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Abstract

Colloidal fluids interacting via effective potentials which are attractive at short range

and repulsive at long range have long been raising considerable attention, because such

an instance provides a simple mechanism leading to pattern formation even for isotropic

interactions. If the competition between attraction and repulsion is strong enough, the

gas-liquid phase transition is suppressed, and replaced by the formation of mesophases,

i.e., inhomogeneous phases displaying periodic density modulations whose length, although

being larger than the particle size, cannot nevertheless be considered macroscopic. We

describe a fully numerical implementation of density-functional theory in three dimensions,

tailored to periodic phases. The results for the equilibrium phase diagram of the model are

compared with those already obtained in previous investigations for the present system as

well as for other systems which form mesophases. The phase diagram which we find shows

a strong similarity with that of block copolymer melts, in which self-assembly also results

from frustration of a macroscopic phase separation. As the inhomogeneous region is swept

by increasing the density from the low-density side, one encounters clusters, bars, lamellae,

inverted bars, and inverted clusters. Moreover, a bicontinuous gyroid phase consisting of

two intertwined percolating networks is predicted in a narrow domain between the bar and

lamellar phases.
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I. INTRODUCTION

Soft matter often displays remarkably complex phase behaviors stemming from

the competition between different strategies to minimize the free energy. The simul-

taneous presence of hydrofobic and hydrophilic interactions in amphiphilic molecules,

like surfactants, leads to micellization [1], while repulsion between unlike sequences

in block copolymers drives the formation of nanostructures [2]. Even the presence of

purely repulsive and isotropic interactions may lead to complex patterns: branched

molecules, like dendrimers, form cluster crystals [3, 4], while hard-core particles sur-

rounded by a soft corona, also known as “soft shoulder systems”, display a remark-

ably rich set of ordered phases [5]. Understanding the relation between effective

interactions among units (colloidal particles, globular polymers, branched molecules,

proteins, etc.) and the mesoscopic structures formed in solution is an important

and challenging problem of soft matter with foreseeable technological implications in

diverse fields, allowing for the design of specific porous materials on the nanoscale.

Charged colloidal particles are ubiquitous in soft matter physics. When electro-

static repulsion is combined to the short-range attraction which characterizes most

of the colloidal suspensions or protein solutions, it gives rise to a flexible mechanism

for designing complex structures from the nano to the micro scale. Competing inter-

actions, by inhibiting phase separation, make ample portions of phase space available

for different and more elaborate forms of self assembly. For this reason, in recent years

short-range attractive, long-range repulsive (SALR) systems have been the subject

of intense research starting from the seminal work by Sear et al. [6] where the spon-

taneous formation of two-dimensional spatially modulated phases of nanoparticles

deposited at the air-water interface was investigated both experimentally and theo-

retically. Numerical simulations on a simple two-dimensional model of SALR fluid

were performed [7], confirming the tendency to cluster formation in the homogeneous

phase and the presence of ordered phases displaying one- or two-dimensional modu-

lations in the particle density, giving rise to a characteristic stripe pattern in the first

case and a triangular cluster arrangement in the second.
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Density-functional theory (DFT), based on a simple mean-field approximation, al-

lowed to determine the phase diagram of this model, highlighting the presence of sev-

eral local minima in the free energy corresponding to structures characterized by the

presence of defects [8]. These findings suggest the possible occurrence of metastable

phases in the reported experiments, although a proper investigation of these non-

equilibrium long-lived states requires the use of alternative theoretical tools. Self-

assembly of SALR systems in three dimensions is a more challenging problem, both

on the theoretical and on the experimental side. Evidence of cluster formation has

been collected in colloid-polymer mixtures [9] but the formation of equilibrium peri-

odic structures is often inhibited by dynamical arrest. Accurate chemical stabilization

of the colloidal particles is required to perform controlled experiments. Numerical

simulations suffer from similar problems: metastability of cluster phases is a challenge

also at the numerical level and few numerical experiments have been performed to

date [10]. Only recently some evidence of periodic phases in three-dimensional SALR

fluids has been obtained by simulation [11].

A perturbative analysis of DFT for small deviations of the local density from

the homogeneous state has been carried out by several authors, following the analog

treatment for block copolymers [2]. In particular, Ciach and co-workers developed a

general formalism able to predict the sequence of ordered phases expected in systems

characterized by competing interactions [12], while the occurrence of correlated clus-

ters in the fluid phase has been recently investigated by numerical simulations and

thermodynamic models [13]. Density-functional theory (DFT) [14] can be directly

applied to microscopic models of fluids leading to a quantitative prediction of the

phase diagram and the stable equilibrium structures. However, the numerical mini-

mization of the density functional is computationally demanding in three-dimensional

models, and the numerical algorithm is often trapped in local minima [15]. Such a

difficulty is probably related to the lack of commensurability between the (unknown)

equilibrium structure and the finite volume where the fluid is confined.

We recently tackled this problem by developing an adaptive algorithm, where

periodic conditions are imposed at the boundary of the confining volume, whose shape
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and size are self-consistently determined by the algorithm itself extending the basic

idea put forward by Parrinello and Rahman in molecular dynamics [16]. Our method

was first applied [17] to a system of particles interacting via a soft-core, repulsive

potential introduced in Ref. [4] as a model of amphiphilic dendrimers in solution and

subsequently [18] to a binary fluid of particles with repulsive Gaussian potentials,

which can be viewed as a modellization of a mixture of globular polymers and had

been proved to be capable of forming cluster phases for suitably chosen interaction

parameters [19]. While in the former case the resulting picture was basically the

same as that obtained in previous investigations of similar systems leading to cluster

crystals [3], the study of the Gaussian mixture brought forth an unexpectedly rich

phase diagram featuring bicontinuous phases and other exotic structures, which would

have been quite difficult to recover, had the density profile been chosen a priori within

a given pool of candidates.

In this paper, we have employed the same DFT algorithm to study a SALR model

fluid in three dimensions. A DFT investigation of this system based on an algorithm

similar to that used here has recently been performed [20]. The results so far available

show the same sequence of phases predicted by the perturbative analysis carried out

by Ciach et al. [12], which in turn is the same as that previously obtained in block

copolymers [2]. Indeed, it has been pointed out that such a sequence is to be expected

in a wide class of mesophase-forming fluids [21] and, not surprisingly, we obtain it

here as well. Accordingly, while the description of the phase diagram is part of the

present study, we tried not to place its main emphasis on this topic, as it would not

convey much new information with respect to what already brought forth in former

investigations. Instead, we addressed also a number of questions which have been

given less attention, such as: how do the density profiles compare with those obtained

by the perturbative approach? For a given phase, how do the mutual distance between

the aggregates, their size, and the particle density inside each aggregate change as

the temperature and average density are varied? How are these features affected

by moving from a phase to another? Answering these questions can help to get a

more complete picture of mesophase formation in SALR fluids, and to understand

4



the mechanism which causes the sequence of mesophases commonly observed in these

as well as other systems.

