
Highlights

 Quantitative proteomics analysis was carried out on goat-kid omental adipose tissue after 
supplementing lactating mothers with different fatty acid diet integration

 Different diets modified the omental adipose tissue proteome
 A number 20 proteins were found to be differentially expressed, of which only NUCKS1, a 

physiological regulator of glucose metabolism, was found to be overexpressed
 The downregulation of ECl1 and Ceruloplasmin was also confirmed at gene expression level
 The results demonstrated that supplementing other diet with different PUFA may influence 

omental adipose tissue proteome.



1

1 Saturated or unsaturated fat supplemented maternal diets influence omental adipose tissue 

2 proteome of suckling goat-kids.
3

4 Laura Restelli1#, Andreia T. Marques1#, Giovanni Savoini2, Guido Invernizzi2, Michela Carisetti1, Cristina 

5 Lecchi1, Emoke Bendixen3, Fabrizio Ceciliani1*. 

6

7 1 Department of Veterinary Medicine– Università degli Studi di Milano, Milan, Italy.

8 2Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare – 

9 Università degli Studi di Milano, Milan, Italy.

10 3Department of Molecular Biology and Genetics – Aarhus Universitet, Aarhus, Denmark.

11 # These two authors equally contributed to the manuscript

12

13 * Corresponding author at: Department of Veterinary Medicine – Università degli Studi di Milano, Via 

14 Celoria 10, 20133 Milan, Italy. Tel.: +39 02 50318100; Fax: +39 02 50318095. E-mail address: 

15 fabrizio.ceciliani@unimi.it

16

17

18 Keywords: adipose tissue; proteomics; fish oil; goat; stearic acid; peripartum.

19

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

mailto:fabrizio.ceciliani@unimi.it


2

20

21 Abstract

22 The aim of the present study was to investigate how maternal diet can influence the adipose 

23 tissue of goat kids. Omental adipose tissue proteomes of goat-kids from mothers fed with diet 

24 enriched with stearic acid (ST-kids), fish oil (FO-kids) and standard diets (CTRL) were determined 

25 by quantitative iTRAQ 2D-LC-MS/MS analysis. Twenty proteins were found to be differentially 

26 expressed in suckling kids’ omental adipose tissue. Stearic acid induces changes in a higher number 

27 of proteins when compared to fish oil. Eleven proteins, namely AARS, ECl1, PMSC2, CP, HSPA8, 

28 GPD1, RPL7, OGDH, RPL24, FGA and RPL5 were decreased in ST-kids only. Four proteins, namely 

29 DLST, EEF1G, BCAP31 and RALA were decreased in FO-kids only, and one, NUCKS1, was 

30 increased. Four proteins, namely PMSC1, PPIB, TUB5X2 and EIF5A1, were be less abundant in both 

31 ST- and FO- kids. Most of the protein whose abundance was decreased in ST kids (10 out of 15) are 

32 involved in protein metabolism and catabolism pathways. Qualitative gene expression analysis 

33 confirmed that all the proteins identified by mass spectrometry, with the exception of FGA, were 

34 produced by adipose tissue. Quantitative gene expression analysis demonstrated that two proteins, 

35 namely CP, a minor acute phase protein, and ECl1, involved in fatty acid beta oxidation, were 

36 downregulated at mRNA level as well. ECl1 gene expression was downregulated in ST-kids AT as 

37 compared to Ctrl-kids and CP was downregulated in both ST- and FO-kids. The present results 

38 demonstrate that it is possible to influence adipose goat-kid proteome by modifying the maternal diet.
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39 Introduction

40 The involvement of adipose tissue (AT) in several physiological and pathological processes, 

41 such as appetite regulation, reproduction, as well as inflammatory and immune response, has been 

42 thoughtfully acknowledged. In humans, AT has a key role in obesity and the development of 

43 metabolic diseases (Després and Lemieux, 2006). In farm animals, where obesity is not an issue due 

44 to the controlled environment in which they live, focus is on AT influence on animal health and meat 

45 quality (Sauerwein et al., 2014). In dairy animals, AT metabolism gained particular interest for its 

46 essential role in the transition period, when a hormonally-controlled lipid mobilization is established 

47 in order to support milk synthesis (Contreras and Sordillo, 2011; Wathes et al., 2012). The active role 

48 of AT in regulating a wide range of body functions is related to its capability to produce and secrete 

49 adipokines. Adipokines are signalling molecules with endocrine, autocrine or paracrine functions, 

50 secreted in response to neuroendocrine signals (Harwood, 2012). In goat, the species that is the object 

51 of the present study, fat depots can be influenced by diets. For example, linseed oil supplementation 

52 to Boer goats’ diet leads to changes in fatty acid (FA) profile of subcutaneous adipose tissue and 

53 expression of genes related to fat metabolism such as PPARα, PPARγ and stearoyl-CoA desaturase 

54 (Ebrahimi et al., 2013). The transcriptomic profile of AT is modified by diets or feed deprivation 

55 (Faulconnier et al., 2011). Moreover, different fat sources have distinct impacts on AT, as shown by 

56 a study that investigated the effect of diets enriched in fish and soybean oils or saturated lipids on 

57 lipogenic and adipogenic gene expression in bovine subcutaneous AT (Thering et al., 2009). Finally, 

58 fish oil can delay fat mobilization in the adipose tissue after kidding (Invernizzi et al., 2016).

59 Fish oil is particularly rich in eicosapentaenoic acid (EPA, C20:5, n-3) and docosahexaenoic 

60 acid (DHA, C22:6, n-3) that can positively influence animal health due to their involvement in innate 

61 immune pathways (Lecchi et al., 2013, 2011; Pisani et al., 2009; Thanasak et al., 2004).  On the other 

62 hand, Bueno and co-workers (Bueno et al., 2010) demonstrated that diets enriched with coconut oil 
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63 or lard, both rich in saturated fatty acids, can modify the pro-inflammatory environment of white AT 

64 by upregulating haptoglobin expression in rats.

