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Abstract: Process simulation represents an important tool for plant design and optimization,
either applied to well established or to newly developed processes. Suitable thermodynamic packages
should be selected in order to properly describe the behavior of reactors and unit operations and
to precisely define phase equilibria. Moreover, a detailed and representative kinetic scheme should
be available to predict correctly the dependence of the process on its main variables. This review
points out some models and methods for kinetic analysis specifically applied to the simulation
of catalytic processes, as a basis for process design and optimization. Attention is paid also to
microkinetic modelling and to the methods based on first principles, to elucidate mechanisms and
independently calculate thermodynamic and kinetic parameters. Different case studies support the
discussion. At first, we have selected two basic examples from the industrial chemistry practice,
e.g., ammonia and methanol synthesis, which may be described through a relatively simple reaction
pathway and the relative available kinetic scheme. Then, a more complex reaction network is deeply
discussed to define the conversion of bioethanol into syngas/hydrogen or into building blocks,
such as ethylene. In this case, lumped kinetic schemes completely fail the description of process
behavior. Thus, in this case, more detailed—e.g., microkinetic—schemes should be available to
implement into the simulator. However, the correct definition of all the kinetic data when complex
microkinetic mechanisms are used, often leads to unreliable, highly correlated parameters. In such
cases, greater effort to independently estimate some relevant kinetic/thermodynamic data through
Density Functional Theory (DFT)/ab initio methods may be helpful to improve process description.

Keywords: process simulation; kinetic modelling; ammonia; methanol; bioethanol; steam
reforming; ethylene

1. Introduction: How to Implement Kinetic Models into Process Simulators

The implementation of kinetic models into process simulators is a scientific and industrial field in
continuous growth. Process simulators allow the detailed design of chemical processes with the direct
comparison of different scenarios: alternative process layout, size, connection between process streams,
and equipment are allowed. Through these instruments, it is possible to size and optimize processes in
a relatively fast way. The examples here reported were mainly drawn by considering a commercial
process simulator, Aspen Plus, but the same holds for other products available in the market.
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When introducing a reactor in a flowsheet, different reactor options become available.
The stoichiometric and yield reactors require some definition of the reactions taking place and their
extent (e.g., in form of yield of different products). This is easily applied to experimental result, but it
does not allow to tune freely the process variables, since their influence on reactor performance is
missing. Equilibrium or Gibbs reactors are useful to define the dependence on process variables,
but consider the reactor working at equilibrium, so reactor sizing is not allowed. In this case, the size
will be undefined, but sufficient to achieve equilibrium conversion. Finally the batch, plug-flow
(PFR, in case filled with catalyst) and continuous stirred tank (CSTR) reactors are the most flexible
options, which allow a full description of the process under variable conditions and proper sizing of
the reactor. However, to perform these calculations, a suitable reaction set and the relative kinetic
model and thermodynamic data must be defined.

Reactor models for continuous flow reactor sizing in Aspen Plus® also allow to compute pressure
drop across the reactor, typically through the Ergun equation, and are suitable to describe multibed or
multitubular reactors accomplishing direct heat exchange between different process streams. This is
useful e.g., to define internal heat recovery between hot and cold streams. Catalyst effectiveness
factor can also be accounted for, in order to precisely define possible internal mass transfer limitations
in the catalyst bed. A different level of detail is possible, but it is usually not possible to account
for backdiffusion in axial direction or to compute the radial concentration profiles. In some cases,
these points may be implemented developing user-made subroutines as an embedded Fortran code
(vide infra). The interested reader is referred to detailed work on computational fluid dynamics (CFD),
where the description of reactants and catalyst interaction can be accounted for with the desired level
of detail. However, the core of the sizing of chemical reactors remains the availability of a detailed
kinetic model.

Kinetics of heterogeneous catalytic reactions represents a delicate field, due to the several factors
involved. The catalyst belongs to a different phase with respect to the reactants, thus besides
the reaction step, adsorption and desorption stages should be added, increasing the complexity
of modeling. The easiest model available is the power rate law model, which formally takes
care of adsorption by using appropriate apparent reaction orders. Although suitable in some
cases, this model is too empirical to be generalized for process simulation. The observed kinetic
constant and reaction orders should include the dependence on adsorption/desorption phenomena,
which can depend differently on process parameters than the intrinsic kinetic constant. For this
reason, a Langmuir–Hinshelwood–Hougen–Watson (LHHW) model is preferably adopted, which more
adequately computes the adsorption and desorption steps, which possibly limit the reaction rate. Selected
scientific papers are reported below in order to explore representative case studies as examples of
implementation of kinetic parameters in a process simulation software to simulate heterogeneous
catalytic processes.

The logical workflow of this review is therefore the following, addressing different issues with an
increasing complexity scheme:

(1) Process simulation is a key step for process design;
(2) Reactive systems need the definition of a reaction set with the relative kinetic parameters in a

well standardized form, essentially the same for the different process simulators;
(3) For some relatively simple, yet very important systems, the literature available on kinetic

description is already suitable for a direct implementation into the process simulator (examples
are reported in the following for ammonia and methanol synthesis);

(4) When kinetic models are not available in this form, suitable kinetic data should be regressed
again in the needed form for implementation in the process simulator;

(5) In case particular kinetic equations are specifically needed, differing from the LHHW model,
user models can be implemented in external subroutines and recalled by the simulator;

(6) When the reaction set complexity becomes too high, lumped kinetic models are no more
useful, because the powerful aid of the simulator is the prediction of plant performance under
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widely varied conditions. Empirical models are also at risk from this point of view. Therefore,
microkinetic modelling allows the simulator to reliably follow the system performance;

(7) Again, if the amount of parameters to be determined in a microkinetic scheme becomes too
high, high correlation among them is usually observed and predictions reliability is newly at
risk. Therefore, especially in such cases, the possibility of independently determining some of the
required kinetic parameters through ab initio methods is a powerful tool to cope with this issue.

In this context, this review provides some guidelines to implement heterogeneous catalytic
systems into process simulators, dealing with different, increasingly complex, kinetic approaches.
We will mainly describe steady state simulations, except for some papers which discuss process control
issues, based on dynamic models. Irrespectively on this, kinetics must be provided in the same form.
In the following paragraphs, different approaches to implement kinetic models in process simulators
are described, following an increasing complexity order. So, in Section 2, complex reaction networks
will be presented, together with some examples of first principles aided methods to derive kinetic and
thermodynamic parameters for this scope.

1.1. Methanol Synthesis

Methanol synthesis is one of the most studied reactions from both the chemical and the
engineering points of view. A detailed study to assess the economic optimization of a methanol
synthesis plant was presented by Luyben [1]. The investigation confirmed that the economics were
dominated by methanol yield, therefore the availability of reliable kinetic data was fundamental
in order to correctly size the plant. The chemistry of the methanol synthesis involves the reaction
of both carbon dioxide and carbon monoxide with hydrogen. The author implemented in Aspen
Plus the kinetic model and parameters obtained by Bussche and Froment [2] using a LHHW-type
equation, able to describe with good precision the reactions of methanol production and the
Reverse-WGS reaction.

CO2 + 3H2 � CH3OH + H2O (R1)

CO2 + H2 � CO + H2O (R2)

The LHHW kinetic model is constituted by a kinetic factor (in the simplest cases equal to the
kinetic constant, more in general depending on it), a driving force expression (depending on the
reactants available in the reaction medium) and an adsorption term, weighting the reactants truly
available on catalyst surface, which may be much lower than those present in gas/liquid phase
(Equation (1)).

r =
(kinetic factor)(driving force)

adsorption term
(1)

The kinetic factor can be expressed as

kinetic f actor = A Tne−Ea/RT (2)

where A is the preexponential factor in the Arrhenius expression, Ea is the activation energy and it is
possible to express a further dependence from temperature through the exponent n, which, however,
is often set to zero. Alternatively, it is possible to refer the temperature dependence of the kinetic
constant in comparison to a reference temperature T0, at which the value k0 of the kinetic constant
is known

kinetic f actor = k0

(
T
T0

)n
e(−Ea/R)( 1

T−
1

T0
) (3)

The ‘driving force’ factor expresses the available amount of the reactants in fluid phase, each with
its own reaction order, considering the forward and possible reverse reactions (the latter with negative
sign). It takes the following form, where K1 and K2 represent equilibrium constants, and K1 is often set to 1
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driving f orce = K1 ∏ Cα
i − K2 ∏ Cβ

i (4)

The term referred as ‘adsorption’ must be entered as

adsorption = ∑ Ki

(
∏ Cγ

j

)
(5)

where Ki represents the adsorption constants of each species.
The concentration basis for the driving force and adsorption terms is fugacity powered to the

concentration exponents for forward and backward reactions (these are named terms 1 and 2 in Aspen
Plus®), respectively. The equilibrium and adsorption constants must be implemented in the following
form to compute their dependence on temperature

ln K = A +
B
T
+ C ln T + DT (6)

Therefore, if different expressions are available for the different kinetic or thermodynamic
parameters, they have to be regressed again to meet the formulation required by the simulation
software and to explicitly cope with the variable conditions that will be met during the simulation.
For the introduction of this type of kinetics in the process simulator, it is necessary to define the reaction
rate in kmol s−1 m3 if it is calculated on the volume of reactor, or in kmol s−1 kg−1

cat if it is normalized
with respect to the weight of catalyst. This in accordance with the design equation chosen for the plug
flow or packed bed reactor under study.

