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Abstract:  
The microcirculation plays a major role in maintaining homeostasis in the body. Alterations or 

dysfunction of the microcirculation lead to several types of serious diseases.  It is not surprising, then, 

that the microcirculation has been an object of intense theoretical and experimental study over the past 

few decades. Mathematical approaches offer a valuable method for quantifying the relationships 

between various mechanical, hemodynamic, and regulatory factors of the microcirculation and the 

pathophysiology of numerous diseases.  This work provides an overview of several mathematical 

models that describe and investigate the many different aspects of the microcirculation, including the 

geometry of the vascular bed, blood flow in the vascular networks, solute transport and delivery to the 

surrounding tissue, and vessel wall mechanics under passive and active stimuli.  Representing relevant 

phenomena across multiple spatial scales remains a major challenge in modeling the microcirculation.  

Nevertheless, the depth and breadth of mathematical modeling with applications in the 

microcirculation is demonstrated in this work.  A special emphasis is placed on models of the retinal 

circulation, including models that predict the influence of ocular hemodynamic alterations with the 

progression of ocular diseases such as glaucoma.   

 

Keywords: microcirculation; blood flow; oxygen transport; autoregulation; fluid-structure 
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1 Introduction   

 

The microcirculation is the collective name for the smallest (<150 µm in diameter) blood vessels in 

the body.  As a first approximation, it consists of blood vessels that are too small to be seen with the 

naked eye. Microcirculatory vessels are the site of control of tissue perfusion, blood-tissue exchange, 

and tissue blood volume. Each of these functions can be associated, though not exclusively, with a 

specific type of microvascular segment: arterioles, capillaries and venules. Arterioles are known as 

resistance vessels since a major fraction of total blood pressure dissipation occurs across them. Local 

and extrinsic stimuli (e.g., neural, metabolic, and mechanical) act on the thick muscular wall of 

arterioles, exerting control over the vessel diameter and modulating the level of local blood flow.  The 

capillaries are the site of major exchange between blood and tissue.  Nutrients and other molecules 

diffuse or are transported across the capillary wall to sustain life of the body’s cells. Finally, venules 

are classified as capacitance vessels because most of the tissue blood volume is localized in these 
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microvessels. Comprehensive, recent reviews on the biological, anatomical and structural aspects of 

the microcirculation can be found in [1-3]. In addition, there exist several review works focused on the 

microcirculation in specific organs and tissues, see, e.g., [4] for brain, [5] for kidneys, [6] for 

gastrointestinal organs and [7] for lungs. 

 

Various techniques have been used to obtain a substantial amount of hemodynamic and geometric 

information about the microcirculation.  For example, data has been obtained from studying whole 

organs both in vivo and in perfused conditions. The results of these studies are averaged quantities that 

give indirect information about microcirculatory behaviors. Modern non-invasive imaging techniques 

are used to obtain data about normal and diseased states in microcirculation. Imaging techniques - 

including MRI, imaging with light and sound, optical techniques such as laser Doppler and 

multispectral imaging – show microvascular structure and provide measures of function via perfusion, 

oxygenation, or permeability parameters. We refer to [8-10] for reviews on these imaging techniques.  

 

The role of theoretical models of the microcirculation has been described previously [11]. Secomb 

remarks that mathematical modelers of the microcirculation have pioneered the integration of 

knowledge across multiple levels of biological organization. Models are classified as 

phenomenological, qualitative, quantitative, and predictive in that work, and in the present review, we 

will adopt a similar classification for microcirculation models. Our model classifications, however, 

highlight the geometric dimensionality of the model and its mathematical features.  In Figure 1, we 

present a schematic illustration of the classification and scale of mathematical models of the 

microcirculation that are reviewed in this study.  While there is an increase in the complexity of 0D to 

3D anatomical models, 0D/1D models are capable of providing very useful information on vascular 

beds or organs (e.g., the brain or kidney). 3D models, on the other hand, capture more detailed and 

patient-specific components of the vascular anatomy but their computational cost rapidly increases. 

Models between 0D and 3D representations offer a balance of information and can be used to study a 

larger spectrum of scales.  

 

Theoretical modeling of microvascular networks typically involves several steps (see Figure 2). First, 

the geometry of the network must be specified. In this step, the length and diameter (or cross-sectional 

shape) of vessels are defined as well as the network connectivity.  Next, fluid dynamics and blood 

rheology models are combined to predict the distribution of flow, pressure, and hematocrit throughout 

the network. Then, solute transport and delivery to the surrounding tissue is studied along the network.  

Vessel geometry may vary due to the interaction with the blood flow (fluid-structure problem) or the 

input of autoregulatory signals. Last, computed solute levels and other stimuli (neural, mechanical) 

may enter into the model of vessel regulation. 
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Figure 2. Main steps for developing mathematical models of the microcirculation.    

 

Several review articles address theoretical modeling of the microcirculation (recently, we refer to [12-

15].  But, most of these papers focus on a specific aspect of modeling or on a specific scale of the 

problem.  The aim of this work is to survey the mathematical approaches used broadly to study the 

microcirculation. Modeling microcirculatory networks requires ad hoc approaches. There are profound 

differences between modeling large/medium-sized blood vessels (e.g., the aorta, the circle of Willis, 

the femoral vessels) and modeling microcirculatory vessels. The number of vessels (a few vs. several 

thousand), vascular radial dimensions (cm vs. microns), the characteristic Reynolds and Womersley 

numbers (relevant vs. very low), and the role of blood rheology (Newtonian vs. corpuscular fluid 

models) are just some of the elements that impact the choice of mathematical and numerical models.   

 

This review is organized as follows.  In Section 2 we review the definition of the geometry of 

microvascular networks and their surrounding tissues; in Section 3 we review models for blood flow 

when blood is modeled as a continuum or a corpuscular medium; in Section 4 we review models for 

gaseous solute transport in blood and delivery to tissue; in Section 5 we review models for vessel 

Figure 1. Conceptual illustration of the different scales addressed by mathematical models of 

the microcirculation. 
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mechanics and autoregulation; in Section 6 we highlight models of the retinal microcirculation. Finally, 

in Section 7 we summarize the conclusions of our work and present perspectives on mathematical 

models in this field.   

 

2 Modeling of microvascular networks and the surrounding tissue  

 

Microvascular networks are very complex structures, and their complexity is often related to the tissue 

they are supplying. For example, the mesenteric microcirculation exhibits a very regular organization 

whereas the cerebral microcirculation differs greatly among subjects and within specific parts of the 

brain.  In general, micro-vessels do not form precise arrays in the tissue; rather, their spacing is non-

uniform and their pathways are often tortuous [1]. Different mathematical methods are chosen to 

describe the geometrical features of the different microcirculatory beds, where the degree of 

complexity included in the model depends on the environment being modeled. 

 

2.1 Modeling of blood vessels 

 

Despite the irregularities in network structure, almost ubiquitously, arterioles and venules are 

organized in tree-like structures and capillary beds in net-like structures.  Arterioles and venules are 

thus analyzed with distinct models from capillaries. Vessels are generally classified as 

arterioles/venules or capillaries based on diameter. Within these classifications, vessels are often 

divided into more specific subclasses with explicit diameter ranges [16, 17]. The number of vessels in 

a certain class or subclass may dictate the type of model used to describe that class.  For example, in 

complex 3D geometries with thousands of vessels, capillaries can be represented in a simplified 

manner to reduce the computational cost [18, 19]. The modeling choice may also reflect the resolution 

limit of available imaging techniques. Since microvascular beds are the main site of metabolic 

exchange, it is also important for models to account for the tissue environment of the microvessels.   

 

2.1.1 Arteriolar and venular trees 
 

We define two main types of arteriolar and venular tree models: (i) compartmental models, in which 

there is no topology (or connectivity) of the vessel branches, and (ii) topological models, in which a 

proper, connected, anatomical network is built according to geometrical data.  Compartmental models 

maintain a low number of unknowns and are capable of reproducing the global behavior of the system. 

Topological models, however, account for the spatial distribution of field variables and the complexity 

of interactions among vessels in the microcirculatory network. 

 

In the compartmental approach, several authors exploit the analogy of a vascular network with an 

electric circuit, formed by lumped resistive, capacitive and inductive elements. This reduced modeling 

approach allows for the inclusion of the microcirculatory network within a more comprehensive 

system, as in whole brain circulation studies [20, 21].  Other compartmental models represent the 

arteriolar and venular trees as idealized classes of different hierarchy; for example, compartments are 

defined for large arterioles, small arterioles, capillaries, small venules and large venules [22]. The 

vessels comprising each compartment are arranged in parallel and are assumed to exhibit identical 

properties.  The compartments are connected in series by conservation laws, so that each flow pathway 

from the arterial inflow to the venous drainage is equivalent. The functional characteristics of complete 

vascular beds are then derived, in an averaged sense, from the properties of the individual vessel classes 

and the number of vessels within each class.  

 

In the topological approach, anatomically-specific geometrical data are used to build the model. 
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Usually, the tissue is represented as a simple volumetric shape (e.g., cube, parallelepiped, cylinder) of 

linear dimension ranging from a hundred microns to a few millimeters. The main complexity resides 

in the representation of the embedded vessel network. Using a “topological geometrical” approach, 

vessel trees are constructed ex-novo using a mathematical algorithm that retains the relevant vascular 

morphology and topology.  Principles of fractal geometry derived from Murray’s law have been used 

in [23, 24] to define the diameter of daughter vessels sprouting from a bifurcation. The degree of 

asymmetry of the network can be controlled via an asymmetry parameter as in [25, 26] or using 

distributions of generation numbers using, for example, the Horton-Strahler approach as in [27, 28]. 

Stochastic growth techniques have been adopted to obtain random graphs [29], such as the diffusion 

limited algorithm used in [30] to obtain a network with a prescribed fractal dimension.  A “topological 

anatomical” approach extracts the network geometry (vessel radii and lengths) from digitized images 

of experimental measures. A relevant problem is constituted by the reconstruction of the graph 

connectivity. Generally, a backbone system of vessels is identified, as in [19]. Semi-automatic or 

manual techniques are then used to segment the backbone and prune dead-end vessels.  For example, 

in [31], intravital microscopy was used to define the vessel lengths and connection patterns in the 

mesenteric plexum. Vessel diameters were measured manually at the center of each segment. In [17], 

raw data were obtained from a multi-diode target camera of rodent mesentery. Network connectivity, 

topology and diameter distribution were manually reconstructed from the images, and a Bézier 

approximation was used to enhance the segment tortuosity.   

 

Since all imaging techniques have resolution limits, the topology of small vessels cannot be captured. 

Thus, several models include artificially generated geometrical trees to account for these small vessels. 

For example, in [17], a 3D model of a 3x3x3 mm3 portion of the human brain secondary cortex was 

presented. A backbone of visible large microvessels was reconstructed from high-resolution images, 

and smaller artificially generated segments were successively added using constructive optimization 

techniques. In [16], images of the eye fundus were acquired and arteriolar vessels of the retina were 

segmented. Terminal arterioles with outlet diameter greater than 30 microns were connected with 

asymmetric structured fractal trees representing smaller vessels. Mixed topological/compartmental 

models were used by some authors to describe in detail certain portions of the network and, at the same 

time, represent other portions of the network in a lumped manner. For example, in [32], upstream and 

downstream portions of an otherwise microvascular anatomically accurate network were modeled by 

large arteries/veins and large arterioles/venules classes. In [20], lumped arteriolar/venular networks 

were coupled with more detailed models of larger vessels. 

 

All topological networks are eventually reduced to graphs for computational purposes. The network 

graph is uniquely described by the node coordinates and by the connectivity matrix. In the latter, the 

(𝑖, 𝑗) -th element is equal to one if node 𝑖  is connected to node 𝑗  and zero otherwise, leading to the 

creation of one ‘‘arc.’’ A single vessel can be composed of several arcs arranged in cascade or by a 

single arc. Vessel junctions are nodes at which different vessels are connected to each other. The most 

frequently adopted type of junction is the bifurcation (see the discussions in [18] and in [33]). 

 

2.1.2 Capillaries 

 

Capillary beds are composed of an extremely large number (>104) of tiny vessels (diameter ranging 

from 5 to 9 microns). Representations of capillaries using a vessel-by-vessel description are technically 

feasible but would be restricted to a small tissue region [31, 32]. In certain topological geometrical 

models, capillaries are arranged as a compartment of parallel vessels, as in [34]. However, this 

representation does not fully describe the real net-like organization of capillaries. To model the net-

like structure of capillary beds, some studies use mathematical algorithms to generate coherent 

capillary meshes. In [17] and [35], the capillary beds are generated on the basis of a Voronoi tessellation. 
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In [27], a concentric circle mesh-like model is proposed to simulate capillaries in the rat retina. In [36], 

statistical algorithms are used to explore how the structural properties of the capillary bed influence 

the transport of blood through the human cerebral microvasculature.  

 

2.2 Tissue 
 

Unlike large blood vessels, microcirculatory vessels are embedded within tissues. This enables 

communication and mass (fluid, solute) exchange between the parenchymal tissue and these vessels. 

Several models thus couple a tissue description with the microcirculatory network. In compartmental 

models, the tissue is described as a well-mixed medium exchanging mass flux with the circulatory 

network across a lumped boundary. In topological models, the surface of exchange is extended and 

geometrically characterized. In general, the tissue slab is assumed to have a simple geometrical shape, 

for example a cylinder or a parallelepiped. The volume of the considered tissue slab may range from a 

few mm3 to several hundred mm3. There are also more complex representations. For example, in [37], 

the intricate geometry of lung alveoli is considered, where the capillary plexi surround an assumed 

spherical tissue region. In [18], the tissue continuum consists of nodes interconnected on a lattice, each 

node representing a tissue voxel with associated numerical quantities.  

 

 

2.3 Homogenized models: perfused- tissue representations 
 

In some studies, mathematical techniques are used to homogenize the tissue and embedded vessels as 

single medium. Such techniques are typically used when describing the capillary-perfused tissue 

matrix, for which the network of vessels is so dense that the computational cost of addressing each 

vessel is too high. A simple model of capillary-perfused tissue can be found in [38] where capillaries 

are represented as distributed sources in the homogeneous tissue. More sophisticated homogenized 

models give rise to porous media representations. Effective permeability and diffusion coefficients of 

the matrix have been computed via different approaches. For example, in [18], a number of sub-

volumes (cells) are identified in the capillary plexum. For each cell, integral quantities such as effective 

conductance, vascular volume, and surface area are determined via explicit computation. Upscaling 

technique are successively used to connect the homogenized medium to larger scale vessels [39].  
 