It is worthwile mentioning that an analytical study of the DFT mean-field equa-

tions allows to draw a general picture of mesophase formation in a wide class of one

component fluids: starting from a limited number of simplifying assumptions, the

correct sequence of ordered phases is recovered both for hard-core and soft-core sys-

tems and some universal feature of the resulting density modulations are obtained

[22].

The paper is organized as follows: in Sec. II we introduce the model potential and

briefly describe the density functional and the minimization algorithm which we have

adpoted. Our results for the phase diagram, the density profiles, and the influence of

the thermodynamic state on phase morphology are presented in Sec. III. Finally, in

Sec. IV we summarize the main points of this study and draw our conclusions.

II. THEORY

We consider a fluid of particles interacting via a two-body, spherically symmetric

potential u(r) which consists of a hard core followed by a short-range attractive and

longer-ranged repulsive tail w(r). This SALR tail has been modeled as the sum of

two Yukawa functions with opposite signs. We have then

u(r) =


∞ r < σ
σ

r

[
−εe−z1(r/σ−1) + Ae−z2(r/σ−1)

]
r ≥ σ ,

(1)

where σ is the hard-core diameter, ε is the attraction strength, A is the repulsion

strength, and z1, z2 are the inverse-range parameters of the attraction and repulsion

respectively. From now on, lengths will be measured in units of σ, energies in units

of ε, and the reduced quantities thus obtained will be denoted by an asterisk.

In order to describe a SALR interaction, one must obviously have A > 0, z1 > z2.

Here we have set z1 = 1, z2 = 0.5. As for A, we have followed Ref. [7] by choosing
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A in such a way that the integrated intensity of the SALR tail vanishes. In doing

so, we have adopted the standard prescription of fixing the tail inside the hard-core

region at its minimum −ε + A. We then obtain A∗ = 7/19 ' 0.368. This value of

A corresponds to a vanishing liquid-vapor critical temperature according to the van

der Waals approximation, to which the mean-field functional used here reduces in

the homogeneous case. Hence, we are safely in the regime in which the liquid-vapor

transition is preempted by the competition between attraction and repulsion. We

remark that in the present study, the interaction profile has been kept fixed, and

its strength has been changed by varying the temperature T . This is different from

the procedure followed in other studies of SALR interactions [10, 23, 24], in which ε

was changed, whereas A and T were kept fixed. In the latter case, as the attraction

increases, we expect that the liquid-vapor transition will eventually take over.

A plot of u(r) has been displayed in Fig. 1. Clearly, for the present choice of

parameters the repulsive hump is very low, to the point that it is barely visible

on the scale of the figure. However, the effect of competition becomes evident by

turning to Fourier space. As shown in the inset, the Fourier transform of the off-core

part of the potential w̃(k) has its absolute minimum at a non vanishing wave vector

k∗0 ' 0.655, hence favoring spontaneous density modulations. In the homogeneous

phase, this feature is signaled by the occurrence of a peak at k ' k0 in the structure

factor S(k) due to the tendency of particles to aggregate into equilibrium clusters

with an average inter-cluster distance d ∼ 2π/k. As the temperature is lowered,

the homogeneous phase eventually becomes unstable, and the system forms regular

structures whose periodicity is again of the order of d, typically much larger than the

particle size σ.

The present investigation concerns the study of these inhomogeneous phases by

DFT. At a given temperature T , chemical potential µ, and volume V , the density

profile is obtained by minimizing the grand potential functional Ω[ρ(r)], whose value

then yields the grand potential −PV , where P is the pressure. Henceforth, the

density profile will be denoted by ρ(r), while ρ with no point-dependence indicated

will refer to the average density ρ ≡
∫
d3rρ(r)/V . Here we have adopted a simple
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FIG. 1: SALR potential u(r) of Eq. (1) for the interaction parameters specified in the

text. The inset displays the Fourier transform of the SALR tail w̃(k), showing its absolute

minimum at k 6= 0. All quantities are in reduced units.

functional, in which the contributions to the grand potential due to the hard-sphere

interaction and the SALR tail w(r) are treated respectively in the local-density and

mean-field approximations, and Ω[ρ(r)] is given by

Ω =
∫
d3r {fHS[ρ(r)]− µ ρ(r)} +

1

2

∫
d3r
∫
d3r′ρ(r)ρ(r′)w(r− r′) , (2)

where fHS is the Helmholtz free energy per unit volume of the hard-sphere fluid.

The latter has been described by the standard Carnahan-Starling expression [14]

throughout this study.

The above functional is the straightforward generalization to an inhomogeneous

fluid of the van der Waals approximation for Ω, which as pointed out above is recov-

ered in the homogeneous case ρ(r)≡ ρ. Functional (2) has already been employed

to study mesophase formation in two-dimensional SALR fluids [8]. An application

to the three-dimensional case was also considered [24] which, however, was limited

to lamellar phases where ρ(r) varies along a single direction. As discussed there, for
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mesophases such that the characteristic length of the density modulations is much

larger than σ, the local-density approximation (LDA) for the hard-sphere free-energy

functional is expected to be sufficiently accurate. A better description of the hard-

sphere term would instead be necessary in order to describe the structure inside the

mesoscopic aggregates, where particles are expected to form packed arrangements

resulting in short-length modulations of order ∼ σ, as well as the occurrence of a

crystal phase driven by excluded-volume effects, expected at high density. Such a

development was in fact considered in Ref. [20], where the contribution to the free

energy due to the SALR tail was taken into account by the same mean-field ex-

pression of Eq. (2), but the hard-sphere part was described by fundamental measure

theory (FMT) [25]. We also recall that a mean-field functional similar to Eq. (2)

has proved quite successful in the study of cluster crystals occurring in systems with

purely soft-core repulsive interactions [26, 27]. In that case, of course, fHS is replaced

by the Helmholtz free energy per unit volume of the ideal gas, for which the LDA is

exact.

