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Abstract

Inversion methods that rely on measurements of the hydraulic head h
cannot capture the fine scale variability of the hydraulic properties of an
aquifer. This is particularly true for direct inversion methods, which have
the further limitation of providing only deterministic results. On the other
hand, stochastic simulation methods can reproduce the fine-scale hetero-
geneity but cannot directly incorporate information about the hydraulic
gradient. In this work a hybrid approach is proposed to join a direct inver-
sion method (the comparison model method, CMM) and multiple-point
statistics (MPS), for determination of a hydraulic transmissivity field T'
from a map of a reference hydraulic head h"*" and a prior model of the
heterogeneity (a training image). The hybrid approach was tested and
compared with pure MPS and pure CMM approaches in a synthetic case
study. Also, sensitivity analysis was performed to test the importance
of the acceptance threshold 9, a simulation parameter that allows one to
tune the influence of h"°) on the final results. The transmissivity fields T
obtained using the hybrid approach take into account information coming
from the hydraulic gradient while simultaneously reproducing some of the
fine scale features provided by the training image. Furthermore, many
realizations of T' can be obtained thanks to the stochasticity of MPS.
Nevertheless, it is not straightforward to exploit the correlation between
the T maps provided by the CMM and the prior model introduced by the
training image, because the former depends on the boundary conditions
and flow settings. Another drawback is the growing number of simulation
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parameters introduced when combining two diverse methods. At the same
time, this growing complexity opens new possibilities that deserve further
investigation.

1 Introduction

In hydrogeology, the problem of determining the hydraulic transmissivity field T’
of an aquifer is often tackled using inversion methods that rely on information
coming from the hydraulic head h. For this reason, many inversion methods
cannot capture the fine-scale details of the hydraulic heterogeneity, because such
information is filtered out by h (Giudici and Vassena, 2008). This is particularly
true for direct inversion methods, which strongly rely on estimates of h.

On the other hand, stochastic simulation methods, for example those that
rely on some prior models of heterogeneity provided by two-point statistics
(a variogram) or multiple-point statistics (a training image), cannot directly
incorporate information coming from measurements of h.

Many authors have proposed approaches to address these two problems; their
efforts were discussed and summarized in a recent review by Linde et al. (2015).
Recent trends and the evolution of inverse methods in hydrogeology were also
recently discussed by Zhou et al. (2014).

Carrera and Neuman (1986) were among the first to propose a successful in-
verse method, based on maximization of a likelihood function, the hypothesis of
multi-Gaussianity of the data, and zonation. As a consequence of these assump-
tions, that method can hardly reproduce heterogeneity at small wavelengths. de
Marsily et al. (1984) proposed the pilot points method (PiPM) to improve the
fine-scale variability of the estimated parameter fields. Their method is based
on the successive updating of a Kriging field. Some fictitious additional points
(pilot points) are added to the points where T' was obtained with field tests, and
Kriging is applied in an iterative fashion to improve the fit with the observations.
The principle of the PiPM was then elaborated by Sahuquillo et al. (1992) and
Gomez-Hernandez et al. (1997) with the self-calibrated method (SCM). This
method explores the advantages of inverse stochastic modeling by providing
multiple realizations of the parameter fields under study, conditional to the
state observations.

Both the PiPM and SCM rely on a prior model built upon two-point statis-
tics. A number of authors have demonstrated the need for new and richer models
of heterogeneity, beyond the restrictions of the variogram or multi-Gaussian as-
sumption (e.g., Kerrou et al., 2008; Zinn and Harvey, 2003). An alternative to
two-point statistics is to draw the prior information from training images, us-
ing multiple-point statistics (MPS, Strebelle, 2002; Mariethoz and Caers, 2014).
This technique is among the promising tools for development of stochastic in-
verse modeling approaches (Zhou et al., 2014).

