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Abstract Resampling methods are often invoked in risk modelling when the stability of
estimators of model parameters has to be assessed. The accuracy of variance estimates is
crucial since the operational risk management affects strategies, decisions and policies.
However, auxiliary variables and the complexity of the sampling design are seldom taken
into proper account in variance estimation. In this paper bootstrap algorithms for finite
population sampling are proposed in presence of an auxiliary variable and of complex
samples. Results from a simulation study exploring the empirical performance of some
bootstrap algorithms are presented.
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1 Introduction

Statistical modelling of the operational risk in finance is receiving increasing attention (De
Fontnouvelle et al. 2006; Nyström and Skoglund 2002; Risk Management Group 2003).
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The widely discussed case of the re-nationalisation of the British railways company Rail-
Track in 2002 and some recent financial scandals are emblematic examples.

The operational risk management affects strategies, decisions and policies (Cruz 2002)
and therefore the stability of estimators of model parameters states a judicious inferential
issue. However the estimation framework is usually cumbersome to handle. Data are often
collected under complex non-iid sampling plans or are produced under uncontrolled
random mechanisms. As a consequence, the classical iid assumption as well as the
sampling design with equal inclusion probability is routinely violated. In addition the
estimators have generally a complex structure so that the analytical assessment of their
accuracy is difficult. In this context, resampling methods for estimating the variance of
estimators and for constructing confidence intervals appear as a natural solution.

Since Efron’s original bootstrap applies to the classical iid framework, suitable
modifications are required in order to address complex issues from survey sampling.

In the present paper bootstrap algorithms for finite population sampling are considered
in presence of complex sample data and of an auxiliary variable. The latter could
summarize past experience and/or known information related to the random mechanism
providing the sample data.

In operational risk literature non-iid bootstrap techniques are seldom concerned. Efron’s
classical bootstrap is usually applied despite the complexity of the sampling design, especially
when dealing with extreme value inference or when the sample size is small (Coleman 2003).
As a starting point and with the main aim of providing some empirical evidence as a
guidance for future research, in this paper we focus on a very simple ratio model, i.e. a linear
regression for the N population values without intercept and with heteroscedastic errors

yi ¼ b xi þ "i ð1Þ
i ¼ 1 � � �N , where the ɛi are independent random variables with E(ɛi) = 0 and E "2i

� � ¼ s2
i .

We assume that a sample s of size n is selected under a sampling design with probability
proportional to the auxiliary variable x and without replacement (often referred as πPS
sampling). Note that this allows a wider use of the auxiliary variable, which is involved at
both the selection and the estimation stages. In addition unequal inclusion probabilities at
the selection stage are acknowledged.

Three πPS bootstrap algorithms are presented in Section 2. In Section 3 a simulation
study is illustrated and empirical results are presented. A discussion of simulation results is
given in Section 4.

2 Bootstrap Algorithms

Two classic estimators for the regression coefficient β in model 1 are considered: the ratio
estimator

bb RA ¼
X

i2s yi
.X

i2s xi ð2Þ

and the regression estimator

bb RE ¼
X

i2s yixi
.X

i2s x
2
i : ð3Þ

In order to estimate the estimator’s variance V bb
� �

, the so-called wild bootstrap is
generally proposed under simple random sampling (Helmers and Wegkamp 1998).
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Under πPS sampling we consider three bootstrap algorithms, all of them relying upon
the notion of bootstrap population. We refer to a bootstrap population as a set formed by
replicating wi times every sampled unit i ∈ s. Hence the bootstrap population includes data
from the original sample only according to a basic bootstrap principle. Furthermore:

– the bootstrap population has (random) size N* ¼ P
i2s wi ¼

PN
i¼1 wi di where δi

denotes the (original) sample membership indicator of every population unit i, i.e. a
random variable taking value 1 if i ∈ s and 0 otherwise. Let πi be the inclusion
probability of unit i into the original sample s. Hence E(δi) = πi;

– the total X* of the auxiliary variable into the bootstrap population is given byP
i2s wi xi.