For a homogeneous state, the stability condition with respect to a small pertur-

bation of the density δρ(r)

∫
d3r
∫
d3r′

δ2Ω

δρ(r)δρ(r′)

∣∣∣∣∣
ρ

δρ(r)δρ(r′) > 0 (3)

is equivalent to the requirement c̃(k) < 0 for every wave vector k, where c̃(k) is the

Fourier transform of the direct correlation function c(r) of the homogeneous fluid,

inclusive of the ideal-gas term. Functional differentiation of Eq. (2) gives

c̃(k) = − 1

ρχHS
red(ρ)

− w̃(k)

kBT
, (4)

where kB is the Boltzmann constant, and χHS
red is the reduced isothermal compressibil-

ity of the hard-sphere fluid. We remark that Eq. (4) can be considered as a rougher

version of the standard random-phase approximation (RPA) for c̃(k), such that the

dependence on k of the hard-sphere contribution c̃HS(k) is disregarded by setting it

identically to its value at k = 0. In order to recover the genuine RPA, a non-local

functional for the hard-sphere fluid such as the aforementioned FMT is necessary.

8



According to Eq. (4), at low temperature the condition c̃(k) < 0 is violated inside

a certain density interval. The boundary of the domain in the ρ–T plane where the

homogeneous phase becomes unstable is defined, for any fixed density, by the highest

temperature at which c̃(k) vanishes and is given by the curve

kBT

w0

= ρχHS
red(ρ) , (5)

where w0 ≡ |w̃(k0)| is the absolute value of the minimum of w̃(k). For the interaction

parameters specified above, one has w∗0 ' 9.108. Along this curve, often referred to

as the λ-line, the structure factor S(k)=−1/[ρc̃(k)] diverges at k0. The λ-line is then

akin to the spinodal curve of the liquid-vapor transition. In fact, within the present

approximation the two curves have the same expression, save for the fact that the

spinodal is obtained for k0 = 0, of course assuming that w̃(0) is strictly negative. For

the case in hand, the spinodal is absent since w̃(0) vanishes.

In order to obtain further insight in the phase diagram and the structure of the

inhomogeneous phases, it is necessary to turn to the minimization of functional (2).

Here we have assumed from the outset that the density profile ρ(r) is periodic, i.e.

ρ(r + ai) = ρ(r) , (6)

where ai, i = 1, 2, 3, are a set of vectors which define a Bravais lattice. Therefore,

ρ(r) can be expanded in a Fourier series:

ρ(r) =
1

v

∑
m

e−ikm·x ρ̂m , (7)

where v is the volume of the unit cell, km is a vector of the reciprocal lattice, and

m denotes a set of three integers mi, i = 1, 2, 3, mi = 0,±1,±2 . . .. The expansion

coefficients ρ̂m are given by:

ρ̂m =
∫
v
d3r eikm·rρ(r) . (8)

By use of Eqs. (6) and (7), functional (2) can be rewritten in the following form:

Ω

V
=

1

v

∫
v
d3r {fHS[ρ(r)]− µ ρ(r)}+

1

2v2
∑
m

|ρ̂m|2 w̃(km) . (9)
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We observe that, in both Eqs. (8) and (9), the integration in r is restricted to

the unit cell. Hence, we may set r = A · s, where A ≡ (a1, a2, a3) is the matrix

obtained by arranging the lattice vectors ai into columns, and s is a vector whose

components vary in the interval [−1/2, 1/2). By doing so, it is readily seen that

in Eq. (9) neither the hard-sphere term nor the Fourier components of the density

profile ρ̂m that appear in the excess term depend on the specific kind of lattice: that

is, these quantities are determined solely by the values ρ(s) ≡ ρ(A · s) assumed by

the density profile in the unit cell, irrespective of the cell geometry. The information

on the lattice enters in Eq. (9) only via the reciprocal lattice vectors km at which

w̃(k) is evaluated. This feature makes it easy to implement a numerical procedure,

in which the optimization of the grand potential functional (9) is performed with

respect to both ρ(s) and the cell geometry, i.e., the elements of A. In this study, we

have assumed that the vectors ai of the unit cell are mutually orthogonal, so that

A is diagonal with eigenvalues 2π/hi, and the reciprocal lattice vectors km have the

form km = (h1m1, h2m2, h3m3). This assumption simplifies the calculation, but it

could be released without introducing any conceptually new element.

To perform the minimization, one has to solve the Euler-Lagrange equations

δ(Ω/V )/δρ(r) = 0 as well as ∂(Ω/V )/∂hi = 0, where the functional derivative with

respect to ρ(r) and the partial derivative with respect to hi are given by:

δ

δρ(r)

(
Ω

V

)
=

1

v
{f ′HS[ρ(r)]− µ}+

1

v2
∑
m

e−ikm·rρ̂m w̃(km) , (10)

∂

∂hi

(
Ω

V

)
=

1

v2
∑
m

|ρ̂m|2
dw̃

d(k2)
(km)him

2
i , (11)

where f ′HS denotes the first derivative of fHS with respect to ρ.

In the numerical solution, Ω[ρ(r)] was first discretized by sampling ρ(r) on a finite

set of points ρn, so as the replace the functional derivatives with the partial derivatives

with respect to ρn. The minimization was then carried out by an iterative algorithm

based on the steepest descent. In the basic version of the steepest descent, ρn and

hi are updated recursively by moving “downhill” in the direction opposite to that of
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the gradient of the discretized functional ΩD:

ρk+1
n = ρkn − η

∂

∂ρn

(
ΩD

V

)∣∣∣∣
k
, (12)

hk+1
i = hki − θ

∂

∂hi

(
ΩD

V

)∣∣∣∣
k
, (13)

where k is the iteration index, and η, θ are the parameters which determine the size

of the downhill step. In order to increase its efficiency, the above algorithm was

improved by introducing preconditioning and conjugate gradients in Eq. (12), and

by determining the step-size parameters η, θ adaptively at each iteration. A detailed

description of these technical features has been given elsewhere [18].

The discretization of the density profile ρ(r) inside the unit cell was performed on

27 × 27 × 27 = 2 097 152 points. The cell in real space was initially chosen as a cube

with edge length 2π/hi = 20σ, and was then evolved according to Eq. (13). The trial

density profile ρtrial(r) used to start the minimization at a given thermodynamic state

was set either to a random noise superimposed to a uniform density, or to a sinusoidal

modulation, or to the equilibrium ρ(r) of a nearby state. In general, for a certain

chemical potential µ, different inhomogeneous structures were found, especially in

the neighborhood of the boundaries between different phases. The most stable phase

was identified as that giving the lowest value of Ω/V = −P at given µ, and phase

coexistence between two phases 1 and 2 was determined by the conditions µ1 = µ2,

P1 = P2 at given T .