65 Nutrition is the major determinant of milk fat synthesis and FA composition in goats, 

66 regulating in turn the quality of milk in cows (Toral et al., 2013a, 2013b). Diets enriched in fish oil 

67 increase the amount of n-3 PUFAs in colostrum and mature milk in pregnant dairy goats (Cattaneo et 

68 al., 2006). In addition, diets enriched in extruded linseed alone or in combination with fish oil have 

69 influence on the milk fatty acid composition in lactating goats (L Bernard et al., 2009).

70 A diet based on milk or milk replacer can influence meat quality and fat composition of 

71 suckling kids (Bañón et al., 2006).  UCP1 expression and thermogenesis can be modulated by high 

72 fat diets in perirenal adipose tissue of newborn lambs (Chen et al., 2007), while overfeeding sheep 

73 during late gestation enhances adipogenesis in lamb’s foetal muscles (Tong et al., 2008). It has been 

74 poorly investigated whether is possible to influence adipose tissue proteomics by modifying lactating 

75 mother diets. Maternal diets have effects on adipose tissue proteome in newborn pigs (Sarr et al., 

76 2010). In goats, increasing the percentage of saturated or unsaturated fatty in maternal diets did not 

77 influence the expression of AT genes involved in thermogenesis, namely UCP1 and UCP2 (Restelli 

78 et al., 2015). No information about how maternal diets influence suckling kid adipose tissue proteome 

79 is available.

80 The present study aims to cover this gap by investigating the influence that the maternal diet 

81 has on kid AT. We performed a comparative investigation of visceral adipose tissue proteomes of 

82 suckling goat-kids, whose mothers were fed different high-fat diets. A quantitative 2D-LC-MS/MS 

83 analysis was carried out, using iTRAQ labelling, in order to evaluate the possible influence of fish oil 

84 (FO) or stearic acid (ST) mother’s enriched diets on kids’ omental protein expression. mRNA 

85 expression of significant proteins was also evaluated by quantitative PCR.

86

87 Materials and methods
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88 The experimental protocol used in this study was approved by the ethic committee of the 

89 University of Milan (Protocol No. 5/11, 18 January 2011).

90

91 2.1 Animals, diets and tissue sampling

92 Samples of AT were obtained from twelve 29.8±2.8 day-old healthy suckling kids, which 

93 were part of a larger experiment aimed to evaluate the influence of the maternal diet on peripartum 

94 and goat kids’ performances. A group of 23 multiparous Alpine goats, homogeneous for parity and 

95 milk production during the previous lactation, were fed with maternal lactating diets enriched with 

96 different fatty acids, either saturated (69:26 percentages ratio of ST (C18:0) and palmitic acid 

97 (C16:0)) or unsaturated (FO containing 10.22% of EPA=20:5 and 7.65 % of DHA=22:6), starting 

98 from a week before kidding until slaughtering of the kids at 30 days from birth. A third group of 

99 animals fed with a control diet without any specific diet supplementation was also used as control 

100 (CTRL). FO and ST enriched diets were adapted for the dry period (supplemented with 30 g of fatty 

101 acids) and lactation period (supplemented with 50 g of fatty acids). The diet ingredients and chemical 

102 composition are detailed in Table 1. After kidding, each goat shared the box with their relative 

103 suckling kids. From this larger group, twelve male kids, equally distributed among maternal control 

104 diet (CTRL-Kid=4), stearic acid (ST-Kid=4) and fish oil (FO-Kid=4), were randomly selected in 

105 order to be included in the present experiment. Samples were obtained from omental region. Tissue 

106 samples for both molecular biology and proteomic analysis were snap frozen in liquid nitrogen and 

107 stored at –80°C for further analysis.

108

109 2.2 Sample preparation for iTRAQ analysis and protein digestion

110 In addition to the 12 omental samples, a reference sample was created by pooling equal 

111 amounts of the four controls. The reference sample was divided into four identical aliquots, one for 
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112 each iTRAQ run and the 16 samples (12 experimental samples + 4 reference samples) were processed 

113 together throughout all the processes allowing the comparison of multiple iTRAQ runs.

114 Protein extraction procedures were carried out on ice or at 4°C as described previously 

115 (Danielsen et al., 2011). 200 mg of each adipose tissue were homogenized in 5 µl/mg TES buffer (10 

116 mMTris-HCl, pH 7.6; 1 mM EDTA, 0.25 M sucrose) and centrifuged at 10000 x g, for 30 min, at 

117 4°C. Protein concentration values of the tissue supernatants were determined by the Pierce BCA 

118 Protein Kit (VWR), using BSA as a protein standard, according to the manufacturer's manual. 

119 Proteins were precipitated by adding 6 volume of ice-cold acetone to a total of 120 µg of proteins 

120 from each tissue homogenate. The precipitated proteins were re-suspended in 20 µl of digestion buffer 

121 (0.5 M triethylammonium bicarbonate, 0.1% SDS); cysteine residues were reduced with 2.5 mM 

122 tris(2-carboxyethyl)phosphine hydrochloride (TCEP-HCl) at 60°C for 1 h, and then blocked with 10 

123 mMmethylmethanethiosulfate at room temperature, for 1 h. Samples were digested with trypsin (1:10 

124 w/w) (AB SCIEX) at 37°C, overnight. 

125

126 2.3 iTRAQ(Isobaric Tag for Relative and Absolute Quantitation) labelling

127 iTRAQ labelling was performed according to the manufacturer’s instructions (Applied 

128 Biosystems). Four independent iTRAQ runs were performed. Reference samples were labelled with 

129 reagent 114, control samples were labelled with reagent 115, fish oil treated samples were labelled 

130 with reagent 116, stearic acid treated samples were labelled with reagent 117 (as shown in Table 2). 

