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ABSTRACT 

Retroviruses include two subfamilies, orthoretrovirinae and 

spumaretrovirinae.  The human immunodeficiency virus 1 (HIV-1) belongs 

to the orthoretrovirinae subfamily and is the causative agent of acquired 

immunodeficiency syndrome (AIDS). HIV-1 infects 36.9 million people and 

2.6 million children throughout the world. During primary infection HIV 

converts its RNA genome into DNA, which integrates into the host genome. 

The cellular environment present at the site of the integration may 

influence viral transcriptional activity. The sequestration of host 

transcription factors, the presence of repressor of transcription and 

nucleosomes and epigenetic modifications on the HIV promoter, or 

transcriptional modification of Tat are all conditions that influence the 

formation of long term viral reservoirs. The use of antiretroviral drugs has 

been proposed as a functional cure to control the viral load but lacks the 

ability to obtain viral sterilization since antiretroviral drugs can not remove 

the virus from latently infected cells and anatomical sanctuaries such as 

brain and the gut associated lymphoid tissue. In recent years gene editing 

strategies have been largely employed for the treatment of HIV-1. In this 

present study, we aimed to discover an innovative CRISPR technology 

specific against the HIV viral genome that can target latently infected cells 

and be delivered in all tissues. Initially, we performed in vitro analysis, 

where TZMB-1 cells containing the luciferase gene under the control of 

LTR were transfected with pCMV-Tat and three plasmids harboring Cas9 

under the control of different regions of LTR promoter to evaluate by 

western blot analysis the minimal LTR promoter region able to activate 

Cas9 in presence of Tat. TZMB-1 cells were transduced with the 

lentiviruses, harboring Cas9 or gRNAs specific for the promoter region, and 

infected with HIV-1 to test, by PCR and luciferase assay, the presence of 

gene editing. Then PCR and flow cytometric analyses were performed on 
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2D10 cells, HIV-1 latently infected cells, to test the ability of Tat-induced 

Cas9 to excise viral DNA.  Subsequently, was evaluated the ability of 

Cas9, in presence of gRNAs, to protect Jurkat cells from viral reinfection by 

eliminating the virus during the early stages of infection. The second part of 

our study was performed to test Cas9 and gRNAs specific for HIV-1 LTR 

and Gag regions in vivo using adeno-associated virus (AAV) as the 

delivery system.  Tissues of HIV-1 transgenic mice and rats and 

humanized mice were provided by collaborators for evaluation by analyzing 

DNA and RNA for the presence of viral editing. Results from in vitro 

experiments showed the ability of Tat to activate the minimal promoter 

LTR, inducing gene editing in TZMb-I and 2D10 cells. The presence of 

Cas9 in Jurkat cells induces a reduction of viral RNA of 96% at five days 

from infection. Studies in vivo showed the presence of viral excision in 

blood, heart, liver, lung, kidney, spleen and brain in transgenic mice and a 

reduction of viral RNA in the blood of transgenic rats. Excision of HIV-1 

was reported in the spleen, gut associated lymphoid tissue, liver, kidney, 

lung and brain of humanized mice with complete viral sterilization in 29% of 

the infected animals that were subjected to antiretroviral treatment. The 

absence of off-target effects was confirmed by deep sequencing analysis. 

Together, these data show the ability to create a Cas9-inducible system 

generating negative feedback against the virus while avoiding persistent 

Cas9 expression in the cells. The use of AAV vectors in vivo showed high 

delivery efficiency in the different tissues, obtaining viral sterilization for the 

first-time. Further experiments on humanized mice and SIV infected 

monkey models will show this approach combined with ART therapy may 

have important application for HIV-1 sterilization in clinical trials.    
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SOMMARIO 

Retroviruses includono due sottofamiglie, gli Orthoretrovirinae e 

Spumaretrovirinae. Il virus dell’immunodeficienza umana (HIV) appartiene 

alla sottofamiglia degli Orthoretrovirinae ed e’ considerato l’agente 

causativo della sindrome dell’immunodeficienza acquisita (AIDS). Ad oggi 

36,9 milioni di individui, di cui 2,6 milioni di bambini nel mondo convivono 

con l’infezione da HIV-1. Durante l’infezione primaria, dopo la conversione 

di HIV-1 RNA in DNA, il virus integra il suo genoma nel DNA dell’ospite. L’ 

ambiente cellulare presente a livello del sito di integrazione influenza la 

replicazione e la trascrizione virale. Il sequestro di fattori di trascrizione 

cellulari, la presenza di repressori di trascrizione e nucleosomi e 

modificazioni genetiche a livello del promotore virale o modificazioni 

trascrizionali di Tat sono tutte condizioni che incidono sulla formazione di 

reservoir virali a lungo termine.  L’uso di farmaci antiretrovirali e’ stato 

proposto come cura funzionale in grado di mantenere la carica virale sotto 

il limite di detezione, ma la mancanza di azione a livello delle cellule 

reservoir e il mancato raggiungimento di organi come il sistema nervoso 

centrale (SNC) o il tessuto linfoide associate all’intestino rappresenta un 

grosso limite di questi farmaci.  In questi ultimi anni l’uso di gene editing 

per il trattamento di HIV-1 e’ stato impiegato da differenti laboratori. Il 

presente studio ha come scopo la realizzazione di un nuovo costrutto 

usando un efficace sistema di delivery per targettare le cellule reservoir e 

raggiungere i diversi tipi di tessuti. Inizialmente e’ stato condotto uno studio 

in vitro, cellule TZMB-1 contenenti il gene per la luciferasi sotto il controllo 

di LTR sono state transfettate con pCMV-Tat e tre plasmidi contenenti 

Cas9 sotto il controllo di diverse regioni del promotore per individuare 

attraverso western blot la minima regione di LTR in grado di attivare la 

trascrizione di Cas9 in presenza di Tat. TZMB-1 cellule sono state 

trasdotte con lentivirus contenenti Cas9 e gRNAs specifici per il promotore 
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LTR e infettate con HIV-1 per valutare la presenza di LTR editing mediante 

saggi di PCR e luciferasi. Successivamente analisi di PCR e cito-

fluorimetriche sono state condotte per valutare l’abilita’ del costrutto Cas9, 

Tat-indotto, di escidere il virus in cellule 2D10, modello cellulare di 

infezione latente. Infine e’ stata testata la capacita’ di Cas9 in presenza dei 

gRNAs di proteggere le cellule Jurkat da reinfezione virale eliminando il 

virus nello stadio iniziale dell’infezione. La seconda parte del nostro studio 

e’ stata condotta per testare Cas9 e gRNAs specifici per il promotore LTR 

e la regione Gag, in vivo usando adeno-associati virus (AAV) come 

sistema di delivery. Tessuti di topi e ratti HIV-1 transgenici e di topi 

umanizzati, sono stati forniti da collaboratori per valutare attraverso analisi 

del DNA e RNA la presenza di editing virale. Risultati ottenuti dagli 

esperimenti in vitro hanno dimostrato l’abilita’ di Tat di attivare la minima 

regione del promotore LTR, inducendo gene editing in cellule TZMb-I e 

2D10. La presenza di Cas9 nelle cellule Jurkat induce una riduzione dei 

trascritti virali del 96% a cinque giorni dall’infezione. Studi in vivo hanno 

dimostrato la presenza di eliminazione virale in diversi tessuti come 

sangue, fegato, polmoni, rene, milza e cervello in topi transgenici ed una 

riduzione del RNA virale nel sangue dei ratti transgenici. Editing di HIV-1 e’ 

stato osservato nei tessuti di milza, tessuto linfoide associato all’intestino, 

fegato, rene, polmone e cervello dei topi umanizzati con completa 

sterilizzazione virale nel 29% degli animali precedentemente trattati con 

terapia antiretrovirale. Questi risultati, hanno dimostrato la capacita’ di 

creare un nuovo sistema di gene editing attivato dalla presenza del virus 

nella cellula creando un feedback negativo contro lo stesso virus ed 

evitando la persistente espressione di Cas9 nelle cellule. L’uso di AAV in 

vivo, ha dimostrato alta efficienza di delivery nei diversi tessuti, ottenendo 

completa sterilizzazione virale. Questi dati, se confermati da ulteriori 

esperimenti sui topi umanizzati e modelli di scimmia infettati con SIV, 
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combinati con la terapia antiretrovirale possono avere importanti 

implicazioni per la cura di HIV-1 in trial clinici.  
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1. Introduction 

1.1 Human Immunodeficiency Virus 

Retroviruses are spherical viruses of 80-120 nm in diameter [1] sharing 

similar structure, genomic organization and replicative strategy. The 

retroviridae family is composed of two virus subfamilies, Orthoretrovirinae 

and Spumaretrovirinae. The Spumaretrovirinae subfamily only includes 

Spumaviruses, and the Orthoretrovirinae subfamily includes six viral 

genera, Alpharetrovirus, Betaretrovirus, Deltaretrovirus, Epsilonretrovirus, 

Gammaretrovirus and Lentivirus. Lentiviruses are characterized by 

persistent infection in humans and animals. Lentiviruses include human 

immunodeficiency viruses 1 and 2, HIV-1 and HIV-2. 

 

Figure 1: Illustration of the Retroviridae family (Reproduced under open access) [2]. 

1.1.1 Epidemiology 

The HIV-1 epidemic initiated with zoonotic transmission from primates of 

Africa infected with Simian Immunodeficiency Viruses (SIV) throughout the 

1900s. There are two recognized types of HIV, HIV type 1 and HIV type 2, 

which have different original transmission origins. Chimpanzees and 
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mangabey monkey are hypothesized to have transmitted HIV-1 and HIV-2 

to humans, respectively [3]. HIV-2 is restricted to Western Africa and 

causes a disease like HIV-1, but is less transmissible and has decreased 

virulence [4]. HIV-1 originated from four different transmission to human, 

three from chimpanzee and one from gorillas. The groups N and P derive 

from chimpanzee and gorillas respectively and are diffused throughout 

Western Africa. The main group (M) derives from chimpanzees and is the 

source of the worldwide HIV pandemic. The M group includes nine viral 

subtypes: A-D, F-H, J and K. The most widespread subtypes are C, which 

is responsible of 48 % of infection in Africa and India [5], and B, which is 

diffused throughout Western Europe, America and Australia. Different HIV 

subtypes have different rates of transmission and disease progression. 

 In 1980 a new disease, acquired immunodeficiency syndrome (AIDS), was 

recognized by studying cases of young homosexual men in the United 

States affected with Pneumocystis carinii pneumonia (PCP) and Kaposi's 

sarcoma (KS) [6]. After two years, HIV-1 was recognized as the causative 

agent of AIDS. Since then 76.1 (65.2 - 41.5) million people in the world 

became infected with HIV-1 and today roughly 36.5 (30.8 – 42.9) million 

people live with HIV infection, including 2.1 million children under the age 

of 15 [7]. HIV-1 infection in 2010 was the main cause of morbidity in the 

world for people aged 30-44 years [8] with the highest incidence in sub-

Saharian Africa. HIV prevalence is higher in people with risk behaviors 

such as homosexual men and drug users [9]. One million (830.000 -

1.200.000) AIDS related deaths were reported in 2016, while 35.0 million 

(28.9 – 41.5) AIDS related deaths have been reported since the start of the 

HIV-1 epidemic. The number of AIDS related deaths decreased by 48 % 

after peaking in 2005 when there were 1.9 million AIDS related deaths. 

Tuberculosis is the main source of death among HIV-1 infected patients 

(350.000 deaths in 2015) with 1.2 million of people living with HIV also 
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having tuberculosis. The global prevalence of HIV-1 after the introduction 

of antiretroviral therapy (ART) decreased by 11% among adult and by 47% 

among children from 2010 to 2016. [7]. In 2014, the Joint United Nations 

Program on HIV and AIDS (UNAIDS) set up the program “90-90-90 

targets”. The goal of this program is to reach these three important results 

by 2020 [10]: 

1) Diagnose HIV-1 infection in 90% of people living with HIV-1  

2) Start ART treatment in 90% of diagnosed people 

3) Reach fully suppressed viral load in 90% of ART patients 

So far, it is hypothesized that 70% of all HIV-1 positive people are 

diagnosed, with 53% of patients undergoing ART and around 44% 

demonstrating viral suppression.  Large disparities exist for these statistics 

between different countries [7]. 

 

 People living with 

HIV (all ages) - by 

region 

AIDS-related deaths 

(all ages) - by 

region 

REGION   

Asia and the Pacific 5.1 million 170000 

Caribbean 311000 9400 

East and Southern Africa 19.4 420000 

Eastern Europe and Central 
Asia 

1.6 40000 

Latin America 1.8 36000 

Middle East and North Africa 231000 11000 

West and Central Africa 6.1 310000 

Western & Central Europe 

and North America 

2.1 18000 
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Table 1: 2016 Regional HIV and AIDS Statistics. Data from UNAIDS showing the number 

of patients with HIV and number of AIDS-related deaths in different regions of the world in 

2016. (Table created using the ufficial data from UNAIDS, special analysis, 2017) [7]. 

 

Figure 2: 2016 Global HIV patients testing and treatment. Percentage of HIV-1-positive 

patients aware of their status, patients undergoing ART therapy, and patients with viral 

suppression in the world during 2016. (Figure created using the ufficial data from UNAIDS, 

special analysis, 2017) [7] 

1.1.2 HIV Transmission and Pathogenesis 

HIV-1 sexual transmission risk increases in the initial months of HIV-1 

infection, which is characterized by high viral plasma load, and is also 

influenced by other factors including seminal and cervical viral load [11]. 

Genital ulcers, herpes simplex type 2 infection, bacterial vaginosis, 

pregnancy, anal intercourse and injection drug use are factors increasing 

HIV-1 transmission risk [12]. The HIV-1 mother to child transmission risk is 

about 15-25% during pregnancy, increasing to 35-40% during 

breastfeeding [13]. Initiation of ART therapy reduces the probability of 

transmission to the infant by reducing maternal viral load. CD4+ T cells in 

mucosal tissues are the first targets of HIV-1 during the early stages of 

infection, followed by viral spread thoughout the lymphoid system, a stage 

called the eclipse phase. HIV-1 RNA levels are detectable after several 
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days of infection and reach 106-107 copies/ml after a month. This stage of 

primary or acute infection can be asymptomatic or characterized by fever, 

lymphadenopathy, rash, malaise or myalgias and more rarely by 

meningitis. Rash is present in 40-80% of cases and is typically 

maculopapular and involves the trunk [14]. After progressive depletion of 

infected CD4+ T cells, the immune system establishes partial control of the 

virus. However, the antibody response is unsuccessful against HIV-1 

variants, resulting in viral escape. After 4-6 months, the plasma viral load 

decreases by about 100-fold, reaching a viral set point ranging from few 

copies of virus/ml to 106 copies/ml due the action of CD8+ cytotoxic T 

lymphocytes (CTLs). The viral plasma load directly influences disease 

outcome and progression towards AIDS [15]. This phase is generally 

asymptomatic and can exist for up to 15 years, resulting in the constant 

destruction of CD4+ cells and the presence of chronic inflammation 

(chronic phase) and inactivation of CTLs. In the final stage of infection, 

AIDS phase, the level of CD4+ T cells per μl of blood reaches < 100 

cells/μl [9]. This phase is characterized by weight loss, fever, cough, 

increased risk of myocardial infarctions, liver disease in presence of 

coinfection of hepatitis B and C, HIV-1-related tuberculosis mortality and 

the development of opportunistic illnesses such as Candida in the 

esophagus, trachea, bronchi and lungs, invasive cervical cancer, 

cytomegalovirus disease, HIV-related encephalopathy, Karposi’s sarcoma, 

Burkitt lymphoma, immunoblastic or primary brain lymphoma, 

toxoplasmosis of the brain, Salmonella septicemia and Herpes Simplex 

Virus infection involving skin or lungs problems [16], [17], [18], [19]. 
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Figure 3: HIV-1 Infection Phases. Acute phase (6-12 weeks) is charactherized by flu-like 

sympotoms, a peak in viral load and acute loss of CD4+T cells. Chronic phase can last 

between 7 to 10 years and is characterized by clinical latency. Sympoms appear during the 

AIDS phase where a high viral load and the decline of the CD4 T cells results in the 

development of opportunistic diseases and death. (Figure reproduced with permission from 

An P. et al., 2010 and Elsevier) [20] 

 

1.1.3 HIV-1 Diagnosis 

After HIV-1 exposure, HIV antibody presence may be absent for weeks or 

months during the so-called window period [21]. Nucleic acid tests are 

recommended in presence of high risk of acute infection. [9]. HIV RNA 

assays are characterized by 100% sensitivity and 97.4% specificity [22]. 

The US Centers for Disease Control and Prevention suggests an antigen 

antibody assay for the rapid detection of the virus during acute infection. 

Rapid HIV testing using blood from a finger stick or collection of oral fluid 

give results within 30 minutes.  
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1.1.4 HIV Genome 

The genome of HIV-1 is characterized by two linked copies of single 

stranded RNA, less than 10 kb in length, containing coding and non-coding 

regions involved in the production of regulatory and accessory proteins and 

in the regulation of viral expression respectively. The long terminal repeats 

(LTRs) at the ends of the provirus are characterized by two untranslated 

regions (U3 and U5) and a repeat element (R). LTRs are constituted by an 

enhancer/promoter sequence, ATT repeats involved in provirus integration, 

a primer binding site (PBS), a packaging signal ψ and a polyadenylation 

signal (polyA). The ψ-site is between the 5’LTR and the gag initiation 

codon and contains four stem loops (SL1-SL4) important for encapsidation. 

The enhancer sequence binds the transcription factor kappa-light-chain-

enhancer of activated B cells (NF-KB) and Nuclear factor of activated T-

cells (NFAT) [23]. The  HIV-1 promoter includes 3 important elements, 

stimulatory protein 1 (SP1) binding sites [24], a TATA element (TATAAA) 

[25], and an active initiator sequence [26], that allows the interaction 

between transcription factor TFIID and TATA binding protein associated 

factor (TAF) with the TATA element [27]. 

HIV-1 contains three main structural genes, gag which codes for matrix, 

capsid, nucleocapsid and p6 proteins, pol encoding for the protease, 

reverse transcriptase (RT) and integrase and env encoding the envelope 

proteins gp41 and gp120. Other proteins include Vif, Vpu/Vpx, Vpr and the 

negative regulatory factor (Nef) [28] 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281586/#A006916C90
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281586/#A006916C48
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281586/#A006916C132
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281586/#A006916C102
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Figure 4: HIV Genome Map and Structural Biology. Representation of the HIV-1 (panel 

A) and HIV-2 (panel B) full length genomes. Structural represenations and a schematic of 

the HIV-1 viral particle show localization and protein-protein intereactions of each viral 

protein.  (Figure reproduced with permission from Li G. et al., 2016 and the American 

Society of Microbiology) [28] 
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1.1.5 HIV Structural Biology 

The HIV envelope proteins gp41 and gp120 possess spikes decorated with 

carbohydrates and bind host receptors allowing viral penetration into host 

cells. The cleavage of the structural Gag polyprotein during the viral 

maturation results in the production of proteins within the matrix (MA), of 

the capsid (CA), of the nucleocapsid (NC) and p1, p2 and p6 proteins [28].  

The matrix protein (p17) is characterized by five α-helices, a 310 helix and 

a three-stranded mixed β-sheet. The carboxy-terminal α-helix connects the 

MA domain with the adjacent CA domain. MA proteins assemble into 

trimers that interact with the acid inner membrane of the virus, creating a 

coat of the viral membrane. An important function of these proteins is the 

transport of P55GAG protein to the cellular membrane, allowing the 

assembly of gp120 and gp41 into the viral particles [29]. 

The capsid protein forms stable hexamers which form a cone-shaped coat 

around the viral RNA. The HIV-1 capsid binds to the cellular proline 

isomerase cyclophilin A in the viral particle.  

The NC protein contains two zinc-finger-like domains and interacts with the 

viral genome. This protein is involved in the recognition and packaging of 

reverse transcriptase, the primer tRNALys
3 and the viral genome, interacting 

with almost 120 nucleotides of the unspliced RNA ψ-site [30], [31]. After a 

protease processes the Gag precursor, NC creates a ribonucleoprotein 

complex and allows the tRNALys
3 primer to anneal to the viral RNA initiating 

reverse transcription. Likewise, NC facilitates the elongation of viral DNA 

and is involved in viral particle formation. Mutations in conserved regions of 

the NC gene can alter RNA packaging specificity [32], [33]. 

HIV-1 protease is a homodimer containing an active site at the interface of 

the two subunits, formed by a catalytic triad (Asp25- Thr26-Gly27) 
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responsible for cleavage. Mutations of this protein can alter cleavage 

efficiency resulting in the production of dysfunctional cores [34]. 

HIV-1 reverse transcriptase is the protein involved in the retro-transcription 

of viral RNA into DNA. This protein is introduced in the viral particles as 

part of Gag Pol precursor and later processed as a mature p66-p51 RT 

heterodimer containing polymerase and an Rnase H domain. The first 

domain can copy either DNA or RNA templates, while the RNase H domain 

cleaves RNA of RNA/DNA duplexes. For the synthesis of viral DNA, RT 

requires a host tRNAlys3 primer containing an 18-nucleotide sequence at the 

3’ end, complementary to the primer binding sequence at 5’ end of the viral 

genome. RT synthesizes the negative RNA strand using the positive strand 

as a template, creating a RNA/DNA hybrid. The minus strand DNA 

hybridizes with the 3’end of one of the two viral RNAs present in the viral 

particle, first jump, allowing the rest of synthesis of the minus strand DNA 

followed by the degradation of the RNA strand. The polypurine tract at the 

3’ extremity of the RNA is not damaged by the RNase H activity and is 

used like a primer for positive DNA strand synthesis. After initial synthesis 

RT copies the first 18 nucleotides of the tRNA and RNase H remove one 

nucleotide from the tRNA/DNA junction, leaving a ribo-A on the 3’ end of 

the viral negative strand DNA. The elimination of the tRNA allows the 

exposure of a single strand portion of the positive DNA strand, which 

contains a complementary sequence to the PBS site. After the synthesis of 

this region on the negative DNA strand, the 5’end is transferred to the 

positive strand (second jump) allowing the extension of both strands. The 

produced DNA has the same sequences at both ends and is longer than 

the initial RNA. The viral DNA, after integration, serves as stamp for viral 

replication using host enzyme DNA-dependent RNA polymerase [35]. 
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Figure 5: Reverse Transcription of HIV-1 RNA. Model of HIV-1 reverse transcription into 

positive and negative strands of viral DNA. (Figure reproduced by permission from 

Sarafinos SG. et al., 2009 and Elsevier) [35] 

HIV-1 integrase (IN) is a viral enzyme consisting of 3 functional domains, a 

N-terminal zinc binding domain, a C-terminal DNA-binding domain and a 

central catalytic domain. IN is part of the pre-integration complex (PIC) and 
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recognizes the 3’ LTRs of the viral DNA complex, cutting two or three 

nucleotides at the 3’ end. The enzyme ligates the 3′-hydroxyl group of the 

end of the 3’ viral DNA to a pair of phosphodiester bonds in the host DNA.  

 

Cellular enzymes remove the two unpaired nucleotides at the 5′ end of the 

viral DNA and the DNA polymerase extends the unligated 3’ end of the 

human DNA, resulting in the incorporation of proviral DNA into the cellular 

genome. Analysis of the integration sites used by HIV-1 in the cellular 

genome revealed a low degree of specificity [36]. 