III. RESULTS

A. The topology of the ordered phases

The phase diagram in the temperature-density plane obtained by implementing

the minimization algorithm described in Sec. II is shown in Fig. 2. As already found

in previous investigations of the SALR fluid in two [8] and three [12] dimensions, the

inhomogeneous region is larger than the domain of instability of the homogeneous
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FIG. 2: Phase diagram of the SALR HCTYF fluid with interaction parameters specified in

Sec. II in the temperature-density plane. Both quantities are in reduced units. The filled

circles represent the phase boundaries obtained by numerical minimization of functional (2).

The dashed lines are a guide for the eye. The grey shaded regions are coexistence domains.

The red solid line is the λ-line.

fluid bounded by the λ-line, and the two merge only at the top. All the bound-

aries between the phases displayed in the Figure correspond to first-order transitions,

except for that between the homogeneous fluid and the lamellar phase at the top

of the λ-line, for which the mean-field functional used here necessarily predicts a

second-order transition [2]. The coexistence regions between different phases have

been indicated in grey.

The sequence of phases agrees qualitatively with that formerly established by

effective free-energy functionals [12, 21, 28], numerical simulation [11], and numerical

DFT minimization along the same lines pursued here [20]. Figures 3–9 show the

sequence of phases along the isotherm T ∗ = 0.6. Each phase has been portrayed

inside a unit cell by displaying in yellow the isosurfaces at which ρ(r) attains some

constant value ρiso specified in the captions. The regions such that ρ(r) > ρiso have
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been represented by their intersections with the cell faces, with a color map ranging

from red (higher density) to green (lower density). The figures have been produced

by the VESTA software [29].

The central region of the phase diagram is inhabited by a lamellar phase whose

density profile varies only along a single direction, see Fig. 3. The rest of the phase

diagram displays a symmetry of sorts with respect to this domain. As one moves from

the homogeneous fluid at low density to the inhomogeneous fluid, one finds first a

triply-periodic cluster phase such as that of Fig. 4. At sufficiently high temperature,

the clusters are arranged into a bcc lattice, whereas as the temperature is lowered,

a hcp lattice is preferred. According to a rough estimate obtained by dividing the

number of particles in a unit cell by the number of peaks of the density profile,

each cluster typically contains several hundreds of particles. The cluster phase is

FIG. 3: A section of the density profile of the lamellar phase at T ∗ = 0.6, ρ∗ = 0.37,

ρ∗iso = 0.45.

mirrored by the inverted-cluster phase of Fig. 5 encountered when one enters the

inhomogeneous region from high density. In this phase clusters are replaced by holes

depleted of particles, which then accumulate in the space between the holes in a

“Swiss-cheese” arrangement. Like the clusters of the “direct” phase, holes too form

either a bcc or a hcp lattice at respectively high and low temperature.

As one moves from the cluster phase to higher density, the system experiences
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FIG. 4: A section of the density profile of the bcc cluster phase at T ∗ = 0.6, ρ∗ = 0.13,

ρ∗iso = 0.58.

FIG. 5: A section of the density profile of the bcc inverted-cluster phase at T ∗ = 0.6,

ρ∗ = 0.52, ρ∗iso = 0.58.

a transition to a doubly-periodic configuration such that the density profile has

cylindrical symmetry. Clusters are then replaced by cylindrical bars, which form

a two-dimensional equilateral triangular lattice as shown in Fig. 6. Conversely, the
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inverted-cluster phase is replaced at lower density by a triangular inverted-cylinder

phase with particle-depleted domains in the shape of cylindrical holes, and particles

percolating in the region between them, see Fig. 7.

FIG. 6: A section of the density profile of the triangular bar phase at T ∗ = 0.6, ρ∗ = 0.22,

ρ∗iso = 0.44.

FIG. 7: A section of the density profile of the triangular inverted-bar phase at T ∗ = 0.6,

ρ∗ = 0.47, ρ∗iso = 0.44.

Finally, by moving further towards the lamellar region, either from low or high

densities, one finds two narrow domains where particles arrange into a double-gyroid
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bicontinuous configuration. Unlike in the case of direct and inverted clusters or

cylinders, the similarity between filled and depleted domains of phases symmetric with

respect to the lamellar region is not clearly apparent from Figs. 8 and 9. However, this

feature is still there, although in order to bring it forward, one has to specify rather

different values of ρiso in the two phases. Specifically, Figs. 8 and 9 refer to ρ∗ = 0.26

and ρ∗ = 0.42 respectively, and correspond to the same ρ∗iso = 0.65. The inverted

configuration with respect to that of Fig. 8 for the state at ρ∗ = 0.42 is obtained for

ρ∗iso ' 0.05. Similarly, by setting again ρ∗iso ' 0.05 for the state at ρ∗ = 0.26, one

obtains the inverted configuration with respect to that of Fig. 9.

FIG. 8: A section of density profile of the double-gyroid phase at T ∗ = 0.6, ρ∗ = 0.26,

ρ∗iso = 0.65.

As pointed out above, the overall phase portrait has been by now firmly established

in former investigations [11, 12, 20, 21, 28]. Nevertheless, two features of the phase

diagram of Fig. 2 may be worth pointing out: first, the gyroid domain obtained here

is much narrower than that predicted for similar SALR systems by effective free-

energy functionals [12, 20], especially on the high-density side of the lamellar region.

Second, the presence of both a bcc and a hcp lattice for the cluster and inverted-

cluster phases was not reported in those studies, where only the bcc lattice was

obtained. Not surprisingly, we found that the hcp phase is in close competition with

a fcc phase of nearly the same free energy. In fact, such a fcc phase has been observed

in numerical simulations of a SALR potential consisting in an attractive square well
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FIG. 9: A section of the density profile of the double-gyroid phase at T ∗ = 0.6, ρ∗ = 0.42,

ρ∗iso = 0.65.

followed by a repulsive ramp [11]. The existence of both bcc and hcp cluster phases

was also predicted in block copolymers by self-consistent field theory calculations [30].

In the weak-segregation regime, corresponding to the high-temperature regime in the

phase diagram of Fig. 2, only the bcc phase was found, while at higher segregation

also the hcp was obtained. However, the hcp domain turned out to be very narrow,

and the bcc phase persisted up to arbitrarily high segregation, whereas in the present

case it disappears below a certain temperature. Interestingly, Fig. 2 shows that, in

the temperature interval in which both phases are present, one goes from the hcp to

the more loosely packed bcc clusters by increasing the density, and from the hcp to

the bcc holes by decreasing the density. A qualitative explanation for this counter-

intuitive behavior will be provided in a paper to come [22].

