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We study the spontaneous emission in high-gain free-electron lasers operating in the quantum regime

and its detrimental effect on coherent emission. A quantum model describing the coherent and spon-

taneous emission in free electron lasers has been recently proposed and investigated [G. R. M. Robb

and R. Bonifacio, Phys. Plasmas 19, 073101 (2012)]. The model is based on a Wigner distribution

describing the electron beam dynamics, coupled to Maxwell equations for the emitted radiation field.

Here, we rephrase the model in a more rigorous way, considering a discrete Wigner distribution

defined for a periodic space coordinate for which the electron momentum is discrete. From its numer-

ical solution, we find good agreement with the approximate continuous model. In the quantum

regime of the free-electron laser, we obtain a simple density matrix equation for two momentum

states, where the role of the spontaneous emission has a clear interpretation in terms of coherence

decay and population transfer. Published by AIP Publishing. https://doi.org/10.1063/1.5003913

I. INTRODUCTION

Free electron lasers (FELs) using highly relativistic elec-

tron beams passing through very long magnetic undulators

are currently operating as high-intensity coherent x-ray radi-

ation sources, with many interesting applications.1,2 A pro-

posed extension of these machines includes the use of laser

wigglers3 or micro-undulators,4 in order to make such devi-

ces more compact and flexible. In these new schemes, the

quantum recoil associated with emission of each photon

starts to play an important role, since the photon recoil can

be comparable with the fraction of the electron momentum

transferred to the radiation. From this perspective, the

Quantum FEL (QFEL) concept5,6 is attractive as a potential

source of intense, quasi-monochromatic radiation at wave-

lengths in the Angstrom or even sub-Angstrom range.

The identification of a quantum or classical regime of

FEL operation is characterized by a dimensionless parameter �q
introduced by Bonifacio et al.,5 equal to the ratio of the

induced momentum spread dpz � mccq (where q is the FEL

parameter7) to the photon momentum �hk. An FEL operates in

the quantum regime when �q < 1, such that each electron emits

a single photon in a transition between two momentum states.

Correspondingly, the spectrum of the QFEL is expected to

reduce to a single, narrow line. When �q � 1, the quantum dis-

creteness of the changes in electron momentum due to photon

emission has no effect on the FEL operation. Consequently,

multiple transitions of electrons between momentum states

produce the broad and spiky spectrum expected from the clas-

sical FEL theory. In the latter case, the classical description of

the FEL involving a collection of particle-like electrons is ade-

quate to describe the FEL dynamics.

In FEL-based light sources operating at short or ultra-

short wavelengths, the spontaneous emission sets an intrinsic

limit on the coherent production of photons, due to the

growth of the induced energy spread in the electron beam.

Pioneering classical studies on spontaneous emission by

highly relativistic electron beams in magnetic undulators,

and its induced energy spread, have been reported in Refs.

8 and 9, but only recently has a quantum model of such spon-

taneous emission processes been proposed in Ref. 10, where

the evolution of the electron momentum distribution occurs

as discrete momentum groups described by a Poisson distri-

bution. In subsequent works,11,12 a self-consistent quantum

FEL model including spontaneous emission was presented

and the criteria for neglecting its detrimental effect on the

coherent FEL operation were derived.

In Refs. 11 and 12, an equation based on a continuous

Wigner distribution was used to describe the electron dynam-

ics, as will be reviewed shortly in Sec. II. Here, we further

investigate the role of the spontaneous emission in FELs using

a model based on a discrete Wigner function.16,17 We study

in detail the electron dynamics and the radiation growth along

the undulator. Furthermore, we present the results of a linear

analysis, from which we can estimate the effect of the sponta-

neous emission on the growth rate of the intensity.

For highly relativistic beams passing through an undulator,

each spontaneous photon is in general emitted by an electron

with energy mc2c at a random angle / with respect to the

electron beam direction z.18 As a consequence, the frequency

distribution of the spontaneous radiation is not purely monochro-

matic, but has a broadband distribution gð�Þ ¼ ð3=2Þ
ð1� 2� þ 2�2Þ, where � ¼ kð/Þ=kð/ ¼ 0Þ ¼ 1=ð1þ c2/2Þ.
The spontaneous radiation emitted by a relativistic electron has

been studied in several papers investigating inverse Compton

sources,13,14 and the impact of the electron recoil on the radia-

tion bandwidth has been discussed in Ref. 15. A proper descrip-

tion of the role of the spontaneous emission in quantum FELs

should take into account its frequency distribution, leading in

general to an electron momentum distribution, which is not
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perfectly discrete, but consists of lines with some broadening.