In Tables 1 and 2, we compare geometrical descriptions of the microvascular bed for compartmental, 

topological and homogenized approaches. We do not include purely morphometric studies (for which 

we refer to [17] ) and we limit ourselves to relevant examples of a certain type of model, giving 

preference, when possible, to 3D models. 
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3 Modeling the fluid-dynamics of blood  
 

Blood is a dense suspension of cells in plasma solute. Red blood cells (RBCs) are the primary cellular 

constituent of blood, with a volume fraction (hematocrit, HD) of typically 40-45%. While plasma is a 

Newtonian fluid, interactions between cells and plasma lead to complex non-Newtonian dynamics. 

This is especially true in the microcirculation, since vessel dimensions are comparable to cell diameter 

[13]. Radial migration of the RBCs away from the vessel wall occurs from hydrodynamic interactions, 

forming a low-hematocrit/cell depleted layer along the vessel wall  [40, 41]. This phenomenon is the 

basis of several important rheological effects observed in vitro and in vivo [42]: i) the Fåhraeus effect, 

which is the apparent reduction in tube hematocrit with respect to discharge hematocrit [43]; ii) the 

Fåhraeus–Lindqvist effect, which dictates that the apparent viscosity of blood decreases when the 

vessel diameter is reduced below 1 mm; and iii) plasma skimming at network bifurcations (also known 

as the “network Fåhraeus effect”), in which the fraction of the total RBC flow in the mother vessel of 

a bifurcation that enters one of the daughter branches does not correspond to the fractional blood flow 

entering that branch, due to the hindrance of the cell depleted layer.  Plasma skimming results in a 

heterogeneous spatial distribution of hematocrit in the network [44].  

 

3.1 Continuum modeling of blood flow 
 

Blood flow in the microcirculation differs substantially from flow in large vessels. In the 

microcirculation, inertial effects as well as pulsatility are generally neglected (see [45] for exceptions). 

A large majority of blood flow models applied to the study of networks treat blood as a (multiphase) 

continuum. In the simplest approach, whole blood flow is described as the flow of a Newtonian fluid 

governed by the Stokes equations. Poiseuille’s law has been traditionally used as a first approximation 

of such equations. In this context, the volumetric flow Q in the vessel is proportional to the pressure 

drop ∆𝑃 along the vessel and the fourth power of the vessel radius 𝑅:  

  

 𝑄 =
𝜋

8
 ∙  

𝑅4∆𝑃 

𝐿𝜇
 (1) 

 

The symbol 𝜇 in Eq. 1 is the whole blood viscosity. In comprehensive models of the circulatory system, 

it has been prescribed as a constant [46].  More physiologically-relevant expressions for 𝜇 have been 

obtained from empirical equations fitting the Fåhraeus and Fåhraeus-Lindqvist effects to a range of 

hemodynamic measurements [47].  As reviewed in [48], in vitro data were originally used to 

determine a relationship between effective viscosity, hematocrit and glass-tube diameter. This 

relationship was modified based on data that showed a greater in vivo resistance.  Specifically, 𝜇 

corresponds to the concept of bulk (“apparent”) viscosity and is formally obtained from experimental 

data and upon application of the Hagen-Poseuille model as: 
 

 𝜇𝑎𝑝𝑝 =
𝜋

8
 ∙  

𝑅4∆𝑃 

𝐿𝑄
 (1) 

 

Often, the relative value of the apparent viscosity (i.e., normalized with respect to plasma viscosity) 

is provided. Recently, the model was improved further by including the effects of the endothelial 

surface layer (ESL) [49]. Alternative models for the viscosity have been proposed in [50], where an 

empirical equation for the apparent relative viscosity was derived as a function of hematocrit, and in 

[51], where the expression for 𝜇 as a function of radius [52] was proposed.  Further attempts to develop 

physically consistent constitutive models of blood viewed as a non-Newtonian fluid have led, for 

example, to the use of the Casson-Quemada model, where the viscosity depends on the shear rate 
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(we refer to [53] for a comparative study of different constitutive equations). 

 

The hematocrit value appearing in the phenomenological relations for the viscosity may be prescribed 

as in [54] or can be treated as an unknown in the model, as done in [30, 55-57]. When the hematocrit 

is computed, an additional equation for the mass conservation of the continuum fluid representing 

RBCs must be added to the system, and volume fractions for plasma and RBC phases must be taken 

into account according to mixture theory [58].   

 

When modeling a network of vessels, an analogy to Kirchhoff’s first rule for electrical networks is 

generally adopted at the vessel bifurcations, where flux and RBC flux mass balances are enforced [55]; 

pressure continuity is also usually enforced at bifurcation nodes [59]. Due to the low Reynolds number 

of the flow in microvessels, the continuity of the static pressure at bifurcations is generally used instead 

of the continuity of the total (static plus dynamic) pressure (see [60] for a discussion on this issue and 

[31] for an example where the continuity of the total pressure is considered).  In a vascular network, a 

proper treatment of plasma skimming at the bifurcations is also needed.  Empirical equations have 

been developed that depend on the flow split in the bifurcation, the vessel diameters, and the discharge 

hematocrit in the parent vessel in [49, 61]. An alternative approach that can be applied to branch points 

with more than two outflowing segments was proposed in [62]. Another alternative approach has been 

proposed based on the assumption that the distribution of RBCs in diverging bifurcations satisfy a 

mathematical principle of optimality [63]. 

 

A mathematically rigorous approach for computing blood flow in a vessel stems from the 

mathematical procedure of averaging the velocity field (approximated by a purely axial component) 

over the vessel cross section. Namely, introducing cylindrical coordinates (𝑟, 𝜃, 𝑧) and assuming that 

the variables are separable, one sets 

 

 𝑢 = 𝑢̅(𝑧)𝑓𝑢(𝑟) (2) 

 

where 𝑢̅ is the average velocity on the cross section 𝐴, such that 𝑄 = 𝐴𝑢̅, and where 𝑓𝑢 is a prescribed 

radial shape function. A typical velocity profile is given by the function [64]  

 𝑓𝑢(𝑟) =
𝛾+2

𝛾
[1 − (

𝑟

𝑅
)

𝛾
], (4) 

 

where 𝛾 is a bluntness parameter ranging from 2 (parabolic profile) to 9 (plug flow profile). This 

approach allows for a rigorous asymptotic analysis of the various contributions arising in the balance 

equations.  

 

To obtain a unique solution for the fluid-dynamic fields in the network, it is necessary to impose (i) 

flow or pressure boundary conditions on inflowing and outflowing segments and (ii) hematocrit 

boundary conditions on inflowing segments. Difficulties may arise when multiple inflows/outflows 

exist but the corresponding boundary conditions are not all available from experiments. Several 

approaches have been used to address this issue. The use of literature-based typical values at outflow 

under the satisfaction of “target constraints” is the basis of the approaches proposed in [65]. A 

parametric analysis of boundary condition values has been carried out in [66] and [65]. 

 

An immediate extension of the homogeneous continuum was originally proposed in [67] and further 

developed in several works. The domain is usually a single cylindrical vessel in which two layers are 

arranged in a concentric fashion: an external plasma region (denoted here below by ‘𝑎’) devoid of cells 

and a core RBC region (denoted here below by ‘𝑐’). Each layer is generally supposed to consist of an 

incompressible Newtonian fluid with constant viscosity (𝜇𝑎  in 𝑎  and 𝜇𝑐   in 𝑐 , usually 𝜇𝑐 > 𝜇𝑎 ). 
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Imposing the balance of mass and momentum in each fluid domain with appropriate interface boundary 

conditions (continuity of velocity and shear stress are usually enforced [68-70]) yields two distinct 

velocity profiles of the type  

 

 
𝑣𝑎 =

∆𝑃

𝐿

1

4𝜇𝑎

(𝑅2 − 𝑟2) , 𝑣𝑐 = −
∆𝑃

𝐿
(

𝑟∗2 − 𝑟2

4𝜇𝑐
+

𝑅2 − 𝑟∗2

4𝜇𝑎
) (3) 

 

 

where 𝑟∗is the (unknown) thickness of the cell depleted layer [71]. The above equations have been 

again generalized to the case of blunted velocity profiles [72]. The overall mass balance of RBCs in 

the tube is then defined by:  

 
𝑄𝐻𝐷 = 2𝜋 ∫ 𝑣(𝑟)ℎ(𝑟)𝑟𝑑𝑟,

𝑅

0

 (6) 

 

where ℎ(𝑟)is the radial profile of the hematocrit, commonly chosen to be equal to zero in the cell 

depleted layer and equal to the (unknown) core hematocrit in the RBC layer [69]. Generally, the core 

hematocrit is assumed to be constant, but polynomial radial profiles [67, 73] have also been proposed. 

In [74], the RBC core was divided into two domains: an outer region characterized by reduced 

hematocrit with a constant or linear radial profile and linear variation of viscosity, and a core region 

with uniform hematocrit concentration and uniform viscosity. To compute the unknown quantities, 

model closure is performed in the above models using empirical data. For example, in [69], the core 

viscosity is described as a function of hematocrit via phenomenological equations using the model 

described in [44] or [75]. In some studies, the Oldroyd-B [76] or Casson [64] models have been used 

to describe the RBC core phase as a non-Newtonian fluid [73, 77] 

 

 

3.2 Mesoscale modeling of blood flow 

 

While a continuum description of blood is sufficient to obtain flow data for blood viewed as a bulk 

volume, more detailed studies are needed to consider the corpuscular nature of blood. Studying such 

details will aid the comparison and analysis of the mechanisms that lead to experimentally observed 

results of blood rheology. These approaches are known in the specialized literature as “mesoscale 

models.” Here, we limit ourselves to a brief description of the main approaches found in mesoscale 

models and we refer for additional details to the recent specific reviews by Cristini et al. [78] (till 2005), 

Secomb et al. [79] (till 2011), AlMomani et al. [80] (till 2012), Ju et al. [81] (till 2015) and Ye et  al. 

[82] (till 2016).  

    

3.2.1 Modeling of the cellular phase  

 

Red blood cells are the most abundant type of cells in blood. An adequate representation of their 

mechanical and rheological properties requires correct descriptions of the elastic and viscous properties 

of their membrane, the bending resistance of the membrane, and the difference in viscosity between 

the external and internal fluids. Deformable RBCs were first modeled with simple elastic models that 

evolved into hyperelastic models for fully deformable 3D cells. Both discrete and continuum models 

of the RBC membrane have been proposed. Discrete spring network models have been widely used to 

model the RBC membrane (see, e.g., [83, 84]). A representation of the membrane as a network of 

viscoelastic springs in combination with bending energy and constraints for surface-area and volume 

conservation is adopted for example in [85]. The continuum approach treats the whole cell as a 

homogeneous material represented by appropriate constitutive equations. Several models adopt the 
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Mooney-Rivlin or Skalak constitutive relations, eventually adding bending resistance [86]. More 

complex constitutive equations, accounting for shear-thinning and viscoelasticity, have also been 

proposed. Mixture-type “biphasic models” as well as two-phase models of the cell as a deformable 

capsule with liquid cytoplasm enclosed by an elastic or viscoelastic membrane have been used to 

represent the multiphase nature of the cellular components [87-91]). 

 

The number of RBCs being modeled dictates the numerical approach. Ye and colleagues developed a 

series of papers where a single RBC is considered. This approximation is valid where RBCs move in 

single-file, namely in capillaries. More realistic simulations of multiple RBCs flowing through vessels 

with diameter ranging from 10 to 500 microns remains a major challenge.  A large population 

(thousands) of RBCs is necessary to account for cell-cell hydrodynamic interactions in these vessels.  

Sun et al. [89] used a Lattice-Boltzmann discretization to describe blood flow (plasma with suspended 

rigid particles) in a 2D channel.  We cite the use of hybrid models to model single cellular components 

and interaction in combination with a continuum representation of intra-cellular and extra-cellular 

processes (see the works by Bessonov and colleagues, e.g., [92]). 

 

A number of studies introduce mathematical models of other cellular components of blood, namely 

white blood cells and platelets immersed in plasma flow. Complex mechanisms involving these 

particles, such as coagulation and interactions between different types of cells, have also been studied. 

We refer to [93, 94] for detailed overviews on these aspects; we refer to [95] for an overview of the 

main mathematical models related to blood formation (hematopoiesis), disorders and treatments.  
 

3.2.2 Modeling of the plasma phase  

 

Lattice Boltzmann methods, mesh-free particle methods and dissipative particle dynamics (DPD) have 

been used to discretize the plasma component of blood. We refer to [96] for a detailed overview of 

these approaches and discussion of their applicability to problems of different scales.   

 

3.2.3 Modeling of cell-to-cell interactions 

 

RBCs immersed in plasma flow aggregate and form rouleaux due to mutual interactions. The 

equilibrium configuration and the cell shape is related to the strength of these interactions.  Intercellular 

interactions and cell aggregation have been modeled using a Morse potential [97]. Intercellular 

interactions have also been modeled according to a ligand-receptor binding model [98, 99] or using a 

theoretical formulation of depletion energy [100]. 

 

 

3.2.4 Modeling of plasma-cell interactions 

 

The motion of the RBC membrane is coupled to the surrounding plasma, and thus the model of this 

motion becomes a fluid-structure interaction problem. The difficulty of such a problem lies in the fact 

that RBCs can approach each other closely, till aggregation. Moving mesh approaches are thus not 

frequently used, since meshes may face break down. The immersed boundary method has been a 

popular approach in combination with a fixed Cartesian mesh for the fluid.  Mesh-free particle methods 

have also been used where fluid-structure interactions are dealt with by adding elastic forces to 

membrane particles.  

   

3.3 Blood flow in homogenized tissue-perfused models 
 

The idea of explicitly modeling arteriolar and venular trees and using homogenization techniques to 
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describe the capillary-perfused tissue is the focus of several studies. The concept of a capillary-

perfused tissue relates to the theory of porous media. Fluid flow in this composite matrix is studied 

introducing effective permeability and diffusion coefficients. Several approaches have been proposed 

to compute these quantities, ranging from model unit cells [39] to asymptotic analysis [101]. Double 

porosity media have also been proposed in this context. In these models, a fracture pore system 

represents the embedded capillaries while a less permeable matrix pore system represents the 

interstitial fluid space [37]. 

 

 

4 Models of gas transport in blood and tissue 

 

The circulatory system is responsible for the transport, delivery and waste removal of gaseous species 

from blood to every tissue in the body. Oxygen, for example, is delivered to tissue via passive diffusion 

from blood, so blood must flow within a very short distance of every tissue point in the body.  The 

distance that oxygen can diffuse into tissue is on the order of microns, and thus the circulatory system 

plays a critical role in transporting blood throughout the body via convection along a network of vessels 

before reaching the capillaries where the majority of diffusive oxygen exchange occurs.  Blood gas 

transport involves a combination of convection, diffusion, permeation, and/or chemical reactions and 

takes place over a range of special and temporal scales (please see [1, 102] for recent physiological 

reviews).  The structural complexity and heterogeneity of the vascular networks of the microcirculation 

leads to heterogeneity also in tissue oxygenation and consumption.  Experimental measures of the 

impact of such heterogeneity on tissue oxygenation are difficult to obtain, and thus theoretical 

modeling has served as an essential tool to characterize the physiological implications of such 

heterogeneity on oxygen delivery to tissue.  Numerous theoretical models have been developed to 

describe the transport of oxygen to tissue by the microcirculation.  These models include either steady-

state or time-dependent oxygen transport descriptions from single or multiple vessels, as reviewed 

previously [103, 104] and summarized here. 