It is worth pointing out that, analogously to the two-dimensional case [8], also in

three dimensions the DFT free energy functional of a SALR fluid displays a variety

of local minima. Our algorithm by construction looks for periodic structures, and

therefore it does not detect density profiles characterized by defects, but for a given

thermodynamic state we often found periodic patterns representing local minima of

the DFT functional. A few examples are shown in Fig. 10. It is tempting to interpret

the occurrence of these solutions, whose free energy is only slightly higher than that
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(c) (a) (b) (d) (e) 

FIG. 10: Some periodic metastable phases found by numerical DFT minimization at T ∗ =

0.6, ρ∗ = 0.23 (a); T ∗ = 0.5, ρ∗ = 0.24 (b); T ∗ = 0.6, ρ∗ = 0.34 (c) and (d); and T ∗ = 0.4,

ρ∗ = 0.57 (e).

of the stable phase, as the indication of the presence of metastable states in the

physical system, although we did not attempt a thorough investigation of the free

energy landscape of this model.

As a last remark, we observe that at high density a crystal phase is expected

to occur because of the excluded-volume effect due to the hard-core part of the

potential. However, as pointed out in Sec. II, the LDA which describes the hard-

sphere interaction in functional (2) is unable to predict the occurrence of such a

crystal. In order to get an estimate of the location of the fluid-solid transition, one

may resort to thermodynamic perturbation theory. In this approach, the crystal is

assumed to have the same fcc structure as that of the purely hard-sphere solid, and

its Helmholtz free energy As is related to that of the hard-sphere solid AHS
s by the

expression
βAs

V
=
βAHS

s

V
+

1

2
βρ2

∫
d3r gHS

s (r)w(r) +O(β2) , (14)

where gHS
s (r) is the radial distribution function of the hard-sphere solid averaged over

the solid angle. We obtained AHS
s by integrating with respect to ρ the equation of

state of the hard-sphere solid given by Hall [31], and gHS
s (r) by the parametrization

developed by Choi et al. [32]. As for the fluid phase, the most straightforward choice

would be using the van der Waals approximation to which Eq. (2) reduces in the

homogeneous case. For the present choice of interaction parameters such that the

spatial integral of the tail potential w(r) vanishes, the van der Waals free energy

reduces to that of the hard-sphere fluid. Another possibility is, for instance, to
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use again perturbation theory by replacing in Eq. (14) the free energy and radial

distribution function of the hard-sphere solid with the corresponding quantities of

the fluid. The fluid-solid equilibrium lines are then obtained by comparing the free

energies of the two phases. These lines have not been shown in Fig. 2, because

we found them to be rather sensitive to the specific approximation used for the

fluid, which casts some doubts on their quantitative accuracy. We just contented

ourselves with the main qualitative information which they convey: first, for the

tail interaction considered here, the fluid-solid transition is confined to the high-

density region of the phase diagram, so that the mesophases which populate Fig. 2

are not prevented by freezing. This might not be the case for different interactions

featuring very short-ranged attractive parts. Second, at low temperature the freezing

line meets the mesophase domain at its high-density side, yielding a triple point at

which the fluid, the crystal, and the inverted-hcp phases coexist. We are not in a

position to provide the accurate location of the triple point, but by comparing the

results given by the aforementioned approach with different recipes for the fluid free

energies we may estimate its temperature and density at T ∗t
<∼ 0.3, ρ∗t

>∼ 0.9. A more

satisfactory description of the freezing transition would require taking into account

excluded-volume effects beyond the LDA in the free-energy functional.

B. The physical properties of the ordered phases

In this Section we investigate the density pattern displayed by the model in the

different phases and its evolution by varying the average particle density and tem-

perature. Here we will not consider the bicontinuous structures present in a small

portion of the phase diagram because a geometrical characterization of these com-

plex patterns would require a more detailed analysis. We limit our study to a purely

phenomenological level, postponing a more quantitative investigation to a future pub-

lication [22], where the physical origin of the features highlighted by the numerical

solution will be clarified.

We begin by characterizing the metric properties of the various topologies occur-
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ring in the phase diagram. Figures 11-13 provide a concise summary of the param-

eters of the periodic structures at three representative temperatures. At relatively

high temperature (T ∗ = 0.7) the modulus of the reciprocal lattice vector k∗M iden-

tifying the highest Bragg peaks is remarkably independent of the average density,

as shown in panel (a), although the topology of the ordered phase changes from a

three-dimensional cluster crystal to a two-dimensional bar lattice, to a lamellar phase,

moving further to the inverted structures. As also shown in Fig. 11, k∗M is well ap-

proximated by the wave vector k∗0 of the absolute minimum in the Fourier transform

of the tail potential w̃(k) (see inset in Fig. 1). In fact, as discussed in Section II,

a simple mean-field argument identifies the density fluctuations responsible for the

onset of the instability leading to pattern formation, precisely at such a wave vector.

As a consequence of the uniformity of k∗M at T ∗ = 0.7, the dimensionless distance d∗

between neighboring maxima of the density profile is markedly constant inside each

phase. The sharp discontinuity of d∗ in changing the topology shown in panel (b) is a

simple geometrical effect induced by the different algebraic relation between k∗M and

d∗ in periodic structures of different dimensionality. Note that the inverted phases,

having the same dimensionality, share the same value of d∗ of the corresponding direct

phase.

The independence of k∗M from the thermodynamic state was already pointed out in

the study of crystal phases of purely soft-core systems belonging to the Q± class [33]

such as the generalized exponential model of order four (GEM-4) [26, 27], and stems

from the same mechanism at work there, namely, the minimum of w̃(k) at k 6= 0.

However, in that case the three-dimensional cluster phase was always found to be the

most stable structure, and no transitions between phases with different dimensionality

were observed. We also recall that a very satisfactory account of the properties of

those soft-core systems is achieved by adopting a DFT similar to that used here, and

truncating the sum over reciprocal lattice vectors in Eq. (9) at the nearest-neighbor

shell [27].

When lowering the temperature, the independence of k∗M from the average density,

and the related behavior of d∗, become progressively less marked, as shown in Figs. 12

20



8

10

12

14

d
*

(b)

0.55

0.6

0.65

k
M*

(a)

2

3

4

γ
*

(c)

0.1 0.2 0.3 0.4 0.5

ρ
*

0.4

0.8

1.2

ρ* p
ea

k

(d)

FIG. 11: Parameters of the density profile ρ(r) at T ∗ = 0.7 as a function of the average

density ρ∗. Panel (a): modulus k∗M of the wave vectors of the highest Bragg peaks of ρ̂(k).

