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Summary

While several lung cancer susceptibility loci have been identified, much of lung cancer heritability 

remains unexplained. Here, 14,803 cases and 12,262 controls of European descent were genotyped 

on the OncoArray and combined with existing data for an aggregated GWAS analysis of lung 

cancer on 29,266 patients and 56,450 controls. We identified 18 susceptibility loci achieving 

genome wide significance, including 10 novel loci. The novel loci highlighted the striking 
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heterogeneity in genetic susceptibility across lung cancer histological subtypes, with four loci 

associated with lung cancer overall and six with lung adenocarcinoma. Gene expression 

quantitative trait analysis (eQTL) in 1,425 normal lung tissues highlighted RNASET2, 

SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic 

nicotinic receptor, CHRNA2, and the telomere-related genes, OFBC1 and RTEL1. Further 

exploration of the target genes will continue to provide new insights into the etiology of lung 

cancer.

Lung cancer continues to be the leading cause of cancer mortality worldwide1. Although 

tobacco smoking is the main risk factor, the heritability of lung cancer has been estimated at 

18%2. Genome-wide association studies (GWAS) have previously identified several lung 

cancer susceptibility loci including CHRNA3/5, TERT, HLA, BRCA2, CHEK23,4, but most 

of its heritability remains unexplained. With the goal of conducting a comprehensive 

characterization of common lung cancer genetic susceptibility loci, we undertook additional 

genotyping of lung cancer cases and controls using the OncoArray5 genotyping platform, 

which queried 517,482 SNPs chosen for fine mapping of susceptibility to common cancers 

as well as for de novo discovery (Supplementary Table 1, and Online Methods). All 

participants gave an informed consent, and each study obtained local ethics committee 

approval. After quality control filters (Online Methods), a total of 14,803 cases and 12,262 

controls of European ancestry were retained and underwent imputation techniques to infer 

additional genotypes for genetic variants included in the 1000 Genomes Project data (Online 

Methods). Logistic regression was then used to assess the association between variants 

(n=10,439,017 SNPs) and lung cancer risk, as well as by predominant histological types and 

by smoking behavior (Online Methods). Fixed-effects models (Online Methods) were used 

to combine the OncoArray results with previously published lung cancer GWAS3,4,6, 

allowing for analysis of 29,266 patients and 56,450 controls of European descent (Table 1). 

There were no signs of genomic inflation overall or for any subtypes (Supplementary Figure 

1) indicating little evidence for confounding by cryptic population structure (Online 

Methods). All findings with a P-value less than 1×10−5 are reported in Supplementary Table 

2. As shown in Figure 1, the genetic architecture of lung cancer varies markedly among 

histological subtypes, with striking differences between lung adenocarcinoma and squamous 

cell carcinoma. Manhattan plots for small cell carcinoma (SCLC), ever and never smoking 

are displayed in Supplementary Figure 2. The array heritability estimates were comparable 

among histological subsets, but squamous cell carcinoma appeared to share more genetic 

architecture with small cell carcinoma (SCLC) than with adenocarcinoma (Supplementary 

Table 3).

Table 2 presents summary results of all loci with sentinel variants (defined as the variant 

with the lowest P-value at each locus) that reached genome-wide significance (P-value < 

5×10−8) for lung cancer overall and by histological subtypes. Sentinel variants stratified by 

new and previous genotyping and additional statistical significance assessed based on the 

number of effective tests, Approximate Bayes Factors, and Bayesian False Discovery 

Probability are presented in Supplementary Tables 4 and 5, respectively. Repeat genotyping 

of 12% of the OncoArray genotyped samples confirmed the fidelity of the genotyping or 

imputation for the risk loci, and showed excellent concordance of imputation for SNPs with 
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MAF>0.05 (Online Methods, Supplementary note). Among the 18 loci that reached GWAS 

significance, 10 had not reached significance in a genome-wide scan (Figure 1). Of these, 

four novel loci were associated with lung cancer overall, and six with adenocarcinoma.