Clearly, a realistic description of a QFEL experiment would also

require a description of full 3D effects, including diffraction of

the laser wiggler, off-axis emission, and finite emittance of the

electron beam. However, in order to focus interest on the effect

of the spontaneous emission in the QFEL operation only, the 1D

approximation, also if rather crude, is useful to understand its

basic physical mechanism. Furthermore, we point out that it has

been already shown in Ref. 12 that the inclusion of broadband

spontaneous emission does not significantly affect the competi-

tion between incoherent spontaneous emission and coherent

spontaneous emission when the FEL operates in the quantum

regime. On the basis of these results, we will describe the spon-

taneous emission as effectively monochromatic radiation,

neglecting its broadband spectral nature for simplicity. This

implies the assumption that the electron momentum distribution

consists of discrete states separated by multiples of �hk.

This paper is organized as follows: In Sec. II, for consis-

tency, we review the continuous Wigner model as described

in Ref. 11. In Sec. III, we present an analysis of FELs in

terms of a discrete Wigner function,16 with the inclusion of

spontaneous emission. Using this model, we describe the

coherent and incoherent emission in an FEL, where the radi-

ation is assumed to be monochromatic and emitted along the

undulator axis z. In Sec. IV, the equations describing the

QFEL in the quantum regime are derived. Finally, the

numerical results are presented in Sec. V.

II. CONTINUOUS WIGNER MODEL

As described in Ref. 10, the spontaneous emission

involves the emission of photons with momentum �hk (where

k¼ 2p/k is the photon wavenumber directed along the z-axis)

at a rate R ¼ akwa2
w=3 per unit distance through the undulator,

where aw ¼ eBw=kwmc (aw� 1) is the undulator parameter,

kw¼ 2p/kw, kw is the undulator period and a is the fine struc-

ture constant. Consequently, the probability of an electron

having momentum pz will be increased by spontaneous emis-

sion from electrons with momentum pz þ �hk but decreased by

spontaneous emission from electrons with momentum pz.

Since the spontaneous emission is described by a rate

equation for the electron momentum probability, the previ-

ous quantum FEL model based on a Schrodinger-like equa-

tion describing the electron beam has been extended to a

Wigner distribution W(z, pz) able to describe two processes:

(a) the coherent back-scattering of the undulator pseudo-

photons (inducing a spatial modulation on the scale of the

radiation wavelength, i.e., bunching) and (b) the incoherent

change of momentum by units of photon recoil �hk due to

spontaneous emission, and described by a discrete momen-

tum rate equation. Following Ref. 11, the equations that

describe the evolution of the system are as follows:

@Wðh;�pÞ
@�z

þ �p
@Wðh;�pÞ
@h

¼�q Aeihþc:c:ð Þ

� W h;�pþ 1

2�q

� �
�W h;p� 1

2�q

� �� �

þ b
�q

W h;�pþ1

�q

� �
�W h;�pð Þ

� �
; (1)

dA

d�z
¼
ðþ1
�1

dh
ðþ1
�1

Wðh; �pÞe�ihd�p þ idA: (2)

Equations (1) and (2) are written in terms of the same

dimensionless variables of Ref. 6: �z ¼ 2kwqz is the scaled

position in the undulator, h ¼ ðk þ kwÞz� xt is the pondero-

motive electron phase, �p ¼ mcðc� c0Þ=ð�hk�qÞ is the relative

electron momentum in units of �hk�q; A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0=ne�hx�q

p
E is the

dimensionless amplitude of the coherent FEL radiation field

(such that �qjAj2 is the average number of photons emitted per

electron), ne ¼ I=ec2pr2
e is the electron density (where I is

the peak current and re is the rms size of a transversely

Gaussian beam), q ¼ ð1=2crÞðI=IAÞ1=3ðkwaw=2preÞ2=3
(where

IA¼ 17 kA is the Alfvèn current) and �q ¼ qðmccr=�hkÞ are the

classical and quantum FEL parameters, d¼ (cr – c0)/crq is the

detuning, where c0 and cr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð1þ a2

wÞ=2kw

p
are the initial

and resonant electron energies in units of mc2 and b
¼ aa2

wmccr=ð6�hkÞ is the scaled spontaneous emission rate.