Weights wi are evaluated by calibrating with respect to known features of the actual
population generating the data, namely the size N and the total X ¼ PN

i¼1 xi of the auxiliary
variable. Once the bootstrap population is arranged, the general form of the bootstrap
algorithm consists of the following three steps:

1. Resampling step. A collection of B bootstrap samples s*, each of the same size n as the
original sample s, is selected from the bootstrap population under a given re-sampling
design, with B chosen sufficiently large.

2. Bootstrap distribution step. Let bb * be the replication of the estimate bb computed by
applying either Eq. 2 or 3 to a bootstrap sample s*. The collection of the B replications
provides the bootstrap distribution of estimator bb .

3. Variance estimation step. The variance V* bb *
� �

of the bootstrap distribution supplies
the bootstrap estimate for the estimator variance V bb

� �
.

The three bootstrap algorithms considered here differ either in the choice of wi or in the
re-sampling design which can or can not mimic the original πPS design. We start with the

1. Holmberg’s bootstrap (Holmberg 1998), where the bootstrap population is given by
setting wi ¼ p�1

i , i.e. the inverse of the inclusion probability in the original sample.
Assuming that for every population unit i the auxiliary variable takes on positive value
and that the sampling design ensures πi = nπi/X, the resulting bootstrap population can
be viewed as calibrated with respect to both X (uniformly) and N (on average). Hence
we have: X* = X and E(N*) = N. The re-sampling step is performed under the same
πPS design yielding the original sample s.

In addition we propose:

2. a simplified Holmberg’s bootstrap based upon the same bootstrap population as for the
original Holmberg’s algorithm and upon a simple random re-sampling with equal
probabilities according to Mecatti (2000). Hence the bootstrap population is calibrated
to both X and N whereas the bootstrap principle (according to which the re-sampling
design should mimic the original sampling design) is unattended. On the other hand the
simplification in the resampling step allows noticeable computational advantages;

3. a model assisted πPS bootstrap by assuming "i ¼ x1=2i ui in model 1 and by using a
suitable estimator bF �ð Þ of the original finite population distribution according to Rao,
Kovar and Mantel (1990). The bootstrap population follows by setting:

wi ¼ N bF yið Þ � bF yi�1ð Þ
h i

for all i 2 s: ð4Þ

The resampling step is still performed by mimicking the original πPS design.
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Since the efficiency of a πPS sampling over a simple random sampling increases as the
relationship between the study variable y and the auxiliary variable x approaches
proportionality, the ratio model 1 is implicitly assumed when a πPS sampling design is
chosen. Furthermore, estimator bF is proved to be both asymptotically design-unbiased and
model-unbiased (Rao, Kovar and Mantel, 1990). As a consequence the proposed model
assisted πPS bootstrap is expected to retain the design based properties from the
Holmberg’s bootstrap 1 and also to be calibrated with respect to the model assumption
y/a x (where /a denotes approximated proportionality).

3 Empirical Results

A simulation study has been conducted with the twofold purpose of investigating the
empirical performance of the three πPS bootstrap algorithms presented in Section 2 and of
comparing them with the wild bootstrap, i.e. the methodology usually suggested in the
literature.

The simulation considers an artificial set up according to McCarthy and Snowden (1985)
where estimators bb RA and bb RE are expected to have optimal inferential properties. Two
artificial populations of size N = 100 have been produced by giving x a Chi Square
distribution with 9 and with 18 degrees of freedom. This leads to an asymmetrical and an
almost symmetrical population with increasing variability. Model errors ɛi have been
generated by a Normal distribution with zero mean and variance equals xi. The Monte Carlo
distribution of estimators bb RA and bb RE are provided by 10,000 simulation runs under the
Rao–Sampford rejective πPS design (Rao 1965; Sampford 1967) for increasing sample
fraction f = n/N equals 0.1, 0.2 and 0.25. Note that the Rao–Sampford design although
ensuring πi = nxi/X does not allow simulations with large sample sizes, namely f >0.25, for
the number of sample rejections increases at an exponential rate as the sample fraction increases.