The kinetic data proposed by Bussche and Froment [2] expressed pressures in bar and reaction
rates in kmol min−1 kg−1

cat. The reader is advised to carefully check the consistency of the units
required by the simulator, making reference to the online guides available and to properly convert the
units as exemplified by Van Dal et al. [3].

The reactor was simulated using the RPLUG model with a ‘constant medium temperature’ as
the dynamic heat transfer selection. This kind of reactor is the best choice to simulate plug flow
configuration with composition changing along the reactor length (or catalyst mass), since it allows the
full definition of kinetics and, hence, the prediction of reactor output under widely different conditions.
The kinetic equation involves the integration of appropriate composition and rate terms along the
reactor profile.

Another key factor is the proper definition of models to estimate the thermodynamic and transport
properties of each pure component and of the whole mixture. The presence of substantial errors in
the estimation of such properties can lead to major problems in both sizing and rating. A wide choice
of thermodynamic packages exists, which can be grouped into three main groups: the ideal model
(the simplest of all, it does not consider molecular interactions or size), the models based on activity
coefficients to compute non-ideality in liquid phase (Van Laar, Wilson, NRTL, etc.), possibly coupled
with equations of state (EOS) to account for non-ideality of the gas, and the models based on equations
of state for every phase (SRK, Peng-Robinson, Predictive-SRK, etc.). The Soave–Redlich–Kwong (SRK)
equation of state was applied for instance by Bussche and Froment [2], but Luyben [1] did not explicitly
state the model used in the simulation. This equation is able to represent both liquid and vapor phases
in condition far from the ideality, which is the case of this high pressure process.

A similar work on kinetic implementation in process simulation software was carried out by
Van-Dal and Bouallou, although the starting feed was not syngas, but hydrogen and carbon dioxide
captured from flue gases [3]. The kinetic model considered was the same proposed by Bussche and
Froment with readjusted parameters. In this case, the equations for the thermodynamic equilibrium
were incorporated into the kinetic constants. The pressure drop in the fixed bed was calculated
through the Ergun equation. Aspen Plus allows proper fields for computing the pressure drop across
packed-bed reactors in Plug Flow configuration and packed-bed pipes. It is possible also to add a
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pressure drop scaling factor (multiplication factor used to correct the pressure-drop computed from
the frictional correlations) and roughness of the reactor wall.

Zhang et al. implemented a different kinetic expression for the gas to methanol process,
obtained by the combination of the surface reaction of a methoxy species, the hydrogenation of
a formate intermediate HCO2 and the WGS reaction [4,5]. The occurrence of possible internal pore
diffusional limitation was determined on the basis of the Weisz-Prater criterion and the effective
diffusivity for multicomponent mixture was calculated. A conceptual design tightly related to the
economic analysis of the process was performed, revealing the highest economic impact of the methanol
reactor. This further shed light on the importance of correct kinetic modeling and its implementation
in the simulator. The Peng–Robinson (PR) equation of state was selected as the thermodynamic model,
which guarantees accurate calculation results in modelling light gases, alcohols, and hydrocarbons.
Generally, the PR equation provides results similar to those of the SRK equation, although it is better
to predict the densities of many components in the liquid phase, especially those that are non-polar.

Matzen and co-workers studied the methanol production using renewable hydrogen and CO2 [6].
The SRK method was adopted to estimate the properties of the mixture with gaseous compounds at
high temperature and pressure, and the NRTL-RK model for the methanol column to better represent
the vapor/liquid equilibrium between methanol and water. This is an important feature, allowed in
Aspen Plus, i.e., the possibility to select the most appropriate model in different sections of the
flowsheet. The reactor was simulated as a packed bed reactor with a counter-current thermal fluid.
Also, in this case, a LHHW model was adopted.

The investigation and comparison of kinetic and the thermodynamic approach was performed by
Iyer et al. [7]. For the kinetic side a plug flow reactor was adopted, implementing the LHHW model
and the parameters suggested by Bussche and Froment [2]. In Aspen Plus software this reactor model
is a tubular reactor with or without packed catalyst, where perfect mixing is assumed in the radial
direction, but not in the axial one. It enables the inclusion of coolant which flows counter-current or in
parallel, and it requires knowledge of reaction kinetics. For the thermodynamic study, a Gibbs reactor
model was adopted, which calculates chemical and phase equilibrium by minimizing the Gibbs-free
energy, even without specifying any reactions. This module differs from the equilibrium reactor
model, which instead calculates the thermodynamic equilibrium by a stoichiometric approach and
with suitable thermodynamic data. Comparison of kinetic with thermodynamic model revealed the
key effect of feed composition on the performance of methanol synthesis for isothermal and adiabatic
operation under single and two phase conditions.

Therefore, comprehensive and sufficiently complete kinetic data are available to model the
performance of a methanol synthesis reactor. This enables building an improved process design and
process optimization by using a relatively simple kinetic scheme.

1.2. Ammonia Synthesis

Another fundamental process with extremely large scale production is the ammonia
synthesis. A considerable number of papers focus on catalyst development and kinetic modelling.
The implementation in a process simulation software represents a key step to develop new ammonia
catalysts and to optimize this technology, as a key to market.

A detailed investigation of the ammonia synthesis mechanism was carried out on promoted
Ru/C catalysts under industrially relevant conditions (T = 370–460 ◦C; P = 50–100 bar) [8–11].
The microkinetic model was based on a modified Temkin equation with the addition of both H2 and
NH3 adsorption terms, in order to consider the inhibiting effect of hydrogen on catalyst performance [8].
This is a major difference between Ru-based catalysts, which are inhibited by hydrogen, and the
commercial Fe-based ones, which are inhibited by the product, ammonia, and substantially unaffected
by the reactants. It is clear that a correct comparison between these two different catalytic systems
should be done under different conditions. For instance, the Fe-containing catalyst works optimally
when feeding the stoichiometric mixture (H2/N2 = 3 mol/mol), whereas substoichiometric feed
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is preferable for Ru (e.g., H2/N2 = 1–1.5 mol/mol). On the contrary, the commercial magnetite
catalyst rapidly reaches a plateau conversion, due to the fact that increasing ammonia concentration
decreases the reaction rate, which is not the case for Ru-based catalysts. This may suggest the
development of multibed reactors, with intercooling, using the Fe-based catalyst in the first layers
and Ru (more expensive) in the last one, only, to achieve the higher conversion unattainable with
Fe. Process simulation and optimization of reactor design and operating conditions are currently in
progress by our group, implementing the kinetic parameters in Aspen Plus. The work was planned after
a thorough screening of the literature surprisingly revealed a lack in combining kinetic experiments
with simulation software. Then a proper simulation of the best industrial technology available using
Ru catalyst was carried out (namely the KAAP technology). The reactor is composed of three beds
(the first one based on iron while the others based on ruthenium), represented for the simulation as
three different plug flow reactors with intermediate cooling (Figure 1).
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Yu et al. tried to implement the kinetic parameters of ammonia synthesis for the evaluation of a
coal-based polygeneration process to coproduce synthetic natural gas and ammonia [12]. Unfortunately,
the way the kinetic parameters were implemented in the simulation was not detailed, probably for
conciseness in the economy of the work, which was a complete design and economic evaluation from
air and coal to ammonia and electric energy production. Many design variables were investigated,
considering the total annual cost. Concerning the reactor, the total annual cost decreased as the system
pressure increased, because the enhanced density and thermodynamic driving force decreased the
required reactor volume and the catalyst loading, overcoming the higher cost of compression.

At the opposite side, Arora and co-workers investigated a small scale ammonia production
from biomass [13]. The flowsheet implies the biomass gasification through a dual fluidized bed
gasifier configuration for the production of syngas, which is then purified from COx by pressure
swing adsorption (PSA) and methanation. An air separation unit provides pure nitrogen and the
ammonia reactor produces the ammonia stream. The Redlich-Kwong-Soave, corrected by Boston
Mathias (RKS-BM) thermodynamic package was used to model the entire flowsheet. This property
package is suitable for processes that involve non-polar and real components, such as gas production,
gas processing, and hydrocarbon separation. Gibbs and equilibrium reactors were used to model
the ammonia converter. This choice was properly motivated considering that the reaction usually
approaches the equilibrium conversion. However, this point should be considered more in detail.
The model was validated against some plant data reported in literature.