The works of Lochbiihler et al. (2014), Laloy et al. (2016), Li et al. (2012,
2013, 2014), Ronayne et al. (2008), and Alcolea and Renard (2010) describe
some recent developments and example applications of MPS within stochastic
inversion frameworks. These works range from applications where conditioning
data are based on geophysical measurements (Lochbiihler et al., 2014), appli-
cations focused on data assimilation procedures based on ensemble an Kalman
filter (EnKF, Li et al., 2012, 2013, 2014), applications integrating MPS with dy-



namic data using the probability perturbation method in a Bayesian framework
(Ronayne et al., 2008), and applications that take into account a connectiv-
ity constraint and head measurements with an acceptance/rejection criterion
(Alcolea and Renard, 2010).

Notwithstanding this growing number of applications, there is still a need
to explore the application of MPS within inversion frameworks; for instance,
none of the above-mentioned works ever attempted to exploit the flexibility of
MPS by combining it with a direct inverse method. This is done in this work,
where MPS is combined with the comparison model method (CMM, Ponzini and
Lozej, 1982). Despite the limitations of direct inversion methods (Zhou et al.,
2014), the CMM has the advantage of being computationally parsimonious. The
proposed hybrid method allows one to (i) include stochasticity in a deterministic
inversion method, (ii) integrate MPS data related to the hydraulic head field and
(iii) reproduce, at least partially, structures with relatively complex fine-scale
structure.

Section 2 briefly recalls the working principles of the CMM and MPS and
describes the workflow of the proposed hybrid inversion approach. It also de-
scribes an illustrative case study that will be used to test the proposed approach,
and the comparison criteria adopted. The results obtained with a pure CMM,
a pure MPS, and the proposed hybrid approach are reported in Sect. 3. Section
4 presents a discussion of the results, while Sect. 5 ends the manuscript with
some concluding remarks.

2 Methods

The hybrid inversion method proposed herein is obtained by combining two
techniques: one direct inversion method, i.e., the comparison model method
(CMM, Ponzini and Lozej, 1982), and one geostatistical simulation algorithm,
i.e., the direct sampling (DS, Mariethoz et al., 2010), which is part of a family of
simulation methods based on multiple-point statistics (Guardiano and Srivas-
tava, 1993; Strebelle, 2002). Note that, although two particular techniques are
combined in this work, the proposed hybrid inversion workflow has a general
validity; for example, DS could be replaced by another multiple-point simu-
lation paradigm, for example snesim (Strebelle, 2002) or impala (Straubhaar
et al., 2011), or any other geostatistical simulation technique that can integrate
maps of auxiliary variables. DS is selected here due to its flexibility in handling
auxiliary information and the possibility of reproducing connected and realistic
patterns of heterogeneity.

In the following, the term “pure” is used in opposition to “hybrid” to describe
the simulation approaches where either only MPS or only CMM is used.

2.1 Comparison Model Method

The comparison model method (CMM) is a direct inversion method useful for
determination of a hydraulic transmissivity field 7" given a source term F, a
tentative initial transmissivity field T,Qf) (the transmissivity of a comparison
model, CM), some boundary conditions (BCs), and a reference hydraulic head
field h(**) (Scarascia and Ponzini, 1972; Ponzini and Lozej, 1982; Ponzini and



Crosta, 1988). The latter is very often interpolated from sparse measurements
of the hydraulic head h over the domain to be characterized.

Figure 1 illustrates the working principle of the CMM as a flowchart. The
main idea is to update iteratively an initial field T,ggl(\)/[). At each iteration k, a
forward problem (FP) is solved for a CM that shares the same source terms and
boundary conditions as the real problem. Using a tentative transmissivity field
T,gCM), a head field h,(CCM) is obtained. The basic hypothesis applied to update
the transmissivity field is that the hydraulic fluxes computed for the CM should
be very close to the fluxes related to h**f). In other worlds, the update step
can be expressed as

CM
740M>4,T«mn|Vhi )| 1)
k+1 T Tk |vh(rcf)|’

where the hydraulic gradients Vi can be computed using a finite-difference
scheme in practical applications. In this way, 7™ is updated iteratively until
a stopping criterion is met. At the end of this procedure, Tlgﬂ/{) is taken as the
estimated T field T(esY),

The CMM has been successfully applied in a number of case studies (e.g.,
Vassena et al., 2012; De Filippis et al., 2016), and beyond the field of hydroge-
ology (Lesnic, 2010). One of its strengths is computational efficiency, because
at each iteration, one only has to solve a FP, and few iterations are needed
to obtain a reliable 7(¢s*) in most cases. Another strength is the possibility of
obtaining a transmissivity field representative of the model scale, i.e., of the
spacing of the chosen estimation grid.