Panel (b): distance d∗ between neighboring peaks of ρ(r). Panel (c): aggregate size γ∗,

determined as the half-width at half maximum of the peaks. Panel (d): height ρ∗peak of

the peaks. All quantities are in reduced units. Different symbols represent clusters (cir-

cles), bars (squares), lamellae (diamonds), inverted bars (triangles), and inverted clusters

(inverted triangles). Filled symbols denote stable phases, whereas open symbols denote

phases which are either metastable or at coexistence. The dashed line in panel (a) corre-

sponds to the wave vector of the minimum of the Fourier transform of the tail potential

w̃(k).

and 13, because the instability argument loses its strength deeply inside the non-

uniform region of the phase diagram, and in Eq. (9) contributions to the summation

over reciprocal lattice vectors beyond nearest neighbors become more important.

Nevertheless, the density dependence remains comparatively weak even at the lowest
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FIG. 12: Same as Fig. 11 at reduced temperature T ∗ = 0.4, expect that here the lattice of

the cluster and inverted-cluster phases is hcp, whereas in Fig. 11 is bcc.

temperature considered here, T ∗ = 0.2.

Other important quantities for characterizing the density modulation are the width

γ∗ and the height ρ∗peak of the density peaks. The numerical results of panels (c) and

(d) respectively show that while the width of the peaks changes with ρ∗, the peak

height is nearly uniform for all the three temperatures displayed in Figs. 11-13. More

precisely, as ρ∗ increases there is a slight decrease of ρ∗peak which takes place at the

transition between different phases and entails an overall decrease over the whole

density axis. However, this effect is small, leading to the conclusion that, to a first

approximation, ρ∗peak just depends on temperature and is little affected by density.

This behavior should be contrasted with that of the aforementioned soft-core Q±

systems where, as the density increases, the peak height steadily increases, and the

peak width steadily decreases [17].
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FIG. 13: Same as Fig. 12 at reduced temperature T ∗ = 0.2.

Clearly, the difference is related to the presence of excluded volume effects in our

model. As noted above, for both soft-core Q± and hard-core SALR interactions the

distance d∗ between neighboring aggregates, irrespective of their shape, is basically

determined by k∗0, and its dependence on the density is weak or negligible. Hence,

if the density increases, the system does not create more aggregates, but rather

increases the population of those which already exist. In the soft-core case in which

particles are allowed to overlap, the optimal free-energy gain is achieved by placing

them nearly on top of each other [27], so that the mutual distance will be ∼ d∗ for any

two particles on neighboring lattice sites. This implies that ρ∗peak increases rapidly

and unboundedly with ρ.

In contrast, hard-core interactions set an upper boundary to the peak density at

the close-packing value ρ∗cp and, for T 6= 0, impose a large entropic penalty on the
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free energy of configurations such that ρ∗peak is near to ρ∗cp. Indeed, panels (d) of

Figs. 11-13 show that ρ∗peak increases as T decreases and the hard-sphere entropic

contribution to the free energy becomes less important, as one would expect. The

function ρ∗peak(T
∗) at constant density ρ∗ = 0.25, corresponding to the bar phase, is

shown in Fig. 14 together with a linear extrapolation to vanishing temperature. The
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FIG. 14: Filled circles: height ρ∗peak of the peaks of the reduced density profile of the bar

phase at ρ∗ = 0.25 as a function of temperature. Dashed line: linear fit over the four points

at lowest temperature. Note how extrapolation at zero temperature gives the close-packing

density ρ∗cp =
√

2.

numerical data indicate that, by lowering the temperature, ρ∗peak(T
∗) increases up

to a limiting value which does coincide with the close-packing density of the hard-

sphere fluid ρ∗cp =
√

2. This result in itself is not surprising. In fact, it is found

in the strong-segregation limit at T = 0, whereby the aggregates are described as

clear-cut “objects” of constant density with a sharp interface. According to that

description, the internal energy is indeed minimized when the density inside the

aggregates reaches the maximum value allowed by packing restrictions [34]. What

is more surprising here is that such physically sensible behavior emerges naturally

from the numerical minimization, despite the fact that the Carnahan-Starling free
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energy of the hard-sphere gas used in this study does not contain any information

about the true close packing limit, placing the divergence of the compressibility at

the unphysical value ρ∗ = 6/π > ρ∗cp.

The behaviors of γ∗ and ρ∗peak are obviously related, since the constancy of ρ∗peak

at fixed temperature implies that, on increasing the average density ρ∗, the width

of the peaks within each phase must increase in order to accommodate the larger

number of particles on each lattice site. Such a relation must be reversed in the

case of inverted phases, where γ∗ identifies the width of the holes. A point which

deserves more attention is the behavior of γ∗ at the transition between different phases.

Panels (c) of Figs. 11-13 show that at the transition from clusters to bars or from

bars to lamellae, γ∗ decreases significantly, whereas it increases at the transition from

lamellae to inverted bars or from inverted bars to inverted clusters. Hence, as one

goes through the sequence clusters-bars-lamellae-inverted bars-inverted clusters by

increasing ρ∗, one witnesses a gradual growth of the domains of the direct phases,

followed by an abrupt contraction when the phase with lower dimensionality takes

over. Conversely, the empty domains of the inverted phases contract gradually, and

expand abruptly at the transition as their dimensionality increases.

The contraction of the filled domains or the expansion of the empty domains

which take place at the transition is possible without having the local density become

unphysically high because, as ρ∗ increases, the packing efficiency of the sequence of

phases displayed by the system also increases, i.e., bars pack more efficiently than

clusters, lamellae pack more efficiently than bars, and so on. However, the fact that

such a process is possible does not explain in itself why this is the way actually

adopted by the system to minimize its free energy.

In order to get a more complete picture and gain some insight into this point, in

Figs. 15-17 we have considered the difference β∆F/N between the Helmholtz free

energy per particle and unit temperature of the inhomogeneous phases and that of

the homogeneous phase as well as its energetic contribution β∆E/N and entropic

contribution −∆S/(kBN). These quantities have been plotted as a function of ρ∗ in
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panels (a), (b), and (c) respectively for the same isotherms considered in Figs. 11-13.

In order to enable the comparison between different phases, each of them has been

significantly extended into its metastable region.