Ammonia production via integrated biomass gasification was studied by Andersson and
Lundgren [14]. The process simulator was used to model energy and material balances of the complete
biomass gasification system including the NH3 synthesis. The most important modelling constraint
was the fixed pulp production at a given value and consequently the process stream balance. Also,
in this case the reactor was simulated using a Gibbs reactor at 180 bar and 440 ◦C, formally using an
iron promoted catalyst.
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A control structure design for the ammonia synthesis process was carried out by Araujo and
Skogestad [15]. The reactor configuration was based on an industrial fixed-bed autothermal reactor.
The reaction kinetic was described by the Temkin–Pyzhev expression and the beds were modelled in
Aspen Plus by means of its built-in catalytic plug-flow reactor. The evaluation of the effectiveness of a
control structure against disturbance was carried out using the dynamic simulation package.

Therefore, considering ammonia synthesis, apparently a limited number of papers deal with the
optimization of process design and its intensification based on process simulation. Of these, some deal
with equilibrium reactors, de facto neglecting catalyst role. Improvement on this side is allowed by the
availability of readily usable kinetic models with full and detailed parameters, to be used as a basis for
simulation. This point is becoming increasingly important due to the spreading interest on ammonia
decomposition plants, of limited scale, to achieve pure hydrogen for cogeneration units based on fuel
cells. Therefore, reliable tools for multiscale process optimization are straightforward instruments.

1.3. Effect of Transport Phenomena

Diffusion in porous solids is another key factor to compute, because of the possibly controlling
mass transfer during the heterogeneous catalytic process. This point must be taken into account and
properly implemented in the simulator software considering where necessary the bulk or Knudsen
modes of diffusion in small pores. This problem occurs not only in heterogeneous catalytic process,
but also in classical gas–solid reactions. For instance, Mahinpey and co-workers studied the CO2

capture technology using several calcium oxide sorbent materials [16]. The trend of CO2 adsorption
and reaction was simulated by Aspen Plus, matching the experimental results obtained in parallel
experiments. A plug flow reactor was adopted as carbonator reactor, while a Gibbs reactor was chosen
for the comparison with the thermodynamic equilibrium conditions. A marked difference between
the predictions and the conversion derived from the experimental data was observed and attributed
to the grain model used for the calculation of the reaction parameters. The possibility that internal
points of the sorbent were never touched by the reactant gas was not taken into proper account by
e.g., modelling the concentration profile across the catalyst particle and this led to the discrepancy.
The authors suggested that a proper optimization can be done considering these not accessible zones.

This point remains one of the most critical for a detailed computation of the process. A trade off
should be found between the development of detailed models which take into account fluid dynamics,
internal and external mass transfer as limiting for kinetics, and usability of such models. A detailed
microkinetic scheme can also be used in this field, but typically this is limited to the description of
single unit operations, becoming computationally too heavy to allow implementation in a full plant
simulation. Hybrid, semiempirical factors, in the form of efficiencies can be used to take into account
all the factors limiting kinetics.

1.4. User Defined Models

Another approach must be adopted for processes which cannot be simulated. One of the most
representative example in literature is the biomass gasification in dual fluidized bed reactor [17].
This technology includes two reactors in series: the gasifier where biomass is converted by steam into
syngas (H2 + CO) and a combustion reactor fed with sand and char able to supply thermal energy to
the former. None of the commercial process simulators (Aspen Plus, ProII, Hysys, etc.) have predefined
models to simulate biomass gasification. Therefore, the kinetic model must be implemented in external
files, elaborated with proper software such as MATLAB or powerful scientific programming tools such
as Fortran. Abdelouahed et al. exploited the flexibility of Aspen Plus inserting several Fortran blocks,
combining complex reactor models and Aspen Plus® tools [17]. Reactor modelling can be done by
empirical correlations (product yields as a function of temperature), chemical kinetics, or more detailed
reactor computations. The output of the flowsheet preceding the reactor simulated by Aspen Plus®

(mass and enthalpy flow rates, temperature, pressure, etc.) is transferred to Fortran modules for the
detailed calculation of reactor output through a more or less detailed model, and then transferred back
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to Aspen (Figure 2). The possibility to implement user defined models makes the difference between
the various process simulators. Indeed, the flexibility of the process simulator is measured in terms of
the possibility to use kinetic models of any form, which are considered more adequate to represent the
studied reaction with respect to the standard models implemented by default in the software.Catalysts 2017, 7, 159 8 of 34 
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2. Processes Following Complex Kinetic Schemes

From the above reported examples, the need of a sound kinetic model to compute the
reactants/products evolution under different reaction conditions appears as a must to be fulfilled
for reliable predictions of reactor (and hence process) outcome. As the complexity of the reactions
carried out in the process increases, this becomes one of the key issues to be settled prior to process
design. In the following, we will consider the emblematic case of ethanol valorization into hydrogen
or ethylene, as a pathway to the biorefinery exploitation [18–21]. In this view, a biomass-derived raw
material is used to provide important chemicals/fuels in a more sustainable way. This idea has to
prove sustainable from the industrial and economical points of view, therefore process simulation is a
powerful tool for preliminary process design, to evaluate the operating conditions and process layout
that may ensure the economical viability of the process. Process simulation has been carried out e.g.,
to evaluate the performance of a 5 kWelectrical + 5 kWthermal cogeneration unit starting from bioethanol
and converting the reformate by means of fuel cells [22–25].

At difference with the cases reported in the previous paragraphs, in this case the complexity
of the kinetic scheme increases abruptly. On one hand we do not have only one/two reactions,
well independent, to be implemented in the simulator reaction set, but also a complex reaction network
including many different parallel/consecutive reactions. On the other hand, kinetic data for such
reaction networks can be hardly achieved in reliable way. Indeed, often data regression ends in
strongly correlated parameters, which is ultimately unreliable for safe predictions. Therefore, in such
cases the use of independent first principles methods for the estimation of some of them lightens and
uncorrelates the remaining parameters to be regressed. These topics will be addressed in the following
paragraphs by using some examples.

2.1. Simulations of Reforming Processes

Hydrogen Production by Steam Reforming

Steam reforming (SR) is more and more studied to produce hydrogen from either fossil or
renewable sources. Ethanol is one of the most widely used substrates among the renewable ones.
In order to enhance the hydrogen yield avoiding the direct ethanol combustion, only water should
be considered as an additional feedstock, without oxygen. Dry Reforming (DR) of methane, in turn,
is often operated in such conditions as to make methane a relatively stable species, which is often
converted in separated reaction stages: SR and DR followed by methanation (MET) then originates
two different reforming process [26]. Starting from a first-principle thermodynamic analysis and
keeping in mind this difference, the equilibrium mixtures arising from a given feed composition can
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be calculated at least in three ways: (1) any species possibly originated from SR, DR, water gas shift
(WGS) and methane conversion (occurring simultaneously) is quantified according to its Gibbs free
energy; (2) only chemicals are considered originated from ethanol SR plus WGS (methane not present,
as it were fully converted in the same step); (3) from DR, with full conversion of ethanol into CH4 and
CO in a pre-reformer, followed by a separate WGS and MET equilibration stage.

The results are shown schematically in Table 1. The calculations originally performed with
PROII [26] have been replaced with similar ones performed in Aspen Plus—the same reactor type
and SRK thermodynamic model were used. Notice that the calculation scheme shown in Figure 2
of the cited work may not rigorously treat the formation of coke, since two equilibration stages are
shown, but only one is modeled via a Gibbs reactor, while nothing is specified about the capability of
other PROII reactor classes to mix solid and vapor phases. The differences in these thermodynamic
material balances are due to the different setup of the equilibrium reactor blocks in each case, which is
the easiest way to account for the catalysts selectivity in a real flow-scheme (where the simultaneous
reaction equilibria can be effectively separated in practice).

Table 1. Equilibrium composition (mol/moltot) of a mixture derived from ethanol reforming under the
assumptions specified above; in case 3, water is fed separately to the second reactor (rather than being
treated as inert in the first block).