 

Nef is a 27 kDa accessory protein abundantly produced during the early 

phase of viral expression (37).  A majority of Nef proteins are incorporated 

into the virions and are cleaved by the viral protease resulting in 

association with the viral core (38). Nef is involved in the downregulation of 

the CD4 receptor by linking the tail of CD4 to the clathrin adapter protein 

complex 2 (AP-2), resulting in the internalization and degradation of the 

receptor, preventing reinfection by new viral particles [39]. Nef is also 

involved in the downregulation of major histocompatibility complex class I 

(MHC-I), mature MHC-II, CD28, CCR5 and CXCR4 receptors on the 

surface of infected CD4+ T-lymphocytes [40], [41]. The regulation of MHC-I 

involves clathrin adapter protein complex 1 (AP-1) or sarcoma (SRC) 

family kinase-ZAP70/Syk-PI3K cascade recruited by phosphofurin acidic 

cluster sorting protein 1 (PACS2). The decrease of MHC-I expression from 

CD4+ cells and the consequent upregulation of Fas ligand (FasL) 

molecules results in the apoptosis of infected CD8+ T cells. Nef down-

regulates host antiviral proteins serine incorporator 3 and 5 (SERINC3 and 

SERINC5), which decreases the incorporation of env proteins into the 

virions, allowing the spread of infection. NF also alters several functions of 

dendritic cells, monocytes/macrophages and NK cells [42], [43]. 
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Rev is a 116 amino acids protein composed of two domains, an amino-

terminal domain, harboring the nuclear localization signal (NLS), and a 

RNA-binding domain, carrying the nuclear export signal (NES) [44]. The 

major role of Rev is the regulation of HIV-1 protein expression and the 

export rate of mRNA. HIV-1 gene expression can be classified into early 

stage (Rev-independent) for the expression of the regulatory proteins Tat, 

Rev and Nef and late stage (Rev-dependent) for the expression of the 

remaining proteins [45], [46]. HIV-1 mRNA is subjected to three different 

splicings, the ~9 kb unspliced mRNA (genomic and gag and pol mRNA), 

the ~4 kb single spliced (encoding a truncated 72 amino acids form of Tat, 

Env, Vpu, Vif and Vpr) and the ~1.8 kb doubly spliced (early transcripts that 

encoding Tat, Rev and Nef). Doubly spliced mRNAs are small and 

immediately exported to the cytoplasm and translated into proteins. The 

other transcripts require the action of Rev for cytoplasmic transport as Rev 

recognizes and interacts with the Rev responsive element (RRE), present 

in unspliced and single spliced transcripts. The Rev NLS sequence binds 

directly to KPNB1/Importin beta-1 complex, and KPNB1 binds Ran-GDP 

form, allowing the transport of Rev into the nucleus, where Ran GDP is 

converted in Ran-GTP and Rev dissociated from KPNB1 and associates 

with the region RRE of the immature transcripts. This binding exposes the 

NES site of Rev allowing the binding of this protein with exportin 

XPO1/CRM1 complex and Ran-GTP and the nuclear export of the 

complex. Rev can regulate expression of viral proteins like Tat, keeping a 

correct equilibrium between early and late viral gene expression.  Without 

Rev the transcripts are not translated into viral proteins [47].  

Viral protein U (Vpu) is a 16 kDa protein translated from vpu-env bicistronic 

mRNA. The N terminal domain is characterized by a transmembrane (TM) 

domain involved in the regulation of viral release. The phosphorylation of 

serine residues within the C-terminal cytoplasmic domain is critical for CD4 

https://en.wikipedia.org/wiki/C-terminal


18 
 

degradation in the endoplasmic reticulum [48]. Vpu induces ubiquitination 

and the protoseomal degradation of BST2, an interferon (IFN)-inducible 

cell surface protein that interferes with the release of the viral particles in 

absence of Vpu [49]. 

Vif is a 23 kDa protein essential for viral replication. Vif inhibits the antiviral 

activity of the cellular apolipoproteins B mRNA editing enzyme catalytic 

subunits 3F and 3G (APOBEC3F and APOBEC3G) via proteosomal 

degradation and inhibition of the mRNA translation respectively, preventing 

the incorporation of these enzymes into new virions.  In the absence of Vif, 

these proteins cause hypermutation of the viral genome influencing the 

stability of the viral nucleoprotein core and contributing to the G2 cell cycle 

arrest in HIV infected cells [50].   

Vpr (viral protein r) is a 14 kDa protein involved in the transport of the PIC 

complex to the nucleus. It can associate with DNA damage-binding protein 

1 (DDB1) as part of E3 ubiquitin ligase complex targeting specific host 

proteins for proteosomal degradation. The association of Vpr with the 

cellular CUL4A-DDB1 E3 ligase complex may result in cell cycle arrest or 

apoptosis of the infected cells [51]. Vpr carried into the virions can arrest 

cell cycle in G2 phase within hours of infection, increasing viral expression 

and can induce apoptosis by interacting with mitochondrial permeability 

transition pore complex (PTPC). This interaction results in a lost of the 

mitochondrial transmembrane potential and in a mitochondrial release of 

apoptogenic proteins such as cytochrome C or apoptosis inducing factors. 

Vpr can regulate the tumor suppressor p53-induced transcription [52].  

 

1.1.6 Regulatory Tat protein 

Tat is a 14-kDa regulatory protein important for the expression of HIV-1 

genes. In presence of Tat, the activity of RNA polymerase is stabilized 

https://en.wikipedia.org/wiki/Interferon
https://en.wikipedia.org/wiki/DDB1
https://en.wikipedia.org/wiki/E3_ubiquitin_ligase
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allowing increased elongation of the viral transcripts [53]. The binding of 

Tat to a transactivation response region (TAR) at 3’ region of the initiation 

site of transcription of the mRNA originates a stem loop complex, nuclease 

resistant, and a conformation change of the RNA structure [54]. Mutations 

present in the TAR RNA loop, but not specifically to the region recognized 

by Tat, interfere with transactivation [55], which suggests the presence of a 

cellular cofactor involved in the mechanism of regulation of gene 

expression [56]. Herrmann et al. described the presence of a protein 

kinase complex binding Tat, Tat-associated kinase (TAK) [57], [58]. Tat 

and TAR RNA interact with the two components, CDK9 and cyclin CycT1, 

of the positive transcription elongation factor pTEFb, a cofactor of HIV-1 

elongation. The interaction between Tat and CycT1 yield conformational 

changes, resulting in CDK9 activation [59]. P-TEFb activated by Tat 

regulates elongation via phosphorylation of different elongation factors. In 

absence of Tat, the negative elongation factor (NELF) blocks the 

transcription via interaction of its subunit E with TAR region [60]. After 

activation by Tat, p-TEFb phosphorylates NELF-E, which dissociates from 

TAR and this release stops transcription elongation complexes. In absence 

of Tat, inactive p-TEFb molecules are sequestered by a 7SK RNP complex 

formed by 7SK RNA and RNA-binding proteins. During the elongation 

process the Tat/PTEFb complex phosphorylase RNAPII CTD and a subunit 

of the DRB sensitivity inducing factor (DSIF), [47] increasing elongation 

efficiency. Interaction of human transcription factors FF4, ENL, AF9, ELL2 

with the Tat P-TEFb complex increases the elongation process [61]. Tat 

mediates the nuclear translocation of NF-kappa-B via oxidative stress-

induced cell signaling pathway like the PI3K/Akt signaling pathway to 

increase the transcriptional elongation [62]. In absence of Tat, RNA Pol II 

generates non-processive transcripts that terminate at approximately 60 

bases from the initiation site. Circulating Tat acts like a chemokine or 
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growth factor-like molecule and interferes with many cellular pathways. The 

recruitment of histone acetyltransferases (HATs) Cyclic-AMP response 

element binding protein B (CREBBP), E1A binding protein p300(EP300) 

and acetyl-CoA acetyltransferase (PCAF) by Tat to the chromatin 

increases proviral transcription especially in latently infected cells 

transactivating LTR promoter [63]. Tat can be endocytosed by surrounding 

uninfected cells, like neurons, leading to apoptosis and the progression of 

HIV-Associated Neurocognitive Disorders (HAND) [64]. 

        

Figure 6: Interaction of Tat with NF-KB and P-TEFb. NF-kB promotes the initiation of viral 

transcription, then the Tat/P-TEFb complex interacts with the TAR region to create the 

elongation factor complex and the phosphorylation of RNAP and efficient elongation.  

(Figure reproduced with permission from Karn J. et al., 2012 and Cold Spring Harbor 

Perspective in Medicine) [47]. 

1.1.7 HIV-1 replication cycle 

The HIV-1 replication cycle is divided into early and late phases. The first 

period is characterized by the binding of HIV with the host cellular 
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receptors to viral integration into the human DNA. The second stage 

encompasses the events from the protein translation to the release of the 

mature virions. Initially, viral particles bind to various cell surface binding 

effectors, such as heparin, sulfate proteoglicane, integrin subunit beta 2 

(ITGB2) and nucleolin. This binding facilitates HIV-1 interactions with viral 

receptor on the cells [65]. HIV entry into cells involves viral binding to CD4, 

a receptor expressed on the surface of T lymphocytes (activated T 

lymphocytes represent the main target of HIV-1), monocytes, macrophages 

and dendritic cells [9] and interactions with co-receptors, CCR5 or CXCR4, 

which are both chemokine receptors. HIV-1 variants use either CCR5 or 

CXCR4 and are denoted R5 and X4, likewise some variants use both, 

denoted R5X4.  CCR5 is expressed in memory T lymphocytes, 

macrophages and dendritic cells, and is not expressed in naïve T 

lymphocytes. HIV-1 infection of dendritic cells relies on the capture of the 

virus, resulting in the spread of T lymphocyte infection [66].  Infected 

follicular dendritic cells retain HIV-1 within B cell follicles of lymph nodes 

[9]. For viral entry, the envelope glycoprotein gp120, which form 

gp41/gp120 trimers, binds to CD4 [67]. Viral binding induced 

conformational changes in CD4 and gp120, and additional conformational 

changes occur after the recognition of gp120 by one of the HIV-1 

coreceptors, inducing to the dissociation of gp120 from gp41, and the 

insertion of gp41 into the cellular membrane. This event results in the 

release of the viral core, from viral particles into the target cells after the 

fusion of viral and cellular membranes into the cytoplasm [65]. In the 

cytoplasm, the viral particle is uncoated and RT converts viral RNA into 

linear viral DNA double stranded molecules. Viral DNA associates with viral 

proteins forming PIC complexes of 56 nm diameter composed of PR, RT, 

IN, Vpr, CA, NC and MA proteins [68], [69]. PIC complexes are then 

transported through small channels of the nuclear pore (25 nm of 
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diameter), a process facilitated by mediators. HIV-1 Nef and Vif protein, 

associated with the viral core, and the cellular protein cyclophilin A, 

modulate early events of HIV-1 replication [65]. An early production of viral 

proteins was described even before viral integration [70], [71], [72], [73], 

[74]. Viral replication and viral transcripts production depend on integration 

of HIV-1 DNA into the host DNA resulting in a productive infection [65]. 

Different RNAs include unspliced full-length transcripts, singly spliced 

mRNAs and fully spliced mRNAs. During the late phase of HIV-1, 

transcripts are translated in the cytoplasm, producing both Gag precursor 

(55kDa) protein and GagPol (160 kDa) polyprotein precursor (resulting 

from a ribosomal frameshift events). Gag precursor protein contains MA, 

CA, NC and p66 domains and two spacer peptides SP1 and SP2, while the 

GagPol polyprotein precursor contains the viral protease, reverse 

transcriptase and integrase. The MA domain interacts with 

phosphoinositide phosphatidylinositol-4,5-bisphosphate, a protein in the 

plasma membrane, to drive the Gag domain into the inner leaflet of the 

plasma membrane and to stimulate the incorporation of the Env protein 

into viral particles [75]. The CA induces the multimerization of Gag protein 

during its assembly. NC is critical for the packaging of the viral genome into 

virions. The p6 protein regulates the budding of nascent virions from the 

cell membrane, through a PTAP motif by recruiting Tsg101 and ALIX, 

components of the endosomal sorting complex required for transport 

(ESCRT) apparatus. P6 mediates the incorporation of Vpr protein into 

budding virions. In the cytoplasm, two copies of viral genome are packaged 

into HIV-1 virion core [76]. RNA dimerization occurs in the presence of a 

dimer initiation signal (DIS), present within the 5’ UTR sequence. Different 

conformational changes of the 5ʹ end of the viral genome may favor 

translation or promote packaging [77]. In the plasma membrane the Gag 

protein, full-length RNA and the GagPol precursor assemble into immature 
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viral particle. After the multimerization of Gag molecules, nascent virions 

are released from the membrane of infected cells, budding process, which 

is mediated by the endosomal sorting complexes required for transport 

(ESCRT) machinery. Simultaneously with viral budding, Gag precursor and 

Gag Pol polyproteins are cleaved by the viral protease allowing the 

maturation of the virions and the formation of infective particles.  

 

 

Figure 7:  HIV-1 Life Cycle. After the interaction between Env, CD4 and the co-receptors 

during the fusion of the virus with the cell membrane, the virus entries into the cells, where 

is subjected to uncoated process, reverse transcription, PIC complex formation, 

transcription and protein translation with final assembly, budding and release of the new 

viral particles. (Figure reproduced with permission from Engelman A.et al., 2012 and Nature 

Publishing group) [78] 

1.1.8 Latency  

Viral latency can be classified into pre-integration and post-integration 

latency [79], [80]. Pre-integration latency results from incomplete reverse 
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transcription, decreased entry of the PIC into the nucleus or incomplete 

integration [81], [82]. Pre-integration latency is not involved in the formation 

of long-term latent reservoirs [83]. Post-integration latency results from 

transcriptional silencing, a condition that is influenced by the cellular 

environment at the site of the integration; sequestration of host 

transcription factors like NF-kappaB or NFAT in the cytoplasm, presence of 

repressors of transcription like COUPTF Interacting Protein 2 (CTIP2), 

Negative Elongation Factor (NELF), DRB-Sensitivity Inducing Factor 

(DSIF), T cell factor 4 (TCF-4) associated with beta-catenin molecule and 

the family of tripartite motif-containing (TRIM) proteins, the presence of 

nucleosome (nuc-0 and nuc-1) on the LTR promoter, epigenetic silencing 

of HIV transcription, the sequestration of P-TEFb and the concentration of 

Tat [84], [85]. Histone deacetylation contributes to transcriptional 

suppression, an inhibitor of the histone deacetylase HDAC6 decreases HIV 

latency by increasing the acetylation of histones H3 and H4 in the nuc-1 

region of the HIV LTR [86]. Histone modification is important for HIV-1 

transcription, with histone acetylation resulting in transcriptional activation, 

histone methylation of H3K9, H3K27 and H4K20, is associated with 

transcriptional activation while the methylation of lysine residue 4 H3K4, is 

associated with activation [87]. During latency, the transcription start site of 

the LTR promoter is hyper-methylated at two CpG islands [88].  A defective 

transport of transcripts in the cytoplasm can be correlated with insufficient 

levels of Tat and Rev proteins [89]. Post-transcriptional modification of Tat 

residues influences HIV-1 regulation, with lysine 28 acetylation inducing a 

strong affinity for binding to P-TEFb [90], [91], while   lys50/51 acetylation 

dissociates Tat from TAR. HIV-1 produces viral interference RNAs 

(viRNAs) that can target viral mRNAs (inducing virus latency), cellular 

mRNAs, like CD28, and cellular miRNAs. During HIV-1 infection, Tat and 

Vpr modulate cellular miRNA expression levels in infected cells [92].  
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In ART patients, there exists a low level of viremia derived from low viral 

replication in anatomic sanctuaries inaccessible to the drugs or from viral 

reactivation in resting T cells. Viral reservoirs develop when the 

transcriptionally silent virus persists in some cells or tissues without active 

replication. The main reservoirs are resting central memory T cells (TCM), 

CD45RA- CCR7+ CD27+, (half-life of ~44 months) and translational 

memory T cells (TTM), CD45RA- CCR7-CD27+ [93] [94]. Infected TCM 

cells can originate from infected active T cells that live enough long to 

differentiate to TEM [95], or they can be directly infected or infected prior to 

differentiate in resting T cells. Another source of reservoirs came from 

monocytes and macrophages, naïve T cells and hematopoietic progenitor 

cells (HPC) [96]. Reservoir in the central nervous system (CNS) and the 

gut associated lymphoid tissues (GALT) possesses viral RNA at 5-10 times 

higher levels than found in peripheral blood mononuclear cells [97]. In the 

brain, is possible find infected macrophages after differentiation of 

monocytes that cross the blood brain barrier. Also proviral DNA is present 

in astrocytes and is associated to dementia [98]. The integration of HIV-1 in 

the host is preferentially into introns of active cellular genes. In actively 

infected cells the sense orientation to actively genes comparing to the 

position of viral integrated DNA, may have a repressive role in viral 

transcription comparing than antisense orientation. Substances like 

phorbol, prostatin or methamphetamine, inihibitor of Wnt, histone 

deacetylase inhibitors (HDACI, valproic acid or SAHA) and IL-7 can 

activate HIV-1 expression [99].  

 

 

 

 

 



26 
 

1.2 HIV-1 treatment 

 

1.2.1 Antiretroviral Therapy 

Antiretroviral therapy was developed in the late 1990s and changed the 

outcome of the HIV-1 epidemic. Highly active anti-retroviral therapy 

(HAART) became available in 1995. US and European regulatory agencies 

recommend 25 unique antiretroviral drugs specific against different steps of 

the HIV-1 life cycle. Antiretroviral therapy decreases the level of the viral 

load below the limit of detection within the initiation of the treatments [3]. 

Only a small percentage of HIV-infected patients in the world have access 

to HAART. Patients showing a decreased of viral load and an achieve of 

normal CD4+ count have an expectancy of life close normal life [100], but 

interruption of ART leads viral rebound, active replication and progression 

towards AIDS. During HAART there is the potential of the emergence of 

HIV-1 variants which are resistant to anti-retroviral drugs [3]. Different 

classes of drugs used in ART therapy include nucleoside reverse 

transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase 

inhibitors (NNRTIs), integrase strand transfer inhibitors, protease inhibitors 

and entry inhibitors. NRTIs are analogues of natural nucleosides and 

nucleotides blocking HIV-1 reverse transcriptase activity, but are 

preferentially incorporated into HIV-1 DNA and determine the termination 

of HIV synthesis. Drugs recommended in this class are tenofovir, abacavir, 

lamivudine, emtricitabine. Integrase strand transfer inhibitors avoid viral 

integration and are well tolerated and safe. NNRTIs inhibit reverse 

transcriptase binding to a pocket near the active site of the enzyme. 

Protease inhibitors block the activity of the protease in the late state of HIV-

1 replication avoiding the maturation of the virus, these drugs are usually 

administrated with two nucleoside analogues. Entry inhibitors prevent the 

entry of the virus in the cells, by binding to CCR5 or the virus. 
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HIV-1 reservoirs are resistant to the action of antiretroviral drugs, thus 

providing a source for viral reactivation after ART interruption (viral 

rebound). The use of other strategies for the control the HIV-1 viral load 

and of the progression towards AIDS in absence of antiretroviral therapy 

(functional cure) has been proposed. One such proposed mechanism is a 

sterilizing cure, in when the aim is to eradicate the virus from all cells in the 

body, either actively or latently infected. Currently, no sterilizing cure 

method has proven successful. 

                   

Figure 8: HIV-1 RNA copies/ml in the plasma in patients treated with antiretroviral 

therapy. The first phase is characterized by a rapid decline of viral load due to the short haf 

life of the infected CD4+ T cells. The second phase is characterized by the loss of infected 

CD4+T cells, macrophages amd dendritic cells. In the third phase a low level of viremia, 

under the limit of detection is manteined by HIV-1 reservoirs. Viral rebound is observed after 

antiretroviral therapy interruption. (Figure reproduced with permission from Van Lint C. et 

al., 2013 and open access Retrovirology Journal) [99] 
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Figure 9: Global Incidence of HIV-1 infected patients under ART therapy between 

2010-2015 (Figure created using the ufficial data from UNAIDS, special analysis, 2017) [7] 

1.2.2 Vaccines  

The genetic diversity of the HIV-1 genome and the difficulty to develop 

highly immunogenic antigens decreases the probability of developing a 

candidate vaccine with high efficacy. Numerous neutralizing antibodies act 

against a conserved region of HIV envelope in 90 % of the HIV strains 

when administered as passive immunoprophylaxis. A previous trial used an 

adenovirus vector for vaccine strategy, however this strategy resulted in an 

increased rate of HIV infection in people with pre-existing antibodies to the 

adenovirus used [101]. The RV144 trial completed in Thailand in 2013 

involved 16402 people with a high risk for HIV. The vaccination series used 

four immunizations with ALVAC Vcp1521, which express Gag/Pro and Env 

antigens. This treatment was followed by two booster injections with a 

recombinant gp120 formulated with alum and is the only clinical trial 

showing positive results with a 31 % reduction in HIV acquisition [103]. 

1.2.3 Transplantation of Hematopoietic Stem Cells 

Latently infected cells constitute a viral reservoir in circulating blood, CNS, 

bone marrow and gut associated lymphoid tissue [103]. New strategies for 
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a sterilizing cure were developed after the case of the “Berlin patient”, an 

HIV-1 patient that received an allogenic stem cells transplant to treat acute 

myeloid leukemia from a donor with a mutated CCR5 gene. The donor 

mutation was CCR5∆32 homozygous, a deletion of a 32-base pair region 

in the receptor gene that confers HIV-1 resistance due the production of an 

inactive CCR5 receptor. Homozygous patients with this mutation are 

completely protected by HIV-1 infection, while heterozygous patients 

present a slower progression of the disease [104]. After transplantation, the 

Berlin patient presented with an undetectable viremia level for more than 9 

years without ART therapy. Later, two other HIV-1 patients with Hodgkin’s 

lymphoma who were heterozygotes for CCR5∆32 received transplantation 

of hematopoietic stem cells from donors with wild type CCR5, but viral 

rebound was observed after 12 and 32 weeks of interruption of ART 

therapy [105]. 

 

1.2.4 Shock and Kill Therapy Approach  

One strategy proposed to eradicate HIV-1 reservoirs is the “purging 

strategy” [106] or shock and kill therapy. The use of latency reversing 

agents (LRA) which reactivate viral transcription in latent cells to increase 

viral production (shock), is followed by infected cell death and recognition 

by the immune system (kill) in combination of ART to prevent new 

infection. Different LRA molecules have been used in vitro and ex vivo. 

Most commonly HDAC inhibitors such as valproic acid (VPA), an 

antiepileptic agent that acts against HDAC I and II, trichostatin A (TSA), 

suberohylanilide hydroxamic acid (SAHA), Panobinostat (LBH-589), 

Benzamides, and cyclic tetrapeptides. Other molecules including histone 

methyltransferase (HKMT) inhibitors, PKC agonists or NF-KB are used to 

promote transcription [103]. This approach has limitations; such as low 
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efficiency to induce latency cells, no specificity effects and toxicity [107]. 

Due to these limitations, other strategies are required to eradicate HIV-1, 

including proposed gene editing strategy. 

