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Abstract 
 

Stress represents the main environmental risk factor for mental illness. Exposure to stressful 

events, particularly early in life, has been associated with increased incidence and susceptibility 

of major depressive disorders as well as of other psychiatric illnesses. Among the key players in 

these events are glucocorticoid receptors. Dysfunctional glucocorticoid signalling may indeed 

contribute to psychopathology through a number of mechanisms that regulate the response to 

acute or chronic stress and that affect the function of genes and systems known to be relevant 

for mood disorders. Indeed, exposure to chronic stress early in life as well as in adulthood has 

been shown to reduce the expression of glucocorticoid receptors (GR), also through epigenetic 

mechanisms, and to up-regulate the expression of the co-chaperone gene FKBP5, which restrains 

GR activity by limiting the translocation of the receptor complex to the nucleus. Another 

mechanism that contributes to changes in GR responsiveness is the state of receptor 

phosphorylation that controls activation, subcellular localization as well as its transcriptional 

activity. Moreover, GR phosphorylation may represent an important mechanism for the cross talk 

between neurotrophic signalling and GR-dependent transcription, bridging two important players 

for mood disorders. One gene that lies downstream from GR and may contribute to stress-related 

changes is serum glucocorticoid kinase-1 (SGK1). We have demonstrated that the expression of 

SGK1 is significantly increased after exposure to chronic stress in rodents as well as in the blood 

of drug-free depressed patients. We have also shown that SGK1 up-regulation may ultimately 

reduce hippocampal neurogenesis and contribute to the structural abnormalities that have been 

reported to occur in depressed patients.  

In summary, GR signalling may represent a point of convergence as well as of divergence for 

defects associated with pathologic conditions characterized by heightened vulnerability to 

stress. The characterization of these abnormalities is crucial to identify novel targets for 

therapeutic intervention that may counteract more effectively stress-induced neurobiological 

abnormalities.  
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Stress and mental illness 

Stress represents a condition that implies a modification of homeostasis, which may occur 

through a number of different events regulating emotion, behaviour, cognition as well as 

physical health. While eustress has a positive meaning, distress originates from a persistency in 

stress exposure that is not associated with proper coping and may ultimately lead to pathologic 

consequences [1]. Indeed, stress represents the main environmental components for the 

susceptibility to mental illness, although it is known that the response to stress is modulated by 

the genetic signature as well as by a number of other factors, including earlier exposure to 

adverse life events that may have ‘primed’ the brain toward enhanced susceptibility. All these 

elements, and their reciprocal interaction, affect the ability to cope with stress thus leading to 

resilience or susceptibility. There are different ways through which stress may alter brain 

function and homeostasis, including the anatomical signature of the stress response, which 

include the regulation of specific pathways and circuits [2]. Another important aspect is the 

timing of stress occurrence and its implications for the functional outcome [3-9]. One critical 

time frame is represented by early life, which may span from prenatal to early postnatal life 

until adolescence. Taking into consideration the complex maturation profile of different brain 

structures and circuits, it may be inferred that exposure to stress or adverse life events can 

produce a wide array of changes with different functional consequences that may also depend 

upon the duration of the adverse experience [10]. Accordingly, it may be inferred that the 

psychopathologic consequences associated with stress exposure depend upon all these variables 

and their interaction with the genetic background. 

While the stress response is determined by the integration of different mechanisms and 

mediators, in this review we will focus on altered glucocorticoid signalling as major contributor 

for long-term disability associated with stress-induced mental illness. While many peptides can 

be released under stressful conditions, within the brain, the action of corticosteroids is 

restricted by the presence of corticosteroid receptors, namely type I (mineralocorticoid 

receptors - MR) and type II (glucocorticoid receptors - GR), which are primarily ligand-activated 

transcription factors [11-13], but that may also operate through membrane receptors [12, 13].  
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Modulation of glucocorticoid receptors 

The glucocorticoid receptors are the major player in mediating many physiological events set in 

motion by stress exposure, including central as well as peripheral mechanisms with a pleiotropic 

response of the body’s, including the modulation of metabolic pathways and immune-related 

mechanisms [12, 13]. Upon glucocorticoid binding, the receptor is released from a chaperone 

complex and translocates to the nucleus, where it regulates the transcription of target genes, by 

direct interaction with its response elements as well as through the modulation of transcription 

factors or other regulatory elements [14]. 