T (◦C)

Molar Fractions at 1 Atm (Feed: H2O:Ethanol = 5:1)

Case 1 Case 2 Case 3

H2 CO/CO2 CH4 Coke H2 CO/CO2 CH4 Coke H2 CO/CO2 CH4 Coke

500 0.30 0.13 0.10 0.00 0.0 0.20 0.00 0.09 0.30 0.13 0.10 0.00
600 0.45 0.50 0.03 0.00 0.52 0.69 0.00 0.00 0.45 0.50 0.03 0.00
700 0.49 0.99 0.00 0.00 0.50 1.02 0.00 0.00 0.49 0.99 0.00 0.00
800 0.48 1.40 0.00 0.00 0.48 1.40 0.00 0.00 0.48 1.40 0.00 0.00
900 0.47 1.82 0.00 0.00 0.47 1.82 0.00 0.00 0.47 1.82 0.00 0.00

1000 0.46 2.25 0.00 0.00 0.46 2.25 0.00 0.00 0.46 2.25 0.00 0.00

The two basic Ethanol SR and DR flowsheets are reproduced in Figure 3 (adapted from [26]).
The Product-to-Feed auto-heat exchange is the usual solution when dealing with and endothermic
reaction (that requires a pre-heating) which gives byproducts that are still hot enough and if they
are not fully oxidized, then can also be used as an additional fuel to sustain the needed heat input,
economizing fresh and higher-value fuels.
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Figure 3. Flowsheet for ethanol steam reforming without (top) or with (bottom) a separate stage for
the two-step conversion of methane, readapted from reference [26].

With these configurations and the typical operating condition specified below, the overall material
balances obtained are as follows (Table 2, [26]). These results are obtained on the basis of the
thermodynamic ‘atom equilibrium’, only, and are therefore useful to find the maximum hydrogen
yield or to represent reactors with an excess catalyst hold-up.

Table 2. Principal data from [26]. (*) This datum is referred to the overall flowsheet input.

Parameter Case 1 Case 2

Reformer inlet T (◦C) 800 650
Reformer outlet T (◦C) 850 920

Pre-reformer outlet T (◦C) - 370
Separator T (◦C) 30–35 30–35

Ethanol feed (kmol/h) 854 914
Water to ethanol ratio (mol/mol) 5 5 (*)

Hydrogen to ethanol yield (mol/mol) 5.2 4.9

ESR grants the highest hydrogen output, but requires also the highest energy input to sustain
the reaction. While different strategies are possible to burn directly or indirectly an excess of ethanol
(stemming from the basic scheme of Figure 3), another option is to add oxygen to the reactants mixture
(this is the so-called Autothermal Reforming, ATR, or Partial Oxidation, POX, strategy, depending on
the presence or not of water).

The methodology proposed by the cited authors, however, does not foresee to find the oxygen
stoichiometric ratio which yields ∆rH = 0 (ATR), but to optimize the oxygen amount so to keep a
hydrogen output as high as possible.

Figure 4 reports an example of equilibrium calculation, using the same software (Aspen Plus with
a Gibbs reactor) and keeping the same thermodynamic model to account for the mixture non-ideality,
according to the Peng–Robinson equation of state.

Starting from these findings, Khila et al. [27,28] extended the analysis giving up the solid carbon
species representing the catalyst coking (which is indeed minimized for steam-to-ethanol ratios higher
than 4 and reforming temperatures above 500 ◦C, but developing full process flow diagrams with
separated WGS and methanation sections for the three options (pure SR, POX, and ATR) and analyzing
the exergy inputs and outputs (see the cited reference for the details of this thermodynamic potential).
Their results are synthetically reported in Table 3.
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Figure 4. Hydrogen yield (mol/mol of ethanol fed) at equilibrium calculated under the specified
conditions. O/E = oxygen/ethanol molar ratio.

Table 3. Selection of data from references [27,28].

Exergy Input (kJ/mol H2) 407.7 H2 Yield (mol/mol Ethanol) 3.42

Exergy output (kJ/mol H2) 295.9 H2O emission (kg/kg H2) 14
Electricity input (kJ/kg H2) 776.6 CO2 emission (kg/kg H2) 12

Ethanol feed (kg/kg H2) 6.73 CO emission (kg/kg H2) 0.00
Water feed (kg/kg H2) 15.8 CH4 emission (kg/kg H2) 0.032

Besides the value of hydrogen as chemical, its preferred use is perhaps the electric power obtained
from the Fuel Cell (FC) systems. The coupling of a reforming plus a FC block allows then to simulate
the full ‘ethanol-to-electricity’ process.

Focusing the attention on the general balances, several works are reviewed which treat
essentially the cell as an equilibrium reactor: the hydrogen fed is related to the available power
(or voltage/current) via semi-empirical correlations that subtract the expectedly wasted energy, or,
equivalently, the potential drop and parasite currents [21,29–31].

Starting from the SR reactions, an integrated analysis of the cell power and heat needs has been
performed in [32] using HYSIS® and the flowsheet outlined below (Figure 5), with the main findings
reported in Table 4. The details of the heat analysis and its implementation with very specific HYSIS®

tools is here omitted and can be found in the cited work. The 1 kW FC is modeled correcting the
Faraday relation for ∆Erev with a known relation for the potential drops, while the reformer yields the
thermodynamic equilibrium fractions.
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Figure 5. Overall PFD for the ethanol reforming as described in [32]: the pumps are for water (above)
to the reformer, fed with fresh water and condensate from the reacted mixture and from the cell, and
ethanol (below) to the reformer (after mixing with water) and directly to the burner. Air to the burner,
to the byproducts oxidizer (“PrOx”) and to the cell is provided by the compressors in the lower middle
of the scheme. Notice the special multiple-currents heat exchanger-type block (“LNG”), which is more
properly a nested subroutine capable of solving a basic pinch analysis (limited, in this case, to a 20
temperature intervals discretization) of all the cold and hot streams routed through the block. The heat
released by the fuel cell is added to the balance of the network via a closed service loop, since the
LNG block cannot discharge directly a heat stream on the CU; a HU is not present because the more
demanding stream (the already pre-heated reformer feed) is connected to the burner via another heat
stream external to the PA block. The image is reproduced by kind permission from [32]. Copyright
2007, Elsevier.

Table 4. Selection of data from reference [32]; the maximum fraction of methane in every stream is
always lower than 2.5%.

Material Balances

Stream 4 5 7 9 12 14 28
T (◦C) 709 709 539 237 406 80 80

P (atm) 3 3 3 3 3 3 3
Flow (kmol/h) 0.0367 0.0628 0.0628 0.0628 0.0658 0.0636 0.1749

Fractions

Ethanol (mol/mol) 0.20 0.00 0.00 0.00 0.00 0.00 0.00
Water (mol/mol) 0.80 0.28 0.24 0.17 0.18 0.15 0.15

Hydrogen (mol/mol) 0.00 0.49 0.52 0.59 0.55 0.57 0.04
CO/CO2 (mol/mol) 0.00 1.17 0.58 0.03 0.00 0.00 0.00

O2 (mol/mol) 0.00 0.00 0.00 0.00 0.00 0.00 0.08

Energy Balances

Parameter Cold Streams Cold Utility Hot Streams Reformer Fuel Cell
Lower T (◦C) 25–142 20 80–810 709 55
Higher T (◦C) 126–709 25 406–1035 709 65

Duty (kW) 1.47 1.07 1.88 0.41 1.06
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A conceptually equivalent simulation has been performed by Jaggi et al. [33] with Aspen Plus®,
but with manually laying out the heat-exchange network rather than resorting to a built-in software
feature. Both the reformer and the FC are modeled based on a known stoichiometry (SR plus WGS
and MR for the reactor, hydrogen combustion for the cell with assumed values for the electric and
entropic powers in which the enthalpy difference is split). Focusing on the balance between the FC
output and the thermal energy recovered by the residual methane and CO burning, these authors
define the overall system efficiency as the electric power divided by the enthalpy content of the ethanol
fed. Their esteems are reported in Table 5.

Table 5. Data from reference [33] for a FC with the following characteristics: power = 5 kW;
nominal stack voltage = 24 V; nominal cell voltage = 0.55 V; cells in stack = 88; current = 208 A;
current density = 0.5 A/cm2; cell area = 406 cm2.

Parameter FC T = 200 ◦C FC T = 180 ◦C FC T = 160 ◦C

Output ∆V/desired ∆V (V/V) 0.55 0.55 0.55
Current density (A/cm2) 0.5 0.37 0.2

Current drawn (A) 208 153 83.2
Electric power (kW) 5 3.7 1.99

Overall efficiency 0.45 0.33 0.18

One can notice that both these configurations can be considered as ‘autothermal reforming’ ones,
from a general point of view, since a co-feed of oxygen is actually injected in the burners, giving overall
enthalpy balances more favorable than those of the pure SR without necessarily adding fresh fuels to
this section—the situation, however, retains a practical difference since the heat exchange network is
of course different from the true auto-sustained configuration of a non-endothermic reaction.

These results then define the thermodynamic boundaries of the ethanol reforming process as
calculated with the state of the art process simulators.

Moving further, a ‘native’ ATR process has been calculated by Aicher et al. [34] in a study
that combines steady-state simulation, experimental data and dynamic recording of several process
variables (the used software is Chemcad). Despite the lab-scale of the study, it is interesting to notice
that the used plug-flow reactors can be actually simulated by equilibrium/stoichiometry modules
in the proper conditions and catalysts hold-ups. The hydrogen output is quite high (Table 6) and
is obtained with a minimal heat-exchange configuration (just the Product-to-Feed auto-exchange is
present, plus the combustion), though the authors do not give the full material and heat balances to
discriminate between the ‘in-reactor’ energy saving and the heat released in the other combustions.