 

The value of theoretical models in providing a quantitative understanding of organ function at 

homeostasis and in pathological states such as ischemia and hypoxia has long been recognized.  Studies 

of gas transport from blood to tissue date back to the pioneering work of Krogh [105] in 1919, and 

were mainly focused on O2 transport. These studies sought certain quantities of interest: i) tissue O2 

extraction fraction (OEF), defined as the weighted average inlet-outlet gas concentration, which is an 

important indicator of tissue viability; and ii) (cerebral) metabolic rate of O2 ((C)MRO), which 

correlates BF and the metabolic rate of O2 consumption. We refer to [106] for a precise definition of 

these quantities and their inter-correlation.  As established more recently, these two definitions are not 

sufficient for estimating tissue oxygen (gas) levels since the heterogeneity of the microcirculation leads 

to heterogeneity in gas gradients, chemical interactions among species, and the spatial distribution of 

gas in tissue.  This section reviews models of gas transport in tissue and blood.  We do not consider 

models devoted to the study of BOLD signals in medical imaging but refer to [65]. 

 

4.1 Modeling gas transport in tissue 
 

4.2.1.  Krogh cylinder model.   

 

The Krogh cylinder model [107] defines an array of parallel, evenly spaced oxygen-delivering vessels 

(e.g., capillaries) that supply oxygen exclusively to tissue cylinders surrounding each vessel.  In this 

model, tissue oxygen consumption is assumed constant, the tissue partial pressure of oxygen (𝑃𝑂2
𝑇 ) at 

the capillary wall equals the average capillary PO2, axial diffusion of oxygen is neglected, and tissue 

oxygen solubility and diffusivity are uniform.  Eq. 7 gives the partial differential equation for the partial 
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pressure 𝑃𝑖
𝑇of species 𝑖 in the cylindrical tissue surrounding a capillary: 

 0 = −𝐷𝑖
𝑇  (

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑃𝑖
𝑇

𝜕𝑟
)) + 𝑅̇𝑖

𝑇 , (7) 

 

where 𝑟  is the radial coordinate and 𝐷𝑖
𝑇  and 𝑅̇𝑖

𝑇  are the constant tissue diffusivity and 

source/consumption rate (possibly depending on other chemicals), respectively.  An explicit solution 

of Eq. 7 can be found using a Bessel function expansion that gives the radial variation in tissue gas 

partial pressure as a function of radial distance from the vessel. Although the model includes many 

simplifications and often does not yield predictions that are consistent with experimental measures, 

the Krogh model provides an important foundation in the study of oxygen exchange with tissue and 

has been used and improved upon by several models. 

 

The Krogh model has been extended to include other effects including time-dependent transport [108], 

𝑃𝑂2
𝑇  -dependent O2 consumption (e.g., Michaelis-Menten kinetics) [109-111], myoglobin-facilitated 

tissue transport and intravascular resistance to radial oxygen diffusion. Myoglobin (Mb) can bind and 

release oxygen in the same way as the hemoglobin molecule, and thus movement of myoglobin can 

increase oxygen diffusion (known as myoglobin facilitation).  In several models, the term for total 

oxygen flux is altered to include the effects of Mb facilitation [112-114], and the models predict that 

this extra term provides tissue with some resistance to hypoxia by increasing oxygen diffusion to low-

PO2 regions.  Capillary intravascular resistance arises from the PO2 drop between the center of a red 

blood cell and the capillary wall and has been shown to depend on capillary diameter and red blood 

cell velocity [57, 115].  This factor can also be approximated in models by using a flux boundary 

condition on tissue PO2 at the outer edge of the capillary wall instead of the continuous PO2 condition 

of the Krogh model.  Detailed reviews about the Krogh model and its applicability in standard and 

modified formulations are provided in [103, 104, 116, 117]. 

 

4.2.2.  Compartment models.  

An alternative, yet related, simplified approach is represented by well-stirred compartment models, in 

which the tissue is characterized by a single, uniform compartmental concentration/pressure. The 

compartmental equation in the tissue can be formally obtained from 3D balance equations, performing 

volume averaging, yielding:  

 
𝑉𝑇

𝑑𝑃̅𝑖
𝑇

𝑑𝑡
= ∑ 𝑘𝑚(𝑃̅𝑖

𝑚 − 𝑃̅𝑖
𝑇) + 𝑅̇𝑖

𝑇 ,

𝑚

 (8) 

 

where bars indicate average values, 𝑉𝑇 is the tissue compartment volume and exchange with other 

compartments (including blood and a possible subdivision in interstitial and cell phases) with 

concentration 𝑃̅𝑖
𝑚 is considered. This procedure and its connection with the Krogh model are outlined 

in [118]. 

 

Recent models of gas delivery adopt a fully spatially-dependent description of the gas content in tissue, 

where diffusive processes occur due to spatial gradients. In [38], the concept of “capillary-perfused 

tissue” is introduced, in which the tissue description is enriched with terms representing gas exchange 

with embedded capillaries. Porous medium approximations of the tissue carried out in [39, 119], where 

a seepage interstitial velocity computed from a Darcy model conveys the gas, are conceptually similar 

though mathematically more involved.   
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4.2 Modeling gas transport in blood 
 

A prototype molar balance in blood for a generic gaseous species 𝑖 is formulated in [120], according 

to the following partial differential equation: 

 

 𝜕𝐶𝑖
𝐵

𝜕𝑡
+ 𝑣𝐵 ∙ ∇𝐶𝑖

𝐵 − 𝐷𝑖∆𝐶𝑖
𝐵 = 𝑅̇𝑖

𝐵, (9) 

where 𝑣𝐵  is the advective blood velocity (consistently computed, see Sect. 3 or prescribed), 𝐷𝑖
𝐵 the gas 

diffusion coefficient in blood and 𝑅̇𝑖
𝐵 the reaction transform rate in blood. The gas content (dissolved 

component) 𝐶𝑖
𝐵  and its partial pressure 𝑃𝑖

𝐵 are related according to Henry’s law 𝑃𝑖
𝐵 = 𝐶𝑖

𝐵/𝛼𝑖 .  In 

compartmental approaches, for example [121-123], Eq. 9 reduces to   

 
𝜕𝐶𝑖

𝐵

𝜕𝑡
+ 𝑄 [𝐶𝑖,𝑖𝑛

𝐵
 − 𝐶𝑖,𝑜𝑢𝑡

𝐵
] + ∑ 𝑘𝑚(𝐶𝑖̅

𝑚 − 𝐶𝑖̅
𝐵) = 𝑅̇𝑖

𝐵

𝑚

 (10) 

 

In [120, 124, 125], there are multiple vessel compartments, and thus Eq.10 also includes the cascade 

of gas from one vessel hierarchy to the next.   

 

When dealing with a spatially resolved form of Eq. 9, as with blood flow models, a radial gas 

concentration profile is prescribed via cross-sectional averaging. A mathematical characterization of 

this procedure can be found for a generic solute in [126] and specifically for O2 in [30]. 

 

In Eq. 9, blood is treated as a single-phase continuum and the 𝑖-th gaseous species is supposed to have 

the same partial pressure. More generally, since gases like O2, CO2 and NO are carried in blood in 

hemoglobin-bounded form and dissolved form, a two-phase model of blood (plasma and RBC fractions) 

is a more suitable choice to represent a wider range of conditions. In such a representation, the total 

concentration in blood is given by  

 

              𝐶𝑖,𝑡𝑜𝑡 = 𝛼𝑝𝑙,𝑖𝑃𝑝𝑙,𝑖(1 − 𝐻𝐷,𝑖) + 𝛼𝑅𝐵𝐶,𝑖𝑃𝑅𝐵𝐶,𝑖𝐻𝐷 + 𝑐𝐻𝑏,𝑖𝐻𝐷𝑆, (11) 

 

where the subscript 𝑝𝑙 indicates the fraction dissolved in plasma and the subscript 𝑅𝐵𝐶 indicates the 

fraction dissolved in the RBCs; where 𝐻𝐷,𝑖 and (1-𝐻𝐷,𝑖) are the hemoglobin bound and free fractions, 

respectively; and where 𝑐𝐻𝑏,𝑖 is the hemoglobin carrying capacity for species 𝑖. Typically, the free part 

in the plasma and the free part in the RBCs are assumed to be at the same partial pressure, so that 

𝑃𝑝𝑙,𝑖=𝑃𝑅𝐵𝐶,𝑖=𝑃𝑖
𝐵.  Also, local chemical equilibrium is usually assumed for the free and bound fraction 

of the gas. This introduces a saturation function 𝑆 = 𝑆(𝑃𝑖
𝐵), connecting the partial pressure of free and 

bound gas fractions. The most common function used to describe saturation is the Hill equation, which 

supposes a single-step reaction kinetic for O2 binding to Hb. A few models assume non-equilibrium 

kinetics, as in the Adair equation (see [103] for a complete discussion of this topic). In non-equilibrium 

conditions, separate balance equations are written for the bound and the dissolved fractions that include 

reaction terms between the different forms [127]. 

 

In smaller vessels like capillaries, continuum-based approaches like the one in Eq. 9 may fail to yield 

accurate results. Approaches based on discrete modeling of RBCs address this issue. Generally, these 

models work in the frame of reference of the erythrocyte, which simplifies the numerical treatment of 

the reaction between oxygen and hemoglobin in RBCs. This idea was first used by [58], who used an 

analytical model with a cylindrical RBC and the adjacent tissue to compute MTCs. In [87], a model 

with concentric layers around the capillary for wall, interstitial fluid, and the tissue is presented.  Recent 

contributions from this viewpoint can be found in [128]. 
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Detailed mathematical models of the acid-base chemistry of blood based upon mass action and mass 

balance equations have been also developed (see, for example, the very recent work in [129]). 

Transport of other species (e.g., CO2, CO, NO, etc) often affects the transport of oxygen and is thus 

also an important modeling consideration.  More precisely, CO2 shifts the hemoglobin-oxygen 

saturation curve, CO competes with oxygen for binding sites to Hb, and NO inhibits mitochondrial 

oxygen consumption.  Several studies have implemented such multi-species models, for example for 

oxygen and carbon dioxide [130-132]. Ye et al. [120] developed a compartmental model of oxygen-

carbon dioxide transport in the microcirculation that uses a Krogh cylinder approach and accounts for 

the coupling between oxygen and carbon dioxide transport.  The equations for steady-state oxygen-

carbon dioxide coupled transport in the microcirculation are given as: 

 

              

𝑄[𝑐𝑖,𝑔(0) − 𝑐𝑖,𝑔(𝐿)] − 𝐸𝑖,𝑔(𝑃𝑖,𝑔
𝐵 − 𝑃𝑛,𝑔) − 𝐹𝑖,𝑔(𝑃𝑖,𝑔 − 𝑃𝑛−𝑖,𝑔) = 0,  

 

for i = 1, 2, …, n-2; g = 0,1 

(12) 

 

 

              

∑ 𝐸𝑗,𝑔(𝑃𝑗,𝑔 − 𝑃𝑛,𝑔) + 𝑀𝑔𝑉𝑇 = 0𝑛−1
𝑗=1 ,  

 

for i = n; g = 0,1 

(13) 

 

where ci,g is the average total concentration of gas (g=0 for oxygen, g=1 for carbon dioxide) over the 

vessel cross-section, Mg is the metabolic rate, VT is the tissue volume, Fi is the countercurrent exchange 

of gas (omitted in the model), Ei is the diffusion conductance, and Pi is the partial pressure in the i-th 

compartment.  The model predicts the distributions of PO2, PCO2, saturation, and pH within the vessel 

and tissue compartments and includes the Bohr effect and Haldane effect.  The effects of the radial 

variation in PO2 and PCO2 and the difference between the metabolic rates of the vessel wall and tissue 

are included in the model to improve the accuracy of oxygen and carbon dioxide vessel-tissue 

conductance predictions.  Overall, including the transport of multiple species significantly improves 

predictions of tissue oxygenation when compared with models including only transport of a single 

species. 

 

 

4.3 Modeling blood-tissue gas exchange 
 

Blood-tissue exchange occurs mainly in capillary beds, although arterioles are also sites of important 

gas exchange in some cases. For example, it has been observed that in the hamster retractor muscle, 

two-thirds of oxygen is exchanged in the arterioles and the rest in capillaries while cerebral cortical 

capillaries unload about twice the amount of oxygen to the brain tissue as compared to arterioles [133].  

 

4.4.1.  Fick’s Law models 

 

From a mathematical viewpoint, a straightforward representation of the exchange process prescribes a 

proportionality relation between gas concentration in different compartments (for example, between 

venous and tissue concentration [126, 134] or between arteriolar and tissue concentration [135] ). In 

these models, the transfer of gas through the vessel wall is defined according to Fick’s law:  

 𝐽 = ∆N
∆t⁄  =   𝐷𝐴 ∆C

∆x⁄  =  𝐿𝑝𝐴∆𝐶 (14) 

where 
∆N

∆t
is the amount of the gas substance exchanged per unit time, 𝐷 is the diffusion coefficient for 
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the substance through the vessel wall, 𝐴  is the surface area available for diffusion, ΔC is the 

concentration difference across the vessel wall (𝛥𝐶 =  𝐶𝑖
𝐵 − 𝐶𝑖

𝑇),  ∆x is the thickness of the vessel 

wall (~1 μm) and 𝐿𝑝 is the permeability of the capillary wall defined as 𝐷/∆x [136]. The value 𝐶𝑖
𝑇 can 

be a given, fixed, parameter or can be computed from a consistently coupled model for tissue as in [30, 

59, 103].  

 

In some approaches stemming from modifications of the Krogh model, a mass transfer coefficient 

(𝑀𝑇𝐶) is introduced, defined as 𝑀𝑇𝐶 =
J̅

𝑃𝑖
𝐵−𝑃𝑖

𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , where the bars indicate the average of the quantity per 

unit area of the vessel wall [104]. The 𝑀𝑇𝐶, which can be considered as a permeability of the wall 

appearing in Eq.(12) [103], relates the PO2 drop from the intravascular space to the O2 flux across the 

capillary wall. Since the 𝑀𝑇𝐶 depends on hematocrit, prescribing it introduces the influence of RBC 

flow on tissue oxygenation. Occasionally, the 𝑀𝑇𝐶 quantity is expressed as a function of the non-

dimensional Nusselt [104] or Sherwood numbers [137].  

