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5 Process analytical technology (PAT) in food industries can

6 improve process efficiency and final product quality by

7 enhancing understanding and control of the manufacturing

8 processes. Near infrared spectroscopy (NIRS) is one of the

9 predominant e-sensing technologies used in PAT, thanks to its

10 ability in fingerprinting materials and simultaneously analyzing

11 different food-related phenomena. Recent advances have

12 shown good potentials of NIRS in real-time monitoring and

13 modeling of different food processes. However, most studies

14 have been carried out at a lab scale, while applications at

15 industrial levels are still few. To bridge the gap between NIRS

16 potentials and its actual implementation in PAT, more efforts

17 are requested to both researchers and industries in order to

18 close the control loop for an efficient and automated

19 processing management.
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28 Introduction
29 This paper discusses recent advances (published in 2015–

30 2017) in near infrared spectroscopy (NIRS) applied to

31 process analytical technology (PAT) in food industries.

32 Prominent applications at lab and industrial scale are

33 reported.

34 Real-time evaluation and assurance of the process effi-

35 ciency and final product quality based on real-time pro-

36 cess data can represent a great benefit for food industries

37 and PAT implementation can facilitate this approach.

38 The advantages for the company’s business, meant as

39 growth in profit margins and production efficiency, are a

40 clear key driver of PAT application in food industries

41 together with consumers’ demand for high and consistent

42quality of the final products, as well as requirements by

43control bodies for food safety and traceability [1].

44Recently, the attention for a higher environmental sus-

45tainability of food processes has been individuated as the

46fourth driver involved in PAT application; PAT can

47actually be recognized as a green production strategy,

48optimizing the efficient use of resources [2].

49PAT approach was firstly introduced by FDA for phar-

50maceutical industries, as ‘a system for designing, analyz-

51ing, and controlling manufacturing through timely mea-

52surements (i.e., during processing) of critical quality and

53performance attributes of raw and in-process materials

54and processes, with the goal of ensuring final product

55quality. The goal of PAT is to enhance understanding and

56control the manufacturing process’ [3]. As reported in the

57interesting review by van den Berg et al. [4], PAT can be

58considered ‘a silent revolution in industrial quality control

59in food processing’. Within PAT, quality control turns

60from a feedback approach to a model-predictive approach

61based on real-time process adjustment during

62manufacturing. Besides the clear advantages in product

63quality assurance and process management, a successful

64implementation of PAT enables also a deep understand-

65ing and a continuous learning about food materials and

66process dynamics, paving the way for innovations through

67a Quality by Design (QbD) approach. QbD can be

68considered a systematic way of food development based

69on the pre-definition of critical quality characteristics that

70can be designed by an accurate and sound process under-

71standing and control. Taking into account the strict

72regulatory environment in which the food industry acts

73as well as the consumers’ requirements, the effective use

74of modeling and control strategies can also help in ensur-

75ing food safety, authenticity, and quality, while lowering

76production costs and increasing energy efficiency. How-

77ever, the extremely heterogeneous and varying properties

78of raw materials, the complex transformations that can

79occur during the processing chain, and the perishable

80nature of the products increase the challenges in this

81scenario.

82The PAT system has four main components (Figure 1):

83initial understanding of relevant factors affecting the

84process dynamics and the final product quality, process

85analysis, multivariate data analysis, and process control.

86This review will focus on recent NIRS applications

87for the monitoring of critical process parameters and

88quality attributes, moving progress in multivariate data

89analysis to the background. Chemometrics is of course of
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90 fundamental importance for PAT, but a detailed survey of

91 the advances in data analysis science is out of the scope of

92 this review. Some of the most important univariate and

93 bivariate parametric and non-parametric statistical tech-

94 niques are reviewed by Granato et al. [5], whereas useful

95 qualitative and quantitative multivariate approaches are

96 reported in several recent reviews [6–10]. Chemometrics

97 has improved the whole control process by reducing the

98 time of analysis and providing more informative results

99 [11]. It can be applied to PAT at different levels: for the

100 design of experiments in order to screen and optimize the

101 critical parameters to be considered in the process control

102 [8,12,13]; for process control [14–16]; for both regression

103 and classification modeling in order to predict simulta-

104 neously several critical quality attributes from the real-

105 time collected data [8,13]; for handling data structures

106 from multiple analytical platforms [8,11,17].