Table 6. Data from reference [34] for a process configuration involving a reformer, two WGS
stages and one methane post-processor in series (MR). Feeding water/ethanol = 5 mol/mol; feeding
oxygen/ethanol = 0.9 mol/mol; reformer inlet = 390 ◦C.

Unit Output T (◦C) Measured
H2 (Vol/Vol %) CO/CO2 (Vol/Vol %) CH4 (Vol/Vol %)

Measured Simulated Measured Simulated Measured Simulated

ATR reactor 745 37.6 38.8 2.00 1.71 0.13 0.01
WGS stage 1 400 41.5 42.9 19.8 11.5 0.13 0.01
WGS stage 2 290 41.9 43.5 93.18 41 0.13 0.01
MR reactor 220 40.8 42.6 - - 0.67 0.52

A full integration between a process simulation and a dynamical solution of the time-dependent
quantities has recently been performed by Degliuomini et al. [35,36]. The whole system is divided into
“fast” sections which can be always considered in equilibrium and are solved by a HYSIS® steady-state
simulation (the flow machinery, the equilibrium burner and the heat-exchange network treated with
the same tools as in [32]), while the “slow”, time dependent, sections that link the equilibrium ones
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are calculated with MATLAB. All the reactors are treated as plug-flow ones, with full Arrhenius
expansions of the reaction rates, and also the mass balances of the FC are treated as transient.

The interested reader may find every computational detail in the given reference. Here, we point
out that the whole analysis is meant to control the H2 flow to the FC, and the foreseen control system
handle very well a variation in the electric power requirement, while it cannot avoid some spurious
peak in the hydrogen yield in front of a variation of ethanol purity.

The same group further refined the above described control system [35,36], reassessing its validity
and comparing the effectiveness of different control strategies (based on different process parameters
on which to base the system response) when the integrated reformer/FC system is to be used for
automotive purposes.

We complete the analysis considering the other two simulations. The first [37] compares the SR
and ATR processes. The calculations were done with ASPEN Plus, with two different heat-integration
configurations for both cases, of two different feedstocks, ethanol and bio-diesel (represented mainly
as maleiC–Oleate). The gas flow composition at the FC inlet in the selected operating conditions are
lumped in Table 7 for an easier comparison.

Table 7. Data extracted from reference [37]. SR performed with reactor outlet at T = 800 ◦C and
feeding water/ethanol = 6 mol/mol; ATR performed with oxygen/ethanol = 0.35 mol/mol and
water/ethanol = 4 mol/mol. Methane was always absent.

Process Data Steam Reforming Fractions (Vol/Vol %) ATR Fractions (Vol/Vol %)

Species Ethanol Biodiesel Ethanol Biodiesel

H2 54.1 56.8 29.6 30.5
H2O 27.7 22.9 24.3 19.6

CO/CO2 0.022 0.025 0.013 0.018
N2 - - 30.3 32.5

The second case [38], performed with HYSIS®, compares the hydrogen yield obtained from a
conventional ehanol steam reformer to the one coming from an electro-chemical reformer (Table 8).
Since the data on the operating performance of the two different reactors are found elsewhere
(see references addressed in the cited work), the interest of this simulation lies mainly in the fact
that the electrical process required a simpler configuration, since the heat-exchange network and the
pre-heating were not needed.

Table 8. Data extracted from reference [38].

Parameter Steam Reforming Electrical Reforming

Hydrogen Yield (kg/kg EtOH) 0.03 0.044
Overall Energy Input (kWh/kg H2) 33 28

From the above reported examples, the need to properly predict the behavior of the different
reactors underlines the requirement of complete and reliable kinetic models as the basis for this
simulation activity. This point will be addressed in the following sections.

2.2. Kinetic and Theoretical Analysis of Ethanol Reforming

The analysis of catalytic ethanol reforming implies essentially three steps: (1) the selection of
the conditions, for each catalyst, to obtain high conversion and a good selectivity; (2) the comparison
of the reforming products mixture with the one expected at thermodynamic equilibrium;
(3) the rationalization of these data in terms of a chosen mechanism.

The first step involves mainly a catalyst synthesis, characterization and activity testing:
statistical procedures help indeed in the eventual interpretation of data [25], but at this stage the
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most important goal is the correlation of a products yield to the relevant catalyst features, or the
comparison between different catalysts: as an example of this kind of analysis, see the various species
yields on different materials as tested in [39].

At the second step, the catalyst selectivity towards a whole reaction path rather than towards a
product becomes clearer. In fact, since equilibrium conditions depend on the temperature (most of
the test reactors works with negligible pressure drops), when the full conversion of the precursor is
achieved then the possible byproducts reveal that a certain path is kinetically forbidden (or enhanced),
and if the ratios of H2O, CO, CO2, H2, and CH4 differ from the thermodynamically expected ones then
even equilibrating reactions are kinetically delayed. Therefore, the study of reforming mixtures as a
function of the reaction temperature can show if a material is always active towards any reaction path
until the ultimate equilibrium or, on the other side, if the activation barriers between each reaction are
appreciably different (for this kind of analysis, see for example the above cited papers and [40–42]).

The third step can be performed essentially in two ways: (i) a mechanism is postulated according
to the intermediates, then the relative reaction rates are extrapolated evaluating the amount of products
as a function of the contact time (which, at this stage, becomes the most important parameter), then the
variation of the temperature allows the extrapolation of the activation energies; (ii) the interaction
between reactants and catalyst is studied a priori relying only on the quantum mechanical models of
the interacting atoms: virtually any possible bond break and formation (or a wide selection of them) is
tested and the corresponding elementary reaction rate is quantified (via the Eyring model) until all the
steps from reactants to products are linked.

2.2.1. ESR: Conversion Rates and Steady States

As shown by equilibrium calculations (for example, [43,44], for two different methodologies) a
sufficient loading of a catalyst with the correct selectivity towards the reforming can eliminate any
byproduct (except methane) when working at the proper temperature.

In this context, the simplest kinetic model that can be formulated on the stoichiometric ground is
as follows:

EtOH + H2O kr→ CH4 + CO2 + 2H2 (R3)

CH4 + H2O 
 CO + 3H2 (R4)

CO + H2O 
 CO2 + H2 (R5)

In order to quantify just the conversion rate of ethanol, mass-transfer steps (i.e., how the
species diffuse through the material pores and within the gaseous stream) are typically not relevant
for the reaction. The equilibrium reactions, in turn, do not affect ethanol conversion if this is
truly not-reversible (tests performed in plug-flow reactors actually divide ethanol conversion and
equilibration also spatially). If, moreover, the water to ethanol ratio is sufficiently high and the reactants
are diluted in an excess of inert carrier, then the model can be reduced to a pseudo-homogenous
first-order one:

dpEtOH
dτ

= −kr pEtOH with kr = k0
r exp

(
− Ea

RT

)
(7)

where τ represents the contact time, i.e., the time for the given volumetric flowrate of the reaction
mixture to travel across the catalytic volume.

If the water to ethanol ratio in the mixture is not high enough and the first-order simplification
has to be dropped, the next step is to resort to an empirical general formulation based on
kinetic pseudo-orders:

dpEtOH
dτ

= −kr pa
EtOH pH2O

b (8)
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This kind of analysis is used in [45–47], where catalysts of Ru/Al2O3, Ni/MgO/Al2O and
Ni/Al2O3 yielded the following kinetic parameters (Table 9). Notice very small values of the activation
energy, which may indicate the presence of diffusional limitations or of highly correlated parameters.

Moving further and considering that the outcome of this conversion is a mixture of four species,
the amounts of CH4, CO, CO2, and H2 can provide an idea of the kinetic importance of the equilibria
with respect to the conversion. For example, the study performed in [48] reported the following
outcome (Table 10) on the state of methanation reaction over a Rh catalyst supported on Ceria-Zirconia.

Table 9. Data as from Table 2 of reference [45], Equation (6) of reference [46] and Table 4 of reference [47].
The values for k0

r and Ea from reference [45] (not reported in the same form, but as calculated
constants at different temperatures) have been fitted with Excel™ REGRLIN (r2 = 0.9446), while the
power-law model of reference [32] was originally presented in terms of molar flowrates rather than
partial pressures.

Catalyst k0
r Ea a b

Reference [45] (Ru/alumina) 55,881 (cm3 gcat
−1 h−1) 42 (kJ/mol) 1 0

Reference [46] (Ni/MgO/Al2O) 439 (mol min−1 gcat
−1 atm−3.42) 23 (kJ/mol) 0.711 2.71

Reference [47] (Ni/alumina) 0.031 (mol gcat
−1 s−1) 4.41 (kJ/mol) 0.43 0

Table 10. Data extracted from Table 5 of reference [48]. The yield of different products with respect to
the ethanol fed (and of residual water among the reactants) is reported as measured outflowing value,
to be compared with that calculated at equilibrium at the same temperature.