 

McGuire and Secomb [113, 114] developed a model of oxygen transport to exercising skeletal muscle 

that is an example of an extended Krogh model that includes the effects of the decline in oxygen 

content of blood flowing along capillaries, intravascular resistance to oxygen diffusion, and 

myoglobin-facilitate diffusion.  The model predicts that oxygen consumption rates depend on both 

convective and diffusive limitations on oxygen deliver when oxygen demand is high.  The low PO2 

gradient predicted under conditions of high tissue oxygen demand were consistent with experimental 

measures. 

 

4.3.1 Green’s functions model    

Secomb et al. [138-140] introduced a steady-state model of oxygen transport in capillary networks and 

surrounding tissue based a Green’s function method (Eqs. 15-17).  The model utilizes techniques from 

potential theory which seek to reduce the number of unknowns needed to represent the oxygen field.  

Vessels are modeled as discrete oxygen sources, and the tissue regions are considered oxygen sinks; 

the resulting oxygen concentration at a tissue point is calculated by summing the oxygen fields (called 

Green’s functions) produced by each of the surrounding blood vessels. The tissue is assumed 

homogeneous with respect to oxygen diffusivity (D) and solubility (α), and Eq. 15 is obtained from 

the conservation of mass where P is tissue PO2 and M(P) is the tissue consumption rate (usually 

assumed as a constant value or according to Michaelis-Menten kinetics).  The Green’s function G(x,xi) 

is the solution of Eq. 16 and is defined as the PO2 at a point x resulting from a unit point source at xi. 

The PO2 is given by Eq. 17 where qi represents the distribution of source strengths.  A great benefit of 

this model is the ability to predict tissue oxygenation for a heterogeneous network of capillaries in 

three dimensions.  The model predicted a much lower minimum tissue PO2 than would be predicted 

by a corresponding Krogh model. 

 𝐷𝛼∇2𝑃 = 𝑀(𝑃)  (15) 

 𝐷𝛼∇2𝐺(𝑥, 𝑥𝑖) = 𝛿(𝑥 − 𝑥𝑖) (16) 

 𝑃 = ∑ 𝐺(𝑥, 𝑥𝑖)𝑞𝑖

𝑖

 (17) 

More detailed descriptions of the blood-tissue gas exchange are considered by some authors. They 

usually consider a single vessel and partition the vessel wall into three or four layers (endothelium, 

smooth muscle layer and adventitia). They study gas transport in the radial direction in the vessel 

according to diffusion-reaction equations solved by Bessel expansions. Such a model is used in [127] 
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in the context of O2-CO2 interaction or in [141] in the case of NO-O2 interaction, and in several models 

dealing with artificial RBC substitutes [142].  

 

 

5 Modeling of passive and active regulation of microvessels 
 

When modeling the regulation of blood flow through a network, there are several forces acting on a 

vessel wall that should be considered.  First, blood flow creates a pressure inside the vessel lumen that 

distends the vessel.  Pressure external to the vessel created from the surrounding fluids, organs, and 

cytoskeletal structures tends to compress the vessel.  The difference between the internal and external 

pressures is known as transmural pressure.  According to the Law of Laplace, the circumferential 

tension generated within the vessel wall exactly balances the transmural pressure so that the diameter 

of the vessel is maintained.   

 

The tension that is developed within the vessel wall can be divided into two main components: passive 

tension and active tension.  Passive tension is generated by the structural components of the vessel 

wall such as collagen and elastin fibrils; active tension is generated in the vessel wall due to the 

contraction of smooth muscle cells.  Vasoactive agents interact with the vascular smooth muscle (VSM) 

of arterioles to cause a change in muscle tone and, consequently, vessel diameter.  An increase in VSM 

tone causes an increase in active tension and thus a constriction of the vessel; a relaxation of VSM 

cells causes a decrease in active tension and a dilation of the vessel. In this section, different approaches 

used to model blood flow regulation are reviewed, and the mechanisms to which vessels respond are 

summarized.   

 

5.1 Wall mechanics models   

Several studies have incorporated the passive and active components of wall tension when modeling 

vessel mechanics (e.g., as in Eq. 18 where T is wall tension).  Gonzalez-Fernandez and Ermentrout 

[143] include passive and active length-tension relationships of smooth muscle in their model to predict 

the occurrence of vasomotion in small arteries.  Passive tension is described in the model by a nonlinear 

function that includes terms for stiff collagen, compliant elastin fibers, and general vessel wall stiffness. 

Maximally active tension is represented by a modified Gaussian function.  The resulting active tension 

is assumed to be the product of the maximally active tension and a factor between zero and one 

determined by intracellular calcium levels.  Achakri et al. [144] propose a similar mechanism for the 

appearance of vasomotion that is dependent on the active behavior of vascular smooth muscle.  

Circumferential stress in the arterial wall is defined by the sum of passive stress (completely relaxed 

muscle) and active stress (contracted muscle).  The nonlinear function for passive stress was based on 

experimental measures. The function for active stress reflects length-tension characteristics of muscle, 

and the level of muscle contraction is assumed to depend on the degree of activation of the contractile 

proteins, which depends on the concentration of calcium ions in the intracellular space. The rate of 

change of calcium is assumed to depend on arterial pressure and on endothelial shear stress.  

 

Similar mechanical definitions based on length-tension characteristics described in [143, 144] are used 

in numerous theoretical models of blood flow regulation [30, 125, 145-148].  In these models, the 

passive tension is defined as an exponential function of diameter with parameters estimated from 

several experimental studies giving pressure-diameter curves for vessels with diameters ranging from 

40 to 300 μm (Eq. 19). The exponential function represents the observed nonlinear behavior of tension 

increasing rapidly as diameter increases.  A Gaussian function is used to describe the maximally active 

tension generated by the VSM cells in the vessel wall (Eq. 20).  The activation function that determines 

the level of VSM tone varies between 0 and 1 and is assumed to be a sigmoidal function (Eq. 21) of a 

stimulus function that depends on linear combinations of various factors (see Section 5.3, Eq. 22)).   In 
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the studies that incorporate this description of wall tension the model predictions are compared with 

experimental data and show a good fit [125, 145, 147, 148].  
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Ursino and colleagues [149-151] have employed a similar modeling approach in which the inner radius 

of a vessel is computed from the equilibrium of forces acting on the vessel wall (Law of Laplace).  

Wall tension is considered the sum of elastic, smooth muscle, and viscous tensions.  Regulatory 

mechanisms are assumed to act on the smooth muscle tension of resistance vessels (i.e. arterioles).  In 

these models, the relationship between active tension and inner vessel radius depends on an activation 

factor that represents the degree of smooth muscle contraction in a given vessel.  The dynamics of 

various regulatory mechanisms are implemented using a first-order low-pass filter characterized by a 

gain function and time constant.   

 

5.2 Tube law models 

In the absence of branching, a short section of vessel can be considered as a cylindrical compliant tube.  

One-dimensional blood flow models are obtained by averaging the incompressible Navier-Stokes 

equations (with constant viscosity) over a vessel cross section given some assumptions about the radial 

displacement and elastic material properties of the vessel wall.  The following first-order, nonlinear 

hyperbolic system provides the one-dimensional equations for blood flow in elastic vessels: 

 

𝜕𝐴

𝜕𝑡
+

𝜕𝑞

𝜕𝑥
= 0 

 

(23) 

 𝜕𝑞

𝜕𝑡
+

𝜕

𝜕𝑥
(𝛼

𝑞2

𝐴
) +

𝐴

𝜌

𝜕𝑝

𝜕𝑥
= −𝑓 

 

(24) 

 

where x is the axial coordinate along the longitudinal axis of the vessel, t is time, A(x,t) is the cross-

sectional area of the vessel, q(x,t) is blood flow, p(x,t) is the average internal pressure over a cross 

section, f(x,t) is the friction force per unit length of the tube, ρ is the fluid density, and α is a coefficient 

that depends on the velocity profile assumed in the system.   

 

A complete derivation of these equations is provided in [60].  A tube law is implemented to close the 

system, where the transmural pressure (i.e., the difference between the internal pressure p(x,t) and 

external pressure pe(x,t)) is a function of cross-sectional area A(x,t) of the vessel and other parameters 

related to the geometric and mechanical properties of the system such the elasticity and stress-strain 
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response curves for a vessel.  Multiple different functions can be used to express this pressure-area 

relationship.  Appropriate choices for such functions and parameters for both arteries and veins are 

described in [152].    Muller and Toro implement this tube law modeling approach when studying 

cerebral venous flow [46] and when developing a global multiscale model for the human circulation 

[152]. 

 

Similarly, fluid dynamic equations are derived from the continuity equation and momentum equation 

by Olufsen et al. [153].  In such models, the pressure-area relationship is shown to depend on Young’s 

modulus (E) in the circumferential direction.  Young’s modulus is assumed to vary based on vessel 

type to reflect the elastin content of the vessel wall at different points along the arterial tree.  For 

example, since small arteries are stiffer, E is chosen to be a function of vessel radius based on 

compliance estimates.  In this way, the structural components of vessels are incorporated correctly into 

theoretical models. 

 

5.3 Factors eliciting a vasodilatory response in resistance vessels 
 

The models described in Sections 5.1 and 5.2 describe changes in vessel diameter due to various stimuli.  

Depending on the tissue and the metabolic conditions, vessels are known to respond to a great 

multitude of factors, including: pressure (myogenic response), shear stress, ATP concentration 

(conducted metabolic response), local metabolic factors, carbon dioxide concentration, hormones, 

neurological stimuli, and tubuloglomerular feedback.  For example, in exercising muscle, metabolites 

from contracting muscle can cause direct vasodilation of resistance arterioles or indirect inhibition of 

noradrenaline release from nerves to prevent vasoconstriction [154].  Vasodilatory factors also affect 

vessels to very different extents depending on the size of the vessel.  For example, sympathetic 

innervation is more pronounced in small vessels while the endothelium of large resistance vessels 

releases dilatory factors like nitric oxide at a much higher rate than small vessels [155].  

Responsiveness to pressure (myogenic responsiveness) is expressed more distinctly in smaller vessels 

than larger vessels in some cases [155].  Despite differences in reactivity between large and small 

vessels, it has been shown that large and small vessels react in a coordinated manner, which is critical 

for an appropriate vasodilatory response.  Network geometry also plays a role vasoactive responses.  

For example, the anatomical relationship between pre- and post-capillary vessels allows for the 

diffusive exchange of substances between these vessels, providing important information about distal 

tissue regions to proximal vessels in the network [156].   

 

 

6 Focus: modeling of the retinal circulation 

 

Various modeling techniques described in this article have been applied to understanding the geometry, 

mechanics and hemodynamics of the retinal microcirculation under both healthy and disease 

conditions. In this section, the various modeling techniques and methods used to study the retinal 

circulation are reviewed.  

 

6.1 Anatomic summary 
 

The retina is the sensitive tissue at the back of the eye that collects the visual signal and sends it to the 

brain in the form of a neural signal. These tasks imply high oxygen demands. The retina receives 

oxygen from two distinct vascular systems [157]: the retinal blood vessels and the choroidal blood 

vessels (see 3). The first system specifically provides nourishment to the innermost retinal layers, while 

the choriocapillaris provide nourishment via diffusion to the outermost retinal layers, which are 

normally avascular. Oxygenated blood is supplied to the retina by the central retinal artery (CRA) 
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which, at the entrance of the optic nerve head, is approximately 170 m in diameter. The CRA branches 

into the superior and inferior papillary arteries, which in turn divide again, with each branch supplying 

roughly a quadrant of the retina. The major branching arteries are approximately 120 m in diameter. 

In the posterior retina, the fine arterioles that arise by side-arm branching leave the main arteries and 

enter the inner plexiform and ganglion cell layers. Only capillaries are found as deep as the inner 

nuclear layer. The venous system of the retina usually mirrors the arteriolar circulation. De-oxygenated 

blood is drained from the capillaries into successively larger veins that eventually converge into the 

central retinal vein (CRV). At the entrance of the optic nerve head, the CRV is approximately 220 m 

in diameter. 

  

 
Figure 3. Diagram of the lateral view of the eye (left) and of the retinal thickness with its blood 

supply system (right).   

 

6.2 Geometric models of blood flow in the retinal circulation    
 

Takahashi et al. [34, 51] developed a model of the microvasculature of the human retina using a 

dichotomous branching structure. The model included arterioles stemming from the CRA, capillaries 

and venules converging into the CRV. Symmetric as well non-symmetric networks were considered.  

The model was used to quantify parameters such as blood pressure, blood flow, blood velocity, shear 

rate, and shear stress as a function of vessel diameter in the retinal microcirculation.  Ganesan et al. 

[158] introduced a more realistic network model of the retinal using confocal microscopy images from 

a mouse retina to develop a complex network of microvessels that are distributed non-uniformly into 

multiple distinct retinal layers at varying depths.  In the model, capillaries were modeled as a circular 

mesh consisting of concentric rings along which several uniformly distributed nodes represent 

capillary vessels.  The study defined a series of rules that explains the process of connecting the 

capillary network to arterial and venous networks to provide a complete and comprehensive vascular 

network of the retinal circulation. The model predicted a non-uniform blood hematocrit in the retina.  

In  [159], Aletti et al. studied fluid-structure interactions in a 3D network representing the inferior 

temporal arteriole tree in the human retina. Typical diameters of the network were between 70 µm and 

160 µm. They proposed a simplified model that could be used to solve the fluid problem on a fixed 

domain, where Robin-like boundary conditions represented the effect of the solid wall. In [160], Causin 

et al. adapted the geometry proposed by Takahashi in [34] to describe the retinal network. Blood flow 

and pressure drop in each vessel were related through a generalized Ohm's law featuring a conductivity 

parameter, function of the area and shape of the vascular cross section. The model was used to study 

the response of the network to different interstitial and outlet pressures (or IOP). Phenomena of flow 

plateau, choking and flow diversion from one branch of the system to the other were predicted. 
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6.3 Retinal blood flow regulation models 

 

Blood flow is regulated in the retina according to mechanistic responses to intraluminal pressure 

(myogenic response), shear stress, metabolite concentrations, and neural stimuli.  Arciero et al. [22] 

developed a model that assessed the relative contributions of myogenic, shear, conducted metabolic, 

and carbon dioxide responses to blood flow in the retina.  The model predicted that the metabolic 

responses were most significant in obtaining autoregulation of flow.  This model has served as a 

foundation upon which more recent models have been developed to combine a mechanistic description 

of blood flow autoregulation in the retinal microcirculation with the mechanistic models described in 

Sect.3. Arciero et al. [148], Carichino et al. [161] and Cassani et al. [162] have implemented Krogh-

type models within a compartmental representation of the retinal microcirculation. These models yield 

predictions of blood flow that are consistent with experimental measures but do not capture the spatial 

variation of oxygen levels in retinal tissue.  In [30], Causin et al. coupled a wall mechanics model with 

a model for oxygen transport in the retina and quantified the effects of blood pressure, blood rheology, 

arterial permeability to oxygen, and tissue oxygen demand on the distribution of oxygen in retinal 

blood vessels and tissue. 