-0.05

0

β
∆

F
/N

(a)

-1

-0.5

0

β
∆

E
/N

(b)

0.1 0.2 0.3 0.4 0.5

ρ*

0

0.5

1

-∆
S

/(
k

B
N

)

(c)

FIG. 15: Panel (a): difference β∆F/N between the Helmholtz free energy F per particle and

unit temperature of the ordered phases and that of the homogeneous fluid as a function

of the reduced density ρ∗ at T ∗ = 0.7. Black solid line: clusters. Red solid line: bars.

Blue solid line: lamellae. Red dashed line: inverted bars. Black dashed line: inverted

clusters. Each phase has been substantially extended into its metastable region. Panel (b):

same as panel (a) for the difference β∆E/N in the internal energies per particle and unit

temperature. Panel (c): same as panel (a) for the difference −∆S/(kBN) in minus the

entropies per particle.

First we observe that, as one would expect, ∆S and ∆E are both negative at

all temperatures and densities, i.e., the formation of ordered structures entails en
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FIG. 16: Same as Fig. 15 at T ∗ = 0.4.

entropic penalty with respect to the homogeneous phase, which has then to be coun-

teracted by a decrease (increase in absolute value) of the internal energy. Indeed, the

entropic and energetic contributions are nearly specular so that, for each phase, an

increase of the entropic penalty is accompanied by an increase of the energetic gain.

Moreover, if we rule out the low-density interval ρ∗ <∼ 0.2 at T ∗ = 0.7, there is a

general trend for the entropic penalty to decrease as ρ∗ increases, meaning that the

average volume available to each particle becomes closer to that of the homogeneous

phase. At the same time, the energetic advantage with respect to the homogeneous

phase also decreases because, as more and more particles are added to the system, it

becomes more and more difficult to obtain an arrangement such that a large amount

of them will be at a distance ∼ d∗ from each other. Basically, one has to content

oneself with whatever space is left.
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FIG. 17: Same as Fig. 15 at T ∗ = 0.2.

The above observations hold irrespective of the specific phase one is considering.

If we now focus on the transitions between different phases and locate them at the

points where the free energies of the phases involved cross, we do find that in most

cases the phase which takes over as ρ∗ increases has the larger entropy. However, this

is not always true, see the aforementioned low-density interval at T ∗ = 0.7. Even

when it is, the entropies are quite similar and, contrary to what one would expect,

their difference generally decreases as ρ∗ is further increased. On the face of this, one

might envisage an alternate scenario with respect to that displayed in panels (c) of

Figs. 11-13, whereby the characteristic domain size γ∗ would be left nearly unchanged

when going from a phase to another. In that case, the phase which packs better would

be given a much larger entropic advantage over the other because of the larger volume

available to particles at given ρ∗. Why doesn’t the system follow this strategy, instead

28



of squeezing γ∗ to the point that most of this advantage gets lost?

The answer lies in the fact that such a large entropic advantage would entail a

large increase (decrease in absolute value) of the internal energy. In contrast, the

comparison between panels (a) and (b) of Figs. 15-17 shows that as ρ∗ increases, the

internal energy plays a key role in stabilizing the configurations of lower dimension-

ality or, conversely, those of higher dimensionality for the inverted phases. In fact,

the branches of ∆F and ∆E corresponding to different phases cross in essentially the

same sequence, even though not at the same densities. Moreover, such a sequence

persists down to T → 0, when the entropic contribution becomes negligible. This

role of the internal energy is achieved precisely by changing γ∗ so as to narrow the

domains occupied by the particles. The mechanism at play is not specific to the

SALR potential considered here, but applies to all interactions consisting of a hard-

core part and a tail whose Fourier transform has its absolute minimum at k 6= 0,

such as, for instance, a repulsive square shoulder [21], and will be described in detail

elsewhere [22].

Finally, in Figs. 18-20 we show the density profile along the direction connecting

the nearest neighbors of the ordered structures for the bcc cluster phase, the bar

phase, and the lamellar phase. For each phase, the upper and lower panels refer to

T ∗ = 0.7 and T ∗ = 0.4 respectively.

At the lower temperature, the density profile presents a sharp interface which

separates filled and empty regions, indicating the occurrence of well-defined geomet-

rical structures in the system. Moreover, as also shown in Fig. 12(d), ρ∗peak attains

rather high values, comparable to the freezing density of the bulk hard-sphere fluid.

In this regime, the density profile is expected to show also significant modulations

on a lengthscale ∼σ because of packing effects, such as those displayed in Fig. 5 of

Ref. [20], but the LDA is unable to account for them as it is not powerful enough to

resolve the inner structure of the aggregates.

Instead, at the higher temperature the ordered phase is more appropriately in-

terpreted in terms of a periodic density modulation on top of a uniform fluid. The
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FIG. 18: Reduced density profile ρ∗(r) along the line connecting nearest-neighbor sites

for the cluster bcc phase at T ∗ = 0.7, ρ∗ = 0.16 (panel (a)) and T ∗ = 0.4, ρ∗ = 0.11

(panel (b)). In both panels, the solid line is the result of the unconstrained minimization of

functional (2), whereas the dashed line has been obtained by expanding ρ∗(r) around the

uniform state ρ∗(r) ≡ ρ∗ (see text). According to the unconstrained minimization, the bcc

phase at T ∗ = 0.4 (panel b) is metastable with respect to the hcp phase.

competitive nature of the SALR potential stabilizes such a corrugation, suggesting

that the minimization procedure may be considerably simplified in this regime, by

parametrizing the density profiles as the sum of its average value plus a sinusoidal

modulation characterized by wave vectors whose moduli are fixed equal to the value

k0, so as to minimize the Fourier transform of the spherically symmetric tail po-

tential. The different possible topologies (BCC crystals, bar crystals and lamellar

phases) then give rise to density profiles uniquely parametrized by the amplitude of

the modulation. The equilibrium density profiles resulting from the minimization of
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FIG. 19: Same as Fig. 18 for the bar phase at T ∗ = 0.7, ρ∗ = 0.21 (panel (a)) and T ∗ = 0.4,

ρ∗ = 0.27 (panel (b)).

DFT functional (2) within this analytic parametrization have also been displayed in

the Figures.