131 Each isobaric tagging reagent was added directly to the peptide mixture and incubated at room 

132 temperature for one hour. The 16 samples were then combined in 1:1:1:1 ratios into four tubes, each 

133 containing a common reference sample, a control and two treated samples (one stearic acid and one 

134 fish oil). In order to remove all the particulate matter that can interfere with later HPLC separation, 

135 all samples were passed through a 0.2 µm centrifuge filter (National Scientific Company) for 10 min 

136 at 10000 x g, vacuum-dried and eventually stored at -80°C until further analysis.
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137

138 2.4 2D-LC-MS/MS analysis

139 2.4.1 Strong Cation Exchange (SCX) liquid chromatography

140 The peptides were re-dissolved in 0.03% formic acid and 5% acetonitrile in water. Peptides 

141 mixture generated from the digestion of 50 μg of protein were injected into an Agilent 1100 Series 

142 capillary HPLC equipped with a Zorbax Bio-SCX Series II, 0.8×50 mm column (Agilent 

143 Technologies) that provides peptide separation by strong cation exchange liquid chromatography.

144 Peptides were eluted with a gradient of increasing NaCl (0 min 0% B; 5 min 0% B; 10 min 

145 1.5% B; 11 min 4% B; 25.5 min 15% B; 35.5 min 50% B; 45 min 100% B; 55 min 100% B). Buffer 

146 A contained 0.03% formic acid and 5% acetonitrile in water, buffer B contained 0.03% formic acid, 

147 5% acetonitrile and 1 M NaCl in water. The flow rate was 15 μl/min and fractions were collected 

148 every minute for 65 minutes and then combined according to their peptide loads into 10 pooled 

149 samples to achieve approximately equal peptide loads for further LC-MS/MS analyses. 

150

151 2.4.2 LC-MS/MS

152 The pooled samples were de-salted and concentrated prior to be further separated by reverse 

153 phase liquid chromatography on Agilent 1100 Series nano-flow HPLC system (Agilent 

154 Technologies). De-salting and concentration of the samples were carried out on an enrichment 

155 column (EASY Column, 2cm, ID 100µm, 5µm, C18 -Thermo Scientific) using an isocratic pump 

156 working at 20 μl/min (0.1% formic acid and 3% acetonitrile in water). Peptides were then eluted and 

157 further separated on an analytical column (EASY Column, 10cm, ID 75µm, 3µm, C18 -Thermo 

158 Scientific) with a nanoflow of 300 nl/min, using a gradient of increased organic solvent (0 min 5% 

159 B; 7 min 5% B; 70 min 40% B; 73 min 95% B; 78 min 95% B; 83 min 5% B; 100 min 5% B). Buffer 

160 A containing 0.1% formic acid in water and buffer B containing 5% water and 0.1% FA in 

161 acetonitrile. The eluted peptides were sprayed through nanospray needle (PicoTip®, silica, no coating, 
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162 OD 360μm, ID 20μm - New Objective) directly into the Q-star Elite mass spectrometer (Applied 

163 Biosystems).

164

165 2.5 Database searches and statistical analysis

166 The raw spectrum files from 16 individual shotgun LC-MS/MS runs  were searched separately 

167 with Protein Pilot 1.0 software (Ab Sciex) using the ProGroup and Paragon algorithms for protein 

168 grouping and confidence scoring. The target database used for searching was constructed as a non-

169 redundant union of UniProtKB Bovidae sequences 

170 (www.uniprot.org/uniprot/?query=taxonomy:9895) and NCBI Capridae sequences 

171 (www.ncbi.nlm.nih.gov/taxonomy/?term=9963). The False Discovery Rate (FDR) was estimated as 

172 the ratio of (2 x reversed sequence)/(reversed + forward sequence) in percentage (Elias and Gygi, 

173 2007). Search parameters were set with an MS tolerance of 0.15 Da and a MS/MS tolerance of 0.1 

174 Da, and using generic modifications including deamidation of glutamine and asparagines side chains, 

175 methionine oxidation as well as methyl methanethiosulfonate modification of cysteines. Samples 

176 were SCX fractionated and analyzed twice (technical replication) in order to gain higher 

177 reproducibility and proteome coverage as suggested by Chong and coworkers (Chong et al., 2006). 

178 The two data sets from each sample were searched together in ProteinPilot (Applied Biosystems). 

179 The confidence for protein identification was selected in Protein Pilot to a protein score of 1.3, 

180 equivalent to 95% confidence and a minimum of two peptides matching with MS/MS spectra per 

181 protein.

182 Data handling and analysis was performed using the statistical software package R (R 

183 Development Core Team). All data are presented as mean values and were analyzed by one-way 

184 ANOVA (Tukey's method; MATLAB R2016a (Mathworks, USA)). P values <0.05 were considered 

185 as significant. 
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187 2.5.1 Functional annotation and grouping

188 The open source online tool Blast2GO (http://www.blast2go.com) was used for the functional 

189 annotation of the identified proteins (Conesa et al., 2005). The default parameters were used and for 

190 the basic local alignment search tool (BLAST) protein sequences were mapped against the 

191 NCBI's non-redundant (nr) protein database (http://www.ncbi.nlm.nih.gov). We further narrowed the 

192 functional analysis by PANTHER classification into protein families and functional pathways in 

193 order to increase the confidence (Protein Analysis Through Evolutionary Relationship) system 

194 available at http://www.pantherdb.org (Thomas et al., 2003).

195

196 2.6 Qualitative and quantitative gene expression analysis.