Temperature (◦C) 500 550 600

Yield (mol/mol Ethanol) Measured Equilibrium Measured Equilibrium Measured Equilibrium

H2O 4.00 2.99 4.00 2.68 2.36 2.41
H2 1.56 2.15 1.85 2.96 3.63 3.78

CO/CO2 0.64 0.25 0.61 0.32 0.48 0.62
CH4 0.21 0.93 0.28 0.68 0.50 0.39
C2H4 0.025 0.000 0.015 0.000 0.000 0.000

In the same work, the activity of the catalyst towards the WGS reaction was tested, showing values
nearer to the equilibrium ones, but only in certain temperature ranges and with a dependency on the
feed composition. Therefore, the authors concluded that, even if no intermediate conversion products
‘survive’, their production/conversion rates are comparable with the rates of the ‘lumped’ ethanol
conversion and of the equilibration steps, and that the mechanism leading to methane (and from it to
CO and CO2) depends on the catalyst.

2.2.2. ESR: From Stoichiometry to Mechanism

The first way to account for the reforming mechanism even when, on experimental ground,
only ethanol conversion is measured and byproducts are absent, is to verify the true rate determining
step (RDS) between the three above reactions. This approach was followed by Akande et al. [47],
who further divided the ethanol splitting reaction into two steps (ethanol adsorption and the actual
C–C break) and lumped methanation and WGS reactions into one stoichiometry but allowing for two
different paths (* represent a surface active site):

C2H6O + ∗ � C2H6O∗ (R6)

C2H6O∗ + ∗ � CH4O∗ + CH∗2 (R7)

CH4O∗ + H2O � CO2 + 3 H2 + ∗ (R8)

CH∗2 + 2 H2O → CO2 + 3 H2 + ∗ (R9)
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Barring the detail, and noticing that this work does not account for CO in the mixture or on
the catalyst (Ni/Al2O3), we point out that even this simple analysis yielded comparable activation
energies and mean square errors (MSE, we mean calculated concentrations versus measured ones,
for the best extrapolated values of the kinetic parameters) when the RDS was considered the second or
the third, confirming on a purely kinetic ground that the methanation and WGS reactions may not be
faster than the C–C break and sensitive to the mechanism being actually followed (Table 11).

Table 11. Data taken from Table 4 of reference [47], prefactors of the kinetic constants are not reported,
since the different tested mechanism lead to a difference in the reaction orders and then in the measuring
units. The MSE (Mean Square Error) is reported by the authors as the absolute value of the deviation
between predicted and observed conversion rates, normalized to the observed rate.

RDS Ea (J/mol) MSE

2 4430 6.0%
3 3550 10.6%

Only by considering qualitative data obtained below 100% conversion it is possible to discriminate
another RDS even prior to C–C break, for example the formation of acetaldehyde as the main path
for oxidative ethanol reforming (for example [49,50] among others), even when this chemical is not
recognized in the product mixture thanks to the catalyst loading or other reaction conditions that favor
its fast conversion into methane. A simple, yet straightforward, step in this direction is the work by
Wang et al. [51], who maintained the basic stoichiometry already described with another set of four
elementary steps:

C2H5OH∗ + H2O∗ + ∗ → 2 CO + 4 H2 + ∗ + ∗ + ∗ (R10)

C2H5OH∗ + ∗ + ∗ → C2H5O∗ + H2 + ∗ + ∗ (R11)

C2H5O∗ + ∗ → CH4 + CO + ∗ + ∗ (R12)

CO∗ + H2O∗ + ∗ � CO2
∗ + H2 + ∗ + ∗ (R13)

Contextually, the same authors showed (thanks to a collection of data taken on an Ir/CeO2

catalyst with a variable amount of any species in the feed stream) that a simple power law model
based on pseudo-kinetic orders may not be accurate enough and the catalyst surface covering has
to be addressed at least in a heuristic way. The interested reader can further investigate this point
with the help of the data contained in Figures 4–7 of the above mentioned work and of the synthetic
review of several power-law models (Table 2, ibidem). Here we just notice that, despite the simplicity
of the proposed mechanism—basically, a stoichiometry for the path: ethanol → acetaldehyde →
methane—the addition of a further kinetically relevant stage actually improves the description of the
reforming process, and the choice to separate the adsorbed species into two different adsorption sites
is consistent with the recognized importance of the support material beside the active metal. At a
glance, the main findings of this work are reported in Table 12.

Table 12. Data taken from reference [51] (see also references therein) for the rates of the above rate
determining steps (RDS) and for the adsorption equilibria of the relevant species on the catalyst: the
constants are calculated at 818 K and the tolerances at the 95% confidence level.

RDS K (mol kgcat
−1 s−1) Ea (kJ/mol) Species K (kPa−1) ∆H (kJ/mol)

1 11 ± 1 85 ± 14 ethanol 25 n.a.
2 9 ± 0.01 32 ± 15 water 3 × 10−4 −55
3 23 ± 5 66 ± 29 CO2 2 × 10−3 −67
4 20 109 ± 19 CO 1 −80

H2 0.01 −110
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In parallel, Mas and coworkers [52] developed the reforming mechanism considering the
production of methane, giving less importance to the aldehyde as a kinetically relevant intermediate,
but helping to establish the methanation reaction as a RDS itself (rather than a fast equilibrium stage),
accounting for the different behavior of this species on different catalysts.

The same authors substantially refined the first proposed kinetic model in a later work [53],
based on an extensive data collection obtained by tests on a catalysts of Ni/alumina and Ni(II)/Al(III),
taking advantage of the mechanism selection already worked out by Graschinsky et al. [54] (data from
a Rh/magnesia/alumina catalyst) and of a similar work by Sahoo et al. [55] to explain their own data
(Co/alumina). While these papers share the same core of RDS, the latter authors adopt an abridged
stoichiometry where the methanation is not treated explicitly, as it were just the ‘equilibration link’
between “dry reforming” and a full “steam reforming”. In any case, acetaldehyde is considered as
the key intermediate, even if rapidly converted before its possible desorption, via a sequence of steps
such as:

C2H5OH∗ + 2∗ � C2H4O∗ + 2 H∗ (R14)

C2H4O∗ + ∗ � CH3
∗ + CHO∗ (R15)

CH ∗ + 2 OH∗ � CO2
∗ + H∗2 + H∗ (R16)

CHO ∗ + OH∗ → CO2
∗ + H∗2 (R17)

CO2
∗ + H∗ � CO∗ + OH∗ (R18)

These works provide a body of kinetic and thermodynamic parameters that constitute the
starting point for LHHW kinetics bridging elementary reaction steps to the fitted experimental data,
in conditions where byproducts and coking can be neglected. A brief selection of values is outlined in
Table 13 for the following common stoichiometry:

C2H5OH + H2O → 2H2 + CO2 + CH4 (R19)

C2H5OH → CO + CH4 + H2 (R20)

C2H5OH + 3H2O → 6H2 + 2CO2 (R21)

CO + H2O � CO2 + H2 (R22)

Table 13. Data from reference [52,55]. (*) this reaction is found written in the inverse sense; (**)
the original paper reports likely mistyped units: the values are useful only for a comparison of the
relative values.

Reference [52] [53] [54] [55]

Cat Ni/
Alumina Ni(II)/Al(III) Rh/MgAl2O4/Al2O3 Co/Al2O3

K1 - 3.06 × 10−7 (mol mgcat−1 min−1) - -
K2 - 1.13 × 10−7 (mol mgcat−1 min−1) - 4.46 × 1019 (m2 mol−1 s−1) (**)
K3 - - - 1.16 × 1020 (m2 mol−1 s−1) (**)
K4 - 9.12 × 10−4 (mol mgcat−1 min−1) (*) - 4.64 × 1016 (m2 mol−1 s−1) (**)

Ea1 235.06
(kJ/mol) 195.5 (kJ/mol) 418 (kJ/mol) -

Ea2 278.74
(kJ/mol) 122.9 (kJ/mol) 85.9 (kJ/mol) 71.3 (kJ/mol)

Ea3 - - - 82.7 (kJ/mol)
Ea4 - 166.3 (kJ/mol) (*) 107 (kJ/mol) 43.6 (kJ/mol)

2.2.3. Other Reforming Models

All the above cited models, though developing the reaction pattern yielding all the equilibrium
reforming products, rely on data collected with reactors that can be treated by the ideal isothermal,
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isobaric PLUG-FLOW model, with neither any axial back-diffusion of the chemicals nor any mass
transfer limitations. The correct modeling of these latter kinetics requires the implementation of
PDE systems for every mass transport mechanism and possible heat transfers, if the foreseen system
requires it. Without going into the details of this wider research field, we briefly account for at least
three interesting aspects: (i) the intrinsic mass and heat transfer limitations of wall-coated microchannel
reactors [56–58]; (ii) the time on stream-dependent kinetics due to the (relatively) slow and selective
adsorption/release of a species [59,60]; (iii) the former phenomenon described in non-ideal reactors
characterized by temperature as well as pressure gradients [61,62].