Among the weaknesses of the CMM is the difficulty in reproducing the fine-
scale details of a T field. This arises from the fact that h?) filters out the
fine-scale features of the underlying parameter field T'. Therefore, the aim of
this work is to address this weakness by injecting some a priori information using
multiple-point statistics simulation (Guardiano and Srivastava, 1993; Strebelle,
2002).

2.2 Direct Sampling Method (DS)

As for other multiple-point simulation paradigms, DS is based on the concept
of a training image (TI), which represents a conceptual model of the hetero-
geneity and serves as a database of patterns. Here, the working principle of
this technique is briefly outlined; More details can be found in Mariethoz et al.
(2010).

The aim of DS is to fill the gaps in the spatial variability of a random variable
Z defined only at limited locations in a simulation grid (SG), by sampling the
spatial patterns provided by a TI. The sequential DS simulation procedure,
illustrated in Fig. 2, can be summarized as follows:

1. Given a search radius R, randomly select an empty cell at location x in
the SG. The cells of the SG where a value of Z is already defined (or
simulated) and which fall within a radius R around x are then selected.
Their values, together with their location in the SG with respect to x (the
lag vectors 1y, 1o, ...), define a data event e = {Z(x+11), Z(x + Lo),...}
(Fig. 2a).
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Figure 1: Flowchart of CMM method

2. The TI is scanned for a data event similar to the data event e defined
in the previous step for the SG. Different measures of similarity can be
adopted to define the distance d between two data events. In the case
of categorical variables, one measure can be based on the number of cells
that present the same value of Z. In the case of continuous variables,
other options are available. Here, the £'-norm is considered.

3. Given a user-defined threshold value ¢, if d < § then the similarity between
the two data events is “accepted” and the value at the center of the data
event in the TT is pasted at the corresponding grid location x in the SG
(Fig. 2c). Otherwise (Fig. 2b), the search continues up to a given stopping
criterion.

These steps are repeated sequentially to fill all the gaps in the SG. In addition,
at the beginning of this procedure, the variable Z is normalized in order to work
with dimensionless quantities for d and J.

The aforementioned procedure can be easily extended to the case of a mul-
tivariate random variable Z by providing a multivariate TI, a vector threshold
0, and a distance for each component of Z; For example, concerning the choice
of this distance, Z could be composed of a categorical variable and a continuous
variable. Therefore, one could use a dedicated distance for the categorical com-
ponent of Z and a different distance for its continuous component. Based on
this flexibility, it is easy to imagine a collocated simulation framework, where a
bivariate TI is provided while on the SG only one variable is exhaustively known
and the other must be simulated. Indeed, this is the setting of the proposed
hybrid method: (a) a bi-variate TI, containing a categorical representation of T'
in terms of facies codes (channel and background) and the corresponding con-
tinuous image obtained with the CMM, and (b) a SG where only the continuous
estimate obtained by the CMM is provided, and the categorical representation
must be simulated.
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Figure 2: Three basic steps in the DS simulation procedure: a) selection of a
random location and a data event in the SG; b) selection of a data event in the
TTI and compatibility check; ¢) a compatible data event is found in the TI, and
its center value is pasted in the SG



2.3 Hybrid Inversion Method

The proposed hybrid inversion workflow is composed of one preliminary step
and one main step. The preliminary step consists in application of the pure
CMM approach to create a series of multivariate TIs, one for each iteration
of the CMM. The A0 used for the CMM is obtained by solving a FP with a
training transmissivity field 7TV representing an a priori model of heterogeneity
that is expected to contain the same patterns of heterogeneity as the unknown
T field. T™ can be categorical, with a T value provided for each category,
or continuous. In this preliminary step, the pure CMM is run as depicted in
Sect. 2.1 for a given number K of iterations with given BCs and source term
F. At the end of the K CMM iterations, K transmissivity fields T,gIl’CM), cee
T,gll’(CM) are obtained. These fields, combined with T(™ | represent a number
K of bivariate training images (7(TV, Tlgll’CM)), oy (T TISEII’(CM)) that are
used in the following step.