1.2.5 Gene Therapy Strategies 

Different approaches for gene editing involve either RNA based strategies, 

such as ribozymes, antisense RNA, small interfering RNA, or protein-based 

strategies, such as meganucleases, zinc finger nuclease (ZFN), 

transcription activator like effector nuclease (TALEN), clustered regular 

interspaced repeats (CRISPR system).  

1.2.6 Cre recombinase  

The first gene editing approach used was Cre recombinase from the P1 

bacteriophage, which induces events of recombination between 2 LoxP 

sites [108]. Through substrate-linked protein evolution (SLiPE) it is possible 

to place a region of interest adjacent to the recombinase coding region 

[109]. This system was used to target the LTR region in latently infected 

cells, obtaining efficient excision of the integrated HIV proviral DNA [110]. 

Mariyanna et al. [111] describes Tre-recombinases expressed in bacteria 

targeting the protein transduction domain (PTD) of HIV-1 Tat. These 

recombinases can induce recombination activity of HIV-1 LTR sequences 

in human HeLa cells and induce proviral DNA excision from chromosomal 

integration sites. Hauber et al. [112] used a self-inactivating lentivirus to 

deliver a Tre-recombinase in primary CD4+ or CD34+ cells engrafted in 

humanized Rag2−/−, γ−/− mice inducing HIV-1 provirus excision. A 

limitation of the Tre-recombinase system is limited specificity, currently only 

targeting HIV-1 subtype A isolates. Further studies by Karpinski [113], 

developed a new recombinase (Brec1) effective against 34 base pair of 

LTR sequences of multiple HIV-1 strains and subtypes. The Brec1 
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recombinase resulted in excision of integrated HIV-1 provirus in vitro and 

in vivo, including in humanized mice engrafted with patient cells. 

 

1.2.7 Homing endonucleases   

Homing endonucleases are sequence-specific endonucleases of the 

meganuclease family that target a DNA sequence of 16-30 base pairs 

[114]. The DNA binding site and the nuclease site are confined to the same 

domain. Homing endonucleases were used in lentiviral vectors to target the 

integrated HIV-1 provirus DNA. An important limitation of this approach is 

the large size and the low degree of specificity [115]. 

 

1.2.8 The Zinc-Finger Nuclease (ZFN) 

Zinc-finger nucleases (ZFN) are engineered nucleases containing specific 

transcription factors that recognize target DNA through zinc finger motifs 

and a non-specific endonuclease domain Fok1. The binding of the paired 

zinc finger protein with the Fok1 domain induces activation of the ZFN, 

leading to double stranded DNA breaks in the target sequence [116]. Each 

finger of this protein recognizes a specific sequence of three nucleotides. 

ZFNs technology have been used to modify the genome of plants, animals 

and humans. Different laboratories used ZFNs protein to target the cellular 

CCR5 and CXCR4 receptors in infected CD4+ T cells [117], [118], [119], to 

target M tropic HIV-1 strains (R5 viruses), and T tropic HIV-1 strains (X4 

viruses). Holt et al. [120] engineered CCR5 knockout human cells and 

engrafted them into immunodeficient mice. These mice showed a rapid 

selection of CCR5-/- cells and a consequent reduction of HIV-1 level 

compared to the negative control. Maier et al. used an adenoviral vector 

encoding CCR5-specific ZFN to express the modified CCR5 in stimulated 

CD4+ T cells [121]. Tebas et al. used this technology to infuse in HIV-1 

patients autologous CD4+ T cells after disruption of CCR5. Six of the 
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twelve patients that suspended ART showed later viral rebound suggesting 

that this technology delays disease progression yet isn’t a permanent cure 

[122].  Li et al. [123] used a recombinant adenoviral vector for CCR5-ZFN 

to engineer CD34+ hematopoietic stem/progenitor cells and engraft them 

into a humanized mouse model, supporting the idea that this strategy 

allows the selection of the mutated cells by the same virus. Yi et al. [124] 

reported suppressed viral replication in CD4+ cells of HIV-1 positive 

patients engrafted in mice and transduced with a non-integrated lentivirus 

vector inducing expression of CCR5-ZFN. Yao et al. [125] showed the 

capacity of ZFN engineered CCR5 pluripotent stem cells (hiPSCs) to 

differentiate into CD34+ cells in vitro, suggesting the possibility of 

modifying patient-specific stem cells to treat of HIV infection. Yuan et al. 

[126] engrafted ZFN-modified CXCR4 CD4+ T cells in HIV-1-infected NSG 

mice, resulting in resistance to HIV-1 CXCR4strain. Didigu [127] used 

ZFNs to modify CCR5 and CXCR4 in human CD4+ T cells and infuse them 

into a humanized mouse model of HIV-1 infection, resulting in resistance to 

HIV-1 CCR5 and CXCR4 tropic strains.  

 

 

Figure 10: Zinc Finger Nuclease Model. This model is characterized by two domains; a 
DNA binding domain and a DNA cleaving domain [128] 
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1.2.9 Transcription Activator‑Like Effector Nucleases (TALEN) 

Transcription like effector nucleases (TALEN) are produced by the bacteria 

Xanthomonas spp. to modify the transcription of the host plant cells. This 

system contains a FokI aspecific nuclease domain and a TALE-derived 

DNA binding domain with a conserved 33-35 amino acid repeats [129]. The 

number of repeats determines the length of the DNA target. Each repeat of 

the TALE domain binds a specific single nucleotide. The DNA specificity 

depends on two hypervariable residues in position 12 and 13 of each 

repeat. The presence of Asn/Asp is specific for cytosine, Asn/Gly is specific 

for thymine, Asn/Asn for guanine and His/Asp for cytosine. TALENs have 

been used for the therapy of HIV-1, to target the CCR5 gene, the 

epithelium-derived growth factor and LEDGF/p75 [130]. TALENs and zinc 

fingers both induce a 45 % disruption of the CCR5 gene, but TALENs are 

less cytotoxic, more specific (each repeat recognizes one nucleotide 

instead three for ZFN), possess less off target effects and can target 

methylated DNA, resulting in specific targeting HIV-1 provirus [131].  

Limitations of TALENs include the large size of the construct which 

constitutes an issue for efficient delivery [130]. Ru et al. [132] created a 

Tat-TALEN protein, complex delivered by a cell penetrating peptide that 

induced a 5% modification rate in the CCR5 gene of human-induced 

pluripotent stem cells. Mock et al. [133] used non-integrated lentivirus to 

deliver CCR5-specific TALENs in different cell lines and in T cells, 

obtaining >50% CCR5 knockout and low off-target activity. Fadel et al. 

[134] used the TALEN technique to target the human PSIP1 gene, which 

encodes the cellular protein LEDGF/p75, an HIV-1 integration cofactor. 

Knockout of PSIP1 gene was due to made by deletion of the whole gene or 

by deletion of the integrase binding domain, resulting in inhibition of HIV-1 

integration and viral replication in Jurkat and HEK293 T cells. Ebina et al. 

[135] used a lentiviral vector to deliver HIV LTR TALEN protein in a T 
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cellular line obtaining an excision of >80% of HIV-1 proviral DNA. Strong 

et al. [136] used HIV TAR TALEN protein to induce indel mutations in HIV-

infected cells, resulting in a loss of Gag production. 

 

 

Figure 11: TALEN Model System. Schematic representation of the TALEN model system, 

showing the presence of TALE repeat domains and the Fok1 nuclease domain, which 

provides the gene editing capability (Figure reproduced with permission from Joung JK et 

al., 2013 and Nature Publishing Group) [137] 

 

1.2.10 Double Strand Break (DSB)  

The excessive time and cost for production of engineered ZFNs and 

TALENs protein resulted in the development of an easier and more 

powerful strategy of gene editing called clustered regulatory interspaced 

short palindromic repeat system (CRISPR). This mechanism utilizes the 

adaptive immune system of archaea and of bacteria and was adapted to 

mammalian genome editing. CRISPR loci contain a clustered set of 

CRISPR-associated (Cas) genes and a CRISPR array consisting of a 

series of direct repeats interspaced by specific sequences, called spacers, 

that recognize foreign sequences, a protospacer, via Watson-Crick base 

pairing [138]. Generally, genome engineering strategies have been used to 
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induce double stranded breaks (DSB) at a DNA target site. The DSBs 

produced by these gene editing molecules are repaired by homology-

directed repair (HDR) or non-homologous end joining (NHEJ) system. HDR 

can utilize a donor template, allowing the introduction of specific point 

mutations or the insertion of specific sequences through recombination 

between the donor template and the DNA target. The system NHEJ can 

introduce mutations like deletions and insertions (indels) that may results in 

frameshifts or production of stop codons disrupting the open reading frame 

(ORF) of the target gene and the excision of the section of the DNA 

between the DSB when multiple gRNAs are employed, resulting in a loss of 

gene function. The frequencies of these mutations is generally between 1% 

- 50 %, yet can be higher depending on the system. Unlike the use of 

monoclonal antibody or RNA interference systems, NHEJ-mediated system 

induces permanent modification on genome avoiding periods of repeated 

treatments [139]. 

 

 

Figure 12: Induction of Double Strand Breaks after gene editing. Gene editing through 

either zinc finger nucleases, TALEN or CRISPR treatments results in double-stranded DNA 

breaks, which is repaired by either cellular homologous recombination or non-homologous 

end joining DNA repair. Generally, homologous recombination is preferred when the goal is 

gene replacement while non-homologous end-joining is preferred when the goal is 
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mutagenesis of a target gene (Figure reproduced with permission from Khalili K. et al., 2015 

and Springer) [139] 

 

1.2.11 CRISPR SYSTEM 

In 1987 Nakata et al., [140] described the presence of 29 nucleotide 

repeats between five 32 nucleotides no repetitive sequences in Escherichia 

coli. These repeats were classified belonging to a unique category of 

clustered repeat elements found in the >40 % of bacteria and 90 % of 

archea [141]. In 2002 Jansen and Mojica [142], [143] denoted CRISPR to 

describe all microbial genomic loci containing interspaced repeat elements.  

In the same year, Jansen described the presence of cas genes adjacent to 

the interspaced repeats. The CRISPR system is classified into three types 

based on difference in the cas genes [144], [145]. Type I and III contain 

more Cas genes compared to type II and form complexes with crRNA 

called CASCADE complexes and Cmr or Csm RAMP complexes. CRISPR 

arrays are transcribed in crRNAs containing spacers that direct the activity 

of the nuclease to the target, containing by RNA and DNA for CRISPR type 

III [138], or DNA for types I and II. In type II, the processing of crRNA into 

mature crRNAs depends on the presence of a trans-activating crRNA 

(tracrRNA) that hybridizes with the crRNA, together with Cas9 and the 

endogenous RNase III, the crRNA processes the pre-crRNA into mature 

RNA [146]. Type II CRISPR, is present only in bacteria and can be 

classified into three subtypes (IIA-IIC) based on different Cas genes. Type 

IIC contains cas9, cas1 and cas2 genes. Types IIA and IIB contain two 

additional genes, csn2 or cas4 genes respectively [147]. In the latest 

classification, CRISPR can be divided in two classes, class 1 (that includes 

the type I and III) which uses several Cas proteins and crRNAs and class II 

(CRISPR type II and of type V), which employs a single component Cas 

protein and crRNAs [148]. CRISPR type II uses the Cas9 protein, while the 
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type V uses another protein of 1300 amino acid called CRISPR from 

Prevotella and Francisella 1 (Cpf1). Cpf1-associated CRISPR arrays differ 

from the type II by three important characteristics: pre-crRNA is processed 

into mature crRNAs without the action of the tracrRNA, the presence of a T 

rich PAM sequence preceding the target sequences is required instead of 

a G rich PAM sequence following the DNA target in the type II, and this 

protein induces DSB with four or five nucleotides 5’ overhang [149]. 

Moineaua at el discovered that in Streptococcus thermophilus, Cas9 (also 

called Cas5, Csn1 or Csx12) is the only Cas gene able to induce DNA 

editing [150]. Cas9 protein contains two nuclease domains, RuvC (divided 

in 3 domains, RuvC I close the N terminal of Cas9 protein and RuvCII/III 

close to the HNH domain) and HNH (single nuclease domain), each of 

which nicks a strand of DNA to generate a blunt-ended DSB. The structure 

of Streptococcus pyogenes Cas9 (spCas9) was deeply characterized, 

revealing the presence of a central channel that houses the RNA-DNA 

target hetero-duplex after rearrangements of Cas9 binding crRNA and 

tracrRNA [151]. Cas9 structure analysis revealed the presence of two 

lobes, an alpha elical recognition (REC) lobe that facilitates binding with 

the target sequence and a nuclease lobe that contains HNC and RuvC 

domains and a PAM interacting (PI) C terminal region. When Cas9 is 

unbound, the active site of HNH domain is blocked by the RuvC domain 

and the binding RNA-DNA is inhibited by the C-terminal domain. The 

SpCas9 REC2 domain is poorly conserved in orthologs, allowing the 

production of Cas9 mutants that are highly compact with increased 

efficiency [152]. Different bacteria are characterized by several Cas9 with 

similar structure but different size ranging from 900 to 1600 amino [145]. 

Type II CRISPR requires the presence of protospacer adjacent motifs 

region (PAMs) at the 3’ end of the target region, sequence specific of each 

Cas9 ortholog for DNA cleavage [153]. SpCas9 recognizes both 5’NGG 
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PAM and 5’NAG PAM sequences, with the complexity of the PAM regions 

determining the DNA targeting space of Cas9 [138]. The choice of the 

promoter, either U6 or T7, to express gRNAs influences the target 

sequence by requiring a G or GG at 5’ end of the spacer respectively. The 

Cas9-crRNA-trRNAcomplex first associates with the PAM sequence, then 

Cas9 initiates the separation of DNA strand with unknown mechanism and 

edit the DNA target.  CRISPR types I and III require the presence of 

mismatches at the 5’ end of the crRNA and the target sequence to initiate 

gene editing [154]. In 2012, a study demonstrated the ability of purified 

Cas9 from Streptococcus thermophilus or Streptococcus pyogenes (Sp) to 

edit DNA targets in the presence of crRNAs [155]. CRISPR type II utilizes 

the combination of SpCas9 and guide RNA (gRNA), which is the fusion of 

a crRNA and a tracrRNA.  

Cas9 is a universal nuclear which has been adapted for gene editing in 

many organisms, including bacteria, yeast, fruit flies, zebrafish, mice, rats, 

monkeys, and human cell lines [138]. Following administration of Cas9, 

target DNA is cleaved, resulting in a DSB three to four nucleotides 

upstream of the PAM sequence. In mammalian cells, CRISPR-mediated 

gene editing requires the use of engineered gRNAs, which fuse a crRNA 

and a tracrRNA containing a roughly 20 nucleotide guide sequence to 

ensure DSB at specific genomic sites. Likewise, a dual gRNA system can 

be utilized, containing a second stem loop which increases the stability of 

the gRNA compared to single gRNAs.  

The use of Cas9 as a gene editing strategy for human patients has 

unlimited potential as both a therapeutic agent and a genome editing 

agent. Cas9 gene editing has been proposed for the treatment of multiple 

monogenic recessive disorders resulting from loss-of-function mutations, 

such as cystic fibrosis, sickle-cell anemia, or Duchenne’s muscular 

dystrophy. Likewise, Cas9 has been proposed to treat polygenic disorders 



39 
 

and dominant-negative disorders, including diabetes, heart disease, 

schizophrenia, autism, transthyretin-related hereditary amyloidosis and 

dominant-negative forms of retinitis pigmentosum [138].  

However, the therapeutic potential of CRISPR is still in its infancy. The first 

clinical trial using CRISPR technology was in 2016 at Sichuan University in 

Chengdu, China. In this trial, peripheral blood lymphocytes were collected 

and programmed cell death protein 1(PD-1) was knocked out by CRISPR-

Cas9 in vitro, after which knockout cells were clonally expanded and 

infused into the patient. This trial remains underway, with completion and 

publication being expected in April 2018 [156]. Various studies have 

demonstrated off-target Cas9 binding, however, this binding does not 

necessarily induce cleavage at all off-target sites. Currently, several 

software programs, including DNA2.0 CRISPR gRNA design tool, E-

CRISP, sgRNAcas9 software package, CasOFFinder, and CasOT, are 

offered to assist with gRNA design to limit off-target binding [139]. 

Generally, mismatches in the target sequence are better tolerated at the 5’ 

end of the 20-nucleotide gRNA spacer region than at the 3’ end [157], 

[158], [159]. Experimental analysis of gRNA specificity, off-target DNA 

binding sites, and the presence of indel mutations can be assessed 

through multiple assays, including the T7 endonuclease I mutation 

mismatch assay and deep sequencing analysis. To limit off-target binding, 

gRNAs can be designed to target GC-rich domains, thus increasing binding 

specificity. Other methods to decrease off-target binding include reducing 

gRNA concentration and Cas9 expression, using Cas9 variants or modified 

gRNAs with truncated 3’-ends or with two extra 5’-guanines, or by using 

gRNAs with a shortened 5’-end for the complementary region [160]. 

Another method to reduce off-target effects is to use nickase variants, 

produced by inactivating one of the two Cas9 nuclease domains via the 

induction of point mutations, which results in the stronger stimulation of 
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high fidelity homology directed repair. To improve on this method, a paired 

nickase system was recently developed which inactivates one of the two 

nuclease domains of SpCas9 [161]. This system utilizes two gRNAs and 

two monomeric nickases, resulting in single-strand DNA breaks on 

opposite DNA strands, which increases the editing specificity by up to 

1500-fold [162]. Wild-type Cas9 can be catalytically inactivated (dCas9) 

and subsequently directed by gRNAs to a targeted DNA sequence, 

resulting in transcriptional suppression due to Cas9-mediated steric 

hindrance of the RNA polymerase machinery [163]. This method is called 

CRISPR-based interference, CRISPRi, in which direct tethering of the 

catalytically inactivated Cas9 to a transcriptional repressor domain induces 

epigenetic silencing [164], [165]. The fusion of inactive Cas9 to either 

transcription activation domains, such as VP16/VP64 or the p65 subunit, or 

to transcriptional repressor domains allows targeting of endogenous 

transcription. For transcriptional regulation to occur, two RNA-guided Cas9 

monomers must bind targets on opposite DNA strands that are separated 

by 14-17 base pairs or by 25 base pairs, depending on the system being 

used. The necessity of both Cas9 monomers binding to a specific 

sequence serves to significantly increase targeting specificity. This 

transcriptional regulation can be modified by altering the presence of 

multiple sgRNAs and has been shown to function in bacteria, mice cells, 

and human cells [165], [166], [167].  
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Figure 13: Cas9-gRNAs Interactions. The gRNA is characterized by a CRISPR RNA and 

a trans activating crRNA. (FIgure reproduced with permission from Khalili K. et al., 2015 and 

Springer)) [139] 

1.2.12 CRISPR/Cas9 Delivery 

Currently, delivery of CRIPSR/Cas9 into cells can be accomplished by a 

wide variety of mechanisms, including both viral and non-viral delivery 

methods, which deliver the CRISPR complex into cells in the form of DNA, 

RNA, or as a protein/RNA complex. Viral delivery methods include 

lentiviruses, baculoviruses, and recombinant adeno-associated viruses 

(rAAV). AAV-based vectors are advantageous due to low immunogenicity 

and multiple administration routes, including intranasal and intratracheal 

administration and by stereotactic, intravenous, intraperitoneal, and 

intramuscular injections. AAVs can transduce both dividing and non-

dividing cells without host-genome integration. However, the major 

limitation of AAVs is the limited packaging capacity of 4.7 kilobases. Due to 

this property, many AAV-based delivery systems utilize Cas9 from 

Staphylococcus aureus (saCas9) as opposed to the traditional 

Streptococcus pyogenes due to the small size of saCas9. While SaCas9 is 

smaller than SpCas9, it requires a longer PAM sequence for specific 
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targeting [168]. There are two types of safe lentiviruses vectors that can be 

used for CRISPR delivery, which are self-inactivating replication 

incompetent or integrase defective lentiviruses. This delivery system allows 

for transient CRISPR expression and can be used to transduce both 

dividing and non-dividing cells. The major advantage of lentiviruses is their 

high capacity for packaging, allowing for the use of large inserts [139]. 

There are many options in terms of non-viral delivery mechanisms, 

including cationic polymer polyethyleneimine (PEI), liposomes, lipid 

nanoparticles, virus-like particles, bacteriophages, and self-assembled 

DNA nanoparticles. Recently, the use of ligand functionalized nanoparticles 

has been prominent due to their ability to bind endothelial cell receptors, 

allowing efficient transmigration across the blood-brain barrier (BBB) from 

the periphery into the central nervous system. Another recent 

advancement has been the use of electric nanoparticles to mediate 

crossing of the BBB in combination with a magnetic field gradient [169], 

[170]. 

1.2.13 CRISPR/Cas9 system for HIV-1 Genome Editing 

CRISPR/Cas9 gene editing can be used to impact either host cells to 

inhibit viral infection, either through cellular entry or other mechanisms, or 

to directly affect the virus through various mechanisms. The first 

application of the CRISPR/Cas9 system against HIV was in 2013 by Elbina 

et al, [171] in which it was used to eliminate the HIV provirus from T-cells 

by targeting the TAR region in the R region and the NF-κB binding 

sequence in the U3 region. This study revealed that indel mutations can 

inhibit active provirus expression and decrease latent virus reactivation. 

One study in which CRISPR/Cas9 gene editing was used to target host 

cells was completed by Hou et al, in which they showed that targeting the 

HIV coreceptor CXCR4 induced the receptor expression by 30% on human 
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T-cells by treatments with Cas9, thus inducing HIV-1 resistance by 

blocking cellular entry [172]. Another follow up study utilized Cas9/sgRNA 

ribonucleoproteins (Cas9 RNPs) treatments to decrease CXCR4 

expression by 40% in human primary T cells to induce HIV resistance 

[173]. After the Berlin patient results demonstrated that CCR5Δ32 mutation 

inferred HIV-1 resistance, CRISPR/Cas9 gene editing was used to target 

the CCR5 coreceptor to inhibit HIV infection. Ye et al treated pluripotent 

stem cells (PSCs) with CRISPR/Cas9 constructs to induce CCR5Δ32 

deletion, obtaining roughly 100% efficiency for one allele and up to 33% 

efficient for the deletion of both alleles, obtaining HIV-resistance in cells 

derived from the treated induced PSCs [174]. Wang et al used a lentiviral 

vector approach, targeting three sites of the CCR5 gene in a human CD4+ 

T-cell line, obtaining cells which were resistant to HIV R5 infection, yet this 

gene disruption approach failed in human primary T-cells [175]. Li et al. 

used an adenoviral approach to target and destroy CCR5 in TZM-bl cells 

and CD4+ T-cells [176].   

In addition to modifying host cells to resist HIV infection, CRISPR/Cas9 can 

be used to directly target HIV. Zhu et al targeted three sites in the HIV LTR, 

five sites in pol, and two sites in rev to eradicate HIV provirus in Jurkat 

cells, resulting in a 20-fold reduction of HIV production [177]. Additionally, 

CRISPR/Cas9 has been used in combination with the “shock and kill” 

approach to potentially eradicate the virus from latent sites of infection. 