197 Total RNA was extracted from the same omental adipose tissues used for the proteomic 

198 analysis from all the animals included in this study, stored at -80°C, by means of a commercial kit 

199 specific for all kind of tissues (RNeasy Plus Universal Mini Kit - Qiagen). A DNAse treatment was 

200 also carried out (RNase-Free DNase Set - Qiagen). The RNA concentration in each sample was 

201 quantified by NanoDrop ND-1000 UV-spectrophotometer. 1 µg RNA was retrotranscribed using the 

202 iScript cDNA Synthesis kit (Biorad). The resulting cDNA was used as template for qualitative and 

203 quantitative PCR reactions. In case of absence of goat sequences primers were designed on bovine 

204 sequences. The same primers were used in qualitative and quantitative PCR (primers sequences, 

205 accession numbers and length of the amplified fragments are listed in Table 3. A pool of cDNA from 

206 liver of all the 12 animals was created in order to use it as positive control in the qualitative PCRs 

207 and a pool of cDNA from AT of 4 CTRL animals was used as reference sample for the Real Time 

208 PCRs. Qualitative PCRs were performed in 10 µl final volume, containing 1 µl buffer (Vivantis), 1.5 

209 mM MgCl2, 0.2 mM each deoxynucleotide triphosphate (dNTP), 1 µM each primer and 0.025 U Taq 

210 polymerase (Vivantis). No-template reactions were performed as negative control for each target. 
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211 PCRs were carried out on all the samples at the same conditions: 34 cycles at 96°C for 30s, 60°C for 

212 30s, 72°C for 45s. Results were visualized on 1.6% agarose gel stained with ethidium bromide.

213 Real Time PCRs were performed in 12 µl Eva Green mixand primers’ concentration as 

214 follows: 400 nM for GAPDH, 450 nM for LRP10, 250 nM for DLST, 200 nM for OGDH and RALA, 

215 and 300 nM for all the other targets, using the ECOTM Real Time PCR system (Illumina). Samples 

216 were tested in duplicate and no-template reactions were performed as negative control for each target. 

217 The PCR efficiency was evaluated by creating a standard curve with 1:3 serial dilutions of the liver 

218 pool. The thermal profile for each gene was 50°C for 2 min, 95°C for 10 min, 40 cycles at 95°C for 

219 10 s and 60°C for 30 s; the melting curve was created running the samples at 55°C for 5 s and 80 

220 cycles starting at 55°C up to 95°C, increasing 0.5°C each 5 s. Relative quantification was calculated 

221 using the comparative delta-delta-Ct method (Giulietti et al., 2001) and GAPDH, HPCAL1 and 

222 LRP10 as the most stable reference genes (Hosseini et al., 2010).

223 All data from the quantitative PCR evaluation were elaborated with an analysis of variance 

224 using the statistical software SAS (SAS Inst. Inc., Cary, NC). All data were evaluated for normal 

225 distribution using the Kolmogorov–Smirnov test. Post-hoc tests were carried out on parametric data 

226 using the Tukey-Kramer method.

227

228 Results and Discussion

229 In this study we presented for the first time the effects of FA introduced in the mother’s diet 

230 on visceral adipose tissues of one month suckling kids and demonstrated how these effects can impact 

231 proteome AT via milk. 

232 We used a quantitative iTRAQ 2-D LC-MS/MS based approach to compare omental adipose 

233 tissue’s proteomes and identify differentially expressed proteins. Qualitative gene expression analysis 

234 confirmed that the differentially expressed proteins were effectively produced by AT. 
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236 3.1 Protein identification and abundance differential quantification by iTRAQ analysis

237 Four iTRAQ runs were performed, in which the identified proteins were 837, 749, 724, 802, 

238 respectively, with high confidence and coverage despite the high amount of lipids in the samples that 

239 can interfere with LC-MS/MS analysis. Indeed, in all experiments, the average unused ProtScore was 

240 8.41 and the average protein sequence coverage was 32.8%. Three proteins were matched to decoy 

241 (reversed) protein sequences, which gives a fraction of incorrect assignments of (2 x reversed 

242 sequence)/(reversed + forward sequence)=3/635=0.0047%. In total, 635 unique proteins with at least 

243 two unique peptides matching with MS/MS spectra were identified and quantified. 

244 In order to identify the differentially expressed proteins in animals whose mothers were fed 

245 with different fat-enriched diets, the proteomes of control animals (CTRL-Kid) was compared to that 

246 of animals whose mothers were fed with diets enriched with stearic acid (ST-Kid) or fish oil (FO-

247 Kid). A protein was considered differentially expressed when the p-value was below 0.05. In total, 

248 20 proteins were found differentially expressed in a statistically significant way. Results are presented 

249 in Fig. 1 and Table 4. 

250 Quantitative proteomics results indicated that out of 20 proteins found to be differentially 

251 abundant, 19 were decreased after supplementation of diet with different fatty acids, and only one 

252 was found to be increased. Of them, 11 proteins were differentially expressed in ST-Kid samples 

253 compared to CTRL-Kid samples (ST vs CTRL), while 5 proteins were differentially expressed in FO-

254 Kid samples compared to CTRL-Kid samples (FO vs CTRL). Four proteins were differentially 

255 expressed in both ST and FO samples (Fig. 2a). The functional grouping of the differentially 

256 expressed proteins, according to Biological Process and Molecular Function, was performed using 

257 Blast2GO. The generic Blast2GO annotation was subsequently reduced to PANTHER functional 

258 terms for a segregation of the proteins in four major categories, three of which were related to 

259 metabolism or catabolism, namely proteins involved in protein, carbohydrate and lipid, nucleic acid 

260 metabolic/catabolic processes and a fourth one containing proteins which were not found to be 
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261 involved in metabolic processes (Fig. 2b). Most of the proteins found during the present investigation 

262 in omental adipose tissue were also found in previous studies on the proteome of omental adipose 

263 tissues in goats (Restelli et al., 2014). Out of the twenty proteins found to be differentially expressed, 

264 fibrinogen alpha chain (FGA), tubulin beta-5 chain-like transcript variant X2, Peptidyl-prolyl 

265 isomerase B, Enoyl-CoA delta isomerase 1 (ECl1), Nuclear casein kinase and cyclin-dependent 

266 kinase substrate 1 (NUCKS1) and V-ral simian leukemia viral oncogene homolog A (ras related) 

267 (RALA) were not found in the previous study, and are now reported for the first time in goat AT. 