107 Spectroscopic sensors are optimal instruments for real

108 time analysis during manufacturing, being rapid, non-

109 invasive, very flexible, and rugged. NIRS, in particular,

110 with its ability to fingerprint food materials and to simul-

111 taneously analyze different phenomena, is one of the

112 predominant e-sensing technologies used in PAT. Its

113 spreading is also favored by the possibility to transport

114 radiation through optical fiber probes and by the growing

115 availability of low-cost portable devices, which can be

116 more easily implemented into the processing line.

117Process analysis
118Most of the published researches deal with the use of

119NIRS in process analysis, including characterization of

120raw materials, as well as intermediate and final products.

121The complexity and high variability of food systems and

122the dynamic nature of food processing together with the

123large number of interconnected factors affecting the out-

124comes are main challenges for PAT implementation in

125food industries.

126Recent developments of NIRS in the field of liquid foods

127are covered by Wang et al. review [18�], focusing on the

128detection of quality attributes and adulterations of alco-

129holic beverages (red wines, rice wines, and beer), nonal-

130coholic beverages (juice, fruit vinegars, coffee beverages,

131and cola beverages), oils (vegetable, camellia, peanut, and

132virgin olive oils and frying oil), and dairy products (milk

133and yogurt). Dairy industry is the object also of the review

134by Munir et al. [19��], with a focus on milk powder, for

135which not only composition is important, but also tech-

136nological performance (e.g., particle size and dispersibil-

137ity), sensory and microbiological attributes. A more com-

138prehensive review about QbD for food processing has

139been published by Rathore and Kapoor [20], considering

140case studies in the field of both vegetable and animal

141products.

142As regards the dairy products, a representative work has

143been published by Melenteva et al. [21], who proposed a

144global model for the spectrophotometric (400–1100 nm)

145determination of fat and total protein content in raw

146cow milk. A very large set of milk samples (>1000)

147collected during a whole year were analyzed, taking into

148account also geographical, genetic, and breeding manage-

149ment factors, as well as a milk storage period up to 24 h (at

1505 � 1 �C). Moreover, the authors proposed some

151approaches for the model transfer between two different

152instruments.

153At a lab scale, NIRS has been largely used for the

154monitoring of fermentation processes, because it can give

155simultaneously information about chemical composition,

156textural properties and microbial growth. Some good

157recently published reviews report results about the appli-

158cation of NIRS in wine and brewing industries [22�,23��].
159In these fields, the control of raw material quality (e.g.,

160compositional, phytosanitary, genetic), processing opera-

161tions (e.g., mashing and fermentation) and final product

162quality can be successfully achieved by NIRS and multi-

163variate data analysis. A recent paper by Svendsen et al.
164[24] applied a NIR fiber optic reflectance probe for in-line

165control of yoghurt fermentation in a large lab scale (15 L

166fermenter). By means of principal component analysis

167(PCA) and kinetic modeling, they were able to model

168both texture changes due to the gel formation and chem-

169ical information related to the sugar conversion into lactic

170acid performed by microbial starters.
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Illustration of the four main components of process analytical

technology, aimed at enabling a deep understanding and a continuous

learning of food materials and process dynamics.
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171 The usefulness of PAT in process optimization has been

172 proved also for fruits and vegetables drying, one of the

173 most energy consuming unit operation in postharvest

174 processing. Raponi et al. [25] reviewed literature from

175 1999 onwards exploring NIRS, multi-spectral and hyper-

176 spectral vision systems application in quality control of

177 fruit and vegetable drying processes. Recently, Moscetti

et al. [26] reported the benefits of NIRS applied to carrot

178 drying process monitoring. They focused on physico-

179 chemical changes of carrot slices during hot-air drying

180 forerun by hot-water blanching. They demonstrated the

181 efficacy of the spectroscopic system (1100–2300 nm) in

182 predicting water activity, moisture content, soluble solid

183 content, total carotenoids and color changes during drying

184 through partial least squares (PLS) regression models

185 optimized by variable selection through an interval

186 PLS (iPLS) algorithm. Furthermore they applied PLS-

187 Discriminant Analysis (PLS-DA) for the classification of

188 carrot slices according to the drying phases, obtaining

189 models with good accuracy in prediction (>75%). How-

190 ever, the industrial transfer of the presented approach

191 requires a more robust validation together with the incre-

192 ment of the instrumentation performances in terms of

193 light-beam intensity and wavelength range covered.