The function of the hypothalamus-pituitary-adrenal (HPA) axis is controlled by a feedback 

mechanism, which serves to terminate the ‘acute stress response’. Indeed, endogenous 

glucocorticoids are potent negative regulators of the HPA axis activity by binding to their 

receptors in different tissues, including hypothalamus, pituitary as well as hippocampus. 

On these bases, following exposure to stress or any condition that may alter body’s homeostasis, 

there is a release of different mediators, including CRH and glucocorticoids (such as cortisol) 

that activate their receptors in different brain regions to determine a wide range changes, 

leading to behavioral, cognitive an functional changes that are supposed to encode for the 

proper coping response to stress. However, when this is not achieved or when stress continues, a 

wide range of modifications, including neuro-structural alterations as well as epigenomic 

changes will take place thus leading to pathologic consequences [2, 15].  

A number of transgenic approaches in mice have demonstrated a causal role for 

glucocorticoid receptors in models for mood disorders, mimicking key features of depression 

and anxiety [16-20]. On the other end, exposure to stressful events early in life has been 

associated with increased incidence and susceptibility for depression as well as for other 

psychiatric illnesses [3, 6]. It has been proposed that exposure to early life trauma may lead to a 

‘sensitization’ of circuits and pathways that regulate emotion and stress responses and may 

ultimately lead to an enhanced vulnerability to subsequent stressors as well as to the 

development of depression and anxiety [21, 22]. This evidence has been corroborated by a 

number of studies in rodents that have investigated the mechanisms altered as a consequence of 

exposure to stressors or adverse conditions during gestation as well as during the first weeks of 

life. Pioneer studies by Meaney and coworkers have originally shown that offspring raised by 
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dams with high levels of maternal care (high licking/grooming and arched-back nursing posture; 

high LG-ABN) are less fearful in exploring a novel environment, when compared to those raised 

by low LG-ABN [23], and show reduced HPA axis activation in response to an acute stress [24]. 

One mechanism that may be responsible for these effects is the reduced expression of GRs 

observed in the hippocampus of low LG-ABN, an effect that is sustained by an epigenetic 

mechanism [25]. DNA methylation is a covalent modification of the cytosine residues that are 

located primarily at CpG dinucleotide sequences: increased DNA methylation in the promoter 

regions is usually associated with repressed gene expression. Low LG-ABN rats show increased 

DNA methylation at a neuron-specific glucocorticoid receptor (NR3C1) promoter, which 

determines reduced expression of the receptor as well as increased HPA reactivity [25]. 

Interestingly, decreased levels of glucocorticoid receptor mRNA and increased cytosine 

methylation of a NR3C1 promoter were also found in the hippocampus obtained from suicide 

victims with a history of childhood abuse, as compared to suicide victims with no childhood 

abuse or controls [26]. These data provide translational relevance for the results obtained in rats 

and suggest a common effect of parental care on the epigenetic regulation of hippocampal 

glucocorticoid receptor expression. 

Similar changes in the expression of GRs, as well as in the control of HPA axis function, were 

found using experimental paradigms that mimic exposure to adversities early in life, such as 

prenatal stress and maternal deprivation. For example, in the model of prenatal stress, 

consisting in exposing pregnant dams to daily stress sessions during the last week of gestation, 

we found a significant reduction in the expression of 11 beta-hydroxysteroid dehydrogenase-2 

(11β-HSD2) in the fetal part of the placenta (Riva et al., unpublished observations). These data 

are in agreement with previous results that have also shown reduced placental 11β-HSD2 mRNA 

levels following chronic restrain stress during gestation in rats, an effect that was accompanied 

with increase methylation at 3 CpG sites in the promoter region of the 11β-HSD2 gene [27]. 