We conclude this section on the experimental kinetics addressing also a couple of studies
on the oxidative reforming of ethanol. The qualitative catalyst comparison by Fierro et al. [63]
showed the importance of the catalyst support along with the prevailing kinetic character of the
reaction. The detailed theoretical and experimental work of Mondal et al. [64], where two mechanisms
proceeding via acetaldehyde scission and the production of formic acid/formiates are compared
and complemented by an interesting statistical analysis of the model parameters and the testing
reaction outputs.

2.2.4. ESR: From Chemical Bonds to Hydrogen

Increasingly complex reaction mechanisms and thus kinetic models may result in very complex
kinetic testing. This is needed to provide sufficient experimental data to account for increasing number
of parameters to be fitted. Nevertheless, complex kinetic models may end in strongly correlated kinetic
parameters, which at the end may lose reliability.

Reverting the perspective, it is nowadays possible to look at the reaction mechanism at the
atomic level and just ab initio (without any prior selection of intermediates to be found), thanks
to the increased availability and reliability of computational algorithms based on a first-principle
quantum mechanic approach. All the works reviewed here resort to a specific electronic structure
method called Density Functional Theory to estimate the interaction energy between atoms while
taking into account the composition of the catalytic materials and the arrangements of the atoms in the
solid. In principle, this approach may support kinetic modelling, providing independent kinetic or
thermodynamic parameters, thereby limiting the number of parameters to be estimated by regression
of kinetic data, hence the correlation between parameters.

Considering an ethanol molecule interacting with a solid, a straightforward pre-selection of the
relevant bond-ruptures allows to concentrate on the C atom linked to the oxygen, giving four possible
initial routes for the decomposition (Figure 6).
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Figure 6. The four bond breaking options relative to the C atom linked to the oxygen. It represents the
starting point in many analyses on ethanol degradation. The top two paths are considered distinct.

The route to each possible product across the potential energy surface is then explored to find
the lowest-energy barrier to overcome, so that the activation energy and heat of reaction can be
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determined for each elementary step. With this approach, Wang et al. [65] compared the relative
energy barriers for the above mentioned initial paths on a whole set of noble metals. The analysis
was also repeated for these dissociation paths to take place after the initial dehydrogenation EtOH→
EtO−. Without reporting all the data, one of the more probable reaction mechanisms is shown below,
as asserted for Rh and Ni (1,1,1) crystalline plane (Table 14 and Figure 7).

Table 14. Data from reference [65], showing the energetic barriers (number on the left of the second
and third column) and heats of reaction (number on the right) (eV) of the indicated elementary steps,
selected as the favorite ones.

Step Rh Ni

(1) C2H5OH∗ → C ∗H2CH2OH ∗ +H∗ 0.52/0.45 1.46/0.51
(2) C ∗H2CH2OH∗ → C ∗H2C ∗H2 + HO ∗ +H∗ 0.42/−0.69 0.14/−0.73
(3) C ∗H2C ∗H2 + HO ∗+H∗ → 2 H2C ∗ + HO ∗ +H∗ 0.99/0.82 1.04/1.02
(4) C2H5O∗ → C ∗H2CH2O ∗ +H∗ 0.55/0.52 1.57/1.15
(5) C2H5O∗ → C ∗H2C ∗H2 + O ∗ +H∗ 0.05/−1.10 0.10/−1.33
(6) C ∗H2C ∗H2 + O ∗+H∗ → 2 H2C ∗ + O ∗ +H∗ 0.97/0.84 1.05/1.01

In this paper, the interested reader also finds a correlation between the activation energies of these
transitions and an energetic parameter representative of these d-transition metals, what is known as
d-band model [66].

A similar analysis was performed later by Sutton and Vlachos [67], who tried to correlate the
preferred reaction paths on six transition metals to their ethanol-binding ability, rather than on more
general lattice properties: the authors established a link between the M-O binding energy and several
critical bond-ruptures (e.g., C–C, C–O), while a comparison between the modeled metals can be
appreciated at a glance in Figure 8.
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The same authors focused later on platinum [68], performing an extensive analysis of all of
the possible bond-breakings from ethanol down to carbon monoxide together with the reversible
de-hydrogenations linking methane to the CHx groups. This comprehensive study is complemented
by the fit of a set of conversion data, obtained adjusting just a scale-normalization factor. Importantly,
this first-principle analysis confirms the kinetic relevance of the H-abstraction steps that lead to
acetaldehyde formation, postponing the C–C breaking stage, and the eventual re-equilibration of the
fragments as precursors of CO, CO2, and methane (Figure 9).
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A similarly comprehensive mechanism on platinum was developed by Koehle et al. [69] for
ethanol partial oxidation, where the total amount of reaction steps (50, each one considered in principle
as reversible) was treated with a less aprioristic approach. The activation energy of every bond-break
was estimated with a semi-empirical model, the so-called UBI-QEP, that relies on the interpolation
of the calculated (or measured) binding energies of the intermediates with two parameters, catalyst
coverage, and temperature, that are in turn eventually used to extrapolate the activation energies
separating an intermediate from to the other.

Though less rigorous from the theoretical point of view, this work also presents the fit of another
set of reforming data, obtained by adjusting less than 10 (out of possible 100) of the already calculated
pre-exponential factors. Interestingly, the adjusted reaction steps were chosen via a statistical sensitivity
analysis, which points out methane formation and CO oxidation as crucial for the product distribution
in the mixture.

2.3. Ethanol to Ethylene

2.3.1. Ethanol to Ethylene: Direct Dehydration

The conversion of ethanol to ethylene is catalyzed by acidic catalyst functions, often attributed
to Lewis type sites. It may be the desired reaction for the production of this building block from
a renewable source, or it may represent a reaction path parallel to the oxidative one, leading to
acetaldehyde and then to carbon–carbon scission and conversion into hydrogen/syngas [70]. In this
sense, it is an undesired path because it lowers the H2 yield, and it is connected with catalyst
deactivation by coking. In any case, its kinetics should be detailed in order to perform process
simulation or to cope with selectivity/durability issues. Also for this application, first principle
methods may help addressing possibly complex reaction pathways.

Experimental results, however, most often provide a more complicated picture. The reasons are
that (i) most of the used catalysts are actually bifunctional (with a transition metal active towards
the C–H bond activation and a more or less acidic support oxide) and (ii) depending on temperature,
both acetaldehyde and ethylene can be reversibly converted into CO and methane. Putting aside at first
instance the selectivity matter, it is possible to start the energetic analysis of the ethanol-to-ethylene
path by itself: then a comparison of the elementary steps on different catalysts can explain their
selectivity ‘a posteriori’, analyzing those points whence expected byproducts or alternative routes stem.
Following this approach, a very straightforward yet indicative DFT calculation of the dehydration in
differently doped Zeolites was performed in [71] (Table 15).

Table 15. Data from reference [7] for the reactions: (a) EtOH*→ [TS‡] and (b) EtOH→ C2H4 + H2O.

Catalyst H–ZSM–5 Cu–ZSM–5 Ag–ZSM–5 Au–ZSM–5

∆G ‡(a) kcal/mol 43.86 52.75 40.1 36.29
∆G (b) kcal/mol 4.76 4.76 4.76 4.76

The choice of just one reaction path for every catalyst with the C–O bond progressively loosing
may be somehow simplified, but it establishes a direct link between theoretical calculations and the
well-known empiric concept of a “functional group”, still applicable with catalysts and conditions,
which yield a 100% selectivity.

Moving a step further, Kim et al. [72] extended the a priori study of the dehydration in two
directions, even if focusing on the H-ZSM-5 catalyst, only: a comparison between two different
mechanisms and a benchmark of different computational strategies. We report here a synopsis of the
main findings (Table 16 and Figure 10); the reader can check out the computational and mechanistic
details in the cited reference with its supporting material.
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Table 16. Data from reference [72]. The reference zero-energy is the lowest of the binding energies of
adsorbed ethanol on one of the four O-atoms available at each site: since any of the two mechanisms
can then yield different energetic profiles (according to the different O atoms possibly involved),
the reported values are the averages, for a given TS, over all these possibilities.