To decipher the association between these 18 loci and lung cancer risk, we further 

investigated their association with gene expression level in normal lung tissues (n=1,425) 

(Supplementary Table 6, Supplementary Figure 3), genomic annotations (Supplementary 

Table 7), smoking propensity (cigarettes smoked per day (n=91,046) and Fagerström Test 

for Nicotine Dependence metrics (n=17,074)) (Table 2). Previous studies have shown shared 

risk for lung cancer and COPD through inflammation and ROS pathways7; therefore, we 

also assessed the association between sentinel SNPs and reduced lung capacity through 

spirometry measurements (forced expiratory volume in 1 second [FEV1], forced vital 

capacity [FVC], n =30,199) (Table 2 and Online Methods).

Variants at 4 novel loci (1p31.1, 6q27, 8p21, 15q21.1) were associated with lung cancer risk 

overall, with little evidence for heterogeneity among subtypes (Supplementary Figure 4). 

The 1p31.1 locus, recently identified in a pathway-based analysis of the TRICL data8, 

represented by rs71658797 (Odds Ratio [OR]=1.14, 95% Confidence Interval [CI] 1.09–

1.18, P-value=3.25 × 10−11), is located near FUBP1/DNAJB4 (Supplementary Figure 4). At 

6q27, rs6920364 was associated with lung cancer risk with an OR of 1.07 (95% CI 1.04–

1.09, P-value=2.9×10−8) with little heterogeneity found by smoking status (Supplementary 

Figure 4). This locus is predicted to regulate RNASET2 (Supplementary Figure 5, 

Supplementary Table 7). We identified rs6920364 as a lung cis-eQTL for RNASET2, an 

extracellular ribonuclease, in all five cohorts tested (Supplementary Table 6), with increased 

lung cancer risk correlating with increased RNASET2 expression (Figure 2). Variants 

correlated with rs6920364 (r2>0.88) have been noted in GWAS of Crohn’s disease and 

inflammatory bowel disease9–13.

The 8p21 locus has been suggested as a lung cancer susceptibility locus by pathway 

analysis14 and now confirmed at GWAS significance level. It is a complex locus represented 

by sentinel variant rs11780471 associated with lung cancer (OR=0.87, 95% CI 0.83–0.91, P-

value=1.69×10−8) (Supplementary Figure 4), but this region contained additional 

uncorrelated variants (pairwise r2< 0.10) associated with lung cancer (Supplementary Table 

8). Multivariate analysis was consistent with multiple susceptibility alleles at this locus 

(Supplementary Table 8). In contrast to lung tissue (Figure 3A, Supplementary Table 6, 

Supplementary Figure 3), we noted that the alleles associated with lung cancer tended to be 

associated with cerebellum expression of CHRNA2, a member of the cholinergic nicotinic 

receptor (Figure 3B). The CHRNA2 rs11780471 cis-eQTL effect in the brain was limited to 

the cerebellum (Figure 3C), a region not traditionally linked with addictive behavior, but 

where an emerging role is suggested15. We therefore investigated rs11780471 in the context 

of smoking behavior (Supplementary Methods). Unlike the well-described 15q25.1 

(rs55781567) CHRNA5 locus (Table 2), rs11780471 was not associated with number of 

cigarettes smoked per day or the FTND metrics (Figure 3D). Nevertheless, lung cancer risk 

allele carriers of rs11780471 tended to be smokers and initiated smoking at earlier ages 

(Figure 3D), implying that this variant’s association with lung cancer could potentially be 

mediated via influencing aspects of smoking behavior. Another potentially relevant gene in 
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this region is EPHX2, a xenobiotic metabolism gene. Although the sentinel variant is not an 

eQTL for EPHX2 in lung tissues, other associated variants in the region are (e.g. 

rs146729428, p-value of 1.77×10−7 (Supplementary Table 2) and 5 × 10−4 for lung cancer 

risk and eQTL, respectively). A potential synergistic role of both EPHX2 and CHRNA2 on 

lung cancer etiology cannot be excluded.