 

 

6.4 Models of gas transport in the retinal tissue 
 

Several models have been developed to estimate oxygen profiles in the avascular region of the retina 

(outer retina). Cringle and colleagues studied (see, e.g., [163],[164]) oxygen delivery to the outer retina 

by 1D reaction-diffusion equations with constant or linear oxygen consumption in the region 

corresponding to photoreceptor mitochondria. The source of oxygen from choroid (not represented) 

was modeled as a boundary condition. The inclusion of the inner retinal layers along with the 

embedded blood sources in the inner retinal layer was proposed by Roos [165]. Oxygen sources were 

embedded in the inner retina via a prescribed flux term depending on blood convection. The effect of 

arterial occlusion was investigated in which the supply of blood from the inner retina was blocked. 

The results suggested that extreme hyperoxia would be needed to make the choroid capable of 

supplying oxygen to the entire retina by itself.  
 

One of the difficulties in modeling gas transport in the retina is that important parameters such as the 

average thickness of the retina, the choroidal tension and the structure of the inner retinal 

vascularization present relevant intra and inter-species differences. These model parameters are often 

fit to experimental data. For example, in [166] it was found by linear regression that the most 

metabolically active region extended from about 75% to 85% of the retinal depth from the vitreous. 
 

 

6.5 Mechanistic models in retinal circulation  

 

The vasculature system of the retina is subjected to multiple mechanical forces. Intraocular pressure 

(IOP) from the anterior chamber of the eye, cerebral spinal fluid (CSF) pressure from the brain and 

tensions that come from the sclera exert significant biomechanical actions. The role of these actions 

are especially relevant near the entrance of the optic nerve head (ONH), where the nerve bundles pass 

through a sieve-like portion of sclera called the lamina cribrosa. The lamina cribrosa is also pierced by 

the CRA and CRV.  Several mathematical models have described the mechanical response of the optic 

nerve head to variations in IOP, scleral tension and CSF pressure and its correlation to pathological 

conditions, in particular open angle glaucoma (see, e.g., [167-170]). In [171], Harris et al. analyzed the 

role of mathematical models in assessing how hemodynamic alterations may contribute to open angle 

glaucoma pathophysiology. A recent model by Guidoboni et al. [172] was used to predict the effects 
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of IOP, CSF pressure, and scleral tension on the deformation of the lamina cribrosa and the resulting 

effect on the flow of blood through the CRA and CRV. This information was incorporated into a more 

comprehensive model of the retina that accounts for the compression of the CRA/CRV by the lamina 

as well as blood flow regulatory mechanisms while IOP and mean arterial pressure (MAP) are varied 

[173].  The model represents veins as Starling resistors and accounts for venous compressibility.  The 

model predicts that an increase in IOP or decrease in MAP do not have the same effect on ocular 

perfusion pressure due to the built-in compensatory mechanism in the veins to increase blood pressure 

in the retinal vasculature.  In [174], Causin et al. demonstrated the relationship between stress state in 

the lamina cribrosa and blood perfusion using a poroelastic material model where blood vessels are 

viewed as pores in a solid elastic matrix. The model was used to investigate the influence on the 

distributions of stress, blood volume fraction (or vascular porosity) and blood velocity within the 

lamina cribrosa due to different levels of IOP and different mechanical constraints at the boundary of 

the lamina. The model simulations suggest that the degree of fixity of the boundary constraint strongly 

influences the lamina's response to IOP elevation. 
 
 

7 Conclusions and perspectives  

 

It was in 1661 that the physiologist M. Malpighi published his treatise “De pulmonibus observationes 

anatomicae” where he exposed the results of his observations of frog pulmonary alveoli obtained with 

a single lens microscope. His studies revealed for the first time the existence of a very fine network of 

vessels connecting arteries and veins. The importance of this discovery, and all the successive studies 

opened by it, is major. The microcirculation plays a fundamental role in the homeostasis of the body. 

Microcirculatory disorders are major contributors to morbidity and mortality. In the past few decades, 

much progress has been made in the mathematical and computational modeling of these complex 

systems. Their hierarchical structure includes at least three modeling scales, ranging from the cellular 

level to the vessel network level. There is a strong coupling of microvessels with the surrounding 

parenchymal tissue and cells. Feed-forward and feedback interactions have been envisaged [175]. The 

applicability of high performance computing techniques favors large scale simulations, based on 3D 

anatomic models. This will be a growing trend in future models.  However, important gaps must still 

be filled.  For example, to what extent can single vessel simulations be extended to a network of 

thousands of vessels? Is the information from a single RBC tractable (and meaningful) to a much larger 

scale? What are appropriate upscaling techniques to transfer information between scales? These are 

only a few aspects that must be considered to advance in this field.  Finally, we note that we did not 

review the fundamental topic of drug delivery in this study.  The microcirculation is the ultimate site 

of exchange of substances/molecules and also functions as an important route for clearance. The 

delivery of drugs to certain organs can be difficult, such as in the brain due to the tight blood-barrier. 

Studies and numerical simulations of drug delivery rely on the precise knowledge of microcirculatory 

mechanisms summarized in this study. 

 

 

Conflict of Interest 

The Authors declare no conflict of interest 



22 
 

AIMS Biophysics  Volume x, Issue x, 1-X Page. 
 
 

 

Bibliography 
 
1. Tuma, R., W.N. Duran, and L.K. (Editors), Microcirculation. 2008, Elsevier. 
2. Gutterman, D.D., et al., The Human Microcirculation: Regulation of Flow and Beyond. Circ Res, 2016. 118(1): p. 

157-72. 
3. The Physiology and Pharmacology of the Microcirculation, ed. N. Mortillaro. Vol. I. 1983: Elsevier. 
4. Dalkara, T., Cerebral Microcirculation: An Introduction. 2015, Springer Berlin Heidelberg. p. 655-680. 
5. Navar, L.G., et al., The Renal Microcirculation. Comprehensive Physiology, 2011: p. 550–683. 
6. Kvietys, P.R., The Gastrointestinal Circulation. 2010: Morgan & Claypool Life Sciences. 
7. Ivanov, K.P., Circulation in the lungs and microcirculation in the alveoli. Respir Physiol Neurobiol, 2013. 187(1): p. 

26-30. 
8. Murray, A. and G. Dinsdale, Imaging the Microcirculation. Microcirculation, 2016. 23(5): p. 335-336. 
9. Leahy, M.J., Microcirculation Imaging. 2012: John Wiley & Sons. 
10. Eriksson, S., J. Nilsson, and C. Sturesson, Non-invasive imaging of microcirculation: a technology review. Med 

Devices (Auckl), 2014. 7: p. 445-52. 
11. Secomb, T.W., et al., The role of theoretical modeling in microcirculation research. Microcirculation, 2008. 15(8): 

p. 693-8. 
12. Lee, J. and N.P. Smith, Theoretical modeling in hemodynamics of microcirculation. Microcirculation, 2008. 15(8): 

p. 699-714. 
13. Popel, A.S. and P.C. Johnson, Microcirculation and Hemorheology. Annu Rev Fluid Mech, 2005. 37: p. 43-69. 
14. Gompper, G. and D.A. Fedosov, Modeling microcirculatory blood flow: current state and future perspectives. 

Wiley Interdiscip Rev Syst Biol Med, 2016. 8(2): p. 157-68. 
15. Secomb, T.W., Blood Flow in the Microcirculation. Annual Review of Fluid Mechanics, 2017. 49: p. 443-461. 
16. Liu, D., et al., Computational analysis of oxygen transport in the retinal arterial network. Current eye research, 

2009: p. 34(11), 945-956. 
17. Gould, I.G. and A.A. Linninger, Hematocrit distribution and tissue oxygenation in large microcirculatory networks. 

Microcirculation, 2015: p. 22(1), 1-18. 
18. Reichold, J., et al., Vascular graph model to simulate the cerebral blood flow in realistic vascular networks. . 

Journal of Cerebral Blood Flow & Metabolism, 2009: p. 29(8), 1429-1443. 
19. Guibert, R., C. Fonta, and F. Plouraboué, A new approach to model confined suspensions flows in complex 

networks: application to blood flow. Transport in porous media, 2010: p. 83(1), 171-194. 
20. Müller, L.O. and E.F. Toro, Enhanced global mathematical model for studying cerebral venous blood flow. Journal 

of biomechanics, 2014: p. 47(13), 3361-3372. 
21. Ursino, M. and C.A. Lodi, A simple mathematical model of the interaction between intracranial pressure and 

cerebral hemodynamics. . Journal of Applied Physiology, 1997: p. 82(4), 1256-1269. 
22. Arciero, J.C., B.E. Carlson, and T.W. Secomb, Theoretical model of metabolic blood flow regulation: roles of ATP 

release by red blood cells and conducted responses. Am J Physiol Heart Circ Physiol, 2008: p. 295(4),H1562-H1571. 
23. Takahashi, T., et al., A mathematical model for the distribution of hemodynamic parameters in the human retinal 

microvascular network. . Journal of biorheology, 2009: p. 23(2), 77-86. 
24. Gabryś, E., M. Rybaczuk, and A. Kędzia, Fractal models of circulatory system. Symmetrical and asymmetrical 

approach comparison. Chaos, Solitons & Fractals, 2005: p. 24(3), 707-715. 
25. Olufsen, M.S., et al., Numerical simulation and experimental validation of blood flow in arteries with structured-

tree outflow conditions. Annals of biomedical engineering, 2000: p. 28(11), 1281-1299. 
26. David, T., S. Alzaidi, and H. Farr, Coupled autoregulation models in the cerebro-vasculature. Journal of Engineering 

Mathematics, 2009: p. 64(4), 403-415. 
27. Ganesan, P., S. He, and H. Xu, Development of an image-based network model of retinal vasculature. . Annals of 

biomedical engineering, 2010: p. 38(4), 1566-1585. 
28. Schröder, S., et al., A method for recording the network topology of human retinal vessels. Klinische 

Monatsblatter fur Augenheilkunde, 1990: p. 197(1), 33-39. 
29. Tuma, R.F., W.N. Durán, and K. Ley, Microcirculation. 2011: Academic Press. 
30. Causin, P., et al., Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: 

multiscale mathematical modeling and numerical simulation. Biomech Model Mechanobiol, 2016. 15(3): p. 525-
42. 

31. Pan, Q., et al., A one-dimensional mathematical model for studying the pulsatile flow in microvascular networks. 
Journal of biomechanical engineering, 2014: p. 136(1), 011009. 



23 
 

AIMS Biophysics  Volume x, Issue x, 1-X Page. 

32. Fry, B.C., T.K. Roy, and T.W. Secomb, Capillary recruitment in a theoretical model for blood flow regulation in 
heterogeneous microvessel networks. Physiological reports, 2013: p. 1(3), e00050. 

33. Su, S.W., M. Catherall, and S. Payne, The influence of network structure on the transport of blood in the human 
cerebral microvasculature. Microcirculation, 2012. 19(2): p. 175-87. 

34. Takahashi, T., Microcirculation in fractal branching networks. 2014: Springer Japan. 
35. Safaeian, N. and T. David, A computational model of oxygen transport in the cerebrocapillary levels for normal 

and pathologic brain function. Journal of Cerebral Blood Flow & Metabolism, 2011: p. 33(10), 1633-1641. 
36. Su, S.W., M. Catherall, and S. Payne, The influence of network structure on the transport of blood in the human 

cerebral microvasculature. Microcirculation, 2012: p. 19(2), 175-187. 
37. Erbertseder   K, R.J., Flemisch B, Jenny P, Helmig R, A Coupled Discrete/Continuum Model for Describing Cancer-

Therapeutic Transport in the Lung. 2017. 
38. Moschandreou, T., C. Ellis, and D. Goldman, Influence of tissue metabolism and capillary oxygen supply on 

arteriolar oxygen transport: a computational model. Math Biosci, 2011. 232(1): p. 1-10. 
39. Reichold, J., et al., Vascular graph model to simulate the cerebral blood flow in realistic vascular networks. J Cereb 

Blood Flow Metab, 2009. 29(8): p. 1429-43. 
40. Cristini V. and K.G. S., Computer modeling of red blood cell rheology in the microcirculation: a brief overview. Ann 

Biomed Eng, 2005. 33(12): p. 1724-7. 
41. Kim, S., et al., The cell-free layer in microvascular blood flow. Biorheology, 2009. 46(3): p. 181-9. 
42. Goldsmith, H.L., G.R. Cokelet, and P. Gaehtgens, Robin Fahraeus: evolution of his concepts in cardiovascular 

physiology. Am J Physiol, 1989. 257(3 Pt 2): p. H1005-15. 
43. Lipowsky, H.H., Microvascular rheology and hemodynamics. Microcirculation, 2005. 12(1): p. 5-15. 
44. Pries, A.R. and T.W. Secomb, Rheology of the microcirculation. Clin Hemorheol Microcirc, 2003. 29(3-4): p. 143-

8. 
45. Ganesan, H., S. He, and H. Xu, Modelling of pulsatile blood flow in arterial trees of retinal vasculature. 2011. 33(7): 

p. 810–823. 
46. Muller, L.O. and E.F. Toro, Enhanced global mathematical model for studying cerebral venous blood flow. J 

Biomech, 2014. 47(13): p. 3361-72. 
47. Secomb, T.W., Blood Flow in the Microcirculation. http://dx.doi.org/10.1146/annurev-fluid-010816-060302, 2017. 
48. Secomb, T.W. and A.R. Pries, Blood viscosity in microvessels: experiment and theory. C R Phys, 2013. 14(6): p. 470-

8. 
49. Pries, A.R. and T.W. Secomb, Microvascular blood viscosity in vivo and the endothelial surface layer. Am J Physiol 

Heart Circ Physiol, 2005. 289(6): p. H2657-64. 
50. Lipowsky, H.H., S. Usami, and S. Chien, In vivo measurements of "apparent viscosity" and microvessel hematocrit 

in the mesentery of the cat. Microvasc Res, 1980. 19(3): p. 297-319. 
51. Takahashi, T., et al., A mathematical model for the distribution of hemodynamic parameters in the human retinal 

microvascular network. Journal of Biorheology, 2009: p. 23(2), 77-86. 
52. Haynes, R.H., Physical basis of the dependence of blood viscosity on tube radius. Am J Physiol, 1960. 198: p. 1193-

200. 
53. Neofytou, P., Comparison of blood rheological models for physiological flow simulation. Biorheology, 2004. 41(6): 

p. 693-714. 
54. Liu, D., et al., Computational analysis of oxygen transport in the retinal arterial network. Curr Eye Res, 2009. 