Figure 3 illustrates the main step. In this step, the h(e) ysed in the CMM
steps is not, in general, computed by solving a FP on a fully known T field, as
it is in the first step. Instead, here h("*f) could be, for example, the result of
an interpolation of some h measurements over an unknown 7 field that is to
be estimated. Then, the hybrid CMM is applied updating 7" in two subsequent

steps. First, T,iCM) is updated using the information provided by Vh;CM) and

VheD as for the pure CMM, using Eq. (1). Second, the obtained Téﬂ/{) is
used as a collocated variable to simulate, using DS, a newly updated T'. For
the DS simulation, in addition to the T,iﬂ/l) used as a collocated variable, the
bivariate TI computed at the previous step for the corresponding k is used,
ie., (TTI,TIEE’CM)). As for the pure CMM, this procedure is repeated until a
stopping criterion for the estimated T is met.

This hybrid inversion framework was implemented using the parflow (Ashby
and Falgout, 1996; Jones and Woodward, 2001; Kollet and Maxwell, 2006;
Maxwell, 2013) and YAGMod (Cattaneo et al., 2015) simulation platforms for
solution of all the FPs, the deesse software (Mariethoz et al., 2010) for the DS
simulation, and Python and its numerical libraries for the CMM and remaining

numerical tasks.

2.4 Illustrative Case Study

To illustrate the diverse behaviors of the pure MPS, the pure CMM, and the
proposed hybrid approach, the starting point is the TI proposed by Strebelle
(2002). A target heterogeneity akin to that TT represents a challenge for all
inversion techniques that rely on the two-point correlation paradigm, and would
also be a challenge for the pure CMM.

Using the aforementioned TT in a DS simulation framework, two realizations
on a grid of 300x200 square cells of side 25 m were obtained using the deesse DS
simulation code (Mariethoz et al., 2010). One of the two realizations was used
in the following as a training image itself (T(TI), Fig.4a), while the other was
considered as the (supposed unknown) target transmissivity field that one wishes
to reproduce (T""®) | Fig. 4b). Using average values for sand and shale extracted
from the worldwide hydrolgeological parameters database (http://wwhypda.org,
Comunian and Renard, 2009), and considering an aquifer of thickness 10m,
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Figure 3: Flowchart for hybrid inversion approach

transmissivity values of 1 x 1073 m?/s and 1 x 10~%m? /s were assigned to the
sand and background shale facies, respectively. In the following, the terminology
“low-transmissivity /high-transmissivity” or “background/channel” cells is used
interchangeably. In all the simulation settings involving the CMM, the method
was applied considering a null source term F' and fixed head boundary conditions
at the borders corresponding to the cell indices 7 = 1 (h = 10.0m) and j =
300 (h = 9.0m), to produce a hydraulic gradient along the main direction of
orientation of the channels, with null flux elsewhere.

Figure 4c shows the head field h(t""®) obtained from the solution of the
forward problem for the reference T field; in this map, the yellow dots show the
randomly selected positions of the 30 virtual monitoring points, i.e., the nodes
where it is assumed that h(""®) is measured. These data will be compared
with the values computed by solving the forward problem for other estimated T'
fields. Note that these monitoring points are used only for statistics on estimated
heads, but not as conditional points for transmissivity or facies.

2.5 Comparison Criteria

The following parameters were used to evaluate the performance of the different
techniques: The proportion of correctly simulated channels (p.g) quantifies
the proportion of simulated channel cells that correspond to a channel in the
T(rue) grid, while the proportion of incorrectly simulated channels (Pwrg) is the
proportion of simulated channel cells that do not correspond to a channel in the
Ttrue) grid. The Jaccard index (J) somehow summarizes these two parameters
Drgt and Pyre. In terms of sets, if A represents the set of the simulated channel
facies and B the set of the channel facies in the reference, then the Jaccard