Zhang et al used catalytically inactivated Cas9 transcription activator fusion 

protein complexed with sgRNA to activate HIV latent reservoirs in multiple 

cell lines such as TZM-bI epithelial, Jurkat T cells and CHME5 microglial 

cells. The sgRNA targeted twenty different sites within the U3 LTR region, 

resulting in accumulation of viral proteins and cell death [178]. The results 

from this study resulted in the NF-κB binding site being identified as the 

most highly efficient target site to target when activating HIV in latent cells, 
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which was bolstered by results from Saayman et al. [179]. Hu et al. used 

lentiviruses vectors containing Cas9 or gRNAs A/B targeting the U3 region 

in both LTRs sequences. This technology asses the ability of the gRNAs to 

excise a 9709-base pair region of the integrated virus from the genome of 

latently infected microglia, promonocytics and T cells obtaining a decrease 

of viral expression. This study showed that the presence of multiple gRNAs 

and Cas9 in the cells can prevent new HIV-1 infection through a rapid 

elimination of viral DNA. This approach can be used like a gene editing 

based vaccine, likewise further investigation is necessary to assess this 

system in latent reservoirs cells and analyze in animal model the presence 

of off target and the ability to eradicate viral reservoir in vivo [180]. When 

CRISPR/Cas9 gene editing was proposed for the treatment of HIV, one 

potential outcome was the mutation of variants resistant to targeting, called 

escape variants. The presence of HIV-1 escape variants was shown by 

Wang et al. [181]. These variants, produced by NHEJ repair, contained 

mutations close to the Cas9 cleavage site, rendering the viral variants 

immune to gene editing using that system, data that was confirmed by 

Yorder et al [182]. A proposed method to bypass the creation of escape 

variants is the use of several gRNAs which direct Cas9 to different regions 

of the HIV genome. This mechanism creates several excision points in the 

proviral genome, allowing for the cleavage of escape variants at one 

cleavage site by targeting a secondary or tertiary cleavage site, thus 

eliminating the development of HIV escape variants following 

CRISPR/Cas9 treatment. 
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Table 2: CRISPR/Cas9 Studies Related to HIV-1 Treatment. Table shows various studies 

utilizing CRISPR thereapies for HIV-1 treatment and potential eradication. The target gene 

is described in the region of interest and the tested model, either animal models or human 

cells, is denoted. Additionally, the delivery system, either adenoviruses, adeno-associated 

viruses, lentiviruses, or transfection methods, is denoted.  

 
 

 

Region of interest Target Delivery Reference 

LTR (R and U3)  T cells transfection [171] 

LTR (U3) TZM-bI/U1/J-Lat Transfection [180] 

 

CCR5 

HEK 293 T, HeLa, 

NCCIT, human 

embryonic stem cell 

 

transfection 

 

[183] 

CCR5 Induced PSCs transfection [174] 

 

LTR (U3) 

TZM-

Bi/Jurkat/CHME5 

microglia cells 

 

lentivirus 

 

[178] 

LTR/POL/REV Jurkat cells transfection [177] 

CCR5 TZM-Bi/ CD4+T Adenovirus [176] 

CXCR4 Human CD4+T cells lentivirus [172] 

CXCR4 T cells transfection [173] 

5’LTR Tcells transfection [179] 

LTRs Human CD4+T 

cells,2D10 

lentivirus [184] 

LTR TZM-Bi/Jurkat cells lentivirus [185] 

LTR/GAG Tg26 mice AAV  [186] 

CCR5 HUMAN CD4+ T 

cells 

lentivirus [181] 

CXCR4 B cells transfection [187]  

LTR/GAG/POL Tg26/humanized 

mice 

AAV [188] 
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2. Aim of the Study 

Throughout the world, HIV-1 infects more than 36.9 million people, including 

2.6 million children [7]. Currently, the primary therapeutic regiment is 

treatment with antiretroviral agents, called antiretroviral therapy (ART). 

During ART, HIV persists in the body as a provirus in latently infected cells, 

resulting in a chronic latent condition. As treatment with ART does not 

eliminate HIV it is not considered a curative strategy [3]. Current studies 

have focused on developing treatments which can target both actively and 

latently infected cells to eradicate the virus. Recently, CRISPR-Cas9 has 

become the predominant strategy for gene editing and elimination of 

integrated proviral DNA. The CRISPR/Cas9 system consists of a nuclease 

(Cas9) and a guide RNA (gRNA) that directs Cas9 activity to specific DNA 

sequences to induce double strand breaks resulting in replication-defective 

virus [139]. To deliver the CRISPR/Cas9 system to cells either lentiviruses, 

adenoviruses or adeno-associated viruses (AAV) can be used. To 

investigate the potential of therapeutic potential of the CRISPR/Cas9 

system, our laboratory utilized in vitro and in vivo approaches:  

 

a) Studies in vitro of an inducible system of spCas9 activated by Tat, 

targeting LTRs HIV-1 regions and delivered by lentiviral vectors 

b) Studies in vivo with the shorter saCas9 targeting LTR and Gag HIV-1 

regions and delivered by AAV9 vectors in transgenic mice and rats 

c) Studies in vivo with the shorter saCas9 targeting LTR and Gag HIV-1 

regions and delivered by AAV9 vectors in humanized mice  
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3 Materials and Methods 

 

3.1 Plasmid Preparation 

The vectors px260-LTR-Cas9 containing the full length LTR (-456/+66) 

and the truncated LTR promoter sequences (-120/+66 or -80/+66) were 

cloned by PCR using pNL4-3 HIV vector (NIH AIDS Reagent Program 

#114) as the template and the primers described in Table 6. The PCR 

products were subcloned into the pCR™2.1-TOPO® TA vector (Life 

Technologies, CA) and high copies of plasmid DNA were obtained after 

transformation of the ligation product into the DH5α strain of 

Escherichia coli (Invitrogen, USA). Plasmid DNA was extracted from 

bacteria using the Qiagen Plasmid Minikit (Qiagen, Germany). Purified 

DNA was digested with KpnI or XbaI and NcoI restriction enzymes and 

ligated into pX260-U6-DR-BB-DR-Cbh-NLS-hSpCas9-NLS-H1-shorttracr-

PGK-puro plasmid (Addgene #42229) replacing the Cbh promoter with 

LTR promoters.  

 

In the LentiCas9-Blast plasmid (Addgene #52962) the EFS promoter was 

replaced with the LTR promoter. Briefly, LTR promoter regions were 

amplified using the primers listed in table 6, subsequently subcloned into 

the TA vector and digested with NheI and XbaI restriction enzymes, 

finally ligated with Nhe I and XbaI digested lentiCas9Blast. The correct 

replacement of the promoter sequence was confirmed by DNA sequence 

analysis (Genewiz, USA) using BLAST from the NCBI.  

 

pKLV-U6-LTR A/B-PGKpuro2ABFP and pCMVTat86 plasmids were 

previously described [184, 189]. pKLV-U6-LTR A and B-PGKpuro2ABFP 

plasmids contain a gRNA expression cassette under the control of U6 
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promoter. PcDNA3.1 (#V79020) was bought from Invitrogen (Carlsbad, 

USA).  

 

px601-AAV-CMV:NLS-saCas9-NLS-3xHA-bGHpA:U6:Bsa1-SgRNA 

(Addgene #61591). Briefly pX601 was donated by Feng Zhang and was 

used for cloning the gRNAs LTR1 and GagD sequences. px601 was 

digested with BsaI, treated with calf intestinal alkaline phosphatase (CIP) 

and gel purified using QIAquick Gel Extraction kit (Qiagen, Germany). A 

pair of oligonucleotides specific for LTR and Gag regions (Table 6) were 

annealed, phosphorylated, and ligated with the linearized vector. To 

clone the GagD sequence into the pX601 vector containing the LTR1 

gRNA, the vector was digested with EcoRI and KpnI and the linearized 

product was purified and ligated with the PCR product of Gag region 

using px601 containing GagD gRNA as template and T795 and T796 

primers containing the restriction site for EcoRI and KpnI.  

T795: ATTACGCTTAAGAATTCCTAGAGC 

T796: ggaaataggccctcagACTAGGGGTTCCTGCGGCCGCAAA 

 

Clones were tested using BamHI or EcoRI +NotI and sequenced. 80 ug 

of a positive clone was sent to the Penn Vector Core, (Perelman School 

of Medicine, University of Pennsylvania) for the packaging in AAV 9 

serotype.  

 

3.2 Cell Culture  

TZM-bl cells are HeLa cells stably expressing CD4, CCR5, CXCR4 and 

luciferase and b-galactosidase reporter genes under the control of the 

HIV-1 LTR promoter. The TZM-bl cell line, obtained from the National 

Institutes of Health (NIH), was maintained with Dulbecco’s Modified 

Eagle Medium (DMEM), (Thermo fischer scientific, USA), supplemented 
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with 10% heat inactivated Fetal Bovine Serum (FBS), (Thermo fischer 

scientific, USA) and gentamicin (10 μg/ml). 

 

Jurkat Clone E6-1 cells were obtained from ATCC (TIB-152™) and the 

Jurkat 2D10 reporter cell line was previously described [184]. These cells 

lines were cultured with Roswell Park Memorial Institute (RPMI) medium 

in presence of 10% FBS and gentamicin (10 μg/ml).  

 

Mouse embryonic fibroblasts (MEFs) from HIV-1 transgene Tg26 mice 

were obtained from 17-day-gestation embryos after mechanical 

dissociation [190]. MEFs were cultured in DMEM with 10% FBS. 

 

3.3 Co-Transfection of TZM-bl with pX260-LTR-Cas9 and pCMV-Tat 

2.5 x 105 TZM-bl cells were plated in a 6 well tissues culture plate. At 24 

hours, the cells were transfected with 0.5 μg of pX260-LTR plus 0.5 μg of 

pCMV (pcDNA3.1) for control cells and 0.5 μg of pX260LTR + 0.5 μg  

pCMV-Tat plasmid for Tat treated cells using the lipofectamine 2000 

transfection reagent (Invitrogen, USA); un-transfected cells were used as 

negative control. A total of 1 μg of DNA was added in 50 μl of opti-MEM 

medium. 50 μl of opti-MEM was mixed with 5 μl of lipofectamine in a 

second eppendorf and incubated for 5’ at RT, after which the diluted DNA 

was added to the lipofectamine 2000 mixture (1:1 ratio) and incubated for 

20’. During this incubation, cellular growth medium was replaced with 750 

μl of opti-MEM per well and 150 μl of the reaction mixwas added 

dropwise onto the cells. At 4 hours, the transfection mixture was removed 

from cells and fresh 10% FBS DMEM was added. Cells were harvested 

at 2 days post-transfection to analyze the ability of Tat to activate LTR 

promoter by western blot. 
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3.4 Lentiviral Packaging  

2.5x106 HEK 293 cells were plated in a 100mm dish and transduced to 

package Cas9 or gRNAs A/B into lentiviral vectors using the calcium 

orthophosphates (CaPO4) precipitation method. Briefly, DNA is mixed 

with calcium chloride in a phosphate solution, resulting in the formation of 

a calcium-phosphate-DNA precipitate. This precipitate was then added 

onto HEK293 cells. pMDLg/pRRE (Addgene 12251), pRSV-Rev 

(Addgene 12253) and pCMV-VSV-G vectors (Addgene 8454) were used 

for the packaging of pKLV-U6-LTR A/B-PGKpuro2ABFP, while Lenti-

LTR− 80/+ 66-Cas9-Blast, psPAX2 (Addgene 12260) and pCMV-VSV-G 

(Addgene 8454) vectors were used for Cas9 packaging. At 24 and 48 

hours, the supernatants were collected and centrifuged at 3000 RPM for 

10 minutes and filtered using 0.45 μm filter to remove cellular debris. 

Lentiviruses were then concentrated by ultracentrifugation (2h, 25000 

RPMI, with 20% sucrose cushion) and the pellets were resuspended 

overnight (O/N) in Hanks Balanced Salt Solution (HBSS) (Lonza, USA). 

Viral titer was determined after resuspension.  

 

3.5 Viral Titer 

1x106 HEK 293 cells were plated in a 24-well plate and transduced at 24 

hours with five serial dilutions of viral stock (25 μl of lentivirus stock was 

diluted in 250 μl of serum free medium in the presence of 8 μg of 

polybrene).  At 24 hours, growth medium was replaced with fresh 10% 

FBS DMEM and at 1 day the cells were treated with TSA/PMA (250 

nM/16 nM) to induce LTR promoter and Cas9 expression. Cas9 Flag was 

detected with an immunohistochemistry assay while the lentiviruses 

harboring the gRNAs were quantified with microscopy using blue 

fluorescent protein as the marker. 
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3.6 Immunocitochemistry for Cas9   

HEK 293 cells were fixed with 4% paraformaldehyde in PBS for 10 

minutes at RT, washed with 250 μl of PBS and permeabilized with 0.25% 

Triton 100X in PBS. The primary antibody, mouse anti Flag, was diluted 

at 1:200 in PBS containing 0.05% Triton 100X and 1% BSA and was 

incubated for 2 hours at 37° C. After incubation, the cells were washed 3 

times in PBS containing 0.05% Triton 100X for 5 minutes and incubated 

with the secondary antibody, anti mouse FITC conjugated diluted 1:200 

in PBS with 0.05% Triton 100X and 1% BSA for 2h at 37C. Later, cells 

were washed 3 times for 5 minutes each in PBS containing 0.05% Triton 

100X and were imaged using fluorescent microscopy. 

 

3.7 TZM-bI Transduction with pLENTI-LTR-Cas9  

1X106 TZM-bl cells were plated in a 12-well plate for 24 hours prior to 

adenoviral vector transduction.  4 wells were transduced with human 

adenovirus type 5 (De1/e3) Ad-GFP (catalog # SL100708, Signa Gen 

Laboratories, MD) at an MOI of 15, 4 wells were transduced with Ad-GFP 

at an MOI of 12, 4 wells were transduced with Ad-CMVTat at an MOI of 

3, and 4 wells were transduced with Ad-Tat at an MOI of 15. Adenoviral 

stocks were diluted in opti-MEM medium and 500 μl of mixture was 

added per well. Fresh 10% FBS DMEM was added to the cells after 1h of 

incubation. 24 hours later the cells were treated with lentiviral particles 

containing SaCas9, gRNAs A/B or empty vector to test the ability of 

spCas9 to induce gene editing on LTR promoter of TZMb-1 cells in 

presence of gRNAs and different amounts of Tat. pLENTI-LTR-Cas9 

containing LTR -80/+66 (MOI1), pKLV-gRNA-empty (MOI 8,6,4 and 0) 

and pKLV-gRNA LTR A and B (MOI 0/0, 1/1, 2/2 and 4/4) were used for 

the three different MOIs of Tat.  The proper amount of virus was 

transferred to a new eppendorf tube containing opti-MEM (500 μl final 
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volume) and polybrene (8 μg/ml) and 500 μl of viral mix was added in 

each well. Normal 10% FBS DMEM and 1% penicllin/streptomycin was 

added after 24 hours. Cells were harvested at 48 and 96 hours and 

processed for PCR, Western Blot, and Luciferase assays.  

 

 

 

Table 3: Transduction Conditions for TZM-bl Cells with Adenoviral Vectors 

 
Table 4: Transduction Conditions for TZM-bl Cells with Lentiviral Vectors 

 
3.8 Stable Cell Lines  

1x105 TZM-bl cells per well were plated in a six-well tissue culture dish 

and transfected with 1 μg of pX260-LTR (−80/+66)-Cas9 using 

Lipofectamine 2000 reagent (Invitrogen, USA) to induce puromycin 

resistance. At 24 h cells were transferred into a 100-mm dish and treated 

with 1μg/ml puromycin (Sigma, USA) for the selection of Cas9 

expressing clones. After two weeks, the clones were visualized in an 

inverted phase contrast microscope and the selection of the positive 

clones was performed using cloning cylinders (Corning, MA). Briefly after, 

cells were washed, and the bottom of the cloning cylinder was dipped 

into a sterile silicone grease creating an isolated well around the colony 

 Adeno null/GFP Adeno Tat Cell 

number 

 3x106 IU/μl 3x106 IU/ul  

1 MOI 15 - 106 /12 well 

2 MOI 12 MOI 3 106 /12 well 

3 - MOI 15 106 /12 well 

  Lenti pKLV-

gRNA-

empty 

Lenti 

pKLV-

LTRA 

Lenti 

pKLV-

LTRB 

Lenti LTR-

Cas9 

Cell 

number 

 3x104 IU/μl 1.4x106 

IU/μl 

1.8x106 

IU/μl 

1.3x103IU/μl  

1 MOI 8  - - 1/4 2x106 

2 MOI 6  MOI 1  MOI 1 1/4 2x106 

3 MOI 4  MOI 2  MOI 2 1/4 2x106 

4 - MOI 4  MOI 4 1/4 2x106 
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of interest. Then, the clones were treated with 200 μl of 0.25 % trypsin for 

3 minutes at 37˚C and transferred into a 6-well dish.  

 

The TZM-bl Cas9 stable cell line was transduced with pKLV-gRNA-empty 

(MOIs of 8,6,4 and 0) and pKLV-gRNA LTR A and B (MOIs of 0/0, 1/1, 

2/2 and 4/4) as previously described. At 24 hours, cells were infected 

with HIV-1JRFL or HIV-1SF162 and harvested at 48 and 96 hours post-

infection for PCR, western blot and luciferase analysis. 

 

3 μg of pX260-LTR (−80/+66)-Cas9 was used to electroporate 5x105 

Jurkat 2D10 cells to create a Cas9 stable line. Electroporation was 

completed using a Neon System machine (Invitrogen, USA) with the 3 

applications of voltage for 10 ms at 1350 V. Cells were plated in a 6-well 

dish and new medium containing 0.5 μg/ml of puromycin was added at 

48 hours.  The following week, cells were diluted to 10 cells/ml and 50 μl 

of the dilution was plated in 96 well plate for 2 weeks in presence of 10 % 

FBS RPMI medium.  

Jurkat 2D10 pX260-LTR (−80/+66)-Cas9 stable cell line was transfected 

with pKLV-gRNA-empty and pKLV-gRNA LTR A/B alone or together with 

pCMV-empty (pcDNA3.1) and pCMV-Tat plasmids. PCR, qPCR, western 

blot and flow cytometry assays were performed after 48h.  

 

3.9 Infection of TZM-bI with HIV-1JRFL or HIV-1SF162 

1X107 freshly isolated peripheral blood mononuclear cells (PBMCs) were 

activated for 24 hours with Phytohemagglutinins (PHA) (5ug/ml) and 

subsequently infected by spinoculation with 100ng of Gag p24/106 cells 

(total 1μg) for 3 h (2700 RPMI, 32˚C) in Opti-MEM in the presence of 

8μg/ml polybrene. Supernatants of infected PBMCs were collected at 6 

days post-infection and centrifuged at 3000 rpm for 10 minutes and 
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filtered with 0.45 μm filters to prepare HIV-1JRFL and HIV-1SF162 stocks. 

The purified supernatants were lysed with 1 % Triton X-100 (v/v) and viral 

titer was determined using p24 ELISA, following the manufacturer’s 

instructions. 

Stable Cas9/gRNA TZM-bI cells were pre-seeded into a 24-well plate and 

infected by spinoculation for 4 hours with 100ng of Gag p24 per well in 

the presence of polybrene (8μg/ml), after which they were washed three 

times with PBS. The activity of the LTR promoter, which is induced by Tat 

protein, was verified by a luciferase assay using a Modulus II Microplate 

Multimode Reader (Promega, USA).  

 

3.10 Electroporation of 2D10 Cell Line with LTR (-80/+66)-Cas9  

4x106 cells of the 2D10 LTR (-80/+66)-Cas9 stable line were 

electroporated using Neon Transfection system (Invitrogen, CA) with 

pKLV-gRNA LTR A and B (3 μg of each) and the control plasmid, pKLV-

gRNA-empty (6μg), alone or together with varying amounts of pCMV-

Tat86 (0μg, 1μg, 2μg, 6μg). The total DNA used during the transfection 

was normalized to 12 μg for all conditions with the empty pCMV vector 

(pcDNA3.1). This transfection system uses an electronic pipette tip as an 

electronic chamber and has the advantage to improve cellular viability 

and transfection efficiency. 4X106 cells were electroporated 3 times for 10 

ms at 1350V with 12μg of total DNA in 80 μl of buffer T using 10μl tips. 

DNA and whole cell protein extracts were collected after 48 hours of 

electroporation, and 1/10 of the total cells (around 5*105cells) were fixed 

and analyzed for GFP expression. Electroporation conditions per 100 mm 

dish are found in Table 5.  
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Table 5: Electroporation Conditions for the Jurkat 2D10 Stable Cell Line with Lentiviral 

Vectors Expressing gRNAs and a Tat Plasmid 

 
 

3.11 Viral Stocks  

HIV-1NL4-3-EGFP-P2A-Nef plasmid was donated by the School of 

Medicine at the University of Pittsburgh. After transfection of HEK 293T 

cells using CaPO4 precipitation, HIV-1NL4-3-EGFP-P2A-Nef reporter 

virus was obtained by processing the plasmid as a lentiviral stock as 

described before. At 48 hours, viral titer was determined in Jurkat cell line 

using EGFP as marker. HIV-1SF162 and HIV-1JRFL were gifts from Dr. Jay 

Levy, and Dr. Irvin Chen respectively 

 

3.12 Jurkat HIV-1 Infection  

2x106 Jurkat 2D10 cells were transduced with pLENTI-LTR-Cas9 

(−80/+66)-Cas9 (MOI 1), pKLV-gRNA LTR A and B (MOI1/1) and pKLV-

gRNA-empty (MOI2). Briefly cells were spinoculated for 30 minutes (2700 
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rpm, 32˚C) in Opti-MEM in the presence of 8μg/ml polybrene. At 24 

hours, cells were infected with HIV-1NL4-3-EGFP-P2A-Nef reporter virus 

(MOI 0,01) by spinoculation for 2 hours at 2700 rpm at 32° C in 500 μl 

inoculum containing 8 μg/ml polybrene. Cell pellets were resuspended 

and 500 μl of medium was added after 4 hours. The next day, cells were 

washed in PBS and resuspended in RPMI medium. Flow cytometry, PCR 

and qPCR analysis were performed at 3 and 5 days post-infectiction.  

 

3.13 Cellular Viability Assay 

200 μl of living 2D10 Jurkat cells were quantified for GFP expression 

using Guava EasyCyte Mini flow cytometer (Guava Technologies, 

Germany). Cells were incubated with propidium iodide (10 ug/ml) for 5 

minutes to assess cellular viability. Before GFP quantification in HIV-

1NL4-3-GFP-P2A-Nef infected Jurkat cells, a fixation step in 2% 

paraformaldehyde was performed followed by 3 washes in PBS. 

 

3.14 Luciferase Assay  

After transfection and transduction of TZM-bI cells and the TZM-bI Cas9 

stable cell line with px260-LTR-Cas9 vectors (LTR -456/+66 or -120/+66 

or -80/+66) and LV-gRNAs A/B, whole cell protein extracts were 

analyzed using a Luciferase Reporter Gene Assay kit (Promega, USA). 

Briefly, cell lysates obtained after lysis with Passive Lysis buffer 1X 

(Promega, USA) were centrifuged at 13,000 rpm for 10 minutes at 4˚C 

and supernatants were transferred to a new eppendorf. Luciferase 

activity was assessed by recording luminescence activity with a Modulus 

II Microplate Multimode Reader (Promega, USA). 50 μl of supernatant 

was mixed with 50 μl of freshly made 1X luciferase assay reagent 

substrate. Luminescence activity was corrected for protein concentration. 
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3.15 Western Blot    

Cells were trypsinized and collected and harvested via centrifugation. 