34(11): p. 945-56. 
55. Ganesan, P., S. He, and H. Xu, Analysis of retinal circulation using an image-based network model of retinal 

vasculature. Microvasc Res, 2010. 80(1): p. 99-109. 
56. Linninger, A.A., et al., Cerebral Microcirculation and Oxygen Tension in the Human Secondary Cortex. Ann Biomed 

Eng, 2013. 41(11). 
57. Hellums, J.D., et al., Simulation of intraluminal gas transport processes in the microcirculation. Ann Biomed Eng, 

1996. 24(1): p. 1-24. 
58. Hellums, J.D., The resistance to oxygen transport in the capillaries relative to that in the surrounding tissue. 

Microvasc Res, 1977. 13(1): p. 131-6. 
59. Boas, D.A., et al., A vascular anatomical network model of the spatio-temporal response to brain activation. 

Neuroimage, 2008. 40(3): p. 1116-29. 
60. Formaggia, L., Quarteroni, A, Cardiovascular Mathematics:  Modeling and Simulation of the Circulatory System. 

2009, Milan, Italy: Springer-Verlag. 
61. Pries, A.R., et al., Red cell distribution at microvascular bifurcations. Microvasc Res, 1989. 38(1): p. 81-101. 
62. Gould, I.G., et al., Hematocrit Distribution and Tissue Oxygenation in Large Microcirculatory Networks. 

Microcirculation, 2015. 22(1): p. 1-18. 

http://dx.doi.org/10.1146/annurev-fluid-010816-060302


24 
 

AIMS Biophysics  Volume x, Issue x, 1-X Page. 

63. Sriram, K., M. Intaglietta, and D.M. Tartakovsky, Non-Newtonian Flow of Blood in Arterioles: Consequences for 
Wall Shear Stress Measurements. Microcirculation, 2014. 21(7): p. 628-39. 

64. Čanić, S., et al., Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through 

compliant axi‐symmetric vessels. Mathematical Methods in the Applied Sciences, 2003. 26(14): p. 1161-1186. 
65. Gagnon, L., et al., Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular 

Network Structure, Blood Flow, and Oxygenation. Front Comput Neurosci, 2016. 10. 
66. Lorthois, S., F. Cassot, and F. Lauwers, Simulation study of brain blood flow regulation by intra-cortical arterioles 

in an anatomically accurate large human vascular network. Part II: flow variations induced by global or localized 
modifications of arteriolar diameters. Neuroimage, 2011: p. 54(4), 2840-2853. 

67. Nair, P.K., et al., A simple model for prediction of oxygen transport rates by flowing blood in large capillaries. 
Microvasc Res, 1990. 39(2): p. 203-11. 

68. Pandey, H.M., D.S. Negi, and M.S. Bisht, The study of mathematical modelling of human blood circulatory system. 
International Journal of Mathematical Sciences and Applications, 2011. 1(2). 

69. Sharan, M. and A.S. Popel, A two-phase model for flow of blood in narrow tubes with increased effective viscosity 
near the wall. Biorheology, 2001. 38(5-6): p. 415-28. 

70. Namgung, B., et al., Two-phase model for prediction of cell-free layer width in blood flow. Microvasc Res, 2013. 
85: p. 68-76. 

71. Chebbi, R., Dynamics of blood flow: modeling of the Fåhræus–Lindqvist effect | SpringerLink. 2017. 
72. Verma S.R. and S. A., Analytical Study of A Two-Phase Model For Steady Flow of Blood in A Circular Tube. 

Internnational Journal of Engineering Research and Applications (IJERA), 2014(12 (6)): p. 01-10. 
73. Das, B., P.C. Johnson, and A.S. Popel, Effect of nonaxisymmetric hematocrit distribution on non-Newtonian blood 

flow in small tubes. Biorheology, 1998. 35(1): p. 69-87. 
74. Gupta, B.B., K.M. Nigam, and M.Y. Jaffrin, A Three-Layer Semi-Empirical Model for Flow of Blood and Other 

Particular Suspensions Through Narrow Tubes. Journal of Biomechanical Engineering, 2017. 104(2): p. 129-135. 
75. Walburn, F.J. and D.J. Schneck, A constitutive equation for whole human blood. 1976. 13(3): p. 201-210. 
76. Zaman, A., et al., Numerical and Analytical Study of Two-Layered Unsteady Blood Flow through Catheterized 

Artery, in PLoS One. 2016. 
77. Verma S.R. and S. A., Analytical Study of A Two-Phase Model For Steady Flow of Blood in A Circular Tube. 

International Journal of Engineering Research and Applications, 2014(12 (6)): p. 01-10. 
78. Cristini, V. and G.S. Kassab, Computer modeling of red blood cell rheology in the microcirculation: a brief overview. 

Ann Biomed Eng, 2005. 33(12): p. 1724-7. 
79. Secomb, T.W. and A.R. Pries, The microcirculation: physiology at the mesoscale. J Physiol, 2011. 589(Pt 5): p. 

1047-52. 
80. AlMomani, T.D., et al., Red blood cell flow in the cardiovascular system: a fluid dynamics perspective. Crit Rev 

Biomed Eng, 2012. 40(5): p. 427-40. 
81. Ju, M., et al., A review of numerical methods for red blood cell flow simulation. Comput Methods Biomech Biomed 

Engin, 2015. 18(2): p. 130-40. 
82. Ye, T., N. Phan-Thien, and C.T. Lim, Particle-based simulations of red blood cells-A review. J Biomech, 2016. 49(11): 

p. 2255-66. 
83. Tsubota, K. and S. Wada, Effect of the natural state of an elastic cellular membrane on tank-treading and tumbling 

motions of a single red blood cell. Phys Rev E Stat Nonlin Soft Matter Phys, 2010. 81(1 Pt 1): p. 011910. 
84. Nakamura, M., S. Bessho, and S. Wada, Spring-network-based model of a red blood cell for simulating mesoscopic 

blood flow. Int J Numer Method Biomed Eng, 2013. 29(1): p. 114-28. 
85. Hariprasad, D.S. and T.W. Secomb, Two-dimensional simulation of red blood cell motion near a wall under a lateral 

force. Phys Rev E Stat Nonlin Soft Matter Phys, 2014. 90(5-1): p. 053014. 
86. Pozrikidis, C., Numerical Simulation of the Flow-Induced Deformation of Red Blood Cells | SpringerLink. 2003. 
87. Eggleton, C.D., et al., Calculations of intracapillary oxygen tension distributions in muscle. Math Biosci, 2000. 

167(2): p. 123-43. 
88. Bagchi, P., Mesoscale simulation of blood flow in small vessels. Biophys J, 2007. 92(6): p. 1858-77. 
89. Sun, C. and L.L. Munn, Particulate Nature of Blood Determines Macroscopic Rheology: A 2-D Lattice Boltzmann 

Analysis, in Biophys J. 2005. p. 1635-45. 
90. Li X., S.K., Front tracking simulation of deformation and buckling instability of a liquid capsule enclosed by an 

elastic membrane. 2008. 227(10): p. 4998–5018. 
91. Pan T.-W., W.T., Dynamical simulation of red blood cell rheology in microvessels. Int. J. Numer. Anal. Mod, 2009. 

6: p. 455-473. 
92. Bessonov N., et al., Application of Hybrid Models to Blood Cell Production in the Bone Marrow. Mathematical 

Modelling of Natural Phenomena, 2011. 6(7): p. 2-12. 



25 
 

AIMS Biophysics  Volume x, Issue x, 1-X Page. 

93. Bessonov N., et al., Methods of Blood Flow Modelling. Mathematical Modelling of Natural Phenomena, 2016. 
11(1): p. 1-25. 

94. Munn, L.L. and M.M. Dupin, Blood Cell Interactions and Segregation in Flow. Ann Biomed Eng, 2008. 36(4): p. 
534-44. 

95. Pujo-Menjouet, L., Blood Cell Dynamics: Half of a Century of Modelling. Mathematical Modelling of Natural 
Phenomena, 2017. 11(1): p. 92-115. 

96. Imaia, Y., et al., Numerical methods for simulating blood flow at macro, micro, and multi scales. 2016. 49(11): p. 
2221–2228. 

97. Liu, Y. and W.K. Liu, Rheology of red blood cell aggregation by computer simulation. 2006. 220(1): p. 139–154. 
98. Liu Y., et al., Coupling of Navier–Stokes equations with protein molecular dynamics and its application to 

hemodynamics. International Journal for Numerical Methods in Fluids, 2004. 46(12): p. 1237-1252. 
99. Bagchi, P., P.C. Johnson, and A.S. Popel, Computational Fluid Dynamic Simulation of Aggregation of Deformable 

Cells in a Shear Flow. Journal of Biomechanical Engineering, 2017. 127(7): p. 1070-1080. 
100. B. Chung, P.C.J., A. S. Popel, Application of Chimera grid to modelling cell motion and aggregation in a narrow 

tube. International Journal for Numerical Methods in Fluids, 2017. 53(1): p. 105-128. 
101. Shipley, R.J. and S.J. Chapman, Multiscale modelling of fluid and drug transport in vascular tumours. Bull Math 

Biol, 2010. 72(6): p. 1464-91. 
102. R.N., P., Regulation of Tissue Oxygenation. 2011. 
103. Popel, A.S., Theory of oxygen transport to tissue. Crit Rev Biomed Eng, 1989. 17(3): p. 257-321. 
104. Goldman, D., Theoretical models of microvascular oxygen transport to tissue. Microcirculation, 2008. 15(8): p. 

795-811. 
105. Krogh, A., The supply of oxygen to the tissues and the regulation of the capillary circulation. J Physiol, 1919. 52(6): 

p. 457-74. 
106. Buxton, R.B. and L.R. Frank, A model for the coupling between cerebral blood flow and oxygen metabolism during 

neural stimulation. J Cereb Blood Flow Metab, 1997. 17(1): p. 64-72. 
107. Krogh, A., The number and distribution of capillaries in muscles with calculations of the oxygen pressure head 

necessary for supplying the tissue. J Physiol, 1919. 52(6): p. 409-15. 
108. Secomb, T.W., Krogh-cylinder and infinite-domain models for washout of an inert diffusible solute from tissue. 

Microcirculation, 2015. 22(1): p. 91-8. 
109. Schumacker, P.T. and R.W. Samsel, Analysis of oxygen delivery and uptake relationships in the Krogh tissue model. 

J Appl Physiol (1985), 1989. 67(3): p. 1234-44. 
110. Lagerlund, T.D. and P.A. Low, Axial diffusion and Michaelis-Menten kinetics in oxygen delivery in rat peripheral 

nerve. Am J Physiol, 1991. 260(2 Pt 2): p. R430-40. 
111. Piiper, J. and P. Scheid, Diffusion limitation of O2 supply to tissue in homogeneous and heterogeneous models. 

Respir Physiol, 1991. 85(1): p. 127-36. 
112. Whiteley, J.P., D.J. Gavaghan, and C.E. Hahn, Mathematical modelling of pulmonary gas transport. J Math Biol, 

2003. 47(1): p. 79-99. 
113. McGuire, B.J. and T.W. Secomb, A theoretical model for oxygen transport in skeletal muscle under conditions of 

high oxygen demand. J Appl Physiol (1985), 2001. 91(5): p. 2255-65. 
114. McGuire, B.J. and T.W. Secomb, Estimation of capillary density in human skeletal muscle based on maximal 

oxygen consumption rates. Am J Physiol Heart Circ Physiol, 2003. 285(6): p. H2382-91. 
115. Federspiel, W.J. and A.S. Popel, A theoretical analysis of the effect of the particulate nature of blood on oxygen 

release in capillaries. Microvasc Res, 1986. 32(2): p. 164-89. 
116. Page, T.C., W.R. Light, and J.D. Hellums, Prediction of microcirculatory oxygen transport by 

erythrocyte/hemoglobin solution mixtures. Microvasc Res, 1998. 56(2): p. 113-26. 
117. Stathopoulos, N.A., P.K. Nair, and J.D. Hellums, Oxygen transport studies of normal and sickle red cell suspensions 

in artificial capillaries. Microvasc Res, 1987. 34(2): p. 200-10. 
118. Severns, M.L. and J.M. Adams, The relation between Krogh and compartmental transport models. J Theor Biol, 

1982. 97(2): p. 239-49. 
119. Chen, X., et al., A model of NO/O2 transport in capillary-perfused tissue containing an arteriole and venule pair. 

Ann Biomed Eng, 2007. 35(4): p. 517-29. 
120. Ye, G.F., et al., A compartmental model for oxygen-carbon dioxide coupled transport in the microcirculation. Ann 

Biomed Eng, 1994. 22(5): p. 464-79. 
121. Ursino M. and L. C.A., Interaction among autoregulation, CO2 reactivity, and intracranial pressure: a 

mathematical model. American Journal of Physiology - Heart and Circulatory Physiology, 1998. 274(5): p. H1715-
H1728. 

122. Hayashi T., et al., A Theoretical Model of Oxygen Delivery and Metabolism for Physiologic Interpretation of 



26 
 

AIMS Biophysics  Volume x, Issue x, 1-X Page. 

Quantitative Cerebral Blood Flow and Metabolic Rate of Oxygen. 
http://dx.doi.org/10.1097/01.WCB.0000090506.76664.00, 2016. 

123. Gutierrez, G., A mathematical model of tissue-blood carbon dioxide exchange during hypoxia. Am J Respir Crit 
Care Med, 2004. 169(4): p. 525-33. 

124. Vadapalli, A., R.N. Pittman, and A.S. Popel, Estimating oxygen transport resistance of the microvascular wall. Am 
J Physiol Heart Circ Physiol, 2000. 279(2): p. H657-71. 

125. Arciero, J.C., B.E. Carlson, and T.W. Secomb, Theoretical model of metabolic blood flow regulation: roles of ATP 
release by red blood cells and conducted responses. Am J Physiol Heart Circ Physiol, 2008. 295(4): p. H1562-71. 

126. d'Angelo, C., Multiscale modelling of metabolism and transport phenomena in living tissues. 2007, EPFL. 
127. Dash, R.K. and J.B. Bassingthwaighte, Erratum to: Blood HbO2 and HbCO2 Dissociation Curves at Varied O2, CO2, 

pH, 2,3-DPG and Temperature Levels. Ann Biomed Eng, 2010. 38(4): p. 1683-701. 
128. Lucker, A., B. Weber, and P. Jenny, A dynamic model of oxygen transport from capillaries to tissue with moving 

red blood cells. Am J Physiol Heart Circ Physiol, 2015. 308(3): p. H206-16. 
129. Rees, S.E., et al., Mathematical modelling of the acid-base chemistry and oxygenation of blood: a mass balance, 

mass action approach including plasma and red blood cells. Eur J Appl Physiol, 2010. 108(3): p. 483-94. 
130. Dash, R.K. and J.B. Bassingthwaighte, Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2,3-DPG 

and temperature levels. Ann Biomed Eng, 2004. 32(12): p. 1676-93. 
131. Li, Z., T. Yipintsoi, and J.B. Bassingthwaighte, Nonlinear model for capillary-tissue oxygen transport and 

metabolism. Ann Biomed Eng, 1997. 25(4): p. 604-19. 
132. Schacterle, R.S., J.M. Adams, and R.J. Ribando, A theoretical model of gas transport between arterioles and tissue. 