Considering the role of 11β-HSD2 in buffering maternal glucocorticoid by converting cortisol and 

corticosterone into inactive metabolites, its reduced expression may lead to a potential overload 

of glucocorticoids in the fetus that are suspected to impair normal development with long-term 

adverse consequences, such as dysregulation of the infant's HPA axis and neurobehavioral 

changes [28-30]. In agreement with this possibility, rats that have been exposed to stress in 
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utero display increased anxiety and depression-like behavior, as well as enhanced stress 

sensitivity at adulthood, which is sustained by altered HPA axis activity and reduced expression 

of both GR and MR in the hippocampus [31, 32](Luoni et al., submitted). Withdrawal from 

maternal care also determines a persistent dysregulation of the HPA axis with decreased 

hippocampal GR levels and impaired feedback mechanisms [33-35]. Similar studies have been 

performed in non-human primates [36]. All these data suggest that changes in the expression of 

GRs may represent the first level of dysfunction in glucocorticoid signaling, leading to altered 

responsiveness to challenging conditions as well as behavioral alterations resembling mood 

disorders. 

 

Modulation of the chaperone protein FKPB5 

Another important player that may contribute to stress-related HPA dysfunction is the chaperone 

protein FKPB5 (FK506 binding protein 51)[12, 37]. FKBP5 represents an intracellular ultra-short 

negative feedback player that regulates glucocorticoid receptor activity. Indeed GR activation 

induces FKBP5 transcription, which may restrain glucocorticoid receptor activity by limiting the 

translocation of the receptor complex to the nucleus. The FKBP5 gene represents a good 

example for the interaction between genetic risk factor and exposure to environmental 

adversities in modulating the risk of developing major depressive disorders [38]. The FKBP5 gene 

is characterized by the presence of polymorphisms that have been associated with increased 

recurrence risk of depressive episodes and that may also moderate the risk for PTSD associated 

with childhood adversities [39]. The effect of the FKBP5 gene polymorphism to enhance the risk 

of developing stress-related psychiatric disorders in adulthood appears to be allele-specific and 

depends upon epigenetic changes in functional glucocorticoid response elements of FKBP5 as a 

consequence of childhood trauma exposure [40].  

Changes in the expression of FKBP5 may also occur following exposure to stress in adulthood. We 

found that animals exposed to the paradigm of chronic mild stress (CMS), which may recapitulate 

depression-related disturbances, show increased expression of FKBP5 primarily in the ventral 

hippocampus and prefrontal cortex [41]. These changes are associated with enhanced levels of 

glucocorticoid receptors in the cytosolic compartment, which is suggestive of an impaired ability 

of the receptor to translocate to the nucleus and activate GR-dependent transcriptional 
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mechanisms [41]. Interestingly, we have also demonstrated that chronic treatment with the 

serotonin-noradrenaline reuptake inhibitor duloxetine is able to reduce FKBP5 mRNA levels in the 

ventral hippocampus, and completely normalizes the changes of FKBP5 mRNA and protein levels 

found in the prefrontal cortex of CMS rats [41], suggesting that therapeutic intervention may 

restore the proper function of HPA axis activity by modulating the expression of the chaperone 

protein FKBP5. These results are in agreement with in vitro and in vivo studies, suggesting a 

close interaction between antidepressants and the GR system pointing to the idea that 

antidepressants enhance glucocorticoid sensitivity and function, may increase nuclear 

translocation of GRs and also facilitate GR-mediated gene transcription [42, 43].  

 

Modulation of glucocorticoid receptor phosphorylation 

Another mechanism that may contribute to GR responsiveness is the state of receptor 

phosphorylation, which controls activation, subcellular localization, gene transcription, and 

turnover of GRs [44, 45]. The receptor can be phosphorylated as a consequence of ligand binding 

as well as through the activation of different signaling pathways [45]. Hence GR phosphorylation 

represents a converging point for different intracellular mechanisms that co-operate in 

modulating GR function and responsiveness. We have shown that the phosphorylation of GR on 

Ser232, and to less extent on Ser224, is significantly reduced in the prefrontal cortex of rats that 

were exposed to the paradigm of CMS. It has been previously demonstrated that GR 

phosphorylation at these sites can regulate GR trafficking to the nucleus [42]. Hence, the 

reduced phosphorylation on Ser232 may represent another mechanisms through which stress 

exposure can impair GR function, by preventing or reducing its translocation into the nucleus. 

We have also demonstrated that phosphorylation on pSer224 and pSer232 is significantly up-

regulated by chronic duloxetine treatment, as previously shown to occur with sertraline in 

human hippocampal stem cells [42]. This effect normalizes the changes produced by CMS, 

particularly when considering pSer232 and may contribute to restore altered GR function and 

GR-dependent changes of HPA axis activity.  