268

269 3.2 Proteins found to be differentially abundant in ST-kids

270 The abundance of 11 proteins, namely ceruloplasmin (CP), ECl1, Glycerol-3-phosphate 

271 dehydrogenase 1 (GPD1), alanine--tRNA ligase regulatory subunit 7 (AARS), Proteasome 26S 

272 subunit ATPase 2 (PMSC2), heat shock cognate 71 kDa protein (HSPA8), 60S ribosomal protein L5 

273 (RPL5), 60S ribosomal protein L7 (RPL7), 60S ribosomal protein L24 (RPL24), oxoglutarate 

274 dehydrogenase (OGDH) and FGA, was found to be decreased in AT of  ST-kids only. 

275 Ceruloplasmin is a minor acute phase protein in wildlife ruminants and humans (Ceciliani et 

276 al., 2012; Rahman et al., 2010). Little information about its involvement in inflammatory reaction is 

277 available in goats. The presence of ceruloplasmin in several adipose tissue depots, including base tail, 

278 sternal, perirenal and omental, was recently demonstrated, presenting the evidence that ceruloplasmin 

279 is an adipokines, at least in human species, where it was found to be overexpressed in obese adipose 

280 tissue (Arner et al., 2014). The expression of ceruloplasmin by adipose tissue was also confirmed in 

281 goats (Restelli et al., 2014). Ceruloplasmin is the principal copper carrier and in as such is involved 

282 in its distribution, storage and reduction of potential toxicity. Ceruloplasmin is also involved in 

283 angiogenesis (Linder, 2016). 

284 Of the proteins found to be decreased, ECl1, GPD1 and ODGH are involved in carbohydrate 

285 and lipid metabolism. A decrease in enzymatic activity of ECl1 in the livers of rats fed with saturated 
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286 fatty acids (palm oil) versus livers of rats fed with PUFA has been demonstrated (Kabir and Ide, 

287 1996). Previous findings reported that specific fatty acids may influence ECl1 activity: for example, 

288 FO increases ECl1 activity in rat heart, thus stimulating beta oxidation (Kvannes et al., 1995). 

289 Moreover, it is known that diets enriched with specific fatty acids, such as EPA and DHA, may have 

290 different impact on different adipose tissues (Todorčević and Hodson, 2015), but no reports have 

291 been provided so far about the relationship between dietary specific fatty acids and the down-

292 regulation of specific proteins in AT. On the background that ECl1 is directly involved in fatty acid 

293 beta oxidation, the present findings therefore support the hypothesis that saturated FA, such as stearic 

294 acid, introduced in the diet may increase the lipid biosynthesis.

295 GPD1 catalyses the reversible conversion of dihydroxyacetone phosphate (DHAP) and 

296 reduced nicotine adenine dinucleotide (NADH) to glycerol-3-phosphate (G3P) and NAD+. Being 

297 involve din lipid biosynthesis, GPD1 activity was found to be related to obesity in humans 

298 ((Swierczynski et al., 2003). In goats, the effects of integrating diets with sunflower-seed and linseed 

299 oils on GPD1 expression in visceral AT (perirenal), among other tissues, was also investigated (L 

300 Bernard et al., 2009; Laurence Bernard et al., 2009), and no effects were found on GPD1 mRNA gene 

301 expression. In the present study GPD1 was reported to be less abundant as compared to controls at 

302 quantitative proteomic level in ST-kids. This results is apparently contradictory to the lipogenesis-

303 enhancing effect of ECl1 decrease.

304 A modification of pathways related to protein metabolism and catabolism is suggested by a 

305 decrease in the abundance of ribosomal proteins, such as RPL5, RPL7 and RPL24 proteins, and of 

306 proteins involved in protein biosynthesis, such as AARS, which catalyzes the attachment of alanine 

307 to tRNA(Ala). The abundance of proteins involved as chaperons in protein biosynthesis, such as 

308 PMSC2 and HSPA8, was also decreased in ST-kids. The finding that the abundance of HSPA8 is 

309 modulated by different diets is interesting, and corresponds to what had been previously reported in 

310 liver of rats fed with a short-term high-fat sucrose diet (Bondia-Pons et al., 2011). Consistently with 
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311 the present findings, the authors found that feeding rats with fat enriched diets induce a decrease in 

312 the abundance of liver HSPA8, indirectly linking this effect to the initiation of hepatic steatosis.

313

314 3.3 Proteins found to be differentially abundant in AT from FO-kids. 

315 A total of 5 proteins were found to be differentially expressed in FO-kids as compared with 

316 controls, of which one of them (NUCKS1) was increased, and the others (dihydrolipoyllysine-residue 

317 succinyltransferase component of 2-oxoglutarate dehydrogenase complex (DLST), eukaryotic 

318 translation and initiation factors (EEF1G), B-cell receptor-associated protein 31 isoform X1 

319 (BCAP31) and ras-related protein Ral-A (RALA) were decreased.

320 NUCKS1 is the only protein that was found to be overexpressed in FO-kids as compared to CTRL-

321 kids. NUCKS1 is a transcriptional regulator of insulin signalling (Qiu et al., 2014) as well as a 

322 physiological regulator of energy and glucose homeostasis. The present findings confirm what has 

323 been previously reported in goats, e.g. that NUCKS1 is overexpressed during a physiological phase 

324 where adipose tissue mass is growing (Liméa et al., 2009), but are somehow contradictory with 

325 reports in other species. In mice for example,  whole body depletion of NUCKS1 leads to body fat 

326 accumulation (Qiu et al., 2014). It cannot be ruled out that an overexpression of NUCKS1 may also 

327 be related to the regulation of a possible excessive growth of adipose tissue (Qiu et al., 2015).