Microvasc Res, 1991. 41(2): p. 210-28. 
133. Vadapalli, A., D. Goldman, and A.S. Popel, Calculations of oxygen transport by red blood cells and hemoglobin 

solutions in capillaries. Artif Cells Blood Substit Immobil Biotechnol, 2002. 30(3): p. 157-88. 
134. Cabrera, M.E., G.M. Saidel, and S.C. Kalhan, Role of O2 in regulation of lactate dynamics during hypoxia: 

mathematical model and analysis. Ann Biomed Eng, 1998. 26(1): p. 1-27. 
135. Chen, H.S. and J.F. Gross, Estimation of tissue-to-plasma partition coefficients used in physiological 

pharmacokinetic models. J Pharmacokinet Biopharm, 1979. 7(1): p. 117-25. 
136. Pittman, R.N., Regulation of Tissue Oxygenation. 2011. 
137. Sharan, M. and A.S. Popel, A compartmental model for oxygen transport in brain microcirculation in the presence 

of blood substitutes. J Theor Biol, 2002. 216(4): p. 479-500. 
138. Hsu, R. and T.W. Secomb, A Green's function method for analysis of oxygen delivery to tissue by microvascular 

networks. Math Biosci, 1989. 96(1): p. 61-78. 
139. Secomb, T.W., A Green's function method for simulation of time-dependent solute transport and reaction in 

realistic microvascular geometries. Math Med Biol, 2016. 33(4): p. 475-494. 
140. Secomb, T.W., et al., Green's function methods for analysis of oxygen delivery to tissue by microvascular networks. 

Ann Biomed Eng, 2004. 32(11): p. 1519-29. 
141. Lamkin-Kennard, K.A., D.G. Buerk, and D. Jaron, Interactions between NO and O2 in the microcirculation: a 

mathematical analysis. Microvasc Res, 2004. 68(1): p. 38-50. 
142. Gundersen, S.I., G. Chen, and A.F. Palmer, Mathematical model of NO and O2 transport in an arteriole facilitated 

by hemoglobin based O2 carriers. Biophys Chem, 2009. 143(1-2): p. 1-17. 
143. Gonzalez-Fernandez, J.M. and B. Ermentrout, On the origin and dynamics of the vasomotion of small arteries. 

Math Biosci, 1994. 119(2): p. 127-67. 
144. Achakri, H., et al., A theoretical investigation of low frequency diameter oscillations of muscular arteries. Ann 

Biomed Eng, 1994. 22(3): p. 253-63. 
145. Carlson, B.E., J.C. Arciero, and T.W. Secomb, Theoretical model of blood flow autoregulation: roles of myogenic, 

shear-dependent, and metabolic responses. Am J Physiol Heart Circ Physiol, 2008. 295(4): p. H1572-9. 
146. Carlson, B.E. and T.W. Secomb, A theoretical model for the myogenic response based on the length-tension 

characteristics of vascular smooth muscle. Microcirculation, 2005. 12(4): p. 327-38. 
147. Ford Versypt, A.N., et al., Bifurcation study of blood flow control in the kidney. Math Biosci, 2015. 263: p. 169-79. 
148. Arciero, J., et al., Theoretical analysis of vascular regulatory mechanisms contributing to retinal blood flow 

autoregulation. Invest Ophthalmol Vis Sci, 2013. 54(8): p. 5584-93. 
149. Ursino, M., A mathematical study of human intracranial hydrodynamics. Part 1--The cerebrospinal fluid pulse 

pressure. Ann Biomed Eng, 1988. 16(4): p. 379-401. 
150. Ursino, M. and P. Di Giammarco, A mathematical model of the relationship between cerebral blood volume and 

intracranial pressure changes: the generation of plateau waves. Ann Biomed Eng, 1991. 19(1): p. 15-42. 
151. Ursino, M. and C.A. Lodi, Interaction among autoregulation, CO2 reactivity, and intracranial pressure: a 

mathematical model. Am J Physiol, 1998. 274(5 Pt 2): p. H1715-28. 

http://dx.doi.org/10.1097/01.WCB.0000090506.76664.00


27 
 

AIMS Biophysics  Volume x, Issue x, 1-X Page. 

152. Muller, L.O. and E.F. Toro, A global multiscale mathematical model for the human circulation with emphasis on 
the venous system. Int J Numer Method Biomed Eng, 2014. 30(7): p. 681-725. 

153. Olufsen, M.S., et al., Numerical simulation and experimental validation of blood flow in arteries with structured-
tree outflow conditions. Ann Biomed Eng, 2000. 28(11): p. 1281-99. 

154. Delp, M.D. and R.B. Armstrong, Blood flow in normal and denervated muscle during exercise in conscious rats. 
Am J Physiol, 1988. 255(6 Pt 2): p. H1509-15. 

155. Pohl, U., C. De Wit, and T. Gloe, Large arterioles in the control of blood flow: role of endothelium-dependent 
dilation. Acta Physiol Scand, 2000. 168(4): p. 505-10. 

156. Segal, S.S., Regulation of blood flow in the microcirculation. Microcirculation, 2005. 12(1): p. 33-45. 
157. Harris A., J.-C.C.P., Kagemann L., Ciulla T.A., Krieglstein, G.A., Atlas of ocular blood flow: vascular anatomy, 

pathophysiology, and metabolism. Survey of Ophthalmology. 2003: Butterworth-Heinemann (Elsevier). 
158. Ganesan, P., S. He, and H. Xu, Development of an image-based model for capillary vasculature of retina. Comput 

Methods Programs Biomed, 2011. 102(1): p. 35-46. 
159. Aletti M., G.J.-F., Lombardi D., A simplified fluid–structure model for arterial flow. Application to retinal 

hemodynamics. 2016. 306: p. 77–94. 
160. Causin P., M.F. Mathematical modeling of local perfusion in large distensible microvascular networks. 2016. 
161. Carichino L., et al., Effect of intraocular pressure and cerebrospinal fluid pressure on the blood flow in the central 

retinal  
vessels. 2013, Kugler Publications. p. 59-66. 
162. Cassani S., A.J., Guidoboni G., Siesky B., Harris A., Theoretical predictions of metabolic flow regulation in the 

retina. 1, 2016. 
163. Yu, D.Y. and S.J. Cringle, Oxygen distribution and consumption within the retina in vascularised and avascular 

retinas and in animal models of retinal disease. Prog Retin Eye Res, 2001. 20(2): p. 175-208. 
164. Yu, D.Y., S.J. Cringle, and E.N. Su, Intraretinal oxygen distribution in the monkey retina and the response to 

systemic hyperoxia. Invest Ophthalmol Vis Sci, 2005. 46(12): p. 4728-33. 
165. Roos, M.W., Theoretical estimation of retinal oxygenation during retinal artery occlusion. Physiol Meas, 2004. 

25(6): p. 1523-32. 
166. Haugh, L.M., R.A. Linsenmeier, and T.K. Goldstick, Mathematical models of the spatial distribution of retinal 

oxygen tension and consumption, including changes upon illumination. Ann Biomed Eng, 1990. 18(1): p. 19-36. 
167. Sigal, I.A. and C.R. Ethier, Biomechanics of the optic nerve head. Exp Eye Res, 2009. 88(4): p. 799-807. 
168. Downs, J.C., et al., Multiscale finite element modeling of the lamina cribrosa microarchitecture in the eye. Conf 

Proc IEEE Eng Med Biol Soc, 2009. 2009: p. 4277-80. 
169. Grytz R., et al., Perspectives on biomechanical growth and remodeling mechanisms in glaucoma. 2012. 42: p. 92–

106. 
170. Newson, T. and A. El-Sheikh, Mathematical modeling of the biomechanics of the lamina cribrosa under elevated 

intraocular pressures. J Biomech Eng, 2006. 128(4): p. 496-504. 
171. Harris, A., et al., Ocular Hemodynamics and Glaucoma: The Role of Mathematical Modeling. Eur J Ophthalmol, 

2013. 23(2): p. 139-46. 
172. Guidoboni, G., et al., Effect of intraocular pressure on the hemodynamics of the central retinal artery: a 

mathematical model. Math Biosci Eng, 2014. 11(3): p. 523-46. 
173. Cassani, S., et al., Theoretical analysis of the relationship between changes in retinal blood flow and ocular 

perfusion pressure. 2015. 
174. Causin, P., et al., A poroelastic model for the perfusion of the lamina cribrosa in the optic nerve head. Math Biosci, 

2014. 257: p. 33-41. 
175. Biesecker, K.R., et al., Glial Cell Calcium Signaling Mediates Capillary Regulation of Blood Flow in the Retina. J 

Neurosci, 2016. 36(36): p. 9435-45. 
176. Ye, G.-F., Y., T.W. Moore, and D. Jaron, Contributions of oxygen dissociation and convection to the behavior of a 

compartmental oxygen transport model  Microvascular research, 1993. 46(1): p. 1-18. 
177. Piechnik, S.K., P.A. Chiarelli, and P. Jezzard, Modelling vascular reactivity to investigate the basis of the 

relationship between cerebral blood volume and flow under CO2 manipulation  Neuroimage, 2008. 39(1): p. 107-
118. 

178. Fantini, S., Dynamic model for the tissue concentration and oxygen saturation of hemoglobin in relation to blood 
volume, flow velocity, and oxygen consumption: Implications for functional neuroimaging and coherent 
hemodynamics spectroscopy (CHS). Neuroimage, 2014: p. 85, 202-221. 

179. Mauro Ursino, C.A.L., Interaction among autoregulation, CO2 reactivity, and intracranial pressure: a 
mathematical model. American Journal of Physiology - Heart and Circulatory Physiology 1998. 274(5): p. H1715-
H1728. 



28 
 

AIMS Biophysics  Volume x, Issue x, 1-X Page. 

180. Spronck, B., et al., A lumped parameter model of cerebral blood flow control combining cerebral autoregulation 
and neurovascular coupling. . American Journal of Physiology-Heart and Circulatory Physiology, 2012: p. 303(9), 
H1143-H1153. 

181. Payne, S., A model of the interaction between autoregulation and neural activation in the brain. Mathematical 
biosciences 2006. 204(2): p. 260-281. 

182. Diamond, S.G., K. Perdue, and D. Boas, A cerebrovascular response model for functional neuroimaging including 
dynamic cerebral autoregulation. Mathematical Biosciences, 2009. 220: p. 102-117. 

183. Gutierrez, G., A mathematical model of tissue–blood carbon dioxide exchange during hypoxia. American journal 
of respiratory and critical care medicine, 2004. 169(4): p. 525-533. 

184. Vazquez A. L., Masamoto K., and Kim S. G., Dynamics of Oxygen Delivery and Consumption During Evoked Neural 
Stimulation Using a Compartment Model and CBF and Tissue PO2 Measurements. Neuroimage, 2008. 42(1): p. 
49-59. 

185. Barrett, M.J., and Vinod Suresh, Extra permeability is required to model dynamic oxygen measurements: evidence 
for functional recruitment. Journal of Cerebral Blood Flow & Metabolism, 2013. 33(9): p. 1402-1412. 

186. Vazquez, A.L., Masamoto, K., Kim, S. G., Dynamics of oxygen delivery and consumption during evoked neural 
stimulation using a compartment model and CBF and tissue P O2 measurements  Neuroimage, 2008. 42(1): p. 
49-59. 

187. Fang, Q., et al., Oxygen advection and diffusion in a three-dimensional vascular anatomical network.  . Optics 
express, 2008: p. 16(22), 17530-17541. 

188. Boas, D.A., et al., A vascular anatomical network model of the spatio-temporal response to brain activation. . 
Neuroimage, 2008: p. 40(3), 1116-1129. 

189. Causin, P., et al., Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: 
multiscale mathematical modeling and numerical simulation. . Biomechanics and modeling in mechanobiology, 
2016: p. 15(3), 525-542. 

190. El-Bouri, W.K. and S.J. Payne, Multi-scale homogenization of blood flow in 3-dimensional human cerebral 
microvascular networks. Journal of theoretical biology, 2015: p. 380, 40-47. 

191. Gagnon, L., et al., Multimodal reconstruction of microvascular-flow distributions using combined two-photon 
microscopy and Doppler optical coherence tomography. . Neurophotonics, 2015: p. 2(1), 015008-015008. 

192. Tsoukias, N.M., et al., A computational model of oxygen delivery by hemoglobin-based oxygen carriers in three-
dimensional microvascular networks. Journal of theoretical biology, 2007: p. 248(4), 657-674. 

193. Park C.S., P.S.J., Modelling the effects of cerebral microvasculature morphology on oxygen transport. 2016. 38(1): 
p. 41–47. 

194. Gorodnova, N.O., et al., Mathematical modeling of blood flow alteration in microcirculatory network due to 
angiogenesis. . Lobachevskii Journal of Mathematics, 2016: p. 37(5), 541-549. 

195. Shaw, S., et al., Dispersion characteristics of blood during nanoparticle assisted drug delivery process through a 
permeable microvessel. Microvasc Res, 2014. 92: p. 25-33. 

196. Verma, S.R. and A. Srivastava, Analytical Study of A Two-Phase Model For Steady Flow of Blood in A Circular Tube. 
Internnational Journal of Engineering Research and Applications (IJERA), 2014(12 (6)): p. 01-10. 

197. Chebbi, R., Dynamics of blood flow: modeling of the Fåhræus–Lindqvist effect, in J Biol Phys. 2015. p. 313-26. 
198. Beard, D.A. and J.B. Bassingthwaighte, Modeling Advection and Diffusion of Oxygen in Complex Vascular 

Networks. Ann Biomed Eng, 2001. 29(4): p. 298-310. 
199. Park, C., S. Payne, and t.M.a.N.F.C. (MNF2014), A model of oxygen dynamics in the cerebral microvasculature and 

the effects of morphology on flow and metabolism. 2014. 
200. Fang, Q., et al., Oxygen Advection and Diffusion in a Three Dimensional Vascular Anatomical Network. Opt 

Express, 2008. 16(22): p. 17530-41. 
201. Safaeian, N. and T. David, A computational model of oxygen transport in the cerebrocapillary levels for normal 

and pathologic brain function. J Cereb Blood Flow Metab, 2013. 33(10): p. 1633-41. 
202. Jespersen, S.N. and L. Ostergaard, The roles of cerebral blood flow, capillary transit time heterogeneity, and 

oxygen tension in brain oxygenation and metabolism. J Cereb Blood Flow Metab, 2012. 32(2): p. 264-77. 
203. Lemon, D.D., et al., Physiological factors affecting O2 transport by hemoglobin in an in vitro capillary system. J 

Appl Physiol (1985), 1987. 62(2): p. 798-806. 
204. Goldman, D. and A.S. Popel, A computational study of the effect of capillary network anastomoses and tortuosity 

on oxygen transport. J Theor Biol, 2000. 206(2): p. 181-94. 
205. Tsoukias, N.M. and A.S. Popel, A model of nitric oxide capillary exchange. Microcirculation, 2003. 10(6): p. 479-

95. 
206. Vazquez, A.L., Masamoto, K., Kim, S. G., Dynamics of oxygen delivery and consumption during evoked neural 

stimulation using a compartment model and CBF and tissue P O2 measurements. Neuroimage, 2008. 42(1): p. 