The comparison between the two sets of results shows that, although the validity

of such an approach for a qualitative understanding of the phase diagram is not

in question, its quantitative accuracy is limited to relatively high temperatures: at

T ∗ = 0.7, the analytic ρ∗(r) compares rather satisfactorily with the output of the

numerical minimization, with somehow larger errors the higher the dimensionality

of the equilibrium structures, whereas at T ∗ = 0.4 the agreement is qualitative at

most. The largest discrepancies are again obtained for the bcc phase, see panel (b)

of Fig. 18. Please note that, according to the present study, the most stable phase

for the state to which Fig. 18(b) refers is actually the hcp, but we have chosen to

31



0

0.5

1

ρ*
(r

)

(a)

-12 -8 -4 0 4 8 12

r*

0

0.5

1

ρ*
(r

)

(b)

FIG. 20: Same as Fig. 18 for the lamellar phase at T ∗ = 0.7, ρ∗ = 0.30 (panel (a)) and

T ∗ = 0.4, ρ∗ = 0.45 (panel (b)).

display the bcc because this is the structure predicted by parametrizing the density

profile as a sinusoidal modulation, in order to compare the two approaches on as much

an equal footing as possible. Anyway, the qualitative picture would have remained

unchanged by considering the hcp phase. The relevant point is that, despite the low

value of the average density ρ∗, the numerical solution still presents a sharp variation

of ρ∗(r). Such a situation cannot be described by the analytic ρ∗(r), because the

superposition of a large-amplitude modulation to a low uniform background would

force it to become unphysically negative in some region. In fact, in this regime the

amplitude saturates at its largest value compatible with the requirement that ρ(r)

be everywhere non-negative.
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IV. CONCLUSIONS

In this work we investigated a model often adopted to represent suspensions of

charged nanoparticles, consisting of a hard-core potential followed by a short-range

attractive and long-range repulsive (SALR) tail. The equilibrium configurations of

the system have been determined by a fully numerical minimization of a simple,

mean-field free energy functional, and the phase diagram thus obtained compares

well with the available results from a recent study based on similar techniques [20].

Below a limiting temperature, signaling the instability of the homogeneous phase,

the model is shown to display a sequence of first-order phase transitions between

periodic structures: starting from a three-dimensional cluster crystal at low density,

a bar phase develops, whereby the density profile displays cylinders arranged in a

triangular lattice, which is followed by a lamellar arrangement. Then, if the density

is further increased, inverted phases appear, reproducing in reverse order the same

sequence of transitions. Close to the boundaries of the lamellar phase, two bicon-

tinuous density modulations appear at low temperature. The very same sequence of

ordered phases has been predicted by analytical studies of a long-wavelength approx-

imation of the free-energy functional [2, 12] and appears to be a robust feature of a

large class of systems, ranging from hard-core fluids with competing interactions like

that investigated here [11, 12, 20, 21] to hard-core fluids with a soft repulsive shoul-

der [21], to block copolymers [2]. The relevant wave-vector, defining the periodicity

of the structures, is seen to be largely determined by the location of the minimum

of the Fourier transform of the tail potential. Therefore, at least at moderate tem-

perature, the density modulations are characterized by a lengthscale independent

of the thermodynamic state of the system, which determines the distance between

neighboring density peaks in each topology. The characteristic peak density is seen

to depend mainly on temperature, implying that, by increasing the average density

of the system, the width of the density peaks of the direct phases increases up to

the transition point, where it sharply decreases as soon as the phase with lower di-

mensionality takes over. Conversely, the size of the particle-depleted regions of the
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inverted phases decreases within each phase, and increases at the transition.

Although the numerical calculations show that the free energy differences between

all the stable phases are very small, the predicted sequence of transitions appears to

be largely independent of the details of the adopted model. Even the very narrow

stability regions of the gyroid phase is a common feature of several systems, implying

that a fine tuning of parameters is required to select such a phase in the available

theoretical models. It is worth observing that a previous investigation of a soft-

core binary mixture based on the same method [18] has uncovered a very rich phase

diagram which displays several common features with that considered here, but also

some important differences, such as a much stronger propensity to form bicontinuous

phases. It would be interesting to pinpoint the reason for this different behavior.

The numerical free-energy minimization method used here holds a potential for a

number of applications. Besides the periodic phases formed in bulk three-dimensional

systems, a similar method could be employed also for the study of the structures

obtained by the SALR or related potentials on a curved substrate. We plan to

consider such a case in the near future.
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Matter. Phys. 13, 2603 (2010).

[13] M. B. Sweatman, R. Fartaria, and L. Lue, J. Chem. Phys. 140, 124508 (2014).

[14] See for instance J.-P. Hansen and I. R. McDonald “Theory of Simple Liquids” (Aca-

demic Press, London), 2013.

[15] M. Carta, D. Pini, A. Parola, and L. Reatto, J. Phys.: Condens. Matter 24, 284106

(2012).

[16] M. Parrinello and A. Rahman, Phys. Rev. Lett. 45, 1196 (1980).

[17] D. Pini, Trans. R. Norw. Soc. Sci. Lett. 3, 99 (2014).

[18] D. Pini, A. Parola, and L. Reatto J. Chem. Phys. 143, 034902 (2015).

[19] A. J. Archer, C. N. Likos, and R. Evans J. Phys.: Condens. Matter 16, L297 (2004).

[20] M. Edelmann and R. Roth, Phys. Rev. E 93, 062146 (2016).

[21] H. Shin, G. M. Grason, and C. D. Santangelo, Soft Matter 5, 3629 (2009).

[22] D. Pini, to be submitted.

[23] A. J. Archer, D. Pini, R. Evans, and L. Reatto, J. Chem. Phys. 126, 014104 (2007).

[24] A. J. Archer, C. Ionescu, D.Pini, and L. Reatto, J. Phys.: Condens. Matter 20, 415106

(2008).

[25] Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989); R. Roth, J. Phys.: Condens. Matter

22, 063102 (2010).

[26] B. M. Mladek, D. Gottwald, G. Kahl, M. Neumann, and C. N. Likos, Phys. Rev. Lett.

35



96, 045701 (2006); 97, 019901 (2006)

[27] C. N. Likos, B. M. Mladek, D. Gottwald, and G. Kahl, J. Chem. Phys. 126, 224502

(2007).

[28] K. von Konigslow, E. D. Cardenas-Mendez, R. B. Thompson, and K. Ø. Rasmussen,

J. Phys.: Condensed Matter 25, 325101 (2013).

[29] K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).

[30] M. W. Matsen and F. S. Bates, Macromolecules 29, 1091 (1996); M. W. Matsen, J.

Phys.: Condens. Matter 14, R21 (2002); M. W. Matsen, Eur. Phys. J. E 30, 361

(2009).

[31] K. R. Hall, J. Chem. Phys. 57, 2252 (1972).

[32] Y. Choi, T. Ree, and F. H. Ree, J. Chem. Phys. 95, 7548 (1991).

[33] C. N. Likos, A. Lang, M. Watzlawek, and H. Löwen, Phys. Rev. E 63, 031206 (2001).
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