index is defined as
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Another parameter considered herein is the proportion of channel facies (p),
that is, the number of channel facies over the total number of grid cells. It is
also useful to examine the probability of connection of two points x and y , i.e.,
the probability that two points belong to the same connected component (or
geobody) of the considered domain; this is done using the intrinsic (cint) and
total connectivity (ciot) , as defined by Vassena et al. (2010). These parameters
are related to the hydraulic properties of porous media and therefore provide a
synthetic way to summarize them. Here, in particular, the connectivity of the
more conductive cells (channel facies) is considered using a four-point scheme.
In other words, the connectivity is considered only through the sides of the
cells but not through their corners. (See Vassena et al. (2010) for a formal
definition, and Renard and Allard (2013) for a comprehensive and recent review
about the concept of connectivity and different indicators). Another important
morphometric attribute that is useful for comparison of different realizations of a
categorical variable is the number of clusters (IV), i.e., the number of connected
components. Here, again, the number of connected components for the channel
facies is considered.

All these parameters were computed both on the whole simulation domain
and on a subdomain obtained by excluding a boundary frame of size 50 cells
on each side. This subdomain is useful to reduce the influence of the boundary
conditions on the results of the simulation (an influence that will become evident
in the next section in the pure CMM results).

In this work, a synthetic case study is examined, to enable access to a known
transmissivity field (") (Fig. 4b). Therefore, in addition to the aforemen-
tioned parameters, the following statistical indicators are adopted to quantify
the errors in the computation of the estimated transmissivity field 7"

J
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where M is the number of nodes at which the transmissivity is estimated, and
T(true) (7) and T (4) are the transmissivity values at cell 4, for the reference
and estimated fields, respectively. Note that X, |A|, and A\? are dimensionless
parameters, because they are based on logarithms of transmissivity ratios. In
addition, to quantify the impact that the estimates of 7" have on the hydraulic
head h, a root-mean-squared error (RMSE) was computed using the values of
R(tru€) at the virtual monitoring points (Fig. 4c) and the values of h computed
using the results of the pure CMM (R(CM)),
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Figure 4: Decimal logarithm of the T field used as a) training image and as b)
reference. Measurement units are m?/s for T and m for h. Note that, in this
figure and in all the subsequent figures containing maps, values on axes refer to
cell indexes

3 Results

In this section, the results obtained using a pure MPS approach, a pure CMM
approach, and the proposed hybrid approach are illustrated.

3.1 Pure MPS

To illustrate the differences between the proposed hybrid methodology and a
standard approach, the considered reference is an ensemble of 10 pure MPS real-
izations performed using different random seeds with standard set of simulation
parameters and the TT presented in Fig. 4a. The parameter sets were selected
according to the guidelines suggested by Meerschman et al. (2013). In particu-
lar, a search radius of 124 cells, a maximum number of neighboring cells of 24,
and a threshold 6 = 0.05 were selected for scanning the 30 % of the training
image. These same parameter values will be used below in the hybrid approach,
apart from relatively small differences required to include a secondary variable.
For the moment, in the application of the pure MPS approach, neither hard
conditioning data nor soft conditioning data such as auxiliary variable maps
were used in the simulations illustrated in this section. The aim here is to eval-
uate the default performance of the pure MPS simulation method when trying
to reproduce the reference T field presented in Fig. 4b.

The results of application of the pure MPS approach are illustrated in Fig. 5.
A boxplot is drawn for each of the parameters introduced in the previous sec-
tions, viz. P, Prgt, Pwres Cints Ctot, J, and IV, for the full domain and subdomain.

3.2 Pure CMM

This work proposes a hybrid inversion technique that makes use of a direct
inversion method and a geostatistical technique. It is therefore useful to briefly
present the results that could be obtained using the direct inversion method
only, to highlight the improvements introduced when using the proposed hybrid
technique.

In a real case study, it is of course not possible to take measurements of the
hydraulic head with the same spatial density as the considered discretization
grid. Nevertheless, here the results that could be obtained using the pure CMM

10
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Figure 5: Reference parameters for pure MPS simulation, computed on full
domain and on subdomain (neglecting an external frame of 50 cells). Horizontal

lines represent parameters computed on the reference field (Fig. 4b)

when £ is known at every point of the discretization grid are briefly outlined.
In particular, in Fig. 6, A, |\, A2, and h(BMSE) are plotted against the number
of CMM iterations for the full domain (cyan continuous line) and subdomain
(orange dashed line). Figure 7 shows maps of h(true) | pref)  p(CM) g ((true))
log,o(T“M), and (h(true) — B(CM)) for the third CMM iteration. This iteration
was chosen to show and discuss the results, because A2 attains a local minimum
for the reduced domain, h(FMSE) shows a small variation with respect to the
preceding iteration, and the trend of |\| becomes less negative for subsequent
iterations.

