ant colony optimiza-
tion, represent effective strategies to find near-optimal solutions [18]. For instance,
advanced EC techniques have been used to optimize the parameters of milling ma-
chines [112] and multi-generation energy systems [1].

Another important task to optimize the behavior of industrial and environmental
monitoring and control systems consists in testing their modules. This task per-
mits to avoid expensive errors and improve the overall performance of the system.
In most cases, this task cannot be performed only by human operators because of
the large domain of potential test cases, frequently too complex to be explored ex-
haustively. Moreover, testing procedures performed only by human operators can
increase the cost of the systems, because they could miss important errors.

EC-based techniques have emerged as a viable solution to automate the testing
process. This kind of techniques can generate effective test cases [100], and have
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been successfully applied to complex control systems, such as railway automation
[94] and car production [99].

5 Conclusions

The design of industrial and environmental monitoring systems is a complex task
because it has to face intricate processes, complex phenomena, noisy and missing
data. Methods based on mathematical models or statistical analysis require careful
engineering, and in many cases obtain incomplete or inaccurate models. In addi-
tion, such methods are difficult to apply when the data are noisy or incomplete. In
contrast, Computational Intelligence (CI) methods such as Artificial Neural Net-
works, Support Vector Machines, Fuzzy Logic, or Evolutionary Computation can
obtain flexible models that can cope with noise, data incompleteness, and varying
operational conditions, while having a limited computational complexity.

This work has reviewed recent advances in the application of CI techniques to
industrial and environmental monitoring scenarios. We have provided a taxonomy
of the methods by grouping them according to the step of the design process that
they cover. In particular, we considered the following steps: data acquisition, data
preprocessing, feature extraction, data fusion, classification, regression, clustering
and system optimization. In this way, we provided a complete design methodology.
We have also illustrated the suitability of CI methods to face industrial and envi-
ronmental monitoring and control problems. In particular, we have shown that CI
approaches can obtain better performance compared with traditional methods and
can provide adaptable and robust solutions. Recent advances in CI, such as deep
learning and hybrid systems, make us believe that the applications of CI to indus-
trial and environmental problems will continue to grow, with further improvements
in terms of adaptability and performance.
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