Cell pellets were lysed with 350 μl of Triton X-100-based lysis buffer 

supplemented with 1X nuclear extraction proteinase inhibitor mixture 

(Cayman Chemical, USA) and the lysate was incubated for 30 minutes at 

4°C. Following lysis, cells were centrifuged at 14000 rpm for 10 minutes 

at 4˚C to remove cellular debris. 100 μg of protein was separated by 

SDS-polyacrylamide gel electrophoresis and transferred to nitrocellulose 

membrane (BioRad, USA). Anti-flag M2 monoclonal antibody and mouse 

anti α-tubulin monoclonal antibody were used for the detection of Cas9 

and for loading control. Living Colors® Full-Length GFP Polyclonal 

Antibody rabbit and anti-HIV1 tat antibody were used for the detection of 

GFP and Tat proteins respectively. 

 

3.16 DNA and RNA Isolation  

DNA and total RNA were isolated using the NucleoSpin DNA virus kit 

(Macherey Nagel, Germany) and RNeasy Kit (Qiagen,USA) how 

described in appendix D1-2. DNA and total RNA was subjected to 

qualitative and quantitative analysis through PCR and qPCR analysis.  

 

3.17 HIV-1 DNA Detection and Quantification  

200 ng of DNA was analyzed using Fail Safe PCR kit (Epicentre, USA) 

and Buffer D. Specific PCRs for HIV-1 LTR A/B, 5’UTR, env, LTR gag 

and β-actin (primers listed in table 6) were performed and resolved 

through a 2% agarose gel. After gel purification of the PCR products, the 

DNA sequence was cloned to the TA vector and analyzed by Sanger 

sequencing (Genewiz, USA). 50 ng of DNA and cDNA was quantified 

using Real time polymerase chain reaction (Real Time PCR), performed 

in a LightCycler480 (Roche, Germany). The reaction was based on the 
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use of one Taq man hydrolysis probe specific for HIV-1 5′-UTR, env and 

gag genes and cellular human beta-globin gene as a reference (table 6). 

Simplified protocol was modified from a previously published protocol 

[191]. Genomic DNA of infected HIV-1 U1 cells containing only two 

copies of provirus per diploid genome was used to prepare a standard 

curve. The conditions of the qPCR were the following: 98 °C 5 minutes, 

45 cycles (98 °C 15 s, 62 °C 30 s, 72 °C 1 minute). 

 

3.18 Selection of gRNAs  

The choice of the gRNAs LTR A/B was determined through previously 

obtained results [180, 184] using Jack Lin’s CRISPR/Cas9 gRNA finder 

tool (http:// spot.colorado.edu/∼slin/cas9.html). The same tool was used 

to search for sense and antisense sequences targeting the LTR-Gag 

sequence of HIV-1 genome for saCas9/gRNA target sites containing 20  

bp gRNA targeting sequence plus the PAM sequence (5’NNGRRT3’)  

 

3.19 Transduction of Tg26 MEFs  

1.4x105 cells were plated in a 6-well dish and incubated overnight at 

37˚C. To improve transduction efficiency of transduction, ViraDuctinTM 

AAV Transduction Kit (Cell biolabs, USA) was utilized. Briefly, after 

warming the ViraDuctinTM at RT for 10 minutes, 100 μl of ViraDuctinTM 

AAV Transduction Reagent A (20X) was mixed with 20 μl of AAV 

Transduction Reagent B (100X) and incubated for 5 minutes at RT.  After 

1.88 ml of growth medium was added to the mix and incubated for 5 

minutes, then added to the cells after aspiration of the old cell medium. 

24 hours later the medium was replaced, and the cells were washed 2 

times with complete culture medium. 105 and 106 viral inoculums were 

prepared in 1 ml Opti-Mem, and 500 μl of mix was added to each well 

and incubated at 37˚C, gently shaking every 30 minutes. 1 ml of DMEM 
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was added after 1 hour of incubation. The next day, the inoculum was 

aspirated, and cells were washed with PBS. Cells were harvested 1 week 

later and analyzed for the presence of viral excision by PCR. 

3.20 In vivo rAAV9:saCas9/gRNA administration  

Transgenic mice Tg26 mice carry a transgene derived from the genome 

of HIV-1NL4-3 [192] and rats were used to test the ability of the rAAV9 

saCas9/gRNA construct to perform gene editing in vivo. Experiments on 

animals were performed in our laboratory by Dr. Jennifer Gordon. Briefly 

100 μl of AAV9 (2.73 × 1012) or 100 μl of PBS for control animals was 

injected via the tail vein in 4 transgenic mice at day 0 and day 5. At 5 

days, a blood sample of 2 animals (treated and PBS) was harvested and 

the animals were then sacrificed. The second pair of animals were 

subjected to a second tail vein injection of AAV9 or PBS after 5 days, and 

blood and tissues were collected one week later. The tissues collected 

include the brain, heart, lung, liver, kidney, spleen and peripheral blood. 

A similar approach was used to treat rats (2 female and 2 male) with 2 

injections at 5 days intervals. Tissues were collected after 10 days 

following the 1st injection for DNA and RNA analysis. 

3.21 Analysis of DNA in Animal Models 

For the analysis of DNA from MEFs and from tissues of animal models, 

300 ng of DNA underwent PCR or nested PCR (for tissue samples) using 

the Fail-Safe Kit, buffer D and the primers listed in Table 6. The first step 

of amplification used the following conditions: 94 °C for 5 min, 30 cycles 

(94 °C for 30 s, 55 °C for 30s, 72 C for 30s), 72 °C for 5 min. The PCR 

products were resolved in a 1% agarose gel. 3 μl of the first PCR 

reaction was used to perform nested PCR under the same conditions of 

the first step. DNA obtained from rat samples was subjected to PCR (one 

step) using LTR Fw 1 step and Gag Rev 2 step primers. DNA extracted 
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from tissues of humanized mice underwent other sets of PCRs to detect 

the presence of viral excision from GagD to 3’ LTR and from the 5’-LTR 

to the 3’-LTR of HIV-1 regions using the primers listed in table 6. Nested 

PCR was performed to detect the excision from GagD to 3’LTR using 300 

ng of DNA and Fail-Safe kit, buffer D in 50 μl of reaction processed under 

the following condition: 94 °C for 5 min, 30 cycles (94 °C for 30 s, 57 °C 

for 30s, 72 C for 40s), 72 °C for 5 min. 1μl of the first step of PCR was 

used for the second step following the same protocol. Detection of 

excision from 5’ to 3’LTR 300 ng of DNA was assessed by standard PCR 

conditions, 94 °C for 5 min, 30 cycles (94 °C for 30 s, 55 °C for 30s, 72 C 

for 30s), 72 °C for 5 min. After gel purification of PCR products and 

cloning into the TA vector, the DNA was sent for sequencing (Genewiz, 

USA) and aligned in Clustal Omega software (Cambridgeshire, UK) using 

HIV-1 NL4-3 sequence served as a reference. Human beta globin and 

mouse beta globin PCRs were performed as a loading control (94 °C for 

5 min, 30 cycles at 94 °C for 30 s, 55 °C for 30s, 72 C for 30s, 72 °C for 5 

min). 50 ng of DNA from spleen of humanized mice was subjected to 

absolute quantification (qPCR) for Gag and Pol gene presence as 

previously described. 

 

3.22 RNA Analysis of Rats and Humanized Mice Samples 

RNA isolation was performed on rat and humanized mice tissues using 

Trizol reagent (Ambion, Foster City, CA, USA) and subjected to DNAase 

I treatment. 1μg of RNA was retro-transcribed into cDNA using M-MLV 

reverse transcription (Invitrogen, USA) as described in appendix D3. 

qPCRs specific for gag and env were performed in a LightCycler480 

(Roche, Basel, Switzerland) using 50 ng of rat cDNA and data were 

normalized to the rat beta actin gene (table 6). qPCR reactions were 
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performed as follows: 98 °C 3 min, 45 cycles (98 °C 15 s, 60 30s, 72 

1min).  

50 ng of humanized cDNA from spleen was used for PCR analysis to 

assess Cas9 and gRNA expression, using beta actin as a loading control. 

 

3.23 Statistical Analysis  

qPCR and luminometric assay results were analyzed as means ± 

standard deviation. p < 0.05 was considered statically significant for 

student T test. 

 

primer sequence 

 Cloning pX260-LTR-
Cas9 constructs 

 

Kpn1-LTR (-454)-S 5’-GGTACCTGGAAGGGCTAATTTGG-3’ 

Kpn1-LTR (-120)-S 5’-GGTACCTCGAGCTTTCTACAAGG-3’ 

Xba1-LTR (-80)-S 5’-TCTAGAGGAGGTGTGGCCTGGGC-3’ 

LTR (+66)-Nco1-AS 5’-CCATGGTAAGCAGTGGGTTCC-3’ 

Cloning lentiLTR(-
80/+66)-Cas9-Blast 
construct 

 

Nhe1-LTR(-80)-S 5’-GCTAGCGGAGGTGTGGCCTGGGC-3’ 

LTR(+66)-Xba1-AS 5’-TCTAGATAAGCAGTGGGTTCC-3’ 

 Cloning 
px601SaCa9LTR1GagD 
construct 

 

LTR1 T708 F 
5’-CACCGCAGAACTACACACCAGGGCC-3’ 

LTR1 T709 R 
5’-AAACGGCCCTGGTGTGTAGTTCTGC-3’ 

Gag D 760 F 
5’-CACCGGATAGATGTAAAAGACACCA-3’ 

Gag D 761 R 5’-AAACTGGTGTCTTTTACATCTATCC-3’ 

 LTR PCRs  

LTR -417/S 2step 5’-GATCTGTGGATCTACCACACACA-3’ 

LTR -19/AS 2step 5’-GCTGCTTATATGTAGCATCTGAG-3’ 
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LTR -374/S 1 step 5’-TTAGCAGAACTACACACCAGGGCC-3’ 

LTR +43/AS 1 step 5’-CCGAGAGCTCCCAGGCTCAGATCT-3’ 

b- actin Fw 5’-CTACAATGAGCTGCGTGTGGC-3’ 

b-actin Rev 5’-CAGGTCCAGACGCAGGATGGC-3’ 

5’UTR fw 5’GTTCGGGCGCCACTGCTAGA3’ 

5UTR rev 5’TTAAGCCTCAAAGCTTGCC3’ 

 Taqman qPCRs  

HIV-1 Gag Fw 5’-AAGTAGTGTGTGCCCGTCTG-3’ 

HIV-1 Gag Rev 5’-TCGAGAGATCTCCTCTGGCT-3’ 

HIV-1 Gag Probe 5’-FAM-CTGTTCGGGCGCCACTGCTA-ZEN- 
IowaBlackFQ-3’ 

Hs b-globin Fw 5’-CCCTTGGACCCAGAGGTTCT-3’ 

Hs b-globin Rev 5’-CGAGCACTTTCTTGCCATGA-3’ 

Hs b-globin probe: 5’-FAM-GCGAGCATCTGTCCACTCCTGATGCTGTTA 
TGGGCGCTCGC-ZEN-IowaBlackFQ-3’ 

Hs b-actin F 5’-TGGACTTCGAGCAAGAGATG-3’ 

Hs b-actin R 5’-GAAGGAAGGCTGGAAGAGTG-3’ 

Hs b-actin probe: 5’-FAM-CGGCTGCTTCCAGCTCCTCC-ZEN- 
IowaBlackFQ-3’ 
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primer sequence 

 LTR1 GagD PCR  

LTR fw 1 step 5’-AATTGCGGCCGCTGGAAGGGCTAATTTGGTCCC-3’ 

Gag rev 1 step 5’-TGTCACTTCCCCTTGGTTCTCTC-3’ 

LTR fw 2 step 5’-AAAAGAATTCGTGGATCTACCACACACAAGGC-3’ 

Gag rev 2 step 5'-AAAAGGATCCACCATTTGCCCCTGGAGGTT-3 

Gag-3’LTR PCR  

Gag fw 1 step 5’- GAAAGCGAAAGTAAAGCCAGAGGAGAT-3  

3’LTR rev 1 step 5’-ACACAACAGACGGGCACACACTACTT -3’ 

Gag fw 2 step 5’AAAAGAATTCGACAGCTACAACCATCCCTTCAGACAG-
3’ 

3’LTR rev 2 step 5’-AAAAGGATCCAGCAGTGGGTTCCCTAGTTAGCCAG-
3’ 

5’LTR-3’LTR  

LTR -417 5’-GATCTGTGGATCTACCACACACA-3’ 

LTR -19 5’-GCTGCTTATATGTAGCATCTGAG-3’ 

Reference   

Mouse beta globin fw 5’-CCCTTGGACCCAGCGGTACT-3’ 

Mouse beta globin rev 5’-GTTATCACCTTCTTGCCATG-3’ 

Hs b-actin F 5’-TGGACTTCGAGCAAGAGATG-3’ 

Hs b-actin R 5’-GAAGGAAGGCTGGAAGAGTG-3’ 

 Taqman qPCRs  

HIV-1 pol/int F 5’-TCCAGCAGAGACAGGGCAAG-3’ 

HIV-1 pol/int R 5’-TGCCAAATTCCTGCTTGATCCC-3’ 

HIV-1 pol/int probe 5’-HEX-CGCCCACCAACAGGCGGCCTTAACTG-ZEN-
IowaBlackFQ-3’ 

HIV-1 Env F 5’- TCCTTGGGATGTTGATGATCT-3’ 

HIV-1 Env R 5’- TGGCCCAAACATTATGTACC-3’ 

HIV-1 Env probe 5’-FAM-TGGTGGTTGCTTCTTTCCACACA-ZEN-
IowaBlackFQ-3’ 

Beta actin rat fw 5’ AGCGCAAGTACTCTGTGTGG3’ 

Beta actin rat rev 5’ AACAGTCCGCCTAGAAGCAT 3’ 

Beta actin rat probe 5’-FAM-CCTCCATGGTGCACCGCAA -ZEN-IowaBlackFQ-
3’ 
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Table 6: Primer Sequences for PCR and qPCR Assays 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RT-PCRs 
 

 

LTR 1 fw 5’-GCAGAACTACACACCAGGGCC-3’ 

Gag D fw  5’-GGATAGATGTAAAAGACACCA-3’ 

pX601gRNAscaffold/R 5’-CGCCAACAAGTTGACGAGAT-3’ 

SaCas9/263/F 5’-TCGACTACAACCTGCTGACC-3’ 

SaCas9/SEQ1 5’-GGTGGGCTTCTTCTGCTT-3’ 

b- actin fw 5’-CTACAATGAGCTGCGTGTGGC-3’ 

b- actin rev 5’-CAGGTCCAGACGCAGGATGGC-3’ 
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4. Results 

4.1 Determination of the minimal promoter region activated by Tat 

To test the ability of Tat to activate different regions of the LTR promoter, 

TZM-bl cells were co-transfected with pCMVTat or pCMV and px260 

LTRCas9 (-456/+66, or 120/+66 or (-80/+66). At 48 hours, cells were 

harvested and processed for DNA and total protein extraction. Western blot 

analysis showed that Tat induces Cas9 expression (160KDa) in all three 

LTR constructs tested. A low level of Cas9 expression is detected in the 

absence of pCMVTat, suggesting a basal activation of LTR promoter by 

cellular transcriptional factors. Tubulin serves as the loading control 

(Figure14).  

                     

Figure 14: Determination of the minimal promoter region activated by Tat. Western 

blot was performed on TZM-bI protein lysates co-transfected with pCMVTat/ pCMV and 

three different px260 constructs harboring three regions spanning the HIV-1LTR Promoter (-

456/+66)/ (-120/+66) or (-80/+66) for the detection of Cas9FLAG (160 KDa), α-tubulin 

(55kDa) and Tat (14 kDa). Lane 1-2: transfection with px260LTR -456/+66, lanes 3-4: 

transfection with px260LTR -120/+66, lanes 5-6: transfection with px260LTR -80/+66. 

(Figure reproduced with permission from Kaminski R. et al., 2016 and a Creative Commons 

CC-BY license) [185]. 

After showing the ability of Tat to activate the minimal promoter LTR -

80/+66, further studies were designed to evaluate the efficiency of delivery 

of LTR (-80/+66) spCas9 system in TZM-bI and Jurkat 2D10 cells using a 
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lentiviral delivery system. After this result, we evaluated the ability of Tat to 

activate integrated copies of spCas9 gene and induce the excision of viral 

DNA in HIV-1 infected TZM-bI LTRSaCas9 stable cell line and in latently 

infected Jurkat 2D10 LTRSaCas9 stable cell line. At the end we analyze 

the capacity of spCas9 system in Jurkat cells to induce gene editing in the 

early stage of HIV-1 infection investigating the possibility to produce a 

vaccine able to prevent HIV-1 reinfection.  

 

Studies in vivo were also performed to test the efficiency of AAV9 delivery 

and gene editing strategy in animal models using a shorter version of 

Cas9, saCas9.  

 

4.2 Increase of Cas9 expression in the presence of Tat 

After developing a lentiviral vector carrying SpCas9 gene under the control 

of LTR (-80/+66) promoter, TZM-bI cells were transduced with adGFP MOI 

15 and adTat MOI 3 and 15. At 24 hours, cells were treated with a lentiviral 

vector containing SpCas9, gRNAs A/B or empty vector to test lentiviral 

delivery of spCas9 to cells and to induce gene editing. Analysis by western 

blot at 48 hours assessed the production of Cas9 after transduction. 

Results showed increased production of Cas9 in the presence of Tat (lane 

5-12) and a homogenous level of tubulin expression (figure 15). These 

results suggest that Tat transduction induces Cas9 expression in the model 

system.  
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Figure 15: Cas9 expression is activated by Tat. Western Blot of TZM-bI protein lysates 

transduced with adGFP MOI 15 and adTat MOI 3 and 15 and treated with pKLV-gRNA-

empty (MOI 8,6,4 and 0) and pKLV-gRNA LTR A and B (MOI 0/0, 1/1, 2/2 and 4/4) and lenti 

LTRCas9. Lane 1-4:  transduction with adGFP MOI 15, lanes 5-8: transduction with adGFP 

MOI 12 and adTat MOI 3, lanes 9-12: transduction with adTat MOI 15. Α-tubulin was used 

like loading control. Cas9 production is activated by Tat (lanes 5-12). (Figure reproduced 

with permission from Kaminski R. et al., 2016 and Creative Commons CC-BY license) [185]. 

. 

4.3 Viral excision increases in presence of Tat and gRNAs 

DNA was extracted from the same cells at 48 and 96h, and analyzed with 

PCR specific for the LTR region. PCR products of 395 base pairs and 205 

base pairs, corresponding to the full length LTR and the truncated LTR, 

were detected in presence of Tat and gRNAs A/B (lane 6-8, 10-12) at 48 

and 96h, likewise in the absence of Tat at 96h (lane 4). The truncated LTR 

product, indicating viral promoter excision, is not visible in the negative 

control (absence of gRNAs, lane 1/5/9), (figure 16). The sequence of 

truncated LTR promoter was analyzed in BLAST using the HIV-1 NL4-3 

sequence as reference. Results revealed the presence of editing of a190 

bp region in the LTR promoter region.  Full length and truncated LTR 

sequences of one sample (lane 6) are shown in figure 17. 
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Figure 16: Increased viral excision in presence of Tat and gRNAs. TZM-bI Cells were 

transduced adGFP MOI 15 and adTat MOI 3 and 15 and treated with pKLV-gRNA-empty 

(MOI 8,6,4 and 0) and pKLV-gRNA LTR A and B (MOI 0/0, 1/1, 2/2 and 4/4) and lenti 

LTRCas9. PCR analysis was performed at 48 H (top) and 96 H (bottom). Lane 1-4:  

transduction with adGFP MOI 15, lanes 5-8: transduction with adGFP MOI 12 and adTat 

MOI 3, lanes 9-12: transduction with adTat MOI 15. (Figure reproduced from Kaminski R. et 

al., 2016 and Creative Commons CC-BY license) [185]. 

 

 
 

Figure 17: DNA analysis of truncated LTR confirms viral excision: After gel purification 

of PCR on TZM-bI cells transduced with adGFP MOI 15 and adTat MOI 3 and 15 and 

treated with pKLV-gRNA-empty (MOI 8,6,4 and 0) and pKLV-gRNA LTR A and B (MOI 0/0, 

1/1, 2/2 and 4/4) and lenti LTRCas9 the DNA was cloned in TA and sent for sequencing. 

Sequences were aligned to the refence LTR region of the HIV-1NL4-3 sequence. Sequences 
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of gRNA A and B are Highlighted in Green, Primers in Blue, and the PAM Sequence in Red. 

(Figure reproduced from Kaminski R. et al., 2016 and Creative Commons CC-BY license) 

[185]. 

4.4 Decreased LTR promoter activity in presence of Tat 

LTR promoter excision was assessed through a luciferase assay of 

transduced TZM-bl cells. At 48 and 96 hours, supernatants of the 

transduced cells were collected and processed to determine luciferase 

activity. As shown in figure 18a (48h) and 18b (96h), the transcriptional 

activity of the LTR promoter decreased in the presence of Tat and gRNAs 

A/B. A basal activity of the LTR promoter is observed in the presence of 

adGFP MOI 15, which likewise decreased in the presence of gRNAs. Cells 

treated with increasing concentrations of gRNAs showed the higher level of 

viral DNA excision after 48h of incubation. These results corroborate with 

data obtained from PCR assays. 

 

 

 

 

 

 

 

 

 

 

 

A 
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Figure 18 A/B: Decrease of LTR promoter activity in presence of Tat. Luciferase Assays on 

TZM-bI cells transduced with adGFP MOI 15 and adTat MOI 3 and 15 and treated with 

pKLV-gRNA-empty (MOI 8,6,4 and 0) and pKLV-gRNA LTR A and B (MOI 0/0, 1/1, 2/2 and 

4/4) and lenti LTRCas9 at 48 Hours (18A) and 96 Hours (18B) post-Lentiviral transduction. 

(Figure reproduced from Kaminski R. et al., 2016 and Creative Commons CC-BY license) 

[185]. 

4.5 Cas9 expression is activated during HIV-1 infection  

To investigate the efficacy of excision of viral DNA during the early stages 

of HIV-1 infection, new experiments were conducted on TZM-bI pX260-

LTR (−80/+66)-Cas9 stable line. 24 hours after transduction with different 

MOIs of LV-gRNAs A/B (MOI 0/0, 1/1, 2/2 and 4/4) and pKLV-gRNA-empty 

(MOI 8,6,4 and 0), the cells were infected with HIV-1JRFL or HIV-1SF162.  

Analysis of WB showed activation of Cas9 protein in presence of Tat 

produced during HIV-infection.  Equal amounts of the house keeping gene 

α-tubulin were detected (Figure 19). 

                     

B 
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Figure 19: Cas9 expression during HIV-1 infection. Western Blot was performed on protein 

lysates from the pX260-LTR (−80/+66)-Cas9 Stable Cell Line transduced with pKLV-gRNA-

empty (MOI 8,6,4 and 0) and pKLV-gRNA LTR A and B (MOI 0/0, 1/1, 2/2 and 4/4) and 

Infected with HIV-1JRFL or HIV-1SF162. (Figure reproduced from Kaminski R. et al., 2016 and 

Creative Commons CC-BY license) [185]. 