29 
 

AIMS Biophysics  Volume x, Issue x, 1-X Page. 

49-59. 
207. Cornelissen, A.J., et al., Balance between myogenic, flow-dependent, and metabolic flow control in coronary 

arterial tree: a model study. Am J Physiol Heart Circ Physiol, 2002. 282(6): p. H2224-37. 
208. Fry, B.C., T.K. Roy, and T.W. Secomb, Capillary recruitment in a theoretical model for blood flow regulation in 

heterogeneous microvessel networks. Physiol Rep, 2013. 1(3): p. e00050. 
209. He, Z., et al., Coupling blood flow and neural function in the retina: a model for homeostatic responses to ocular 

perfusion pressure challenge. Physiol Rep, 2013. 1(3): p. e00055. 
210. Ursino, M., Mechanisms of cerebral blood flow regulation. Crit Rev Biomed Eng, 1991. 18(4): p. 255-88. 
211. Ursino, M., A mathematical model of overall cerebral blood flow regulation in the rat. IEEE Trans Biomed Eng, 

1991. 38(8): p. 795-807. 
212. Nobrega, A.C., et al., Neural regulation of cardiovascular response to exercise: role of central command and 

peripheral afferents. Biomed Res Int, 2014. 2014: p. 478965. 

 
  



30 
 

AIMS Biophysics  Volume x, Issue x, 1-X Page. 
 
 

 

Table 1.  Geometric description of compartmental models (R=resistive, C=capacitive, L=inductive element in electric analogy) 

Reference Species and 

district 

Microcirculatory compartments Other compartments Tissue 

Ye  (1993)[176], 

Arciero (2008)[22], 

Piechnik (2008)[177], 

Fantini (2014)[178] 

human [176]: arteriole and venule compartments grouped in 

length classes, capillary compartment; [22]: 

representative segment model: large/small arterioles and 
venules and capillaries; [177]: different hierarchies of 

arteriolar/venular vessels [178]: arteriole, capillary and 

venule compartments;  

[22]: large inlet/outlet artery/vein [176],[178]: 

lumped tissue 

compartment; 
[8]: Krogh 

cylinder 

Ursino  (1998) [179], 

Spronck  (2012) [180], 

Payne (2006)[181], 

Diamond (2009)[182], 

Müller (2014) [20] 

 
 

human brain [180]: PCA arterioles (R-C); [179]: large and 

medium/small pial arteries (R-C); [182]: cerebral 
arterioles and capillaries (R-C); [20]: 

arterioles/capillaries/venules (R-C-L) attached at the 

terminals of larger vessels; [181]: arterial and 
capillary/venous compartments (R-C) 

[179]: cerebral arteries and veins, CSF; 

[180]: PCA+venous, [182]: pial 
arteries/veins, body circulation, CSF,ISF; 

[20]: body circulation, large brain arteries 

and veins 

- 

Gutierrez  (2004) [183], 

Vazquez (2008) [184], 

Barrett (2013) [185] 

[183]: dog 

limb; 
[186],[185]: 

human brain 

[183],[186]: unique vascular compartment; [185]: 

arteries, capillaries and veins 

 lumped tissue 

compartment 

 
 
 

Table 2: Geometric description of topological models (A=anatomical, G=geometrical) 

Reference Dimension and  

district 

Arterioles Venules Capillaries Inlet/Outlet Tissue 

Liu (2009)[16] 2D human eye A+ G for 

smaller 
vessels 

 G 1 main inlet and 12 outlets as boundary condition 

Guibert (2010)[19] 3D human brain A A G (2D mesh) 

 

multiple I/Os  
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Table 2 (continued): Geometric description of topological models (A=anatomical, G=geometrical) 

Reference Dimension  and  

district 

Arterioles Venules Capillaries Inlet/Outlet Tissue 

Fang  (2008) [187]. 

Reichold (2009) [18]. 

Lorthois  (2011) [66]. 

Pan  (2014) [31] 

 

[187], [18] : 3D rat 

cortex, 
[66]: 3D human brain; 

[31]: 2D, rat 

mesentery 

A A A [18]: pial arteriole,  draining venule; [31]: 

1 main artery/vein, 30 secondary inputs 
and 4 secondary outputs 

[187]: 230 × 230 × 450 

μm3 region, 
[18]: 0.23x0.23x0.45mm3 

region  

[66]: 1.6mm3 region 

Fry (2013) [32] 3D, hamster cremaster 
Muscle 

A smaller 
arterioles + G  

large arterioles 

A smaller 
veins +G 

large veins 

A 1 main artery and 2 veins, 6 terminal 
arteries 

3D parallelepiped 

Gould  (2015) [17] 3D,  human brain A+ G for 

smaller 
vessels 

A+ G for 

smaller 
vessels 

G (Voronoi 

tessellation) 

1 main artery and 1 main vein 27 mm3 

Boas (2008) [188]. 

Takahashi  (2014)[34] 

[188]: 1D human 

brain ; 
[34]: 1D 

G G G 1 main artery and 1 main vein  

Ganesan  (2010) [27] 3D rat retina A A G (2D mesh) 6  main arteries and 6 main veins  

Causin (2016) [189] 3D human retina DLA algorithm DLA 

algorithm 

G (equivalent 

resistance) 

1 main artery and 1 main vein 1D slabs (250 μm) 

El-Bouri  (2015) [190], 

Su (2012) [36], 

Safeian. (2011) [35], 

Gagnon. (2015) [191], 

Tsoukias (2007)  [192], 

Park (2016) [193] 

[190], [36], [35], 
[193]: 3D human 

brain; [192]: 3D 
hamster cheek pouch 

retractor muscle;  

[191]: 2D  brain;  
 

  G with [36] 
investigation of 

different approaches 
(shortest arc method, 

Gamma distribution, 

spanning tree method); 
[193]: minimum 

spanning tree;  [35] 

Voronoi tessellation; 
[191] hexagonal 

tessellation 

 

[36]: two outlet and inlet junctions; [35]: 
twelve inlet and 24 outlet flows; [191]: 1 

inflowing arteriole and 3 outflowing 
venules; [192]: 2 arteriolar inlets and two 

venous outlets; [193]: multiple I/Os 

 

[190] cubes with  side from 
125 to 625 µm; [36]: cube 

with side 10 μm; [35]: 
0.6x0.38x0.3 mm3 region; 

[192]: 100x100x800 

mm3region 

Gorodnova  (2016) 

[194] 

3D G (directed 
force layout 

algorithm) 

G (directed 
force layout 

algorithm) 

G (fractal) 1 inlet and multiple outlets sphere of radius of 0.6cm 
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Table 3. Models of blood flow in concentric regions (‘a’=cell depleted layer, ‘c’=RBC core) 

Reference Cell-depleted layer fluid 

model 

Core layer fluid model  Hematocrit model Viscosity model 

Sharan (2001) [69] Newtonian fluid, Poiseuille 
flow 

[69]: Newtonian fluid, Poiseuille flow constant in c, zero in a, relation between 
tube hematocrit and core hematocrit 

from Pries’ model  

model from Pries 

Verma (2014) [77], Zaman 

(2016) [76], Shaw (2014) 

[195], Sriram (2015) [63], 

Das (1998) [73] 

Newtonian fluid, Poiseuille 

flow 

axial flow; [77, 196]: power law fluid;  [76]: 

Oldroyd-B fluid; [195]: Casson fluid with 

glycocalyx layer; [63], [73]: Quemada fluid 

[77]: constant in c, zero in a, parametric 

analysis, [76]: no hematocrit; [195]: 

given constant in c; [63]: constant in c, 

zero in a; [73]: polynomial expression in 
c and small value in a   

[77]: prescribed constant values; 

Zaman: prescribed relaxation and 

retardation parameters; [195]; 

constant in a, Pries model in c; [63]: 
constant in a, fitted from data in c; 

[73]: analytic expression function of 

hematocrit   

Chebbi (2015) [197] Newtonian fluid, Poiseuille 
flow 

Newtonian fluid, Poiseuille flow constant in c, zero in a, plasma 
skimming model (bifurcation) 

constant value 
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Table 4. Models of oxygen/gas transport in blood and tissue (HL=Hill’s law, MM=Michaelis-Menten, FD=finite differences, FV=finite 

volumes, FEM=finite elements) 

Reference Gas Gas transport in blood Gas transport in tissue Blood-tissue exchange Numerical 

approach 

Target quantities 

Moschandreou (2011) 

[38] 

O2 (HL) bi-phasic mixture with distinction in rich 
blood core (advection-diffusion) and 

plasma layer (pure diffusion) in a single 

arteriole 

Krogh-like model with embedded 
mass transfer term with capillaries  

continuity  FD perivascular radial and axial O2 perfusion 
profiles, Sherwood number as a function of 

saturation and vessel radius 

Linninger (2013) [56],  

Beard (2001) [198], 

Park (2016) [199], 

Fang (2008) [200], 

Luecker (2015) [128] 

 

 

O2  [56], 

[200]: HL; 

[198]: 
Adair; HL, 

Clark 

unsteady convection for [56], [199]: 

mono-phasic blood; [198], 

[155]:biphasic fluid (mixture)  in 3D 
capillary network; [128]: bi-phasic flow 

in a single capillary with discrete RBCs;  

unsteady diffusion-reaction with 

[56]: first order metabolism, [198], 

[128]: MM with myoglobin 
facilitation, [199]: constant 

metabolic rate 

[56], [199], [200]: 

diffusive permeation;  

[198], [128]: continuity 

[56]: FV; 

[198]: FD; 

[200]: FEM 

[56]: blood O2 tension in an arteriole/venule 

sub-unit, radial O2 profile; [198]: steady-state 

O2 concentration profiles as a function of O2 
consumption, impact of myoglobin; [198]: 

CMRO and OEF as a function of transit time 

and BF; [200]:partial pressure of oxygen 
versus vessel diameter and O2 distribution in 

tissue; longitudinal O2 profiles, impact of 

instantaneous hematocrit fluctuations on 
tissue oxygenation 

Safaeian (2013) [201], 

Sune (2012) [202], 

Lemon (1987) [203],  

Secomb (1989) [138], 

Goldman (2000) 

[204], Tsoukias 

(2007)[192] 

 

[201], 

[202], 

[138]: O2 

(HL); O2 

(Moll); 

[192]: O2 
(HL)+Hb 

carriers 

steady convection for mono-phasic 

blood in [202] a single capillary (in 

collection of capillaries with different 
transit times) or [138], [204] 

vessel/capillary network, bi-phasic 

mixture in [201], [192] anatomical 
network or [203] single capillary 

[201], [138]: steady diffusion-

reaction  in 3D volume; [202], 

[203]: given constant O2 pressure in 
tissue; [204], [192]: steady 

diffusion-reaction with myoglobin 

facilitation 

[201]: pointwise sources; 

[202], [203], [192]: first 

order exchange with 
permeation; [138]: 

pointwise sources; [204]: 

hematocrit dependent 
permeation 

[201], 

[138]: 

Green’s 
function 

method, 

[203]: 
FD+FEM; 

[204], 

[192]: FD 
 

tissue O2 pressure distribution for different 

CMRO and perfusion levels, OEF as a function 

of BF (comparison with Buxton model); [202]: 
net O2 extraction as a function of transit time, 

tissue O2 concentration and capillary 

arrangement; [203]:  O2 profiles in radial and 
axial directions as a function of chemical 

equilibrium parameters; [138]: O2 contour 

curves in tissue slices for different CMRO; 
[204]: study of geometric factors (shunts, 

tortuosity) in O2 levels in tissue and axial O2 

profiles in capillaries; [192]: PO in the 
capillaries and O2 in tissue as a function of the 

Hb substitute 

 

Eggleton (2000) [87] O2 unsteady diffusion in single erythrocytes 

and plasma in a capillary vessel  

unsteady diffusion-convection in 

annular muscular region 

FEMs in a frame moving 

with RBC velocity 

 radial O2 profile, local mass transfer 

coefficient for 1s simulated time, MTC  

Tsoukias (2003) [205], 

Chen (2007) [119]  

[205]: NO, 
O2+NO 

steady diffusion-convection-reaction for 
[205] capillary with discrete parachute-

shaped RBCs, [119] straight arteriole 

and venule pair;  

[205]: steady diffusion-convection-
reaction for  2D tissue and 

interstitium; [119]: diffusion-

convection porous medium perfused 
by capillaries 

[205]: continuity+ (flux 
continuity with sources); 

[119]; first order reaction  

[205]: FEM 
+ moving 

frame for 

RBCs; 
[119]: 

semi-

analytic 

[205]: NO contour curves, comparison 
between discrete cell and continuum model, 

estimation of intravascular MTC; [119]: NO 

profiles, effect of capillary-perfused tissue 
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Reference Gas Gas transport in 

blood 

Gas transport 

in tissue 

Blood-tissue 

exchange 

Numerical approach Target quantities 

Vazquez (2008) [206],  

Barrett (2013) [185]  

 O2 (HL) unsteady balance for 

monophasic blood in 
[206] in capillary 

compartment, [185] 

arteries, capillaries,  
veins 

unsteady 

compartmental 
reaction 

permeation  ODE solver lumped tissue compartment; tissue and vascular O2 as a 

function of time for different permeability increase,[185]: 
sensitivity analysis on permeation parameter 

Reichold (2009) [39] generic solute unsteady graph-based 

1D advection for 

monophasic fluid with 
upscaling procedure 

unsteady 

diffusion-

reaction with 
upscaling  

permeation  FV  solute levels in tissue 
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Table 5. Summary of blood flow regulation mechanisms in mathematical models of the microcirculation 

Regulatory mechanism Model implementation Effect on vessel diameter 

myogenic response 
 

[148], [145], [125], [146], [207], 
[208], [209], [210] 

vasoconstriction 

shear-dependent response 
 

[146], [125], [145], [148], [207], 
[208], [181] 

vasodilation 

local metabolic response 

 

[207, 211] vasodilation 

conducted metabolic response 
 

[148], [125], [145], [208] vasodilation 

CO2 response 

 

[148], [181] vasodilation 

neural stimuli 
 

[181], [212], [179] Vasoconstriction or vasodilation 

 
 
 
 
   