3.3 Hybrid Approach

As explained in Sect. 2.3, a preliminary step is required before running the
hybrid approach. This step is needed to create the multivariate training images
that will be used for the multivariate DS simulations within the workflow of the
hybrid approach. These multivariate TIs are obtained by running a pure CMM
approach using a h(**?) computed by solving a FP on the T field defined by the TT
in Fig. 4a. The T maps created by the pure CMM for each iteration are used in
the multivariate TIs as secondary variable, while the main variable (which is the
same for all iterations) is the TT in Fig. 4a. Since within the hybrid approach
the DS is applied with a multivariate TT, a vectorial threshold § = (41, d2)
is required. The first component (§;) controls the acceptance threshold for
the categorical variable channel/background, while the second component (d2)
controls the threshold acceptance for the continuous variable simulated with the
CMM.

The hybrid approach was first tested using a true A" and § = (0.01, 0.001).

11
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Figure 7: Results of CMM inversion after three iterations: a) true h field (yellow
dots represent locations used to compute h(RMSE)), b) reference h used as input
for the CMM (in this case h(®®) = p(true)) ¢} b computed with the T field
estimated with the CMM, d) logarithm of the reference T field, e) logarithm
of the T field estimated with the CMM, f) A(true) — p(CM)  Units are m for
hydraulic head, and m?/s for the transmissivity
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ref)

Then, always using a true h(**") | a sensitivity test was performed on 85 only.

3.3.1 Trueh

In this test, the hybrid approach was applied using h("*") = p(r9) a5 input, i.e.,

an h field obtained by solving a FP using the true T (Fig. 4b). This setting is of
course far from the real case situation; still, it is useful to verify the performance
of the proposed hybrid approach in an ideal case.

Figure 8 shows the same maps presented in Fig. 7 for the pure CMM, with
three additional maps: g) the binary component of the multivariate TT image
(Fig. 4a), h) the continuous component of the multivariate TI, obtained in the
preliminary step by running the pure CMM, and i) the binary result of the
hybrid inversion approach.

A crucial parameter that controls the quality of the DS simulation is the
threshold value § used to accept/reject a given data event (Meerschman et al.,
2013). For this example, §; and 02 were fixed at 0.01 and 0.001, respectively.
The next section presents a brief sensitivity analysis on ds.

3.3.2 Sensitivity Analysis on the Threshold ¢, for the Secondary
Variable

As anticipated in Sect. 3.3.1, the acceptance threshold § plays an important role
in the results of the DS simulations. In this example, the effects of variation
of this parameter (J3) are illustrated for the secondary variable, i.e., TCM) A
different value of d5 corresponds to giving a different weight to the information
provided by h*¢f) in the hybrid approach. To illustrate the effects of changing
02, the results of the first 10 iterations of the hybrid approach were stacked and
an average value computed and mapped for do = 0.001, 63 = 0.1, do = 0.2,
and 02 = 0.5 (Fig. 10). It is also useful to compare the results obtained using
different values of J2 in quantitative terms. Figures 11 and 12 show boxplots
of N and J obtained by running 10 simulations with the hybrid approach with
different values of d5. The first boxplot represents N and .J for the pure MPS
approach, while the others correspond to different k-th iteration steps of the
hybrid approach.