The genetic locus at 15q21 (rs66759488) was shown to be associated with lung cancer 

(OR=1.07, 95% CI 1.04–1.10, p=2.83×10−8) overall and across lung cancer histologies 

(Supplementary Figure 4). Genomic annotation suggests that genetic variants correlated with 

rs66759488 may influence the SEMA6D gene (Supplementary Table 7), but there was no 

clear eQTL effect (Supplementary Table 6), and this variant did not appear to have a major 

influence on smoking propensity or lung function (Table 2).

For specific lung cancer histology subtypes, we identified 6 novel loci associated with lung 

adenocarcinoma (15q21, 8p12, 10q24, 20q13.33, 11q23.3 and 9p21.3) (Table 2). The locus 

at 15q21 (rs77468143, OR=0.86, 95% CI 0.82–0.89, p=1.15×10−16) is predicted to target 

SECISBP2L (Supplementary Figure 5), and expression analysis indicated rs77468143 to be 

a cis-eQTL for SECISBP2L in lung tissue in all eQTL cohorts tested (Supplementary Table 

6). The genetic risk allele appears to correlate with decreased expression levels of 

SECISBP2L (Figure 2, Supplementary Figure 5), an observation that is consistent with 

SECISBP2L being down regulated in lung cancers16. rs77468143 was nominally associated 

with lung function (Table 2), potentially implicating inflammation of lung as part of the 

mechanism at this locus.

At 8p12, expression analysis indicated that the alleles associated with lung adenocarcinoma 

(represented by the sentinel variant rs4236709 (Table 2)), also appear to be a lung cis-eQTL 

for the NRG1 gene (Supplementary Table 6, Supplementary Figure 5). This region also 

contains putative regulatory regions (Supplementary Figure 5). Somatic translocations of 

NRG1 are infrequently observed in lung adenocarcinomas17. While somatic translocations at 

8p12 generally take place in never smokers and are linked with ectopic activation of NRG1, 

rs4236709 was associated with lung cancer in both ever and never smokers (Supplementary 

Figure 4) and its genetic risk correlated with decreased NRG1 expression (Figure 2). 

Interestingly, 6q22.1 variants located near ROS1, another gene somatically translocated in 

lung adenocarcinoma and for which nearby germline variants were associated with never 

smoking lung adenocarcinoma in Asian women18, were associated with lung 

adenocarcinoma at borderline genome wide significance (rs9387479; OR=0.92, 95% CI 

0.89–0.95, p=6.57×10−8) (Supplementary Table 2).

Three of the sentinel variants associated with lung adenocarcinoma are located near genes 

related to telomere regulation; rs7902587 (10q24) and rs41309931 (20q13.33) near OBFC1 
and RTEL1, respectively, and rs2853677 near TERT as previously noted19,20. The variants at 

10q24 associated with lung adenocarcinoma also appear to be associated with telomere 

length (Supplementary Figure 6). By contrast, and consistent with observations with 

20q13.33 variants associated with glioma21, the variants associated with telomere length at 

20q13.33 were not necessarily those associated with lung adenocarcinoma (Supplementary 

Figure 6). Nevertheless, more generally the variants associated by GWAS with longer 
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telomere length22 appear linked with risk of lung adenocarcinoma23 and glioma21,24, a 

finding consistent with our expanded analysis here (Supplementary Figure 6).

We additionally identified a complex locus at 11q23.3. The sentinel variant rs1056562 

(OR=1.11, 95% CI 1.07–1.14, p=2.7×10−10) is more prominently associated with lung 

adenocarcinoma (Supplementary Figure 4). rs1056562 was correlated with expression of 

two genes at this locus, AMICA1 and MPZL3 (Supplementary Table 6). However, there did 

not appear to be a consistent relationship between the alleles related with AMICA1 and 

MPZL3 gene expression and those with lung adenocarcinoma (Figure 2, Supplementary 

Table 9), suggesting that expression of these genes alone is unlikely to mediate this 

association.