328 Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase 

329 complex (DLST) abundance is decreased in AT from FO kids. DLST is one of the catalytic unit of 2-

330 oxoglutarate dehydrogenase and is involved in carbohydrate and lipid metabolism. The complex 

331 catalizes the conversion of 2-oxolutarate to succinyl CoA and CO2, and contains multiple copies of 

332 three enzymatic components, namely 2-oxolutarate dehydrogenase (OGDH), DLST and lipoamide 

333 dehydrogenase. DLST has been shown to be induced during the differentiation of 3T3-L1 adipocytes 

334 (Carothers et al., 1988). DLST was also shown to be downregulated in human adipose tissue of high 

335 insulin resistance g index (HOMA-IR) group. The other two proteins whose abundance was reduced 
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336 in ST-kids are B-cell receptor-associated protein 31 isoform X1 (BCAP31) and ras-related protein 

337 Ral-A (RALA). Both BCAP31 and RALA are involved in proliferation and apoptosis (Ruchusatsawat 

338 et al., 2017) and control of cell cycle progression and survival (O Santos et al., 2016), thus suggesting 

339 the hypothesis that FO may interact with adipose tissue re-organisation. To the best of the knowledge 

340 of the authors, their presence in AT has not been reported so far.

341

342 3.4 Proteins found to be decreased in both ST- and FO-kids

343 A total of 4 proteins, namely 26S protease regulatory subunit 7 (PSMC1), peptidyl-prolyl cis-

344 trans isomerase B (PPIB), eukaryotic translation initiation factor 5A-1 (EIF5A), tubulin beta-5 chain-

345 like transcript variant X2 (TUB5X2)  were downregulated in both ST- and FO-kids.  The PMSC1, 

346 PPIB and EF5A are all involved in protein metabolism and catabolism, whereas TUB5X2 belongs to 

347 the cytoskeleton. The finding that TUB5X2 abundance is decrease after diet integration with ST and 

348 FO in adipose tissue is interesting. The exact function of the beta-5 isoform of tubulin is mostly 

349 unknown. Beta-tubulin dimerises with alpha-tubulin that has been suggested to take part, together 

350 with other proteins, to the intracellular scaffolding of the Glucose receptor GLUT4 (Bouwman et al., 

351 2009). We might therefore speculate that a decrease of TUB5X2 may interact with insulin signalling 

352 of adipocytes.

353

354 3.4 Qualitative and quantitative mRNA expression 

355 The intact adipose tissue is crossed by a wide capillary network. The finding of a protein by 

356 proteomic techniques does not confirm per se its expression by adipose tissue, given the 

357 background that several proteins can be expressed by liver or by other tissues and then delivered to 

358 AT through blood. Therefore, in order to assess that the proteins found by proteomic were 

359 effectively produced by adipose tissue, a qualitative PCR analysis was carried out to investigate the 

360 mRNA expression of the 20 proteins found to be differentially expressed due to different maternal 
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361 diets. The effective presence of all their respective mRNA coding genes in omental kid adipose 

362 tissue was demonstrated for all of them (Fig. 1 supplemental), with the exception of fibrinogen 

363 alpha chain, which was undetectable, suggesting that this protein is delivered to adipose tissues via 

364 blood capillaries, and confirming that the other proteins found were effectively expressed within 

365 omental adipose tissue depots. In a following step, the effects of different mother’ diet on gene 

366 expression of kids’ omental AT were studied by means of quantitative (Real Time) PCR, aiming to 

367 explore the quantitative correspondence between gene and protein expression. The mRNA 

368 quantitative gene expression analysis results are presented in Fig. 3. Most of the mRNA were found 

369 to be apparently downregulated, albeit not in a statistically significant way. Only ECl1 gene 

370 expression was downregulated in ST-kids AT as compared to CTRL-kids and CP was 

371 downregulated in both ST- and FO-kids as compared to CTRL-kids, in a statistically significant 

372 way (p < 0.05). The downregulation of ECl1 and CP in ST-kids also at mRNA expression level, are 

373 consistent with quantitative proteomics results.

374 Conclusions

375 In the present study we report the first proteomic analysis of goat visceral adipose tissue after maternal 

376 diet enrichment with different fatty acids. The analysis was carried out by 2D-LC-MS/MS and iTRAQ 

377 labelling on omental samples of goat kids. We demonstrated that kids’ omental proteome can be 

378 modified by maternal diet enrichments with either saturated or unsaturated fatty acids. Stearic acid 

379 induces changes in a higher number of proteins when compared to fish oil. Although there was a 

380 general corresponding between a trend in downregulation of gene expression and protein under-

381 expression, only two proteins were found to be downregulated at mRNA in a statistically significant 

382 way. The influence of maternal diet on kids’ proteome, even if not confirmed by statistically 

383 significant gene expression changes, is noteworthy and suggests that further insights are worth 

384 exploring.
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535 Fig.1. The influence of maternal diets in suckling kids’ omental adipose tissue proteome.

536 The figure presents the different abundance of proteins extracted from omental lipid depot from 

537 suckling kids whose mother were fed with stearic acid (ST-kids – black) and fish oils (FO-kids – 

538 grey). Values are expressed as fold changes between ST-kids or FO-kids as compared to controls.

539

540 Fig. 2. The influence of maternal diets in suckling kids’ omental adipose tissue proteome: functional 

541 analysis.

542 Proteins were sorted four groups, namely those involved in nucleic acid metabolism, protein 

543 metabolism, carbohydrate and lipid metabolism and others, following PANTHER classification (Fig. 

544 1a). Fig 1b presents the Venn diagram, with the distribution and overlap of proteins differentially 

545 expressed in suckling kids from mothers whose diets was integrated with Stearic Acid (ST-kids) or 

546 Fish Oil (FO-kids). 

547

548 Fig.3. Real Time PCR analysis results. Graphs show the expression profiles of seven selected genes 

549 in omental adipose tissue as compared to liver samples (=1) in CTRL-Kid, ST-Kid and FO-Kid. 

550 Comparison of the mRNA expression profiles of the three experimental groups show no statistically 

551 significant differences. Statistical significance was accepted at p< 0.05 (*).