 

4.6 Tat protein expression drives viral excision.    

PCR assay analyzed the presence of viral editing after Tat-mediated Cas9 

activation. A truncated LTR fragment (205 bp) was detected in the 

presence of HIV-1JRFL infection with gRNAs A/B (lane 6-8, figure 20).  The 

different results obtained between the two HIV-1 viral strains may be the 

result of a differential ability of these viruses to infect TZM-bI cells. A higher 

level of infectivity by HIV-1SF162 virus may explain the higher level of Cas9 

protein detected in western blot (figure 19). However, it must be noted that 

a high production of viral DNA may reduce the final total amount of edited 

product which is not easily detected by PCR.  

 

 

 



72 
 

 

Figure 20:  Tat protein production drives viral excision: PCR Analysis of the pX260-LTR 

(−80/+66)-Cas9 Stable Cell Line Transduced with pKLV-gRNA-empty (MOI 8,6,4 and 0) and 

pKLV-gRNA LTR A and B (MOI 0/0, 1/1, 2/2 and 4/4) and Subsequently Infected with HIV-

1JRFL or HIV-1SF162. Lanes 1-4 unifected cells, lanes 5-8 cells infected with HIV-1 JRFL, 

lanes 9-12 cells infected with HIV-1 SF162. LTR full length is detected at 395 bp, truncated 

LTR at 205 bp. (Figure reproduced from Kaminski R. et al., 2016 and Creative Commons 

CC-BY license) [185]. 

 

4.7 Decreased LTR promoter activity during HIV-1 infection  

At 48 hours post-infection, cells were harvested and processed for analysis 

with a luciferase assay to assess the ability of Cas9 to interfere with the 

transcriptional activity of the LTR promoter in the TZM-bI pX260-LTR 

(−80/+66)-Cas9 stable line. Luciferase activity decreased in the presence 

of both HIV-1 strains, and was directly correlated to the amounts of gRNAs 

used (higher decrease for MOI 4/4, figure 21).  
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Figure 21: Decreased LTR promoter activity in presence of Tat Detection of the 

transcriptional activity of the pX260-LTR (−80/+66)-Cas9 stable cell line transduced with 

pKLV-gRNA-empty (MOI 8,6,4 and 0) and pKLV-gRNA LTR A and B (MOI 0/0, 1/1, 2/2 and 

4/4) and subsequently infected with HIV-1JRFL or HIV-1SF162.  On the left side unifected cells, 

in the middle HIV-1 JR-FL infected cells, on the left side HIV-1 SF162 infected cells. (Figure 

reproduced from Kaminski R. et al., 2016 and Creative Commons CC-BY license) [185]. 

4.8 Cas9 expression in Jurkat 2D10 cells as model of latently infected 

cells 

Next, the ability of our system to excise the virus from latently infected cells 

was assessed. A similar experiment to the previously described 

experiments was conducted using Jurkat 2D10 cells; a cell line that 

harbors integrated copies of HIV-1 NL4-3, whose genome lacks a portion 

of the Gag and Pol genes, as well as possessing the reporter green 

fluorescent protein (GFP) replacing the Nef gene. The 2D10 cells were 

transduced with lenti-SpCas9 LTR -80/+66 plasmid to generate a stable 

cell line with integrated copies of LTR -80/+66-Cas9 gene. The 2D10 stable 
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cell line was transduced with pKLV (6 μg) or pKLV -gRNAs A/B (3 μg of 

each) and with pCMV or pCMV-Tat plasmid (0 μg, 1 μg, 2 μg, 6 μg). 

Western blot analysis at 48 hours revealed an increased level of Cas9 and 

GFP expression in the presence of Tat. The level of GFP protein 

decreased in presence of higher concentration of gRNAs A/B and Tat, 

suggesting that HIV transcription was decreased.  The basal level of Cas9 

expression may be attribute to the low constitutive level of Tat expression 

in 2D10 cells line (figure 22). 

 

Figure 22: Cas9 expression in Jurkat 2D10 cells. Western Blot analysis for the detection 

of Cas9, GFP and Tat in the Jurkat 2D10-LTR (−80/+66)-Cas9 stable cell line transduced 

with pKLV-gRNA-empty (6 μg) and pKLV-gRNA LTR A and B (3 μg of each) in presence of 

pCMV-Tat86 (0,1,2,6 ug) and pcDNA3.1.  α-tubulin was used like loading control. Lanes 1-4 

cells transduced with pKLV-gRNA-empty, lanes 5-8 cells transduced with and pKLV-gRNA 

LTR A and B. (Figure reproduced from Kaminski R. et al., 2016 and Creative Commons CC-

BY license) [185]. 

4.9 Viral excision in the Jurkat 2D10 cell model of latently infected 

cells 

Specific PCR for the detection of the LTR promoter showed the presence 

of a truncated LTR region (227 base pairs) in presence of gRNAs and Tat  

(Figure 23 lanes 5-8). Analysis of the truncated LTR sequences confirmed 

the excision of 190 bp fragment between gRNA A and B in LTR promoter 
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(Figure 24). Excision efficiency was determined as a percentage of the 

ratios between truncated versus full length LTR and quantified by qPCR 

assay. Results were expressed in percentage of cut efficiency of treated 

cells versus untreated (figure 25). 

 

Figure 23: Viral excision in a model of HIV-latent infection. PCR Assay of the Jurkat 

2D10-LTR (−80/+66)-Cas9 stable cell line transduced with pKLV-gRNA-empty (6 ug) and 

pKLV-gRNA LTR A and B (3ug for each) in presence of pCMV-Tat86 (0,1,2,6 ug) and 

pcDNA3.1. Lanes 1-4 cells transduced with pKLV-gRNA-empty, lanes 5-8 cells transduced 

with and pKLV-gRNA LTR A and B. Percent of viral excision is showed on the bottom after 

qPCR quantification of LTR region. (Figure reproduced from Kaminski R. et al., 2016 and 

Creative Commons CC-BY license) [185]. 
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Figure 24: Sequence analysis of the truncated LTR Fragment. Sanger sequencing was 

performed to analyse the sequence of LTR truncated fragment after PCR in the Jurkat 

2D10-LTR (−80/+66)-Cas9 stable cell line following transduction with pKLV-gRNA LTR A 

and B (3ug for each) in the presence of Tat (6ug). (Figure reproduced from Kaminski R. et 

al., 2016 and Creative Commons CC-BY license) [185]. 

 

Figure 25:  Excision Percentage of the LTR Promoter region.  qPCR was performed in 

Jurkat 2D10-LTR (−80/+66)-Cas9 Stable Cell Line transduced with pKLV-gRNA-empty (6 

μg) and pKLV-gRNA LTR A and B (3 μg for each) in presence of pCMV-Tat86 (0,1,2,6 ug) 

and pcDNA3.1. Data are represented as arbitrary units (AU). (Figure reproduced from 

Kaminski R. et al., 2016 and Creative Commons CC-BY license) [185]. 

 

4.10 GFP reduction in Jurkat 2D10 cells as model of latently infected 

cells 

To investigate the ability of Tat to activate the LTR promoter, flow 

cytometry analysis was performed to quantify the number of GFP, an index 

of viral reactivation. An increased percentage of GFP cells was detected in 

the presence of Tat and in absence of gRNAs. The percentage of viral 

reactivation drastically decreases when gRNAs are expressed and Cas9 is 

induced by Tat (figure 26) 
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Figure 26:  Decrease of viral reactivation. Analysis of flow cytometry was performed on 

Jurkat 2D10-LTR (−80/+66)-Cas9 stable cell line transduced with pKLV-gRNA-empty and 

pKLV-gRNA LTR A and B (3 μg of each) in presence of pCMV-Tat86 (0,1,2,6 ug) and 

pcDNA3.1 to detect GFP expression.  (Figure reproduced from Kaminski R. et al., 2016 and 

Creative Commons CC-BY license) [185]. 

 

4.11 Viral excision in Jurkat cells during the early stage of infection 

To evaluate the possibility of vaccine generation based on a gene editing 

strategy, further studies were performed on Jurkat cells to evaluate the 

presence of Cas9 in the cells as protection from HIV-1 reinfection. Jurkat 

cells were transduced with pLENTI-LTR-Cas9 (−80/+66) Cas9 (MOI 1), 

pKLV-gRNA (MOI1/1) or pKLV negative control (MOI2). At 24 hours cells 

were infected with HIV-1 NL4-3 EGFP-P2APNef.  

 

PCR analysis was performed at 3 and 5 days post-infection, revealing the 

presence of a truncated LTR fragment (205 bp) whose intensity is higher at 

day 5, possibly due to increased production of Tat and subsequent Cas9 
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activation (figure 27). Indel mutations were detected by analysis of 10 

clones (trunc LTR 1-10) of the truncated LTR fragment amplified at day 5 

(clones 2/6/8/10, figure 28). 

 

 

 

 

 

 

 

Figure 27:  Viral excision in Jurkat Cells at the early stage of infection. Jurkat cells 

were transduced with pLENTI-LTR-Cas9 (−80/+66) Cas9 (MOI 1) and pKLV-gRNA 

(MOI1/1) or pKLV Negative Control (MOI2) and infected with HIV-1 NL4-3 EGFP-P2APNef 

(MOI 0.01). Analysis PCR was performed at 3 and 5 days post infection for the detection of 

LTR region. (Figure reproduced from Kaminski R. et al., 2016 and Creative Commons CC-

BY license) [185]. 

 

 

 

 

 

Figure 28:  Sequence Analysis of Truncated LTR Fragments. Jurkat cells were 

transduced with pLENTI-LTR-Cas9 (−80/+66) Cas9 (MOI 1) and pKLV-gRNA (MOI1/1) or 

pKLV negative control (MOI2) and infected with HIV-1 NL4-3 EGFP-P2APNef (MOI 0.01). 

After PCR analysis the truncated LTR fragment was gel purified, cloned in TA vector and 

sent for Sanger sequencing. Sequence of HIV-1NL4-3 was used as reference. Yellow 

highlights the presence of indel mutations. (Figure reproduced from Kaminski R. et al., 2016 

and Creative Commons CC-BY license) [185]. 
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To investigate if gene editing occurs between the 5’LTR and 3’LTR, PCRs 

specific for genes positioned in the middle of HIV-1 sequence, 5’UTR (+97 

to +235) and env (+5828 to +5977)) were performed at 3 and 5 days post-

infection. PCRs showed the presence of 139 and 150 bp fragments, 

respectively, whose intensities decreased at day 5 compared to day 3. 

Amplification of the housekeeping gene beta actin (270 bp) was used as a 

loading control (figure 29). 

 

 

 

 

 

 

 

 

Figure 29:  Excision of the viral DNA between LTR regions. PCR Assay was performed 

on Jurkat Cells transduced with pLENTI-LTR-Cas9 (−80/+66) Cas9 (MOI 1) and pKLV-

gRNA (MOI1/1) or pKLV Negative Control (MOI2) and infected with HIV-1 NL4-3 EGFP-

P2APNef (MOI 0.01) at 3 and 5 days after infection for the detection of viral DNA region 

between LTR regions. Beta actin DNA was used as quality control. (Figure reproduced from 

Kaminski R. et al., 2016 and Creative Commons CC-BY license) [185]. 

4.12 GFP reduction in Jurkat cells on the early stage of infection 

To investigate the ability of Cas9 to protect cells from HIV-1 reinfection, the 

level of GFP positive cells was calculated as marker of viral expression. A 

decrease of positive cells was observed at day 3 (-64%), 5 (-84%) and 8 (-

88%) post infection, revealing the ability of Cas9 to suppress viral 

expression at early stages of infection (Figure 30).  
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Figure 30: GFP reduction in Jurkat cells on the early stage of infection. Flow cytometry 

assay detection of GFP positive Jurkat Cells transduced with pLENTI-LTR-Cas9 (−80/+66) 

Cas9 (MOI 1) and pKLV-gRNA (MOI1/1) or pKLV Negative Control (MOI2) and infected with 

HIV-1 NL4-3 EGFP-P2APNef (MOI 0.01) at day 3, 5 and 7 post infection. (Figure 

reproduced from Kaminski R. et al., 2016 and Creative Commons CC-BY license) [185]. 

 

4.13 Reduction of GPF protein levels in presence of gRNAs and Cas9 

in Jurkat cells 

The presence of gRNAs and LTR Cas9 was assessed using fluorescence 

microscopy with BFP as a marker. The presence of gRNAs and lentiviral 

vector encompassing Cas9 and gRNAs was visually detected (figure 31 

top). Analysis of GFP showed decreased positive cells in the presence of 

Cas9 and gRNAs compared to gRNAs only (figure 31 middle). Qualitative 

and quantitative analysis was performed using light microscopy, showing 

no cytopathic effects and a comparable number of cells. Cells treated with 

LTR-Cas9/gRNAs appeared healthy and possessed no morphological 

changes, suggesting a lack of cytotoxicity by gene editing (figure 31 bottom 

and figure 32). 
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Figure 31: Reduction of GPF protein levels in presence of gRNAs and Cas9. 

Fluorescent and phase microscopy analysis of Jurkat Cells transduced with pLENTI-LTR 

(−80/+66)-Cas9 and pKLV-gRNA LTR A and B or pKLV-gRNA LTR A and B only and 

infected with HIV-1 NL4-3 EGFP-P2APNef. On the bottom gRNAs and Cas9 expression 

using BFP as marker, on the middle GFP levels in presence of gRNAs only and gRNAs plus 
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Cas9. In the bottom morphological view of the cells. (Figure reproduced from Kaminski R. et 

al., 2016 and Creative Commons CC-BY license) [185]. 

 

 

Figure 32: Quantification of Viable Jurkat Cells. Quantification was performed on Jurkat 

cells after transduction with pLENTI-LTR-Cas9 (−80/+66) Cas9 (MOI 1) and pKLV-gRNA 

(MOI1/1) or pKLV Negative Control (MOI2) and infected with HIV-1 NL4-3 EGFP-P2APNef 

(MOI 0.01). (Figure reproduced from Kaminski R. et al., 2016 and Creative Commons CC-

BY license) [185]. 

 

4.14 Gag DNA and RNA reduction in Cas9 treated Jurkat cells at the 

early stage on infection 

Analyses by qPCR was performed on DNA and RNA extracted from Jurkat 

cells transduced with pLENTI-LTR-Cas9 (−80/+66) Cas9 (MOI 1), pKLV-

gRNA (MOI1/1) or pKLV negative control (MOI2) and infected with HIV-1. 

Results showed a decrease of Gag gene at days 3 and 5 in treated cells 

compared to control (figure 33 left side).  Analysis of Gag RNA was 

performed after reverse transcription of RNA into cDNA, with a 91 and 96% 

decrease detected at 3 and 5 days post-infection, respectively, in treated 
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cells (figure 33 right side). These results reveal a potential use of gene 

editing to protect cells from HIV-1 reinfection.  

 

 

Figure 33:  Cas9 DNA and RNA reduction in Jurkat cells. Quantification of Gag copies 

on DNA and cDNA of Jurkat Cells transduced with pLENTI-LTR (−80/+66)-Cas9 and pKLV-

gRNA LTR A and B or negative control (pKLV empty) and Infected with HIV-1 NL4-3 EGFP-

P2APNef (MOI 0,01) at 3 and 5 days post infection. (Figure reproduced from Kaminski R. et 

al., 2016 and Creative Commons CC-BY license) [185]. 

 

4.15 Viral Excision in MEF cells treated with rAAV9 SaCas9/gRNAs 

Following in vitro studies, a construct was created to allow the delivery of 

the Cas9 system in vivo using an innovative AAV9 delivery system. AAV9 

requires the use of a smaller Cas9, saCas9, which is 1kb shorter than 

spCas9. The gRNAs LTR1 and GagD were introduced in the same 

construct of SaCas9 under the control of two separate U6 promoters. 

To test the functionality of this new system studies in vitro were performed 

on MEFs cells, obtained from Tg26 mice. At one-week post-transduction 

with rAAV9 SaCas9/gRNAs, cells were harvested and subjected to PCR 

analysis.  
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Specific PCR was performed to amplify the LTR Gag region of HIV-1 

genome, obtaining a full-length fragment of 1323 bp and a truncated 

fragment of 345 bp, not detected in untreated cells (figure 34).  

 

 

Figure 34: Viral excision on DNA of MEF cells. Mouse embryo fibroblasts (MEFs) were 

prepared from 17-day-gestation embryos by mechanical and enzymatic dissociation. PCR 

analysis of MEF cells after transduction with rAAV9 SaCas9/gRNAs. Cells were harvested 

after one week and DNA extraction was performed for viral excision detection. Lane 1 

untrasduced cells, lane 2 and 3 transduced cells (MOI 105 and 106).  Full lenght LTR-Gag 

region is detected at 1323 bp, truncated LTR region is detected at 345 bp. (Figure 

reproduced from Kaminski R. et al., 2016 and Nature Publishing group) [186]. 

 

4.16 Viral excision in vivo in Tg26 mice treated with rAAV9 

SaCas9/gRNAs 

After verifying the functionality of the AAV9 SaCa9LTR1/GagD construct in 

vitro, studies in vivo were performed on Tg26 mice to evaluate the 

efficiency of delivery and gene editing in animal model tissues. 4 animals 

were treated with AAV9 virus or PBS (2 mice received one injection while 

the other two received two injections). Nested-PCRs were performed on 

blood and tissues including liver, heart, spleen, lung, kidney and brain.  

One full length fragment was detected in treated and non-treated animals 
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(1171 bp), while a truncated fragment (160 bp), an index of viral excision, 

was detected only in treated animals after one and two AAV9 injections 

(figure 35). Analysis of the truncated LTR1GagD fragment confirmed the 

excision of 1011 base pair fragment (figure 36). 

 

Figure 35: Viral excision in vivo in tissues of Tg26 mice. Nested PCR was performed on 

DNA of tissues of Tg26 mice treated with rAAV9saCas9/gRNAs to detect viral excision. 

Lane 1: tissue from mouse treated with 100 μl of PBS as negative control, lane 2: tissue 

from raav9saCas9/gRNAs (2.73×1012) treated mouse, lane 3: MEF with 

rAAV9saCas9/gRNAs treatment (MOI 106). (Figure reproduced from Kaminski R. et al., 

2016 and Nature Publishing group) [186]. 

 

Figure 36: Sequence analysis of truncated fragments from liver DNA. The truncated 

LTR-GAG fragment detected after PCR on DNA of liver tissue was gel purified, cloned in TA 

vector and sequenced. The Position of the Primers and the gRNAs are highlighet in the 

figure in blue and green respectively. (Figure reproduced from Kaminski R. et al., 2016 and 

Nature Publishing group) [186]. 
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4.17 Viral excision in vivo in Tg26 rats treated with rAAV9 

SaCas9/gRNAs  

The same set of experiments was then performed on 4 rats (2 treated, 2 

untreated). PCR data obtained from blood showed the presence of a 

truncated LTR1GagD fragment (221 bp) in the treated animals but not in 

control samples (figure 37). The sequence of the truncated fragments 

obtained in blood PCR was analyzed with BLAST using HIV-1 NL4-3 as 

reference sequence, which showed the excision of a 955 bp fragment 

(figure 38).  

 

Total RNA was extracted by blood samples, converted into cDNA and 

analyzed by qPCR to check the presence of Gag and Env transcripts. 

Results showed a decrease of transcript production for both regions in 

treated animals compared to controls, suggesting a loss of function of the 

LTR promoter in treated animals (figure 39, left and right side). Data were 

normalized by the number of rat cells using beta actin as reference. Similar 

results were obtained from RNA prepared from lymph nodes (data not 

shown). 

 

Figure 37: Viral excision in DNA of bloof of rats treated with rAAV9SaCa9 gRNAa. 

Retro-orbital inoculation of rAAV9: Cas9/gRNA or 100 μl of PBS was injected into 4 mice. 

PCR was performed on blood DNA of rats with (lanes 2 and 4) and without (lanes 1 and 3) 

SaCas9 treatment to detect viral excion. (Figure reproduced from Kaminski R. et al., 2016 

and Nature Publishing group) [186]. 
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Figure 38: Sequence analysis of a 221 bp truncation fragment. After PCR on DNA blood 

samples, the truncated fragment was gel purified, cloned in TA vector and sent for 

sequencing. 4 clones were analyzed for the truncated fragment obtained by PCR on DNA 

blood of the female treated rats and 4 clones for the male treated rats. Primers are shown in 

gray, gRNAs sequence in green, and the PAM sequence in red. (Figure reproduced from 

Kaminski R. et al., 2016 and Nature Publishing group) [186]. 

 

 

Figure 39: Percent of viral RNA decrease in the blood of treated Tg26 rats. qPCR was 

performed on blood RNA of male and female rats treated with and without rAVV9SaCas9, 

for the detection of Gag and Env transcripts. (Figure reproduced from Kaminski R. et al., 

2016 and Nature Publishing group) [186]. 
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4.18 Viral excision in vivo in humanized mice treated with rAAV9 

SaCas9/gRNAs  

Nod/Cg-Prkdcscid II2rgtm1wjI/SzJ (NSG) mice were used to test the ability of 

the AAV9SaCas9LTR1GagD construct to induce gene editing in a 

humanized animal model. After the injection of human peripheral blood 

lymphocytes (PBLs) into the mice, they were infected with HIV-1NL4-3 and 

then were divided in three groups, 5 mice received no antiretroviral 

treatment and one injection of AAV9 construct and 13 were treated with 

LASER ART therapy. The 13 mice were then divided into a non-treatment 

group (4 mice) and a Cas9-treated group (9 mice). Tissues were harvested 

after 5 weeks of CRISPR treatment. Specific PCRs were performed to 

amplify 5’ LTR GagD, GagD 3’LTR and 5’LTR-3’LTR regions of HIV-1 

genome (figure 40) on spleen, GALT, kidney, lung, liver and brain tissue to 

investigate the ability of CRISPR/Cas9 to induce double stranded breaks in 

the viral DNA as illustrated in figure 40. Excision between 5’LTR and GagD 

results in the editing of 798 bp fragment and the generation of a 

truncated/end joined fragment of 193 bp. Excision between GagD and 

3’LTR results in the editing of 8.097 bp fragment and the generation of a 

truncated/end joined fragment of 523 bp. Excision between 5’LTR and 

3’LTR consists in the editing of 9.074 bp fragment and the generation of a 

truncated/end joined fragment of 396 bp. 

 

Figure 40: HIV-1 genome map. Illustration of gRNAs positions and the size of truncated 

amplicons expected after editing of viral DNA in LTRs and GagD regions by CRISPR/Cas9. 
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Excision between 5’LTR and GagD consists in the editing of 798 bp fragment and the 

generation of a truncated/end joined fragment of 193 bp. Excision between GagD and 

3’LTR consists in the editing of 8.097 bp fragment and the generation of a truncated/end 

joined fragment of 523 bp. Excision between 5’LTR and 3’LTR consists in the editing of 

9.074 bp fragment and the generation of a truncated/end joined fragment of 396 bp.  

PCRs performed on tissues of spleen, GALT and kidney of mice AAV9-

CRISPR/Cas9 treated and LASER ART/AAV9 CRISPR/Cas9 treated 

detected the presence of amplicons of 193 and 523 bps resulting from 

excision between the 5’LTR and GagD and GagD and the 3’LTR. A 

fragment of 396 bp derived from both full length or truncated LTRs after the 

excision between the 5’ LTR and the 3’ LTR was detected by specific PCR 

(Figure 41).  
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Figure 41: Viral excision in spleen, GALT, and kidney of humanized mice HIV-1 

infected. PCRs of Spleen, GALT, and Kidney tissues from CRISPR/Cas9 treated 

Humanized Mice CRISPR/Cas9 (n:5), LASER+CRISPR/Cas9 Treated (n:9) and only 

LASER-ART Treated (n:4). Tissues were harvested after 5 weeks from CRISPR treatment 

and analysis of DNA was performed for the detection of viral excision between 5’LTR and 

GagD, GagD and 3’LTR, 5’LTR and 3’LTR regions. One asterisk denotes that the 

highlighted fragment is Cas9 correlated and verified by sequence analysis. Two Asterisks 

indicate aspecific fragments not Cas9 related. 