GR phosphorylation at Ser224 and Ser232 represents an important mechanism in the control of 

GR-dependent gene transcription by glucocorticoid hormones and antidepressants [42]. GR 

phosphorylation may also represent an important mechanism for the cross talk between 
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neurotrophic signalling and GR-dependent transcription, bridging two important players for mood 

disorders. It is well established that the expression and function of trophic factors, such as brain-

derived neurotrophic factor (BDNF), is defective in selected brain regions of patients affected by 

stress-related disorders as well as in different animal models of depression [16, 46-52]. Lambert 

and coworkers have elegantly shown that the simultaneous treatment with BDNF and the GR 

agonist dexamethasone can produce a unique set of GR-responsive genes that play a role in 

neuronal growth and differentiation and may also enhance the transcription of a large number of 

dexamethasone-sensitive genes [53]. Interestingly, BDNF treatment induces the phosphorylation 

of GR at specific sites, a mechanism that may specify and amplify the GR transcriptome through 

coordinated GR phosphorylation. This observation may allow to speculate on the pathologic 

implications of the disruption of such mechanism in psychiatric disorders. Indeed, while one 

important consequence of the exposure to prolonged stressors can be glucocorticoid resistance 

due to the reduced ability of GR to activate, when required, the proper cellular responses, this 

situation can be aggravated by the dysfunction of other systems, such as the neurotrophin BDNF, 

that are important to promote neuronal resilience.  

On these bases, it is important to investigate and characterize mechanisms downstream from GR 

activation that play a role in neuronal function within specific brain structures. One example is 

represented by the hippocampus that is strongly involved in the pathogenesis of depressive 

disorders. Indeed this brain structure is highly sensitive to stress [5] and it is one of the key 

regions identified as a component of a network that is altered in depressed patients [54, 55]. It 

has been consistently demonstrated that the volume of the hippocampus is significantly smaller 

in patients with MDD, an effect that may be sustained by a number of different mechanisms 

including reduced trophic support as well as altered glucocorticoid sensitivity and responsiveness 

[15]. While cell atrophy has been reported to occur as a consequence of prolonged stress 

exposure, there is growing evidence that depression may be associated with reduced 

hippocampal neurogenesis that can ultimately contribute to decreased hippocampal volume [56, 

57]. A large number of studies have shown that exposure to acute and chronic stress may affect 

neurogenesis, primarily cell proliferation, in several species [58, 59], an effect that is mainly 

mediated by stress hormones, such as glucocorticoids, which can regulate GR-dependent 

transcription in dividing cells [60]. Impaired hippocampal neurogenesis in rodents may contribute 
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to the development of depressive symptoms in response to stress, supporting the notion that 

glucocorticoids-induced reduction in neurogenesis may indeed contribute to the pathogenesis of 

depression [57]. With this respect, we have recently shown that the glucocorticoid receptor-

regulated gene serum/glucocorticoid-regulated kinase 1 (SGK1), which is a target of GR, 

mediates the cortisol-induced decrease of neurogenesis in human hippocampal progenitor stem 

cells [61].  

 

Modulation of serum/glucocorticoid-regulated kinase 1  

 SGK1 is a serine/threonine kinase implicated in the cellular response stress as well as in 

neuronal functions and it mediates some of the effects exerted by glucocorticoids on the brain. 

Following exposures to physiological stressors, the SGK1 gene is rapidly transcribed through the 

activation of GR and MR, and its protein undergoes constitutive phosphorylation via endogenous 

PI3-K activity [62]. The rapid transcriptional modulation of SGK1 levels represents one of the 

mechanisms through which glucocorticoids may activate several neuroendocrine responses [63, 

64]. For example, in the rodent prefrontal cortex, acute stress up-regulates SGK1 that, on its 

turn, increases the trafficking and function of NMDARs and AMPARs, which leads to a 

potentiation of synaptic transmission, thereby facilitating cognitive processes mediated by 

prefrontal cortex activation [65]. Conversely, in the murine corpus callosum, chronic stress can 

cause morphological abnormalities in oligodendrocytes by up-regulating SGK1 [66]. We found 

that SGK1 is involved in the regulation of hippocampal neurogenesis and, in particular, may be 

responsible for the effects of cortisol on the proliferation and neuronal differentiation of human 