At 9p21.3 we identified rs885518 that appeared to be associated with lung adenocarcinoma 

(OR=1.17, 95% CI 1.11–1.23, p=6.8×10−10). 9p21.3 is a region containing CDNK2A and 

variants associated with multiple cancer types, including lung cancer. Nevertheless, 

rs885518 is located approximately 200kb centromeric the previously described variants 

(Supplementary Figure 4) and shows little evidence for LD (all pairwise r2< 0.01) with 

rs1333040, a variant previously associated with lung squamous cell carcinoma3 and 

rs62560775, another variant suggested to be associated with lung adenocarcinoma25 that we 

confirm to genome significance here. Intriguingly, these variants appear to confer 

predominant associations with different lung cancer histologies suggesting that they are 

independent associations (Supplementary Figure 7).

Aside from the clear smoking-related effects on lung cancer risk through the CHRNA5 and 

CYP2A6 regions and association with CHRNA2 noted above, the rest of variants we have 

identified do not appear to clearly influence smoking behaviors (Table 2), implying that 

these associations are likely mediated by other mechanisms. Nevertheless, there is shared 

genetic architecture between smoking behavior and lung cancer risk, consistent with the 

notion that genetic variants do influence lung cancer risk also through behavioral 

mechanisms (Supplementary Figure 8).

In conclusion, the genetic susceptibility alleles we describe here explain approximately 

12.3% of the familial relative risk previously reported in family cancer databases26,27, out of 

which 3.5% was accounted for by the novel loci. Our findings emphasize striking 

heterogeneity across histological subtypes of lung cancer. We expect that further exploration 

of the related target genes of these susceptibility loci, as well as validation and identification 

of new loci, will continue to provide insights into the etiology of lung cancer.

Online methods

This work is conducted based on the collaboration of Transdisciplinary Research of Cancer 

in Lung of the International Lung Cancer Consortium (TRICL-ILCCO) and the Lung 

Cancer Cohort Consortium (LC3). The participating studies are individually described in the 

Supplementary Note.
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OncoArray genotyping

Genotyping was completed at the Center for Inherited Disease Research (CIDR), the Beijing 

Genome Institute, the HelmholtzCenter Munich (HMGU), Copenhagen University Hospital, 

and the University of Cambridge. Quality control steps follow the approach described 

previously for the OncoArray5 (Supplementary Note).

Genotype quality control

After removing the 1,193 expected duplicates, QC procedures for the 43,398 individuals are 

summarized in Supplementary Note Figure 1. Standard quality control procedures (detailed 

in the Supplementary Note) were used to exclude underperforming individuals (number of 

DNAs=1,708) and genotyping assays (judged by success rate, genotype distributions 

deviated from that expected by Hardy Weinberg equilibrium, number of variants=16,149). 

After filtering, there were 517,482 SNPs available for analysis.

Identity by Descent (IBD) was calculated between each pair of samples in the data using 

PLINK to detect unexpected duplicates and relatedness. Details are described in 

Supplementary Note. 340 unexpected duplicated samples (proportion IBD>0.95) and 940 

individuals were removed as related samples with proportion IBD between 0.45 and 0.95. Of 

these, 721 of them were expected first degree relatives. In total, 0.56% of the total samples 

were removed as unexpected duplicates or relatives in the QC analysis. We additionally 

considered the potential that more distant familial relationships could have impacted the 

results. However, further restriction to proportion IBD > 0.2 identified 139 second degree 

relatives and excluding these had minimal impact on the association results (Supplementary 

Note Table 1).

Complete genotype data for X chromosomes were used to verify reported sex by using 

PLINK sex inference and a support vector machine procedure resulting in 306 non-

concordant samples being removed (Supplementary Note).

We used the program FastPop (http://sourceforge.net/projects/fastpop/)28 was used to 

identify 5,406 individuals of non-European ancestry (Supplementary Note) resulting in a 

final association analysis including 14,803 lung cancer cases and 12,262 controls.