III. DISCRETE WIGNER MODEL

In Eqs. (1) and (2), the space coordinate is unbounded,

i.e., h 2 (–1,þ1), although in Refs. 11 and 12, the equa-

tions have been solved numerically restricting the space

coordinate h to a single ponderomotive period (0, 2p].

Although, in a classical theory, the choice of the h-domain

has no consequences for the conjugate momentum variable

p ¼ �q�p, and in a quantum description, h and p are intrinsi-

cally related: in fact, if h is a periodic variable in (0, 2p],

then necessarily the conjugate momentum variable p is dis-

crete. A more rigorous approach to an FEL Wigner model

with periodic boundary conditions in h has been presented in

Ref. 17, where a discrete Wigner model has been derived for

FELs. Here, we extend this model adding to it the “narrow-

band” spontaneous emission, in a similarly way as realized

for the continuous Wigner model of Eqs. (1) and (2).

The equations for the discrete Wigner model are

@wsðhÞ
@�z

þ s

�q
@wsðhÞ
@h

¼�q AeihþA�e�ihð Þ wsþ1=2ðhÞ�ws�1=2ðhÞ
� �

þb
�q

wsþ1ðhÞ�wsðhÞ
� �

; (3)

dA

d�z
¼
Xþ1

m¼�1

ðþp

�p
wmþ1=2ðhÞe�ihdhþ idA; (4)

where s¼m or s¼mþ 1/2 and m 2 Z. Here, the momentum

is discrete and two separate Wigner functions, for integer

and semi-integer indices, are needed. The marginal distribu-

tions for the momentum pz ¼ mð�hkÞ and the position h are

Pmð�zÞ ¼
ðp

�p
wmðh; �zÞdh; (5)

Qðh; �zÞ ¼
Xþ1

m¼�1
wmðh; �zÞ þ wmþ1=2ðh; �zÞ
	 


: (6)

Since wsðh; �zÞ is periodic in h, it can be expanded in a

Fourier series
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wsðh; �zÞ ¼
1

2p

Xþ1
k¼�1

wk
sð�zÞeikh: (7)

In particular, w0
m is the population of the m-th momentum

state and w1
mþ1=2 is the m-th bunching component. From Eqs.

(3) to (7), we obtain the equations

dwk
s

d�z
þ ik

s

�q
wk

s ¼ �q Aðwk�1
sþ1=2 � wk�1

s�1=2Þ
h

þA�ðwkþ1
sþ1=2 � wkþ1

s�1=2Þ
i
þ b

�q
wk

sþ1 � wk
s

n o
;

(8)

dA

d�z
¼
Xþ1

m¼�1
w1

mþ1=2 þ idA: (9)

IV. THE QUANTUM FEL REGIME

In the quantum regime, �q � 1, the momentum space is

spanned only by the two states m¼ 0 and m¼�1. Keeping

only the terms with s¼ 0, s¼�1 and s¼�1/2, Eqs. (8) and

(9) reduce to

dw0
0

d�z
¼ ��q Aw�1

�1=2 þ A�w1
�1=2

h i
� b

�q
w0

0; (10)

dw0
�1

d�z
¼ �q Aw�1

�1=2 þ A�w1
�1=2

h i
þ b

�q
w0

0 � w0
�1

� �
; (11)

dw1
�1=2

d�z
¼ i

2�q
w1
�1=2 þ �q Aðw0

0 � w0
�1Þ þ A�ðw2

0 � w2
�1Þ

	 


� b
�q

w1
�1=2; (12)

dA

d�z
¼ w1

�1=2 þ idA: (13)