3.4 CPU Time

Table 1 reports the CPU time required to run the three methods. For the times
related to the pure CMM and the hybrid approach, all the iterations required
to obtain an acceptable result (in terms of the aforementioned parameters) are
considered. These results were obtained by running the case study on a work-
station equipped with an Intel® Core™ i7 CPU 860 (2.80 GHz clock frequency)
using one core only. However, all the reported times could be further reduced
because both parflow and deesse can be run using multiple cores. Note that,
for the hybrid approach, about 98 % of the CPU time is spent on the MPS sim-
ulations, while the remaining 2 % is used for solving the FP and by the Python
utility script. Notice also that the MPS iteration performed within the hybrid
approach is expected to be slower than the pure MPS, because for the hybrid
approach two variables are considered.
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Figure 8: Results of hybrid approach using h(ref)
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= hlte) and (81,82) =

(0.01,0.001), first iteration: from a) to f) see Fig. 7, g) logarithm of T field
used as categorical training image h) secondary continuous variable used as
training image, i.e., the logarithm of the T' computed using the pure CMM in
the preliminary step, i) result of application of hybrid approach

Table 1: CPU time required by the three methods. The number of iterations
is meaningful only for the pure CMM and CMM+MPS, corresponding to the
number of iterations needed to obtain an acceptable T field.

method No. iter. CPU time [sec]
Pure MPS - 58.2
Pure CMM 3 4.3
Hybrid (CMM | MPS) 1 160.1
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Figure 9: Comparison of the pure MPS and the hybrid approach. The latter
was performed using h(*'"®) as reference h, and (d;,d2) = (0.01,0.001). The
first boxplot on the left shows the results of 10 pure MPS simulations, while the
subsequent boxplots, labeled with the index k, represent iterations performed
with the hybrid approach. For each iteration, the results obtained from 10

hybrid simulations using a different random seed were aggregated
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4 Discussion

From the results obtained with the pure MPS approach (Fig. 5), it is clear
that the range of variability of the considered parameters never includes the
target value obtained for T(*""®). One could probably obtain better results
using other parameter settings. Still, here the aim is not to look for the best
parameterization of the MPS, but only to provide a reference case study to
be compared with the hybrid approach, where the same parameters are used.
Overall, the parameters computed on the subdomain show greater variability,
which is probably due to the smaller number of cells on which the parameters
are computed.

For the pure CMM approach, the parameters |A|, A2, and hBMSE) show an
almost monotonic decreasing trend, confirming convergence of the maps 7(¢M)
for increasing k (Fig. 6). In particular, the parameter A? attains a local minimum
at the third iteration for the reduced domain. After this iteration, A2 for the
whole domain and |A| show a slowing of their decreasing trend. The bias in the
estimated T field, which is quantified by A, shows an approximately constant
value up to the sixth iteration, then an increase for the reduced domain, whereas
the increase of \ over the whole domain shows a slight reduction after the third
iteration. h(BMSE) at the third iteration has almost the same value as at the
second iteration, showing a further decrease for subsequent iterations. These
remarks suggest that continuing the iterations to & > 3 does not significantly
improve the results. This is supported by visual inspection of the maps of
TISCM) obtained during the diverse iterations; here only the map obtained for
the third iteration is shown (Fig. 7). Only the parameter A shows a discordant
trend, which can be somehow explained by the fact that it is computed by
mixing overestimates and underestimates of T', and therefore provides less clear
information about the iterative procedure. The maps presented in Fig. 7, and
in particular Fig. 7e, show that, in the case when h(*¢f) = p(true) the CMM
reproduces the envelope of the true T with good detail. Nevertheless, it is
important to note that (i) the provided estimate in not categorical like the target
T, (ii) there are strong differences between the percolating channels, i.e., the
high-transmissivity channels that link the upper and lower part of the domain
where the fixed head BCs are applied, and the disconnected channels, and (iii)
noticeable differences in the estimated 7" can be observed at the boundaries of
the domain too.