194 Some interesting applications have been suggested also

195 for coffee roasting [27], honey refining [28], dispersed

196 ground oilseed concentration in diluted solid–liquid dis-

197 persions [29], and meat composition and grading [30,31].

198 However, it is worth noting that the majority of the cited

199 works were carried out at a lab scale, and, even if they

200 show a great potential of NIRS applied to PAT for food

201 processing, a real implementation in food industries can

202 present additional challenges.

203 From process analysis to process control
204 Despite the abundant scientific literature demonstrating

205 the great potential of NIRS applied to process analysis in

206 view of PAT implementation, real case study reports

207 about on-line/at-line process analysis at industrial scale

208 are still few. It should be considered that the require-

209 ments for on-line technology application in industrial

210 production differ from laboratory-based analysis. Indeed,

211 the NIR instruments should ensure not only the ability in

212 measuring the parameter(s) of interest, but should also

213 enable an appropriate feedback speed, a non-invasive

214 character and a cleaning-in-place compatibility.

215 Porep et al. [32] and Beghi et al. [33] described the

216 application of visible/near infrared spectroscopy for an

217 on-line evaluation of crushed grapes and phytosanitary

218 status at the receipt station of wineries. Calibration PLS-

219 DA and PLS models for different relevant parameters (e.g

220 ., diseased bunches, density, fructose, glucose, and

221 organic acid content, acidity, pH) were developed, which

222 may improve payment systems and quality management.

223 However, due to the coarse qualitative or semi-

224quantitative prediction achieved, further studies are nec-

225essary in order to optimize and validate the models.

226Moreover, in view of a final on-line application, the best

227operating conditions and the engineering phases to per-

228form the measurements directly at the grape receipt

229should have been assessed.

230An industrial scale-up of NIRS applications is more evi-

231dent in the monitoring of fermentation processes. Among

232the published papers, Vann et al. [34��] evaluated the

233potential of NIRS for on-line monitoring of beer fermen-

234tation firstly at lab scale (26.5 L fermenter) and then in a

235300 L pilot-scale plant for validation. The models devel-

236oped for sugar consumption rate, ethanol production rate,

237yield of ethanol on total sugars and fermentation lag-time

238were then incorporated into a feed-forward control strat-

239egy for yeast management. This strategy was able to early

240detect shifts in fermentation performances and conse-

241quently adjust yeast re-pitching rates in order to improve

242batch-to-batch consistency.

243A large-scale (approximately 1000 kg) experimental mill

244was used by Allouche et al. [35] for monitoring olive

245malaxation by an Acousto-Optic Tunable Filter

246(AOTF)-NIR equipment. In particular, real-time charac-

247terization of olives (pulp/stone ratio, extractability index,

248moisture and oil contents) and the potential character-

249istics of the extracted oil (free fatty acids, peroxide value,

250UV parameters, pigments and polyphenols) were evalu-

251ated, considering different months and years of olive

252harvesting, as well as different processing conditions

253(i.e., types of hammer mill, sieve diameter, hammer

254rotation speed, and temperatures). The use of an artificial

255neural network (SS-ANN) allowed reaching good predic-

256tive capability, showing the possibility to obtain almost

257instantaneously the information needed to optimize pro-

258cess conditions in terms of both productivity and oil

259quality, despite the high variability of the raw material

260and the dynamic conditions of the spectra collection. The

261acquired knowledge can be used for the implementation

262of a process-automation system able to regulate different

263processing variables with minimal loss of time and costs.