We confirmed the fidelity genotyping (directly and imputed) of the OncoArray platform by 

considering concordance of these genotypes relative to genotypes obtained from analogous 

genotyping platform (Supplementary Note).

Imputation analysis

A detailed description of the imputation procedures used by the OncoArray consortium and 

in this Lung Oncoarray project, has been described previously.5 Briefly, the reference 

Dataset was the 1000 Genomes Project (GP) Phase 3 (Haplotype release date October 2014). 

The forward alignment of SNPs genotyped on the Oncoarray was confirmed by blasting the 

sequences used for defining SNPs against the 1000 Genomes. Any ambiguous SNPs were 

subjected to a frequency comparison to 1000 Genomes variants. Allele frequencies were 

calculated from a large collection of control samples from Europeans (from 108,000 

samples) and Asians (11,000 samples). A difference statistic is calculated by the formula: (|
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p1-p2|- 0.01)2/((p1+p2)(2-p1-p2)) where p1 and p2 are the frequencies our dataset and in the 

1000 genomes respectively5. A cutoff of 0.008 in Europeans and 0.012 in Asians is needed 

to pass. SNPs where the frequency would match if the alleles were flipped were excluded 

from imputation, but not from the association analyses.5 AT/GC SNPs were not present in 

previously genotyped lower density arrays. Because all imputation was performed to the 

same standard all SNPs had the same orientation at the time of imputation. The OncoArray 

whole genome data were imputed in a two-stage procedure using SHAPEIT to derive phased 

genotypes, and IMPUTEv229 to perform imputation of the phased data. We included for 

imputation only the more common variant if more than one variant yielded a match at the 

same position. The detailed parameter settings are in the Supplementary Note.

Meta-analysis of lung cancer GWAS

FlashPCA30 was run for principal component analysis (PCA) to infer genetic ancestry by 

genotype. The regression model assumed an additive genetic model and included the first 

three eigenvalues from FlashPCA as covariates. For imputed data of smaller sample size, 

which was enrolled in our analysis later, we changed the method score to EM algorithm to 

accommodate smaller sample size.

We combined imputed genotypes from 14,803 cases and 12,262 controls from the 

OncoArray series with 14,436 cases and 44,188 controls samples undertaken by the previous 

lung cancer GWAS3,4,6, including studies of IARC, MDACC, SLRI, ICR, Harvard, NCI, 

Germany and deCODE as described previously3,4,6, and we ensured that there were no 

overlap between the ATBC, EAGLE and CARET studies included in both the previous 

GWAS and current OncoArray dataset by comparing the identity tags (IDs) of all study 

participants.

In addition to lung cancer, analyses by histological strata (adenocarcinoma, squamous cell 

carcinoma, small cell carcinoma (SCLC) and smoking status (Ever/Never) was assessed 

where data were available. Results from analyses defined by Ever and Never smoking strata 

did not identify any novel variants.

We conducted the fixed effects meta-analysis with the inverse variance weighting and 

random effects meta-analysis from the DerSimonian-Laird method31. All meta-analysis and 

calculations were performed using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA). As 

the same referent panel was used for all studies, all SNPs showed the same forward 

alignment profiles. We excluded poorly imputed SNPs defined by imputation quality R2 < 

0.3 or Info < 0.4 for each meta-analysis component and SNPs with a Minor allele frequency 

(MAF) >0.01 (except for CHEK2 rs17879961 and BRCA2 rs11571833 which we have 

validated extensively previously4. We generated the index of heterogeneity(I2) and P-value 

of Cochran’s Q statistic to assess heterogeneity in meta-analyses and considered only 

variants with little evidence for heterogeneity in effect between the studies (P-value of 

Cochran’s Q statistic >0.05). SNPs were retained for study provided the average imputation 

R-square was at least 0.4. For SNPs in the 0.4–0.8 range that reached genome wide 

significance results were evaluated for consistency with neighboring SNPs to assure a 

reliable inference. Due to the smaller sample size and fewer sites contributing in the strata of 
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Never Smokers and SCLC, we additionally required variants to be present in each of the 

meta-analysis components to be retained for these 2 stratified analyses.