The observations made for the pure CMM approach can be partially ex-
tended to the results of the hybrid approach. In this case, the same contrast
between percolating channels and disconnected channels observed for the pure
CMM approach in Fig. 7e can be observed for the secondary variable of the TI
(Fig. 8h; see, for example, the almost shaded percolating channel that starts
from the lower side of the domain close to the 150th cell). Again, the same con-
trast can be observed between T(!) close to the null flux boundary condition
or close to the fixed head ones. All these observations suggest poor correlation
between the primary variable and the secondary variable maps. The result of
this poor correlation is evident in the final result (Fig. 8i), where the fit between
the estimated channels and the true channels (Fig. 8d) is satisfactory only in the
center of the domain. Nevertheless, the Jaccard index J (and the parameters
Drgt and Pyrg) show that, on average, the hybrid method correctly guesses the
position of the channels (Fig. 9b, ¢, g). While the proportions p fluctuate slightly
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around the target value through the iterations, the connectivity indicators (ctot
and cip) remain stable and comparable to the values estimated using the pure
MPS approach. However, the boxplots of these latter indicators show smaller
fluctuations, which are probably due to the additional constraints imposed by
h(*f) in the hybrid approach. Overall, the number of geobodies is always bigger
for the hybrid approach, indicating that, especially for k£ > 1, the hybrid simula-
tions are more fragmented than the pure MPS simulations. Figure 9 also shows
that the first couple of iterations are decisive to fix the values of the statistics
that have been examined while subsequent iterations introduce relatively small
and often nonsystematic variations.

Concerning the sensitivity analysis performed on 5, the stacks performed
over the iterations clearly illustrate the importance of this parameter (Fig. 10).
For small values ( 0.001 < d2 < 0.1) the weight given to the information coming
from h(*f) is strong and there are small differences between the iterations. When
09 is increased, more freedom is left to the DS algorithm for the simulation of the
categorical facies, and there is greater variability from one iteration to another.
These observations are confirmed, for example, by the variability of J and N
(Figs. 11 and 12). In the case of N, on average its values are smaller and closer
to the pure MPS results. In other words, when the constraint on A is looser,
the multivariate MPS produces more realistic channels. On the other hand, in
terms of .J, a stronger constraint on h("*) (6, < 0.1) results in better localization
of the channel facies and background facies in the simulation grid.

5 Conclusions

This work represents one of the first attempts to combine multiple-point statis-
tics and a direct inversion method (the comparison model method, CMM) into
a hybrid inversion approach. The results obtained so far are encouraging. The
proposed hybrid approach allows one to address a number of limitations of the
CMM: (i) it allows one to obtain multiple realizations of the estimated T field
by exploiting the stochasticity of the MPS; (ii) the result can be obtained di-
rectly as categorical variables; (iii) in the central part of the simulation domain,
a good portion of the facies codes are estimated at the correct locations; (iv)
some fine-scale structures can be partially reproduced. At the same time, the hy-
brid approach allows one to integrate auxiliary information about the hydraulic
heads into multiple-point statistics.

In addition to these advantages, the results highlight a number of limita-

tions of the proposed approach. First is the fact that the relationship between
the primary variable and the secondary variable obtained with the CMM is not
straightforward and can be misleading. Indeed, the latter variable is strongly
dependent on the hydraulic gradient, and this results in very different responses;
See , for example , the strong differences between percolating and disconnected
channels (Fig. 8e, h). For the same reason, the correlation between the facies
codes and the secondary variable computed by the CMM depends on the pres-
ence of boundary conditions.
To cope with these nonstationarities in the map of the secondary variable, one
could incorporate into the MPS step additional maps representing, for example,
the distance from the sides of the domain. A study of this setting deserves
further investigation.
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The present study suffers from another limitation in that only a setting where
h(e) is fully known at all nodes of the simulation domain has been explored so
far. Therefore, the next steps of this research should investigate the response
of the hybrid approach to an input A" obtained by interpolation of a limited
number of measurements.

Another interesting result arising from the sensitivity analysis is the rele-
vance of the threshold value for the secondary variable: smaller values (below
0.01) provide a good constraint on the observed hydraulic head, but deteriorate
the overall properties provided by the first component of the TI. Therefore, for
small values of the threshold the simulations appear more fragmented and less
connected.

When combining two different tools such as multiple-point statistics and a
direct inversion method, the number of simulation parameters grows to become
somehow cumbersome. This is particularly true when the multivariate training
image has more than two components, or the direct method is applied with a
tomographic approach. These remarks should be recalled when generalizing the
results of the test case discussed herein: the optimal choice of the parameters
of the hybrid approach and of the two basic algorithms is not straightforward.
Notwithstanding this growing complexity, the proposed hybrid approach opens
new perspectives for inversion of hydraulic parameters of aquifers.
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