hippocampal progenitor cells [61]. This may occur through the inhibition of the Hedgehog 

pathway as well as through the regulation of glucocorticoid receptor phosphorylation and its 

nuclear translocation [61]. Indeed, when we treated human hippocampal progenitor cells with 

the stress hormone cortisol we observed a significant reduction of neurogenesis, an effect that 

was accompanied by increased levels of SGK1. Importantly, co-treatment of the cells with 

cortisol and GSK 650394, the small inhibitor of SGK1, was able to prevent the negative effect of 

cortisol on neurogenesis. In order to provide further support to the role of SGK1 in stress 

response, we investigated its expression in animals exposed to prolonged stress. We found that 

SGK1 mRNA levels are significantly increased in the dorsal and ventral hippocampus of rats 
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exposed to chronic mild stress as well as in the hippocampus of adult rats that were exposed to 

stress during gestation [61]. We also found that SGK1 mRNA levels are significantly higher in the 

blood of drug-free depressed patients, thus providing support for the potential clinical 

implication of these findings. Interestingly, in agreement with our in vitro data showing 

decreased GR levels in the presence of increased SGK1 expression, SGK1 mRNA levels show a 

negative correlation with GR levels in our clinical sample. Moreover, SGK1 correlated positively 

with the mRNA levels for the GR target gene FKBP5 and negatively with the expression of the 

neurotrophin BDNF [61, 67]. Recent findings have also shown that repeated stressful events can 

induce a sustained elevation of plasma corticosterone levels and an up-regulation of SGK1 mRNA 

expression in oligodendrocytes, causing excess arborization of oligodendrocyte processes that is 

thought to contribute to depressive-like symptoms [68]. Moreover, in line with our cellular work 

demonstrating a role for SGK1 in neurogenesis, it has been recently demonstrated that the 

expression levels of several GR inducible genes, including SGK1, correlated with lower 

hippocampal volumes, providing a potential link between glucocorticoid signalling, SGK1 and 

hippocampal volume abnormalities found in stress-related mental disorders [69, 70]. Based on 

these data, it may be inferred that SGK1 gene represents a fine sensor that contributes to acute 

and chronic stress responses in different brain structures. However, it must be borne in mind 

that SGK1 is only one example of the complex pattern of gene regulation that lies downstream 

from the activation of GR and may contribute to psychopathological mechanisms affected in 

mood disorders. Among these, we have extensively investigated the expression of neuroplastic 

genes, such as the neurotrophin BDNF, as well as inflammatory mediators, that show protracted 

modifications as a function of exposure to stressful experiences early in life as well as in 

adulthood [3, 7, 71, 72].  

In summary, increasing evidence indicates that psychiatric disorders are characterized by 

complex changes in the function and responsiveness of GRs, which represent a point of 

convergence as well as of divergence for defects associated with pathologic conditions 

characterized by heightened vulnerability to stress. While, under acute conditions GR-dependent 

mechanisms may contribute to stress coping and resilience, following protracted exposure to 

adverse conditions a derangement of the signalling pathways downstream from GRs is observed. 
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The characterization of these abnormalities is crucial to identify novel targets for therapeutic 

intervention that may counteract more effectively stress-induced neurobiological abnormalities.  

As an example, potent and highly selective inhibitors of FKBP51, SAFit1 and SAFit2, have been 

recently developed. This new class of ligands enhances neurite elongation in neuronal cultures 

and improves neuroendocrine feedback and stress-coping behavior in mice, suggesting that 

direct interference with FKBP5 function may hold promise as novel therapeutic intervention in 

stress-related disorders [73]. 
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Figure 1 

Schematic drawing of glucocorticoid receptor signaling cascade modulating FKBP5 and SGK1 

function. 

Glucocorticoid receptor (GR) is kept in the cytosol under an inactive form by its binding with the 

co-chaperonine FKBP5. When glucocorticoids (GC) bind GR, FKBP5 is exchanged against another 

co-chaperonine, FKBP4, which promotes the activation of GR that can be phosphorylated by 

several kinases (including the Serum Glucocorticoid Kinase 1, SGK1). GR can form dimers and 

thus translocates into the nucleus, where it binds Glucocorticoid Responsive Element (GRE) 

sequences on the DNA, activating the transcription of GR responsive genes, including FKBP5 and 

SGK1. 
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