PCR performed on tissues of lung, liver and brain of mice AAV9-

CRISPR/Cas9 treated and LASER ART/AAV9 CRISPR/Cas9 treated 

detected the presence of amplicons of 193 and 523 bps resulting from 

excision between the 5’LTR and GagD and GagD and the 3’LTR. (Figure 

42). 

 

Figure 42: Viral excision in lung, liver and brain of humanized mice HIV-1 infected. 

PCRs of Spleen, GALT, and Kidney Tissues from CRISPR/Cas9 Treated Humanized Mice 

CRISPR/Cas9 (n:5), LASER+CRISPR/Cas9 Treated (n:9) and only LASER-ART Treated 

(n:4). Tissues were harvested after 5 weeks from CRISPR treatment and analysis of DNA 
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was performed for the detection of viral excision between 5’LTR and GagD, GagD and 

3’LTR. One asterisk denotes that the highlighted fragment is Cas9 correlated and verified by 

sequence analysis. Two Asterisks indicate aspecific fragments not Cas9 related. 

The specificity of each truncated/end-joined fragment revealed in these 

PCRs was gel purified, cloned in TA vector and analyzed using Sanger 

sequencing that revealed the presence of indel mutations, deletions and 

insertion, which was CRISPR Cas9 related. In figure 43 sequences 

obtained from the analysis of the truncated/end joined viral DNA resulting 

from the excision between 5’LTR/GagD and GagD/3’LTR of spleen, GALT 

and kidney tissues showed the presence of indel mutations, deletions and 

insertion CRISPR/Cas9 related. 
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Figure 43: Analysis of truncated/endjoined viral DNA sequence. The truncated/end 

joined LTR-GAG viral DNA detected after nested PCR for the DNA of each tissue was gel 

purified, cloned in TA and sent for sequence. In the figure is reported representative DNA 

sequences obtained from the analisys of DNA from spleen, GALT and Kidney tissues. Pam 

Sequences are in red, gRNA sequences are in green, and the presence of indel mutations 

is denoted by arrows 

PCR specific for the housekeeping gene human and mouse beta actin was 

performed on tissues as loading control and control of DNA quality. Figure 

44 showed beta actin amplification on spleen, GALT and kidney.  

 

 

Figure 44: Quality control on spleen, GALT and kidney DNA of humanized mice HIV-1 

infected. PCR on human and mouse β-actin gene was performed as quality control of the 

DNA used to verify viral excision. Mice CRISPR/Cas9 (n:5), LASER+CRISPR/Cas9 Treated 

(n:9) and only LASER-ART Treated (n:4).  

Specific human beta globin and mouse beta globin PCRs were performed 

on DNA to show the co-presence of human and mice cells in spleen tissue 

(Figure 45). The presence of human cells was detected in all mice 

samples, showing the ability of the injected PBLs to reach different tissues 

in this animal model. 
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Figure 45: Detection of human beta globin in spleen tissue of humanized mice HIV-1 

infected. PCR on human beta globin was performed on spleen DNA as marker of presence 

of human cells on tissues of humanized mice. Mouse β-Globin PCR was performed as 

loading control. Mice CRISPR/Cas9 (n:5), LASER+CRISPR/Cas9 Treated (n:9) and only 

LASER-ART Treated (n:4).  

4.19 Cas9 and gRNAs expression in the tissues Humanized mice  

Total RNA was extracted by spleen tissues of mice AAV9-CRISPR/Cas9 

treated, LASER ART/AAV9 CRISPR/Cas9 treated or only LASER ART 

treated, converted in cDNA and analyzed for the expression of saCas9, 

LTR1 and GagD gRNAs, human beta actin was used as quality control 

(Figure 46). The expression of Cas9 and gRNAs was detected in AAV9-

CRISPR/Cas9 treated and LASER ART/AAV9 CRISPR/Cas9 treated mice 

but no in LASER ART group, who was treated with antiretroviral drugs but 

without CRISPR/Cas9. The lack of gRNAs expression for some mice in 

AAV9-CRISPR/Cas9 treated and LASER ART/AAV9 CRISPR/Cas9 

treated groups may depends from the long time within the injection of the 

AAV construct carrying the gRNAs and the time of harvest of the tissues.  
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Figure 46: Cas9 and gRNAs expression in spleen tissue of humanized mice HIV-1 

infected. PCR was performed on spleen cDNA to detect the expression of Cas9 (on the 

top) and gRNA (middle row). Human and mouce β-actin was used as the loading control 

(bottom). Mice CRISPR/Cas9 (n:5), LASER+CRISPR/Cas9 Treated (n:9) and only LASER-

ART Treated (n:4).  

4.20 No viral DNA was observed in two LASER ART/AAV9 

CRISPR/Cas9 treated mice   

DNA from spleen of AAV9-CRISPR/Cas9 treated, LASER ART/AAV9 

CRISPR/Cas9 treated and only LASER ART treated mice was used for 

qPCR assay for the quantification of pol and env region to assay the 

integrity of viral genome. Absence of viral DNA was observed in 2 mice, 

M#4346 and M#4349, suggesting the presence of viral sterilization (Figure 

47) that was also confirmed with RNase scope analysis and ultrasensitive 

digital droplet PCR performed from collaborators at the University of 

Nebraska Medical Center (data not shown). 
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Figure 47: Decreased pol and env copies on DNA spleen tissue of humanized mice 

HIV-1 infected. qPCR on pol and env viral DNA was performed for experimental Mouse 

Groups, Note the Absence of Viral DNA Highlighted by Arrows for Mouse #4346 and Mouse 

#4349 in LASER ART group. 
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5. Discussion 

Human immunodeficiency virus is a member of the Retroviridae family that 

was first detected in France at the Pasteur institute. In 1981, HIV was 

recognized as causative agent of acquired immune deficiency syndrome 

[193]. Retroviruses are spherical enveloped viruses characterized by a 

specific mechanism of replication in which the viral RNA is converted into 

DNA and integrates in the host genome. HIV-1 belongs to the genus of 

Lentivirus encompassing the human immunodeficiency virus 1 and 2. The 

epidemic spread of HIV-1 initiated with zoonotic infection of SIV in the 

1900s. HIV-2, transmitted by sooty mangabeys, is diffused in Africa and 

causes a similar disease to HIV-1 but is less transmissible [4]. HIV-1 

contains 4 different groups, characterized by different sources of 

transmission. The main group derives from chimpanzees and is 

responsible for the worldwide HIV-1 pandemic.  Since 1982, 76.1 million 

people in the world have become infected with HIV-1 and 35 million people 

have died of HIV-1 related illnesses. Currently 36.5 million people live with 

HIV infection while the number of deaths has decreased after the 

introduction of ART therapy. HIV-1 transmission occurs by sexual, 

percutaneous, and peritoneal routes, with a 15- 25% risk of transmission 

during pregnancy and 35-40% risk during the breastfeeding period [13].  

 

HIV-1 infection is characterized by an initial infection of CD4+ T cells in the 

mucosal tissues, followed by an eclipse phase which is characterized by 

asymptomatic or associated with minor symptoms where the virus spreads 

throughout the lymphoid system. After this phase the viral load decreases 

until reaching a set point due to CD8+ T cell action. This period is not 

associated with clinical manifestations and can persist up to 15 years. The 

last stage of HIV-1 is characterized by the point at which the level of CD4 
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positive cells reaches 100 cells per μl of blood. This stage presents with an 

increased incidence of opportunistic infections and HIV-1 related diseases.  

 

The HIV-1 genome consists of two copies of linear single stranded positive 

sense RNA [2] and is characterized by the presence of non-coding regions 

involved in the regulation of the gene expression and by regions 

expressing regulatory, accessory, structural and enzymatic proteins.  

 

The target cells of HIV-1 infection are memory and naïve T lymphocytes, 

macrophages and dendritic cells. Viral replication can be divided in two 

phases, early and late stages. During the early stage, the virus binds the 

host cell receptors and integrates its genome in the human DNA. In the late 

stage, after the expression of viral proteins, the new viral particles are 

released outside the infected cells to facilitate the infection of new cells. 

The regulation of viral replication is controlled by HIV-1 proteins, primarily 

Nef, Rev and Tat that are produced during the early stages of infection and 

are involved in the downregulation of cellular receptors and in the control of 

HIV-1 protein expression. Rev regulates the trafficking of the viral 

transcripts to the cytoplasm and Tat interacts with the TAR region of the 

viral genome inducing the activation of pTEF and the phosphorylation of 

RNA pol II resulting in an increased elongation of viral transcripts. The 

importance of these proteins explains the interest of the scientific 

community to use molecules able to target the pathways regulated by Tat 

and Rev [194]. Hamy discovered a new compound, stilbene CGA137053 

that binds to Tat and interferes with the viral expression [195]. 

Balachandran identified three molecules which reduce the levels of both 

proteins altering the transcripts levels and HIV-1 protein expression [196].  
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In 1990, the therapy of antiretroviral drugs was discovered, with these 

molecules targeting different steps of HIV-1 replication to suppress the viral 

load in treated patients. However, ART is ineffective against latent viral 

reservoirs, including memory T cells, monocytes, naïve T cells and 

macrophages [93] or anatomic sanctuaries such as CNS and GALT [97], 

that become a source of viral reactivation after ART interruption. The 

limitations of ART to eradicate HIV-1 virus as well as the high cost make 

the development of an alternative strategy to completely eradicate the virus 

necessary.  

 

Different vaccine trials had been tested in the past to control the spread of 

the epidemic, but only one, the RV144 trial, showed a reduction in HIV-1 

acquisition. The difficultly to create an efficient vaccine is due to the 

genomic diversity of different HIV-1 strains and the high frequencies of 

mutations that occur during viral infection. Recently, the shock and kill 

therapy provides the use of molecules to induce viral reactivation and lysis 

of the infected cells combined with antiretroviral drugs that after viral 

reactivation avoid the spread of new infection. This system is associated 

with cell toxicity and a low ability to induce viral reactivation. Other 

strategies involved the use of antibodies against the binding site of CD4 

with env viral protein and against the CD3 receptor to induce HIV-1 

resistance in infected T cells that are recognized and lysed by CD8 positive 

cells [197]. 

 

Recently, the use of gene editing platforms has been largely assessed for 

the development of an HIV-1 cure. Different approaches involve small 

interfering RNAs, meganucleases, ZFNs, TALENs and the CRISPR/Cas9 

system. The first example of gene editing targeting HIV-1 DNA was 

performed with a recombinase of bacteriophages to target Tat and LTR 
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regions [111]. The application of homing endonucleases for genome 

editing was limited due the large size of these proteins and the low 

specificity, instead ZFNs and TALENs molecules were successfully 

employed to target HIV-1 infected cells. After the initiate case of the Berlin 

patient, other HIV-1 patients with Hodgkin’s lymphoma received 

transplantation of CCR5 wild type hematopoietic stem cells, resulting in 

reduction of the viral load, but eventually showed viral rebound. This 

resulted in the development of new strategies, characterized by the 

treatment of autologous hematopoietic cells with gene editing molecules 

targeting CCR5, CXCR4 cellular receptor or viral genes, such as the LTR 

promoter, and the infusion of the modified cells into patients. A second 

strategy consists of the direct administration of the gene editing molecules 

to the patients. Different studies were developed, employing ZFNs 

targeting the CCR5 receptor to treat autologous T cells [121], [122]. ZFNs 

showed positive results in animal models where the use of CD4 positive 

cells T cells against CCR5 induced HIV-1 resistance. This resistance 

persisted after engraftment of these T cells in NOD-SCID IL2rγc null (NSG) 

mice [124]. A clinical trial using CCR5 ZFNs (SB-728) to test the specificity 

of this system in HIV-1 infected patients was performed [198]. TALEN 

molecules were also employed to target the CCR5 receptor, HIV Tat or HIV 

LTR region [131], [132], [135]. The limitations of TALENs are the high cost 

of production, the large size and less specificity comparing to the new 

strategy of CRISPR/Cas9. Gene editing induces breaks in the DNA strands 

disrupting opening reading frame or introducing indels mutations or 

insertions of specific sequences, allowing the utilization of this technique 

for the treatment of different disease such as cystic fibrosis, sickle-cell 

anemia, or Duchenne’s muscular dystrophy, diabetes, heart disease, 

schizophrenia, autism, transthyretin-related hereditary amyloidosis and 

dominant-negative forms of retinitis pigmentosum [138]. Different studies 
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were performed in T cells using CRISPR/Cas9 system to induce viral 

excision targeting different viral regions or cellular receptors, such as the 

TAR region [171], the CXCR4 coreceptor [172], [173], the CCR5 

coreceptor [181] [176] and the LTR, Pol and Rev regions [177]. The 

importance to target the U3 region in the LTR promoter, which is the NF-Κb 

binding site, was recognized by multiple groups [178], [179], [180], [184]. 

Hu et al showed the importance of using a multiplex system of gRNAs 

delivered by lentiviral vectors to protect the cells from the generation of 

viral escape mutants. In that study, the presence of Cas9 in the cells was 

associated with the acquisition of resistance to new HIV-1 infection. To 

increase the specificity of CRISPR system new Cas9 variants were 

generated. Examples are the creation of a paired nickase, able to induce a 

single break in the two opposite DNA strands increasing the specificity by 

up to 1500-fold [162]. dCas9 was employed to induce transcriptional 

suppression mediated by steric hindrance of Cas9 in the DNA target using 

specific gRNAs that direct Cas9 in the region of interest [163].  

 

Cas9 can be delivered to cells with viral and non-viral delivery systems; 

viral delivery systems include lentiviruses, baculoviruses, AAV viruses 

while no viral delivery systems include cationic polymer polyethleimine, 

liposomes, lipis nanoparticles, virus-like particles, bacteriophages, and 

nanoparticles [170]. AAVs are low immunogenic viruses which allow the 

transduction of dividing and non-diving cells and can be efficiently 

delivered in a large variety of human tissues. Lentiviral vectors are used to 

transduce dividing and non-dividing cells but their capacity for packaging 

allows the introduction of larger inserts than AAV vectors. The use of 

nanoparticles is a promising strategy that already has important results in 

animal models. A significant reduction of viral RNA was detected in the 

plasma of HIV-1 infected immunodeficient NOD-scid IL-2rγ-/- mice that were 
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engrafted with PBMCs treated with nanoparticles containing molecules 

targeting the CCR5 receptor compared to the negative control [199]. 

Different experiments in animal models were performed by Yin et al., using 

AAV system to deliver saCas9 and a combination of gRNAs, 2 specific for 

the LTR region, one for Gag and one for Pol in HIV-1 transgenic mice, 

ecoHIV acutely infected mice, and humanized bone marrow, liver, thymus 

(BLT) mice harboring chronic viral infection, obtaining viral excision in 

different tissues of all three animal models [188].  

 

The efficiency of CRISPR/Cas9 in vivo is still a topic that requires more 

investigation, primarily to optimize the delivery in all tissues, particularly the 

brain. Additionally, more studies using humanized mice or monkeys are 

necessary to identify a delivery system able to induce the excision of the 

viral DNA from all infected cells without toxicity. The presence of a 

regulated system to be specifically activated by the virus may be an 

important key in animal models to induce gene editing in an early stage of 

infection before development of viral latency and without off target effects.  
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6. Conclusion  

Following the initiation of ART therapy in HIV-1 patients, the viral load 

decreases within two weeks from the beginning of the treatment, resulting 

in the reduction of free virus and the death of infected macrophages and 

partially activated T cells, whose half-life is longer than fully activated T 

cells. Latently infected resting CD4+ T cells represent a source of viral 

reactivation when ART therapy is discontinued [200]. One study by the 

Visconti group focused on 14 HIV-1 infected patients who discontinued 

ART. Viral rebound was observed in these patients, even in those who 

started ART therapy early, suggesting that the existence of a viral reservoir 

is more important to viral reactivation than the number of latently infected 

cells [201]. Recently a child from Mississippi, born from a HIV-1 mother 

who was not ART treated, underwent antiretroviral treatment for 18 months 

after her birth, resulting in an undetectable viral load at 23 months, 

suggesting that early ART initiation serves to reduce the pool of infected 

cells and can eliminate free viral particles [202]. Currently only 53% of 

people diagnosed with HIV-1 undergo ART treatment. Statistical analysis 

reveals that only a long term pharmaceutic intervention (more than 73 

years) may completely eradicate the virus from each latently infected cell, 

suggesting that this approach works as a functional cure, serving to control 

the viral load, as opposed to functioning as a sterilizing cure [203].  

 

Tat protein has a critical role in the transcriptional regulation of viral genes 

by binding the TAR region located downstream of the initiation site of 

transcription of the RNA, resulting in the recruitment of the pre-initiation 

and initiation complexes to the transcription start site allowing the 

transcriptional elongation of the RNA [60]. The interaction of Tat with other 

transcriptional factors such as NF-Kb, p300/CBP and GCN5 [90], [203], 

[204] may influence viral and cellular transcription. The role of Tat in the 

javascript:void(0);


103 
 

regulation of HIV-1 replication resulted in the interest of the scientific 

community to develop drugs such as inhibitors of the interaction Tat-Tar to 

interfere the spreading of infection [194], [195]. Different approaches were 

used to target viral or cellular genes involved in viral replication, using gene 

editing strategies. In 2014, ZFNs were used in a clinical trial to target 

CCR5 receptor in 12 patients after the interruption of ART, which showed 

slow viral rebound, whose spread was correlated to the degree of gene 

editing obtained in both alleles [122]. Recently, the CRISPR/Cas9 system 

appears to be a promising approach for the cure of HIV-1 by targeting 

cellular receptors, such as CCR5 or CXCR4 [176], [206] or viral genes 

[171], [177], [178]. Hu et al [180] used lentiviral vectors to target HIV-1 

LTRs regions obtaining the excision of the integrated provirus in latently 

infected cells such as microglia, TZM-bI reporter and U1 cell lines. These 

data corroborate with results obtained by Kaminski targeting the same U3 

LTR region in human T lymphocytic cell line 2D10, PBMCs and CD4 

positive cells obtained from HIV-1 infected patients [184]. 

 

In our first study, published in Scientific Reports, we used lentiviral vectors 

in vitro to target HIV LTRs using the same gRNAs sequence of a previous 

study published from our laboratory [180], [184] with an innovative Tat-

inducible Cas9 system, generating a negative feedback loop in the 

presence of HIV. During the early stages of infection, Tat regulates viral 

replication (positive feedback) and simultaneously induces the activation of 

Cas9 promoter (shown by western blot), which excises the LTR promoter 

from TZM-bI cells and Jurkat 2D10 cells in the presence of specific gRNAs 

resulting in reduced transcriptional activity (shown by luciferase assay) and 

in a reduced GFP production respectively. Viral excision was reported after 

two days of infection of Jurkat cells previously treated with Cas9, 

suggesting a pre-exposure prophylactic action. Similar experiments were 
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performed on human primary astrocytes and microglia, obtaining a 

reduction of viral expression (data no shown). This inducible system avoids 

a long term Cas9 expression that may result in off target effects into the 

genome of human cells, but father investigations must be performed to test 

the functionality and the specificity of this system in vivo.  

 

The second experiment we performed, published in Gene Therapy, was 

the first proof of HIV-1 excision in vivo by using a Cas9 system delivered 

by the AAV9 vector. In this study, we targeted two different regions of HIV-

1, LTR and Gag, obtaining viral excision in different tissues of Tg26 mice 

and rats. The advantage of AAV vectors is the reduced toxicity and 

immune response by the host immune system and the high delivery 

efficiency of these viral vectors in different tissues. Similar results were 

obtained in a recent study performed by Yin and colleagues targeting 

different regions of HIV-1 genome using AAV vectors in HIV-1 transgenic 

mice, Eco HIV acutely infected mice, and BLT mice [188].  

 

The last set of experiments was performed on HIV-1 infected humanized 

mice. Results showed complete HIV eradication and absence of viral 

rebound in 29% of the infected animals that were previously subjected to 

ART treatment. Deep sequencing analysis revealed the absence of 

CRISPR/Cas9 related off-target effects. This study documented for the first 

time the presence of viral sterilization in vivo, but more studies must be 

performed to evaluate the functionality of CRISPR/Cas9 system in SIV-

infected monkey models. This new approach, combined with antiretroviral 

therapy, represents a promising strategy for HIV-1 sterilization and a 

prospect towards clinical trials. 
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APPENDIX A: MOLECULAR CLONING 
 
A1: PCR Products 
 
Three different regions of LTR promoter were amplified (figure 48, LTR -

120/+66, -80/+66 and -38/+66 regions) using pNL4-3 DNA virus as the 

template and the primers listed in table 6 containing the restriction sites for 

KpnI and XbaI. PCRs were performed under the following conditions: 

 

COMPONENT VOLUME/REACTION 

Fail Safe PCR Enzyme Mix (1.25 

Units) 

0.5 μl 

10 μM primer F 1ul 

10 μM primer R 1ul 

Buffer D 2X 25 ul 

template 300 ng 

DNAsi-free water To 50 ul 

 

Table 7: PCR conditions for the LTR promoter amplification 

 

The cycling conditions of the assay were as follows: 

94° C for 3 minutes, 25 cycles (94° C for 30 s, 55° C for 30 s, 72° C for 

30s) and 72° C for 7 minutes. 

 

 
 
Figure 48: Illustration of the LTR HIV-1 promoter. LTR promoter and portions of LTR 

promoter for the cloning into the px260 plasmid to test the ability of Tat to activate the 
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minimal promoter region. (Figure modified from Kaminski et al., 2016, [185], under 

permission from a Creative Commons CC-BY license] 

 
 
A2. Gel Purification of PCR products 

Gel purification was performed with QIAquick Gel Extraction kit (Qiagen, 

Germany) using columns that bind DNA in presence of high concentrations 

of salt, allowing the elimination of all impurities and the elution of pure 

DNA. Briefly, DNA was separated on agarose gel. The target fragment was 

cut from the gel and the mass was determined. 5X volume of buffer QG 

was added and the gel was melted at 56˚C for 10 minutes. One volume of 

isopropanol 100% was added to precipitate the DNA and the sample was 

loaded to the provided columns and centrifuged at 13,000 rpm for 60 s. 

The DNA was washed with 750 μl of Buffer PE and centrifuged at 13,000 

rpm for 60s. An additional step of centrifugation was performed for 1 min at 

13,000 rpm to remove any remaining buffer. DNA was eluted in 25 μl of 

DNAase free water and centrifugated at 13,000 rpm for 1min. 