Defining the populations of the two momentum states P0

¼ w0
0 and P�1 ¼ w0

�1, and the bunching variable B ¼ w1
�1=2

(with B� ¼ w�1
�1=2) and neglecting the higher spatial har-

monic components w2
0 and w2

�1, Eqs. (10)–(13) take a form

which resembles the Optical Bloch equations for a two-level

system

dP0

d�z
¼ ��q AB� þ A�Bð Þ � b

�q
P0; (14)

dP�1

d�z
¼ �q AB� þ A�Bð Þ þ b

�q
ðP0 � P�1Þ; (15)

dB

d�z
¼ i

2�q
Bþ �qAðP0 � P�1Þ �

b
�q

B; (16)

dA

d�z
¼ Bþ idA: (17)

Equations (14)–(17) describe the dynamics of the quantum

FEL regime in the two-level approximation. The spontane-

ous emission has two main effects on the FEL dynamics:

(a) it causes the decay of the bunching B (i.e., of the coher-

ence between the two momentum states) and (b) it causes

additional transitions from the momentum states m¼ 0 and

m¼ –1 to lower momentum states, with a rate b=�q, as

described by the last terms of Eqs. (14) and (15).

Redefining the variables as A0 ¼ ffiffiffi
�q
p

Ae�id�z ; B0 ¼ Be�id�z ,

and z0 ¼ ffiffiffi
�q
p

�z, the above equations become

dP0

dz0
¼ �ðA0B0� þ c:c:Þ � DP0; (18)

dP�1

dz0
¼ ðA0B0� þ c:c:Þ þ DðP0 � P�1Þ; (19)

dB0

dz0
¼ �id0B0 þ A0ðP0 � P�1Þ � DB0; (20)

dA0

dz0
¼ B0; (21)

where d0 ¼ ½d� 1=ð2�qÞ�= ffiffiffi
�q
p

and D ¼ b=�q3=2. Notice that

with these definitions, jA0j2 represents the average number of

photons emitted per electron. Without spontaneous emission,

i.e., for D¼ 0, the equations have the following analytic

solution at resonance (d0 ¼ 0),17,19 for P0ð0Þ ¼ 1; P�1ð0Þ
¼ 0; A0ð0Þ ¼ 0, and B0ð0Þ � 1:

A0ðz0Þ ¼ sechðz0 � z0Þ; (22)

Bðz0Þ ¼ �sinhðz0 � z00Þsech2ðz0 � z00Þ; (23)

with z00 	 �ln½Bð0Þ=4�. Hence, the maximum emission is

reached at z0 ¼ z00 where each electron emits a single photon,

such that jA0ðz00Þj
2 ¼ 1, and the maximum bunching is 1/2 at

z0 ¼ z0060:88, corresponding to the maximum overlap

between the two momentum states, with P0¼P–1. Equations

(18)–(21) have the same form of the Maxwell-Bloch equa-

tions, well known in quantum optics,20 where the electron

dynamics is described by a density operator obeying a master

equation with a coherent part, ruled by the FEL interaction,

and a dissipative part, due in this case to spontaneous

emission.

V. NUMERICAL RESULTS

In this section, we investigate numerically the effect of

spontaneous emission on the FEL operation. Considering the

quantum regime, we solved Eqs. (18)–(21) assuming reso-

nance (d0 ¼ 0) and the initial conditions B0ð0Þ ¼ 0:01;
A0ð0Þ ¼ 0; P0ð0Þ ¼ 1 and P–1(0)¼ 0 such that for D¼ 0 we

have z00 	 6. In Fig. 1, we plot the average number of pho-

tons emitted per electron, jA0j2, vs. z0 for different values of

D. It is evident from Fig. 1 that the detrimental effects of the

spontaneous emission on the coherent FEL emission is negli-

gible if

D ¼ b

�q3=2
� 1: (24)