552

553 Table 1. Ingredients and chemical compositions of the experimental diets of the dairy goats fed either 

554 a basal diet (C) or a diet complemented with fish oil (FO) and stearate (ST).

555

556 Table 2. iTRAQ labelling scheme

557

558 Table 3. Selected primers for mRNA expression analysis and reference genes.

559
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560 Table 4. List of proteins differentially expressed in omental AT of CTRL-kids, FO-kids and ST-kids.

561 Values are expressed as fold change between adipose tissue from kids whose mothers were fed with 

562 Fish Oil (FO vs CTRL) or Stearic Acid (ST vs CTRL) as compared to control. Functional classes are 

563 as follows: A: proteins involved in protein metabolism and catabolism pathways; B: proteins involved 

564 in lipid metabolism pathways; C: proteins involved in nucleic acid metabolism pathways; D: others.

565

566 Fig. 1 Supplemental: Qualitative PCR analysis of genes coding for proteins found as differentially 

567 expressed according to different maternal diets. Lane 1: CTRL-kids. Lane 2: FO-kids. Lane 3: St-

568 kids. Lane 4: Positive control (Liver). Lane 5: negative control .
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Table 1 

Ingredients and chemical composition of the experimental diets of the dairy goats fed either a basal 
diet (CTRL) or a diet supplemented with fish oil (FO) or stearic acid (ST).

Experimental diets

Pre-kidding Post-kidding

CTRL FO ST CTRL FO ST

Ingredient (%)
Alfalfa hay 0.0 0.0 0.0 31.2 29.8 30.7
Mixture hay2 62.3 59.6 61.4 15.3 14.6 15.1
Concentrate mixture1 31.9 30.5 31.4 46.8 44.8 46.2
Corn meal 5.3 5.0 5.2 6.2 5.9 6.2
Fish oil 0.0 4.4 0.0 0.0 4.3 0.0
Calcium Stearate 0.0 0.0 2.0 0.0 0.0 1.9
CaCO3 0.5 0.5 0.0 0.5 0.5 0.0

Chemical Composition (% of dry matter)
Dry Matter (%) 88.4 88.7 88.6 89.3 89.5 89.4
Crude Protein 12.3 11.9 12.2 17.8 17.2 17.5
Ether Extract 2.9 4.9 4.5 3.2 5.2 4.8
NDF 43.9 43.8 43.3 33.7 34.0 33.2
Ashes 6.3 6.5 6.0 7.2 7.3 6.8
Ca 0.8 0.8 0.9 1.1 1.1 1.2
P 0.4 0.4 0.4 0.8 0.8 0.8
NEL (Mcal/kg DM)3 1.61 1.66 1.67 1.67 1.72 1.72

1 The concentrate mixture was a commercial dairy goat mixed feed, chemical composition: 22.25% 
crude protein, 5.00% ether extract, 22.98% neutral detergent fiber, 6.51% ashes, 1.28% Ca and 
0.76% P (on dry matter basis).
2The mixture hay was a grass hay, chemical composition: 7.6% crude protein, 1.8% ether extract, 
57.5% neutral detergent fiber, 5.9% ashes, 0.6% Ca and 0.2% P (on dry matter basis).
3Net energy of lactation concentration of the diets were determined using the Small Ruminant 
Nutrition System (SRNS) software (Tedeschi et al., 2010)



Table 2.  

iTRAQ labelling scheme

 iTRAQ labelling and reporter ions

iTRAQ runs 114 115 116 117

1 Ref1 C1 FO1 ST1

2 Ref1 C2 FO2 ST2

3 Ref1 C3 FO3 ST3

4 Ref1 C4 FO4 ST4

1reference sample was created by pooling equal amounts of the four control 
samples



Table 3. Selected proteins for mRNA expression analysis and housekeeping genes, accession numbers, primers sequences 
and length of the amplified fragments. In the last column Real Time PCR efficiency and R2 are shown.

Sequence name Symbol Accession 
number Primer Forward (5’-3’) Primer Reverse (5’-3’) Lenght 

(bp) 

PCR 
efficiency 
and R2

Glyceraldehyde-3-
phosphate 
dehydrogenase

GAPDH NM_001034034 GGCGTGAACCACGAGAAGTATAA CCCTCCACGATGCCAAAGT 119 104.53
0.993

Hippocalcin-like 1 HPCAL1 Hosseini et al., 
2010

CCATCGACTTCAGGGAGTTC CGTCGAGGTCATACATGCTG 99 105.72
0.995

Low density 
lipoprotein 
receptor-related 
protein 10

LRP10 Hosseini et al., 
2010

CCAGAGGATGAGGACGATGT ATAGGGTTGCTGTCCCTGTG 139 93.22
0.990

Ceruloplasmin CP NM_001256556.1 GAGCATGAAGGGGCCATTTATC GCTGTCTTCCTCACCAGG 130 94.18
0.995