Conditional analysis was undertaken using SNPTEST where individual level data was 

available and GCTA32 packages for the previous lung cancer GWAS, with the LD estimates 

obtained from individuals of European origin for the later. Results were combined using 

fixed effects inverse variance weighted meta-analysis as described above33.

Assessing Statistical Significance

Genome wide statistical significance was considered at P-values of 5 × 10−8 or lower, but we 

also presented significance per alternative criteria following Bonferroni correction for the 

number of effective tests or Bayesian False Discovery Probability (BFDP) described below.

To evaluate the effective number of tests we used the Li and Ji (2005)33 method which 

performs an initial step of filtering out SNPs with MAF<0.01 (imputation is less reliable for 

these and power is also limited for most odds ratios). Among the 4,751,148 markers with 

that MAF there were 1,182,363 effective tests.

The BFDP combines significance level, study power, and cost of false discovery and non-

discovery into consideration. The detailed procedures of this method are described in 

Wakefield, 200734. Essentially, the approximate Bayes Factor (ABF) which BFDP uses 

reflects how much the prior odds change in the light of the observed data (i.e. relative 

probability of the observed estimates under the null versus alternative hypothesis). Given the 

nature of GWA studies, we applied a flat prior for all variants at prior probability of 10−6 and 

10−8 to demonstrate the range of BFDP.

Annotation of susceptibility loci

We combined multiple sources of in silico functional annotation from public databases to 

help identify potential functional SNPs and target genes, based on previous observations that 

cancer susceptibility alleles are enriched in cis-regulatory elements and alter transcriptional 

activity. The details are described in the Supplementary Note.

eQTL analysis of lung cancer sentinel variants

To investigate the association between the sentinel variants and mRNA expression, we used 

three different eQTL datasets: (i) Microarray eQTL study: The lung tissues for eQTL 

analyses were from patients who underwent lung surgery at three academic sites, Laval 

University, University of British Columbia (UBC), and University of Groningen. Whole-

genome gene expression profiling in the lung was performed on a custom Affymetrix array 

(GPL10379). Microarray pre-processing and quality controls were described previously. 

Genotyping was carried on the Illumina Human 1M-Duo BeadChip array. Genotypes and 

gene expression levels were available for 409, 287 and 342 patients at Laval, UBC, and 

Groningen, respectively. (ii) NCI RNAseq eQTL study: RNA was extracted from lung tissue 

samples within the Environment and Genetics in Lung cancer Etiology (EAGLE) study. 

RNAseq was carried out on 90 lung tissue sampled from an area distant from the tumor 

(defined here as “non-malignant lung tissue”) to minimize the potential for local cancer field 
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effects. Transcriptome sequencing of 90 non-tumor samples was performed on the Illumina 

HiSeq2000/2500 platform with 100-bp paired-end reads. Genotyping was undertaken using 

Illumina bead arrays as described previously. (iii) GTEx: eQTL summary statistics based on 

RNAseq analysis were obtained for eQTL summary statistics from the GTEx data portal 

http://www.gtexportal.org/home/35. This data included 278 individuals with data from lung 

tissue. Details of these three eQTL studies are included in the Supplementary Note.

The Microarray eQTL study was used as a discovery cohort. Probe sets located within 1 Mb 

up and downstream of lung cancer SNPs were considered for cis-eQTL analyses. We have 

also explored a 5 Mb interval for lung cancer-associated SNPs not acting as lung eQTL 

within the 1 Mb window. The top eQTL association for that sentinel variant (or if contained 

multiple eQTL’s with P-value<0.0005 each was considered), this particular eQTL was then 

chosen and assessed specifically in the independent NCI and GTEx RNAseq eQTL datasets. 