For every Monte Carlo run, bootstrap algorithms have been performed by setting B =
200. Empirical properties of the bootstrap algorithms and of the bootstrap variance
estimators have been evaluated by computing the following relative measures:

the Average Relative Error (Lahiri 2003):

ARE ¼ 100�
Emc V*

bb *
� �h i

� Vmc
bb

� �

Vmc
bb

� � ð5Þ

the Relative Mean Square Error:

RMSE ¼ 100�
Emc V*

bb *
� �

� Vmc
bb

� �h i2

Vmc
bb

� � ð6Þ

where bb denotes estimators from the original sample, * denotes bootstrap quantities,
expectations and variances are provided via Monte Carlo.

Simulation results concerning bootstrap estimates of the variance of the ratio estimator
bb RA are shown in graphs arranged in Fig. 1. Graphs in Fig. 2 display simulation results
regarding bootstrap estimates of the variance of the regression estimator bb RE. Relative
measures 5 and 6 concerning πPS bootstrap algorithms 1, 2 and 3 (Section 2) and the wild
bootstrap, are plotted against the three simulated levels of sample fraction and paired for the
two simulated populations (a and c, b and d).
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4 Discussion

For the simple ratio model 1, simulation results highlight that the three proposed πPS
bootstrap algorithms represent valid alternatives to the wild bootstrap when the auxiliary
variable is used at both the estimation and at the selection stage. They also encourage
further research by considering more complex models and estimators suitable for
operational risk as well as real data set.

The line referring to the wild bootstrap is located distinctly above the others in all the
graphs except for two ambiguous cases limited to the simplified Holberg’s bootstrap. As a
consequence the wild bootstrap, as compared to the proposed πPS bootstrap algorithms,
shows the worst performance in terms of biasedness (ARE) as well as of efficiency and

Fig. 1 ARE and RMSE of bootstrap estimates of V bb RA

� �
for increasing sample fraction and for two

simulated populations. a ARE for population: x � c2
9, yi ¼ xi þ N 0; xið Þ. b RMSE for population: x � c2

9,
yi ¼ xi þ N 0; xið Þ. c ARE for population: x � c2

18, yi ¼ xi þ N 0; xið Þ. d RMSE for population: x � c2
18,

yi ¼ xi þ N 0; xið Þ
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stability (RMSE) of the variance estimators. By comparing the three lines referring to the
proposed πPS bootstrap algorithms, the Holmberg’s bootstrap 1 emerges as the best
performer. It uniformly provides variance estimates nearly unbiased, more efficient and
more stable than all the competitors, yet for low sample size.

The simplification proposed with the modified Holmberg’s bootstrap 2 leads to
substantial computational advantages but results in significant biases. On the other hand,
the simplification at the resampling step does not convey noticeable stability losses.
Moreover the simplified Holmberg bootstrap supplies conservative variance estimates while
both the πPS competitors tend to underestimate.

Finally, the proposed model assisted πPS bootstrap algorithm 3 shows an intermediate
performance. As a result that does not seem to balance the major complexity and the
heavier computational needs than both the πPS competitors. To this respect empirical

Fig. 2 ARE and RMSE of bootstrap estimates of V bb RE

� �
for increasing sample fraction and for two

simulated populations. a ARE for population: x � c2
9, yi ¼ xi þ N 0; xið Þ. b RMSE for population: x � c2

9,
yi ¼ xi þ N 0; xið Þ. c ARE for population: x � c2

18, yi ¼ xi þ N 0; xið Þ. d RMSE for population: x � c2
18,

yi ¼ xi þ N 0; xið Þ
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evidence suggests further research, especially with more complex models and with real
data.

As an overall evaluation, differences in shape and variability of the simulated
populations appear not to affect the pattern of the relative behaviour of the compared
bootstrap solutions. Finally, results from the three πPS algorithms tend to approach as the
sample size increases.
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