Fibrinogen Alpha 
chain

FGA NM_001033626.1 TGAGATCCTGAGGCGCAAAG TGTCCACCTCCAATCGTTTCAT 104 -
-

Ribosomal protein 
L5

RPL5 XM_005678097.1 AGACGAGAGGGCAAAACTGA ACGGGCATAAGCAATCTGAC 138 104.68
0.995

Ribosomal protein 
L7

RPL7 XM_005689063.1 TGCATTGATTGCTCGATCTC TTCCACCTCGTGGAGAAGAC 143 101.32
0.995

Ribosomal protein 
L24

RPL24 XM_005674869.1 AAGAAAAGAACTCGCCGTGC TTCCTTGGCAGCCCTGATAG 138 105.16
0.997

Alanyl-tRNA 
synthetase

AARS XM_005691789.1 CTCCAGTGGGACCTACGTGT TTCACCAGGTACCCTTCGTC 174 102.64
0.995

Tubulin beta-5 
chain-like 
transcript variant 
X2

TUB5X2 XM_005696629.1 ACAATGAAGCCACAGGTGGC CATCCAGGACCGAGTCAACC 204
108.59
0.991

Dihydrolipoamide 
S-
succinyltransferase

DLST XM_005686086.1 CTTCAGCCTTTGCCTTGCAG TGGTTCGCTCAATATCGGCA 180 99.73
0.990

Glycerol-3-
phosphate 
dehydrogenase 1

GPD1 XM_005679977.1 GCCGACATCCTGATCTTTGT GCTCCCCAATCACTTCAGAG 160 91.94
0.990



Eukaryotic 
translation 
elongation factor 1 
gamma

EEF1G XM_005699776.1 CTGAGGAAGAATGCCTTTGC CGTAGTCCACCTGCCAATCT 130
108.83
0.994

Eukaryotic 
translation 
initiation factor 5A

EIF5A XM_005693488.1 ATCACTGCTCCAAGACAGCG CCGTGATCAGGATCTCTTCTCC 113 107.57
0.997

Oxoglutarate 
dehydrogenase

OGDH XM_005679326.1 TTCCATGTGAACTCGGATGA GCTTCTGTTTTCGGATCTGC 187 106.97
0.993

Heat shock 70kDa 
protein 8

HSPA8 XM_005689565.1 AACCAAGTCGCAATGAATCC AGCATCATTCACCACCATGA 126 102.12
0.992

Peptidyl-prolyl 
isomerase B 
(cyclophilin B)

PPIB XM_005685667.1 AGGGCATGGATGTAGTACGG GCTTCTCCACCTCGATCTTG 108 106.21
0.997

Enoyl-CoA delta 
isomerase 1

ECI1 XM_005697442.1 CTGGCTGACAACCCCAAGTA TGCCCAATGGTGTTCACGTA 101 109.55
0.991

Nuclear casein 
kinase and cyclin-
dependent kinase 
substrate 1

NUCKS1 XM_005690441.1 CACAGCTTCAAAGGCATCAA ACCCTTCATCCCCAGATTTC 125
104.52
0.991

Proteasome 
(prosome, 
macropain) 26S 
subunit ATPase 1

PSMC1 XM_005686218.1 CTCACACTCAGTGCCGGTTA AAGGCTTCATTTGCTCCTGA 102
109.44
0.996

Proteasome 
(prosome, 
macropain) 26S 
subunit ATPase 2

PSMC2 XM_005679109.1 CTGACTCAGAGGACCCGAAG TCTTAGGAGGCAATGGGATG 159
92.54
0.993

B-cell receptor-
associated protein 
31

BCAP31 XM_005700513.1 ACCTGCTCAAGAAGGAAGCTG CTTCAGGCTCCTGTTCTCTTCC 89 109.96
0.998

V-ral simian 
leukemia viral 
oncogene homolog 
A (ras related).

RALA XM_005679348.1 TGGGCAAGAAGACTACGCTG AAATCTGCTCCCTGAAGTCGG 125
108.64
0.992



* Values are expressed as fold change between adipose tissue from kids whose mothers were fed with Fish Oil (FO vs CTRL) or Stearic Acid (ST vs CTRL) as compared to 
control. Functional classes are as follows: A: proteins involved in protein metabolism and catabolism pathways; B: proteins involved in lipid metabolism pathways; C: 
proteins involved in nucleic acid metabolism pathways; D: others.

Table 4 – List of proteins differentially expressed in omental adipose tissue
Gene name Protein name NCBI accession 

code
FO vs Ctrl* ST vs CTRL* Functional 

class
PSMC1   26S protease regulatory subunit 7 [Capra hircus] gi|548462854 -0,175584992 -0,166148404 A
AARS   alanine--tRNA ligase, cytoplasmic [Capra hircus] gi|548502423 -0,13519305 A
PPIB   peptidyl-prolyl cis-trans isomerase B [Capra hircus] gi|548482820 -0,183111474 -0,163187057 A
ECI1   enoyl-CoA delta isomerase 1, mitochondrial, partial [Capra hircus] gi|548519773 -0,233717779 B

NUCKS1   nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 [Capra 
hircus] gi|548497778 0,977696419 C

PSMC2   LOW QUALITY PROTEIN: 26S protease regulatory subunit 4 [Capra hircus] gi|548484734 -0,184552352 A
CP   ceruloplasmin-like [Capra hircus] gi|548451476 -0,146306574 A

HSPA8   heat shock cognate 71 kDa protein [Capra hircus] gi|548494982 -0,131878406 A
TUB5X2   tubulin beta-5 chain-like isoform X2 [Capra hircus] gi|548518047 -0,238568455 -0,247178301 D

EIF5A   eukaryotic translation initiation factor 5A-1 [Capra hircus] gi|548507861 -0,178151488 -0,190938696 A

DLST   dihydrolipoyllysine-residue succinyltransferase component of 2-
oxoglutarate dehydrogenase complex, mitochondrial, partial [Capra hircus] gi|548484104 -0,141939223 B

EEF1G   elongation factor 1-gamma [Capra hircus] gi|548527699 -0,228011027 A
GPD1   glycerol-3-phosphate dehydrogenase [NAD(+)], cytoplasmic [Capra hircus] gi|548465403 -0,152948648 B
RPL7   60S ribosomal protein L7 [Capra hircus] gi|548493434 -0,226428777 A

OGDH   2-oxoglutarate dehydrogenase, mitochondrial isoform X4 [Capra hircus] gi|548463635 -0,089515448 B
RPL24   60S ribosomal protein L24 [Capra hircus] gi|548449536 -0,188844249 A
FGA   fibrinogen alpha chain [Capra hircus] gi|548499843 -0,275586635 D
RPL5   60S ribosomal protein L5 [Capra hircus] gi|548459269 -0,185251758 A

BCAP31   B-cell receptor-associated protein 31 isoform X1 [Capra hircus] gi|548530270 -0,20763582 A
RALA   ras-related protein Ral-A [Capra hircus] gi|548463681 -0,342846255 D