Statistical significance was defined the eQTL surpassed a locus specific Bonferroni 

correlation in the discovery cohort (P-value=0.05/number of probes at that locus) and 

subsequently there was evidence for replication of the eQTL effect with that variant and 

gene within the validation cohorts (NCI/GTEx RNAseq).

Lung cancer susceptibility variants in other phenotypes

We assessed associations between sentinel genetic variant associated with lung cancer and 

other phenotypes, including smoking behavior Fagerstrӧm Test for Nicotine Dependence, 

lung function and telomere length. Additional details of these analyses for other phenotypes 

are described in Supplementary Note. Briefly:

Smoking behaviors—The effects of lung cancer sentinel variants and smoking behavior 

were assessed based on the meta-analysis across 3 studies: ever-smoking controls with 

intensity information from the Oncoarray studies (N=8,120), deCODE (N=40,882) and UK 

Biobank (N=42,044). The association with nicotine dependence was evaluated based on 

Fagerstrӧm Test for Nicotine Dependence (FTND) data collected in 4 studies (n=17,074): 

deCODE Genetics, Environment and Genetics in Lung Cancer Etiology (EAGLE), 

Collaborative Genetic Study of Nicotine Dependence (COGEND), and Study of Addiction: 

Genetics and Environment (SAGE) and among current smokers in one other study [Chronic 

Obstructive Pulmonary Disease Gene (COPDGene). The study-specific SNP association 

results were combined using fixed effects, inverse variance-weighted meta-analysis with 

genomic control applied. Specifically, for the 8p21 variant rs11780471, we additionally 

considered other aspects of smoking behavior data from UKBiobank, deCODE and 

OncoArray controls. We additionally included summary statistics for the rs11780471 

variants from the TAG consortium (described in detail in the Supplementary Note).

Lung function—The lung function in silico look up was conducted in SpiroMeta 

consortium, which included 38,199 European ancestry individuals. The genome-wide 

associations between genetic variants and forced expiratory volume in 1 second (FEV1), 

forced vital capacity (FVC) and FEV1/FVC with 1000 Genomes Project (phase 1)-imputed 

genotypes in the GWAS with 38,199 individuals36.
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Telomere Length (TL)—Sentinel genetic variants associated with telomere length were 

those described by Codd et al22. Telomere lengths in 6,766 individuals from the UK Studies 

of Epidemiology and Risk Factors in Cancer Heredity (SEARCH) study controls using a 

real-time PCR methodology and genotyping as described in Pooley et al., 201337.

Genetic heritability and correlations

Genome-wide SNP heritability and correlation estimates were obtained using association 

summary statistics and linkage disequilibrium (LD) information through LD Score (LDSC) 

regression analyses38,39. These analyses were restricted to HapMap3 SNPs with minor allele 

frequency above 5% in European populations of 1000 Genomes. Association summary 

statistics used for these analyses were based on lung cancer histological/smoking types (lung 

cancer overall, adenocarcinoma, squamous cell, small cell, ever smokers and never smokers) 

and smoking behavior parameters (cigarettes per day (CPD), smoking status (ever vs never 

smokers), and smoking cessation (current vs former smokers) from TRICL-ILCCO 

OncoArray consortium and Tobacco And Genetics consortium (https://

www.med.unc.edu/pgc/downloads)40.

Estimating the percentage of familial relative risks explained

The familial relative risk to a first degree relative accounted for by an individual variant 

(denoted as λi) is estimated based on relative risk per allele and allele frequency for that 

variant, using the method described in Hemminki et al41, and Bahcall42, under the 

assumption of log-additive effect. Assuming the effects of all susceptibility variants 

combined multiplicatively and not in linkage disequilibrium, the combined effect (λT) can 

then be expressed as the product of all λi. The proportion of the familial relative risk 

attributable to the totality of the susceptibility variants can then be computed as log(λT)/

log(λP). For lung cancer, the λP is approximately 2.0 based on the family cancer 

databases26,27. The percentage reported is based on the 18 sentinel variants reported in Table 

2. The multiple independent alleles in the same locus are not accounted for in this 

estimation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Manhattan plots of lung cancer risk overall and by histological subtypes
(a) lung cancer risk overall, 29,266 cases and 56,450 controls (b) adenocarcinoma, 11,273 

cases and 55,483 controls (c) squamous cell carcinoma 7,426 cases and 55,627 controls. 