264The advantages of real-time measurements, modeling

265and control in food processing are well illustrated by

266Glassey et al. [36] through the discussion of different

267industrial case studies. In particular, the authors demon-

268strated that NIRS might be used to improve the consis-

269tency of dry ingredient mixing in food industries. Con-

270sidering bread and confectionery powder mixtures with

271different particle size distributions, experiments were

272performed using two conical screw mixers of 4000 L

273capacity, each equipped with a NIR diffuse reflectance

274fiber-optic probe. Both powder homogeneity and compo-

275sition were successfully predicted by applying a suitable

276NIR data elaboration. The obtained results were then

277validated using a tumble blender with a nominal capacity
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278 of 2000 L. Being the plant in motion, a Wi-Fi and battery

279 powered portable device (MicroNIR) was used for spectra

280 acquisition. The validation produced good results, allow-

281 ing the identification of the homogeneity point. A further

282 experiment was carried out for caramel and custard pro-

283 cessing, where mixing of mainly water and sugar at high

284 temperatures leads to high density and high viscosity

285 products. A 2000 L mixing and cooking vessel was used,

286 applying to the recirculation pipe a NIR probe connected

287 to a MicroNIR. Good PLS calibration models with high

288 coefficients of determination and low errors were

289 obtained for color, moisture, and water activity. However,

290 the predictions for an unknown batch were not very

291 accurate. In any case, since only three batches were used

292 for calibration, the models can be improved by analyzing

293 more production batches.

294 Conclusions
295 Process-automation systems can really help food indus-

296 tries in improving process efficiency, meanwhile satisfy-

297 ing law requirements and consumers’ needs. The com-

298 plexity of a food process represents a challenge for PAT

299 implementation, but NIRS can be successfully exploited

300 in this field. However, the recent scientific literature is

301 still too much focused on studies carried out at a labora-

302 tory level, just demonstrating the potential of NIRS in

303 understanding, modeling and monitoring food-related

304 phenomena. Some manufacturers are integrating spectro-

305 scopic sensors into processes, but only as substitutes for

306traditional off-line analytical procedures. This can lead to

307a confused perception of PAT.

308To bridge the gap between NIRS potentials and its actual

309implementation in PAT tools, more efforts are requested

310to both researchers and industries. A good dissemination

311and a closer collaboration are needed in order to transfer

312the process analysis carried out at a lab-scale into an

313industrial process control, closing the loop for an efficient

314and automated processing management (Figure 2). Resis-

315tance to change must be overcome by food industries, as

316well as deeper statistical knowledges and management

317skills must be transferred to the future generation of food

318technologists. Only in this way the ‘PAT silent

319revolution’ might be accomplished, with important impli-

320cations for food producers and consumers.
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383 17. Skov T, Honoré AH, Jensen HM, Næs T, Engelsen SB:
384 Chemometrics in foodomics: handling data structures from
385 multiple analytical platforms. Trends Anal Chem 2014, 60:71-79.

18.
�

Wang L, Sun D-W, Pu H, Cheng JH: Quality analysis,
386 classification, and authentication of liquid foods by near-
387 infrared spectroscopy: a review of recent research
388 developments. Crit Rev Food Sci Nutr 2017, 57:1524-1538.
389 This paper can serve as a reference source for the implementation of
390 NIRS in liquid food PAT.

19.
��

Munir MT, Wilson DI, Depree N, Boiarkina I, Prince-Pike A,
Young BR: Real-time product release and process control

391 challenges in the dairy milk powder industry. Curr Opin Food
392 Sci 2017, 11:25-29.
393 This is a good review about PAT in dairy industries, with a focus on milk
394 powder.

395 20. Rathore AS, Kapoor G: Implementation of quality by design for
396 processing of food products and biotherapeutics. Food
397 Bioprod Process 2016, 99:231-243.

398 21. Melenteva A, Galyanin V, Savenkova E, Bogomolov A: Building
399 global models for fat and total protein content in raw milk
400 based on historical spectroscopic data in the visible and
401 short-wave near infrared range. Food Chem 2016, 203:190-198.

22.
�

Sileoni V, Marconi O, Perretti G: Near-infrared spectroscopy in
402 the brewing industry. Crit Rev Food Sci Nutr 2015, 55:1771-1791.
403 This is a good review about NIRS potential in the brewing industry,
404 focusing also on process control.

23.
��
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