 
A3: Ligation of PCR Products and Transformation 
 
To allow one successful cut of the PCR product with the restriction sites 

created by PCR amplification, the Taq PCR fragments were first directly 

inserted in TA vector (Life Technologies, CA). 
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Figure 49: pCR2.1 Vector Map and Sequence [Invitrogen USA, catalog #K2000-01] 

 
 
The reaction was performed under the following conditions: 
 

COMPONENT VOLUME/REACTION 

ExpressLinkTM T4 DNA Ligase (5U) 1ul 

5X T4 DNA Ligase Reaction Buffer 2ul 

pCR®2.1 vector (25 ng/µL) 2ul 

insert 15ng 

DNAsi-free water To 10 ul 

 
Table 8: Ligation Condition for LTR Cloning into the TA Vector: After gel purification 

LTR producst were cloned in 50ng of TA vector at 16˚C ON. 

 
 

The reaction was incubated at 16˚C O/N and 5μl of ligation product was 

transformed using 50 μl of One Shot® INVF' Chemically Competent E. 

coli (K2000-01, Life Technologies, CA). Samples were incubated on ice for 

30 minutes and then 42°C at 45 seconds (heat shock) and back on ice for 

2 minutes. 500 μl of SOC media was added to allow the growth of bacteria 
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at 37°C. After 1h, 100 μL of suspension was plated on Luria-Bertani (LB) 

agar plates (LB Medium + 2% agar + ampicillin 100 mg/mL for selective 

growth) and incubated at 37°C O/N. At the end, single bacterial colony was 

selected and suspended in LB broth with ampicillin O/N at 37°C for 

miniprep. 

 
 A4:  DNA Isolation from Bacteria  

The extraction of plasmid DNA was carried out using the Qiagen Plasmid 

Minikit (Qiagen, Germany). After O/N incubation the bacterial culture was 

centrifuged at 3000 rpm for 10 minutes and the pellet was resuspended in 

300 μl buffer P1 and 300 μl of lysis buffer P2. After a short incubation of 5’ 

on ice 200 μL of buffer P3 was added to stop the lysis process. The clear 

supernatant, obtained by centrifugation at 14000 rpm for 15 minutes at 

4°C, was mixed with isopropanol (1:1) to precipitate the DNA and 

incubated at -20°C for 1 hour. Samples were then centrifuged at 14000 

rpm for 15 minutes and the pellet was resuspended in 80 μl of DNAase 

free water. The resulting plasmids were sent for sequencing to Genewiz to 

verify the presence of the insert. 

 A5: Digestion of pCR™4-TOPO® TA Vector and pX260-U6-DR-BB-

DR-Cbh-NLS-hSpCas9-NLS-H1-shorttracr-PGK-puro 

After screening the TA vector clones, digestion was performed on the 

clones containing the insert of interest and on the vector pX260-U6-DR-

BB-DR-Cbh-NLS-hSpCas9-NLS-H1-shorttracr-PGK-puro or simply called 

px260 (Addgene #42229, figure 50) harboring the humanized SpCas9 

gene, allowing the creation of a construct where the expression of Cas9 is 

driven by HIV-1 LTR promoter. 

The digestion was performed under the following conditions: 
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(COMPONENT VOLUME/REACTION 

KpnI (10U/ul)/XbaI (20U/ul)* 1ul 

NcoI* 1ul 

Buffer 2.1 10X 5 ul 

vector** 2μg 

DNAsi-free water To 50 ul 

 
*New England Biolab 
**vector: pCR™4-TOPO® TA vector (Life Technologies, CA) or px260-LTR-Cas9 

 

Table 9: Digestion Conditions for LTR Cloning into pX260-U6-DR-BB-DR-Cbh-NLS-

hSpCas9-NLS-H1-shorttracr-PGK-puro. TA vector harbouring the minimal LTR promoter 

and px260-LTR Cas9 were digested with KpnI and XbaI at 37˚C for 3h to allow the creation 

of compatible ends for the ligation step. 
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Figure 50: Vector Map of pX260-U6-DR-BB-DR-Cbh-NLS-hSpCas9-NLS-H1-

shorttracr-PGK-puro Plasmid [Addgene #42229]. Restriction Enzymes used for the 

cloning were undelighted in red. 

 
The reaction mixture was incubated at 37°C for 3h and analyzed with a 2% 

agarose gel. Gel DNA purification was performed using QIAquick Gel 

Extraction kit (Qiagen, Germany).  50 ng of digested vector and 100 ng of 

insert were ligated ON at 16˚C in a final volume of 20 μl, usingT4 DNA 

ligase (New England, Biolabs, USA). 

A6: Creation of LENTI-LTR (-80/+66) Cas9-BLAST Construct 

LentiCas9-Blast plasmid (Addgene #52962, figure 51) was digest with NheI 

and XbaI restriction enzymes following the digestion conditions previously 

described. PCR amplification (94 °C 3 minutes, 25 cycles (94 °C 30 s, 55 

°C 30 s, 72 °C 30s) and 72 °C 7 minutes) was performed using primers 

described in table 6 and pNL4-3 as template. The reaction was separated 

with a 2% agarose gel and purified and cloned to the TA vector. Positives 

clones were digested with XbaI and NheI (restriction sites introduced in 

LTR promoter by PCR amplification) and ligated with the digested 

LentiCas9-Blast plasmid. 
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Figure 51: LentiCas9-Blast Plasmid Vector Map [Addgene # 52962]. Restriction 

Enzymes used are circled in red 

 

A7: Creation of px601-CMV/saCas9-LTR1-GagD 

2 μg of px601-AAV-CMV:NLS-saCas9-NLS-3xHA-bGHpA;U6::Bsa1-

SgRNA (Addgene #61591, figure 52) vector was digested with 1μl of BsaI 

in 50 μl of reaction mixture for 3h at 37˚C. The digestion mix was purified 

using QIAquick Gel Extraction kit (Qiagen, Germany) and treated with CIP 

under the following conditions: 

 

COMPONENT VOLUME/REACTION 

CIP (10 U/ul) * 1ul 

10X CutSmart® Buffer 5ul 

Digested vector 2ul 

DNAase-free water To 50 ul 

 
*New  England, Biolabs 
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Table 10: De-phosphorylation conditions of px601-AAV-CMV:NLS-saCas9-NLS-

3xHA-bGHpA;U6:Bsa1-SgRNA after Bsa1 digestion. Digested vector was treated with 

CIP enzyme to allow the dephorilation of its extremities at 37˚C for 30 minutes. 

 
The reaction was incubated at 37˚C for 30 minutes and purified using 

QIAquick PCR Purification Kit (Qiagen, Germany) following the 

manufacturer’s instructions.  

Oligonucleotides specific for LTR1 and GagD regions were used to 

generate gRNA sequences. Oligonucleotides were annealed according the 

following method: 

 

• 5μl of oligonucleotides 10 μM (final volume of 10 μl) added in a 1.5 

ml microfuge tube were incubated at 95˚C for 5 minutes 

• the mix was cooled to room temperature after which it was 

phosphorylated and annealed using T4 Polynucleotide Kinase 

(PNK) under the following condition: 

• Reaction was incubated at 37˚C for 30’. 

• 100 nM of reaction mixture was ligated at 14˚C ON with 50 ng of 

p601 SaCas9 LTR1 BsaI linearized 

 
COMPONENT VOLUME/REACTION 

T4 PNK (10U/μl) 0,5 μl 

T4 buffer 10X 2 μl 

Annealed mixture 10 μl 

Deionized water 7.5 μl 

Table 11: Phosphorylation of Annealed Oligonucleotides Mixture 
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COMPONENT VOLUME/REACTION 

Insert* 100 ng 

T4 DNA ligase** 1μl 

T4 DNA Ligase Reaction Buffer 10X 1μl 

Vector BsaI digested*** 50 ng 

DNAese-free water To 10 μl 

      
 *phophotilated oligonucleotides mixture 
  ** New England Biolabs 
***px601 SaCas9 LTR1 BsaI linearized 

Table 12: Ligation Condition for Phosphorylated Oligonucleotides with the px601 

Vector. 

 
5 μl of ligation product was transformed in competent cells and clones were 

screened to check the presence of gRNA. The same protocol was used to 

generate two different px601 constructs containing the sequence of the 

gRNA LTR1 or GagD.  Later 2 μg of px601 SaCas9 LTR1 vector was 

digested with 0.5 μl of EcoRI (20U/μl) and 1 μl of KpnI (10U/μl).  A PCR 

was performed using px601SaCas9GagD construct as template to amplify 

GagD gRNA using the primers T795 and T796 (donated by Dr. Hu). The 

PCR product was treated with infusion kit (Takara Bio, USA) to fuse GagD 

gRNA sequence and the digested px601 SaCas9 LTR1 vector EcoRI/KpnI. 

Reaction conditions are described below: 

Table 13: Infusion treatment conditions to create px601 LTR1 GagD construct. 

Insert and vector were treated with the enzyme premix for 15 minutes at 50˚C and 5μl of 

reaction mix was transformed in the competent cells. 

 

COMPONENT VOLUME/REACTION 

PCR fragment (insert) 50ng 

Linearized vector 100 ng 

5X In-Fusion HD Enzyme Premix 2 μl 

Deionized Water To 10 μl 
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The mix was incubated for 15 minutes at 50˚C, and after that 5μl of 

reaction mixture was transformed using 50 μl of Stellar competent cells, 

sold in In-Fusion HD Plus kits, following the standard protocol of 

transformation. Digestion with BamHI or EcoRI plus NotI was performed for 

the screening of positive clones. 

.  
 
 

 
 

Figure 52: Position of the T795 and T796 primers in px601. These primers were used to 

amplify the gRNA sequence for the cloning of multi-gRNAs in one px601 Vector [Addgene # 

61591]. 
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APPENDIX B: Lentiviral packaging  

 
HEK 293 cells were transfected using CaPO4 precipitation with 15 μg of 

pLENTI LTR− 80/+ 66-Cas9-Blast, 10 μg of psPAX2 containing Gag, Pol, 

Rev and Tat and 6 μg pCMV-VSV-G expressing envelope protein in 450 μl 

of water, supplemented with 50 μl of 2.5M CaCL2. The DNA mixed with 

calcium generates a precipitate that facilitates the entry of DNA into the cell 

by endocytosis. The mixture was added dropwise into 0.5 ml warm HNP 

buffer. The mix was added on the cells, plated on 100 mm dishes in 

presence of 10 ml of growth medium and 50 μM of cloroquine. Fresh 

medium was supplemented after 24h and supernatant was harvested 48 

and 72h later. The same protocol was used to package pKLV-U6-LTR A/B-

PGKpuro2ABFP, using the amounts of DNA founded in the table below.   

Per 100 mm dish see below: 

 

 
pCW-Cas9 psPAX2 pCMV-VSV-G 

Lenti-LTR-

Cas9-blast 

(1,7μg/μl) (2.2 μg/μl) (1.8μg/μl) (2μg/μl) 

1 15 μg 10 μg 6 μg - 

2 - 10 μg 6 μg 15 μg 

 pKLV-gRNA 

empty 
pMDLg/Prre pRSV-Rev pCMV-VSV-G 

(1.28 μg/μl) (2 μg/μl) (2 μg/μl) (1.8 μg/μl) 

1 10μg 8 μg 5 μg/ 3 μg 

   

Table 14: Lentiviral vector packging conditions. HEK 293 cells were transfected with 15 

μg of pLENTI LTR− 80/+ 66-Cas9-Blast, 10 μg of psPAX2 and 6 μg pCMV-VSV-G. The 

same protocol was used to package pKLV-U6-LTR A/B-PGKpuro2ABFP, using 

pMDLg/Prre, pRSV-Rev and PCMV-VSG-G. 
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APPENDIX C: Western Blot 

Western blotting was performed as follows. The cells were washed in PBS, 

harvested and centrifuged at 1200 rpm for 5 minutes. The cell pellet was 

suspended in 350 μl of TNN buffer supplemented with 1X protease inhibitor 

cocktail for mammalian cells (Cayman Chemical, USA). Cellular lysates 

were kept in agitation at 4°C for 30 min and then centrifuged at 14,000 rpm 

at 4°C for 15 minutes. After the preparation of stacking gel (30% 

Acrylamide/0,8% bisacrilamide, 4X Tris Cl/SDS pH 6.8, 10% APS, TEMED, 

distilled water) and running gel 9% (30% Acrylamide/0,8% bis-acrilamide, 

4X Tris Cl/SDS pH 8.8, 10% APS, TEMED, distilled water), 100 µg of 

proteins were mixed with 6 μl of loading dye solution 1x and TNN buffer (40 

μl final volume), denatured at 95°C for 5 min and loaded into the gel. 8 μl of 

protein marker (Colorplus prestained protein marker, Broad range (7-

175kDa), New England Biolabs, USA) was loaded in the first well. After 30 

minutes of run at 100 Volt for 2h in 1X Running Buffer (Tris-Glycine-SDS, 

TGS) (Biorad, USA) the proteins were transferred from the gel to a 

membrane in 1x Transfer Buffer (Tris-Glycine, TG) (Biorad, USA) with 200 

mL of methanol O/N at 4˚C at 60 milliamps. The following day the 

membrane was blocked in 5% non-fat dry milk in PBST (50ml), (0.1% 

Tween 20 in 1X PBS) at RT for 1 hour. The primary antibody was added 

for 3 hours at room temperature, mouse anti-flag M2 monoclonal antibody 

(1:1000, Sigma, USA) and mouse anti-α-tubulin monoclonal antibody 

(1:2000, Sigma, USA), or rabbit anti GFP protein (1:1000, Sigma, USA) 

and rabbit anti-HIV-1-Tat (1:1000, Abcam, USA). The membrane was 

washed 3 times for 5 min with TBST and the secondary antibody solution 

was added at RT for 1 hour, Goat Anti-Mouse IgG FITC conjugated and 

horse anti rabbit rhodamine conjugated, diluted 1:5000 in in 5% No fat dry 

milk in PBST. The membrane was washed 3 times for 5 min with PBST 
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and scanned using an Odyssey Infrared Imaging System (LI-COR 

Biosciences, USA). 

 

 

APPENDIX D: DNA and RNA analysis 

D1: Genomic DNA Extraction from Cells and Tissues 

Nucleospin Tissue Kit (Macherey Nagel, Germany) was used for the DNA 

purification. The procedure was carried out as follows: 25 mg of tissues 

were homogenized in 250 μl of buffer T using a combination of different 

beads following the manufacture’s protocols and the Bullet Blender 

homogenizer (Next Advance, USA) and. The lysate was incubated O/N in 

presence of proteinase K, lysed with 210 μl of B3 lysis buffer at 75˚C for 

15’, precipitated with 210 μl of ethanol and loaded into the column that 

binds specifically the DNA. After centrifugation at 11,000g for 1 minutes, 

the DNA was subject to two steps of wash and at the end, the DNA was 

eluted in 100 μl of DNAase free water. DNA from 107 cells and from blood 

was purified using the manufacturer’s directions.  

 

D2: RNA Isolation from Cells and Blood   

RNeasy Mini Kit (Qiagen, Germany) was used for the RNA extraction 

under the following instructions: 1 x 107 cells were harvested and lysed in 

350 μl of buffer RTL. The lysate was loaded into a QIAshredder spin 

column, centrifuged for 2 min at maximum speed and the eluted product 

was mixed with 350 μl of 70% ethanol and incubated for 1’ at RT. Then the 

mixture was loaded into a RNeasy spin column and centrifuged for 15 

seconds at ≥8000 x g. 350 μl of buffer RW1 was added on the column and 

the samples were centrifuged for 15 seconds at ≥8000 x g. 80 μl of DNase 

solution (10 μl of DNase I stock solution in 70 μl of buffer RDD) was added 

into the membrane and incubated for 15 min at RT.  350 μl of buffer RW1 
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was added on the column and after centrifugation at ≥8000 x g for 15 

seconds, two wash steps were performed with 500 μl of Buffer RPE. 

Samples were centrifuged for 15 s at ≥8000 x g and an additional step of 

centrifugation for 1 minute at full speed was performed to eliminate any 

residual buffer. RNA was eluted in 40 μl of RNase-free after centrifugation 

for 1 min at ≥8000 x g. 

 

D3: Retrotranscription  

RNA was retrotranscribed using M-MLV reverse transcription enzyme 

(Invitrogen, USA). Briefly 1 μg of total RNA was mixed with 1μl of oligo dT 

(500 ug/ml), 1 μl of 10 mM dNTP mix (10 mM of each nucleotide) and 

distilled water in a final volume of 12 μl. The mix was incubated at 65°C for 

5 minutes and then on ice. 4μl of 5X first strand buffer, 2 μl of 0.1M DTT 

and 1μl of RNase OUT recombinant ribonuclease inhibitor (40U/μl) were 

added to the mixture and incubated at 37° C for 2 minutes. 1μl of M-MLV 

RT (200U) was added to each mix and the samples were incubated at 37° 

C for 50 minutes. The reaction was inactivated at 70° C for 15 minutes. 

cDNA was quantified using spectrophotometric technology (Biorad, USA) 

and analyzed by TaqMan qPCR. 

 

D4: RNA Extraction from Rat Tissues 

TRIzol (Thermo fisher scientific, USA) is a chemical solution used for the 

extraction of RNA, DNA and proteins. Briefly 25 mg of tissue was 

homogenized using specific bead combinations and the bullet blender 

homogenizer (Next Advance, USA) in 500 μl of Trizol. The lysate was 

centrifuged at max speed for 1 minute and 250 μl of reaction was mixed 

with 750 μl of Trizol and incubated at RT for 5 minutes. 200 μl of 

chloroform was added to the mixture and incubated at RT for three 

minutes. The mix was centrifuged at 12,000xg for 15 seconds at 4˚C to 



147 
 

allow the separation into different phases, the lower red phenolo-

chloroform phase, an interphase and a colorless upper aqueous phase 

containing the RNA. The top phase was collected and mixed with 500 μl of 

100% isopropanol at RT for 10 minutes. Samples were centrifuged at 

12,000xg for 10’ at 4˚C. The pellet was washed with 1ml of 75% ethanol 

and centrifuged at 7500 g for 5 minutes at 4˚C. RNA was resuspended in 

40 μl of RNase free water and stored at -70 C. 

 

D5: PCR on TZM-bl Cells 

300 ng of DNA purified from TZM-b1 cells transduced with lenti SpCas9 

LTR -80/ +66 and gRNAs A and B in presence of different concentrations 

of Tat was subjected to LTR PCR amplification (94 °C 5 min, 30 cycles 

(94˚C 15 s, 55˚C 30 s, 72˚C 30 sec) and 72˚C 5min) using Fail Safe kit, 

buffer D (Epicentre, USA) and 0.2 μM of the primers listed in table 6. The 

same PCR was performed on TZM-b1 lenti LTR-80/+66 Cas9 stable line 

transduced with different amounts of gRNAs and infected with HIV-1JRFL 

and HIV-1SF162. 

 

D6: qPCR on Jurkat 2D10 cells 

RNA purified from Jurkat 2D10 cells was assessed by qPCR using 

Platinum Taq DNA polymerase (Invitrogen, USA). Each sample was 

analyzed in triplicate, such as the standards.  

The reaction was prepared as follows: 
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COMPONENT VOLUME/REACTION 

PlatinumTM Taq DNA polymerase* 0,1 μl 

Buffer 10X 2 μl 

dNTPs mix (25 uM) 0,16 μl 

50 mM MgCl2 1.2 μl 

forward Primer (100 μM) 0,1μl 

reverse Primer (100 μM) 0,1 μl 

probe 100 μM) 0,1 μl 

DNA sample 50 ng 

Deionized Water To 20 μl 

*Thermo Fisher Scientific (#10966034) 

 

Table 15: qPCR Conditions to detect viral DNA in Jurkat 2D10 cells. Reactions were 

performed in 50 μl using two LTR FAM coniugated probe to detect the ratio between 

truncated versus full length LTR as index of efficiency of viral excision. 

 

D7: PCR on Jurkat 2D10 cells 

PCR was performed on a conventional PCR machine (T100 Thermal 

Cycler, Biorad, CA, USA) in 25 μl of buffer D, 1μl of Fail Safe enzyme and 

300 ng of DNA sample. PCR specific for LTR region was performed in 

Jurkat 2D10 -80/+66 Cas9 cell line transduced with different amounts of 

gRNAs in presence or absence of Tat. PCR product was resolved on 2% 

agarose gel detecting one 427 base pairs wild type LTR fragment and one 

227 base pairs truncated LTR fragment. Specific PCRs for 5’UTR, env and 

B-actin were performed on DNA purified from Jurkat cells transduced with 

Cas9 and gRNAs A/B and HIV-1 infected using primers listed in table 6. 

The sizes of the amplicons were 139, 150 and 270 base pairs respectively. 

LTR PCR revealed one 395 base pairs wild type fragment and one 205 

base pairs truncated LTR. PCR conditions were as follows: 94 °C 5 min, 30 

cycles (94 °C 15 s, 55 °C 30 s, 72 °C 30 sec and 72C 5 min. 

 

https://www.thermofisher.com/order/catalog/product/10966034
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APPENDIX E:  TG26 Mice and Rat Model 

Tg26 mice were crossed into the C57BL/6L background to generate 

animals able to survive to 12 months of age and where clinical 

manifestation, associated to a low level of expression of viral transcripts, is 

largely reduced. Tg26 mice and rats were used for studies in vivo to test 

the ability of the construct AAV9 saCas9 LTR1/GagD. Both animal models 

encompasse a sequence of HIV-1 NL4-3 with a deletion of a 3.1 kb from the 

C-terminal of the Gag gene to the N-terminal of the Pol gene (Figure 53). 

This delivery system is associated with the use of saCas9, derived from 

Staphylococcus aureus, 1 kb shorter than spCas9 allowing the use of one 

vector for the delivery of Cas9 and gRNAs together. 

 

 
 

Figure 53: Schematic representation of the Tg26 mouse containing HIV-1 DNA. The 

mice harbour HIV-1 genome with a missing portion between gag and pol region. The region 

covered by the primers used for to detect viral excision are illustrated on the top of the 

figure. The position of the LTR1 and GagD gRNAs is shown by arrows. (Figure reproduced 

with permission from Kaminski R. et al., 2016 and Nature Publishing group) [186]. 
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APPENDIX F: Humanized Mice Model and AAV9/CRISPR/Cas9 

Treatment  

Nod/Cg-Prkdcscid II2rgtm1wjI/SzJ (NSG) mice were used for study the ability 

of AAV9SaCas9LTR1GagD to induce gene editing in humanized animal 

model. The experiments on humanized mice were performed by 

collaborators from the University of Nebraska Medical Center. Briefly 104 

human peripheral blood lymphocytes (PBLs) were injected by intrahepatic 

injection for each newborn mouse, previously irradiated with C9cobalt60.  

18 weeks old mice were infected with HIV-1NL4-3 (105 tissue culture infective 

dose 50/ml); of the following mice, 5 received no antiretroviral treatment 

and one injection of AAV9 construct, and 13 were treated with a long acting 

slow effective release ART therapy (LASER ART) using 40-45 mg of a 

cocktail of antiretroviral drugs such as rilpivirine, myristolyated dolutegravir, 

lamivudine and abacavir. After 6 weeks of ART therapy the animals under 

retroviral drugs were successively divided in non Cas9 treatment (4 mice) 

and Cas9 treated (9 mice). Five control mock animals were used as 

negative control. Tissues were harvested after 5 weeks from CRISPR 

treatment in absence of antiretroviral treatment.  

 

Figure 54: Schematic representation of mouse humanization, viral infection, ART 

initiation and CRISPR/Cas9 treatment. Infection was perfomed at week 0, a combination 

of antiretroviral drugs was somministarted for 4 weeks, three weeks later one single 

injection of AAV9-CRISPR-Cas9 was injected and tissues were harvested at week 14. 
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