For D¼ 0, the system shows a periodic behaviour, with the

photon number emitted per electron reaching the maximum

jA0j2 ¼ 1 at z0 � 6. Increasing D, the quantum efficiency

decreases, and it is almost zero for D> 0.2.
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We can also study the growth rate of the radiation inten-

sity linearizing Eqs. (14)–(21) around the initial condition

with A0ð0Þ ¼ 0; B0ð0Þ ¼ 0; P0ð0Þ ¼ 1 and P–1(0)¼ 0. The

“zero-order” solution (for A0 ¼ 0) is P0ðz0Þ ¼ e�Dz0 and

P�1ðz0Þ ¼ Dz0e�Dz0 . Then, the linear regime is described by

the following equation:

d2A0

dz02
þ ðid0 þ DÞ

~dA0

dz0
� ð1� Dz0Þe�Dz0A0 ¼ 0: (25)

For D¼ 0 and d0 ¼ 0, the intensity jA0j2 grows exponentially

as exp ðgz0Þ, whereas when D 6¼ 0 the equation is non-

homogeneous, and the intensity decrease is not exponential.

This can be seen easily in Fig. 2, which shows a plot of g
¼ 2
jA0 j
�� dA0

dz0

�� vs. D at resonance (i.e., d0 ¼ 0) for different val-

ues of z0 (notice that in this case A0 is real). Whereas in a

pure exponential regime g should be independent on z0, here

it decreases with z0.
A comparison between the linear and nonlinear solution

in the quantum regime is presented in Fig. 3, where jA0j2 is

drawn as a function of z0 for D¼ 0, 0.05, 0.1 for the nonlin-

ear (full lines) and linear (dashed lines) solution. In Fig. 4,

we plot the first maximum of jA0j2 as a function of D. The

spontaneous emission quenches the coherent FEL lasing

when D> 0.2

We complete the analysis by presenting the result of the

numerical integration of the full Eqs. (8) and (9), valid in the

FIG. 1. Scaled intensity jA0j2 vs. z0 in the quantum regime, for different val-

ues of the spontaneous emission rate D.

FIG. 2. Growth rate g ¼ 2
jA0 j
�� dA0

dz0

�� vs. D in the quantum regime, for three dif-

ferent positions z0.

FIG. 3. Comparison between the nonlinear solution (full lines) and the linear

solution (dashed lines) for D¼ 0, 0.05, 0.1.

FIG. 4. jA0j2max as a function of D, calculated from Eqs. (18) to (21) and

d0 ¼ 0.

FIG. 5. jAj2 vs. �z for �q ¼ 5, d¼ 0, and b¼ 0, 1, 3.

013111-4 Fares, Piovella, and Robb Phys. Plasmas 25, 013111 (2018)



general case of arbitrary �q. Figure 5 shows the scaled inten-

sity jAj2 vs. �z for �q ¼ 5, d¼ 0 and b¼ 0 (black full line),

b¼ 1 (red dashed line) and b¼ 3 (green dotted line). This

value of �q corresponds to a quasi-classical regime, with sev-

eral photons emitted per electron. We observe that the emis-

sion is severely inhibited already for b¼ 3. Figure 6 shows

the distribution Q(h) vs. h at �z ¼ 7 for the same parameters

as in Fig. 5, for b¼ 0 (red continuous line) and for b¼ 1

(blue dashed line). We observe that the energy spread

induced by the spontaneous emission smears the electron

spatial distribution. This behaviour is more evident in Fig. 7

showing the electron phase-space distribution described by

the discrete Wigner function Wm(h), at the positions where

the maximum bunching occurs for b¼ 0, 1, and 3. The

phase-space distribution of the micro-bunches tends to be

less filamented and jagged. Notice the zone in the phase-

space where the quasi-distribution is negative, an indicator

of a non-classical behavior.

VI. CONCLUSIONS

We have presented a discrete Wigner model for the

quantum FEL, including spontaneous emission. This model

is more rigorous and formally correct than the continuous

Wigner model presented in Ref. 11, since it describes the

momentum as a discrete variable, as it should be assuming

spatial periodic boundary conditions. However, the results

are in good agreement with those of the continuous model,

as it can be observed comparing Fig. 4 with Fig. 6 of Ref.

11. We have shown that, in the quantum regime, the equa-

tions reduce to these for two-momentum states coupled to

the coherent radiation field. Spontaneous emission is there-

fore interpreted as responsible for the loss of coherence (i.e.,

bunching) and the transfer of electrons in and out of the two

momentum states via rate equation terms.
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