Each locus is annotated by their cytoband locations. The X‐axis represents chromosomal 

locations and the Y‐axis represents −log10(P‐value). Black denotes the previously known 

loci and Red denotes the new loci identified in this analysis
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Figure 2. Scatter plots comparing variants across the 6q27, 15q21.1, 8p12 and 11q23.3 
susceptibility loci and (Y-axis) their associated with lung cancer (or lung adenocarcinoma, as 
relevant) and (X-axis) the lung cis–eQTL (GTEx)
Each variant (dot) is colored relative the degree of linkage disequilibrium (r2) with sentinel 

lung cancer variant (marked) at that locus. Indented table, association between sentinel 

variant and lung cancer (or histological subtype) as well as the eQTL evidence in lung 

epithelium for the microarray (Laval, UBC, Groningen) and RNAseq (NCI and GTEx) 

cohorts. At 6q27, 15q21.1 and 8p12, the variants associated with lung cancer also tend to be 

those that that are lung cis-eQTL’s for RNASET2, SECISBP2L and NRG1, respectively. At 

11q23.3, while the sentinel variant (rs1056562) is a lung cis-eQTL for AMICA1, additional 

variants are AMICA1 lung cis-eQTL’s, but not associated with lung adenocarcinoma and 

vice versa suggesting an alternate candidate gene may be responsible for this association or a 

pleiotropic effect at this locus.
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Figure 3. eQTL and smoking behavior analysis of the 8p21 lung cancer susceptibility locus. 
Upper panel
Scatter plots of variants across the 8p21 locus and their associated with lung cancer (Y-axis) 

and CHRNA2 eQTL (X-axis) in lung epithelial tissues (panel a) and CHRNA2 eQTL in 

brain cerebellum tissues (panel b). Panel C. eQTL association between rs11780471 across 

tissues from different parts of the brain from GTEx and Braineac consortia noting CHRNA2 
cis- eQTL effect appears restricted to the brain cerebellum. Panel D. Association between 

rs11780471 and smoking phenotypes, noting evidence for association between smoking 

status (ever vs never) and age of initiation, with lung cancer risk allele carriers (G) more 

likely to be ever smokers and take up smoking earlier. Fagerström Test for Nicotine 

Dependence (FTND) index, error bars indicate the 95% confidence intervals.
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Table 1

Demographic characteristics of the participating studies after quality control filters

Lung cancer patients Controls

number (%) number (%)

OncoArray studies- passed QC 14803 (51) 12262 (22)

Published GWAS studiesa 14463 (49) 44188 (78)

Total 29266 56450

Age

 <=50   3112 (12)   6032 (12)

 >50 23025 (88) 44075 (88)

Sex

 Male 18208 (62) 27178 (53)

 Female 11059 (38) 24069 (47)

Smoking status

 Never   2355   (9)   7504 (31)

 Ever 23223 (91) 16964 (69)

 Former   9037 (35)   8554 (35)

 Current 13356 (52)   7477 (31)

Histology c

 Adenocarcinoma 11273 (39)     55483 b

 Squamous cell carcinoma   7426 (25)     55627 b

 Small cell carcinoma   2664   (9)     21444 b

a
Previous GWAS studies include IARC, MDACC, SLRI, ICR, Harvard, ATBC, CPSII, German and deCODE studies.

b
Number of non-cancer individuals included in the corresponding histology-specific analysis.

c
The remaining 27% includes other histological subsets, such as large cell carcinoma, non-small cell lung cancer, NOS, mixed histology, and 

unknown.
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