Transition States Computational Method 1 Computational Method 2

Intermediate ∆E ∆G ∆E ∆G

TS 1 (mechanism 3) 50.2 ± 4.2 46.2 ± 4.0 50.2 ± 3.3 46.0 ± 3.3
TS 2 (mechanism 4) 54.3 ± 7.0 51.7 ± 6.7 54.9 ± 2.9 52.2 ± 3.3
TS 3 (mechanism 4) 53.7 ± 5.7 49.5 ± 5.7 51.0 ± 5.0 46.9 ± 4.8

A similar study was performed by Maihom et al. [73] for an iron-doped zeolite (Fe-ZSM-5),
analyzing the steric and energetic features of two mechanisms (Figure 11), a step-wise (where ethanol
interacts with one catalyst atom at a time) and a concerted one (where ethanol interact simultaneously
with two catalyst atoms).
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Qualitatively, it is interesting to note that the mechanism with the higher energetic barriers is not
completely excluded, because it shows the lowest barrier for the initial step—moreover, the ‘choice’
between the two paths depends strongly on the orientation of the alcohol inside the adsorption site.

2.3.2. Ethanol to Ethylene: Parallel Paths

Though only incidentally, in the above works the possibility that –H atom transfer takes place via
a bimolecular reaction with a nearby ethanol molecule rather than with the catalyst is also addressed,
instrumental to ethylene formation. This phenomenon is related to a possible byproduct of the reaction,
i.e., the di-ethyl ether (DEE).

Christiansen et al. [74] studied the reaction of ethanol on γ-alumina theoretically,
assigning ethylene formation to an unimolecular mechanism (either step-wise or direct), and further
explaining how a bimolecular mechanism may also yield ethylene, but will more likely turn ethanol
into DEE (Table 17). Moreover, comparing the reaction rates predicted by the model with a set of
experimental data, these authors were able to discard less relevant reaction paths still fitting the
observations with a minor adjusting of the already calculated parameters. The inferred mechanism
and basic stoichiometry are sketched in Figure 12.

Table 17. Most important elementary steps of the mechanism explained in [74], with the free energies of
the intermediates compared to gas-phase values (all numbers in kcal/mol, for T = 488 K). Superscripts
‘Al’ and ‘O’ denotes catalysts active atoms.

Elementary Step ∆rG0 ∆G‡ (Calculation) ∆G‡ (Adjusted)

CH3CH2OHAl +O � CH3CH2OAl + HO −12 2 2
CH3CH2OAl + CH3CH2OHAl � CH3CH2OCH2CH3Al + OHAl −7 28 24
CH3CH2OHO + CH3CH2OHAl � CH3CH2OCH2CH3 + OHAl + HO −16 21 17
CH3CH2OHAl +O � C2H4 + OHAl + HO −16 25 29
CH3CH2OAl � C2H4 + OHAl −4 58 58
CH3CH2OCH2CH3Al + O � C2H4 + CH3CH2OAl + HO −9 29 29
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CH3CH2OHAl + O → C2H4 + OHAl + HO (R27)

CH3CH2OHAl + CH3CH2OAl → CH3CH2OCH2CH3 + OHAl (R28)

where the superscript Al denotes a surface unsaturated Al site. An extended representation of the
process was outlined by Alexopoulos et al. [75] for the already mentioned zeolite HZSM5: the parallel
ethylene/DEE figure is modified into a three-fold macro-scheme (Figure 13), where the paths A, B,
and C represent in turn a succession of simultaneous and competing elementary steps.
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These authors consider again only the catalyst oxygen atoms as directly involved in the bond
activation process, however their extended reaction network was able to reproduce a set of contextually
collected data without further adjusting the parameters. The relative weight of the possibly competing
routes leading to each experimentally observed product was evaluated by a statistical analysis of
the calculated reaction rates. Moreover, the authors considered ethanol absorption more important
than water in determining the selectivity and the change of mechanism during the conversion. For a
more specific comparison, we report the results obtained for the most probable routes to ethylene
[A/1-2-3-4-5] and DEE [B/1-6-7-8-9] as extracted from the above-cited paper [75] (Table 18).
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Table 18. Data from reference [75]: any step being reversible, equilibrium constants are always calculated via the Eyring model, while Ea and A refer to the Arrhenius
formulation, and are defined only for rate determining steps (RDS). These, in turn, are selected by the authors on the basis of a statistical screening of the Keq values
over a larger range of temperatures and catalyst coverage. Single H* and O* denote active atoms present on the alumina after moisture adsorption. A is given in
(s−1) or (10−2 kPa−1 s−1) for RDS or adsorptions, while Keq is reported in: (10−2 kPa−1), (102 kPa) or dimensionless for adsorption, desorption, or reactions at the
surface, respectively.

Elementary Step Ea (kJ/mol) A Keq @ 500 K Notes

(1) EtOH + 2∗ � EtO∗H∗ - - 1.1 × 104 equilibrium
(2) EtO∗H∗ � EtO∗H + ∗ - - 8.0 × 10−2 equilibrium
(3) EtO∗H + H∗ + O∗ � EtO∗ + H2O 118 4.0 × 1013 3.8 × 10−1 RDS
(4) EtO∗ � C2H∗4 + O∗ + H∗ 106 9.4 × 1012 3.5 × 10−2 RDS
(5) C2H∗4 � C2H4 - - 1.4 equilibrium
(6) EtO∗H∗ + EtOH � EtO(H∗)−H−O∗Et - - 7.6 × 10 equilibrium
(7) EtO(H∗)−H−O∗Et � EtO∗H + EtOH∗ - - 4.5 × 10−4 equilibrium
(8) EtO∗H + EtOH∗ � Et−O∗ − Et + ∗ 92 3.5 × 1012 7.2 × 104 RDS
(9) Et−O∗ − Et � EtOEt + ∗ - - 1.3 × 10−6 equilibrium
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It is worthwhile mentioning a couple of works that complement the picture just outlined from an
experimental point of view. Always within the framework of two parallel (unimolecular/bimolecular)
routes from ethanol to ethylene or DEE, De Wilde et al. [76] worked with an alumina catalyst basically
basically confirming the mechanism and the selectivity already described in [74]. They fitted their
experimental data to a kinetic model that does not consider two types of active sites, but retains the
water surface coverage as a rate-influencing parameter (Figure 14). This contribution, added to the
theoretical calculations, seems then to indicate a different behavior of alumina and zeolites.
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Afterwards DeWilde et al. [70] re-addressed from an experimental point of view the original
discrimination between ethanol dehydration and dehydrogenation, applying also techniques of
isotopic labeling and co-feeding pyridine alongside ethanol and water. The main finding of this
work, besides the proposed re-hydrogenation of ethylene to ethane, can be summarized as follows:
(i) at T > 600 K water is effectively desorbed from the catalyst, making the conversion rates again
insensitive to its partial pressure; (ii) unimolecular reaction paths are kinetically determined by C–H
breaks, while the DEE production is regulated by –O bonds cleavage; (iii) pyridine decreases the yield
of both ethylene and acetaldehyde, confirming that the required –H abstraction step takes place on
acidic sites.

This suggests that other factors, besides catalyst acidity, can be relevant in the possible yield of
acetaldehyde also in ethanol dehydration reactions. Nevertheless, the ethylene production rate constant
was given a kinetic pre-factor about 80 times larger than that of acetaldehyde [70], and this poses a
substantial quantitative difference between these catalysts and the actually basic ones (e.g., Lanthana
or Ceria—see for example the data on ethylene/acetaldehyde selectivity reported by [42].

The interplay between the ethylene/DEE reaction paths was lately reassessed by Knaeble
and Iglesia [77], either experimentally (on acidic mixed metal catalyst supported on silica) and
with a combined a priori (DFT based) heuristic calculation (Langmuir-Hinshelwood model with
fitted parameters).

In building the mechanism schematically represented below (Figure 15), the authors did not
only explain the deviation from unimolecular/bimolecular reaction rates just with varying catalyst
coverages, but also with multiple contributions given by terms of different order: the resulting kinetic
formulation is rather complex, but is rationalized into a model up to second order in ethanol partial
pressure and six free parameters.

A complete DFT analysis of the relative transition states was contextually performed, and an
“energetic profile” of the reaction was obtained as reproduced in Figure 16. The kinetic constants
determined for the elementary steps were then statistically screened via a sensitivity analysis similar
to the one mentioned above (i.e., examining the dependence of a certain yield on a small variation of
the kinetic factors), since this considerably reduces the number of parameters actually needed for the
model to account for the observed data.
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After the selected kinetic parameters were adjusted to reproduce the observed data, they were
compared with their bare values (i.e., those computed at the DFT level), and the same trends were
found as a function of the energy required to exchange one H+ unit between reactants and catalyst.
As a result, the authors of the above work concluded that the bimolecular or concerted C–H and C–O
breakings dominate for both ethylene and DEE production.

Up to this point, the selectivity issue seems to concern a minor yield of DEE, while it must
be remembered that acidic catalysts do promote the polymerization of ethylene into aromatics or
similar species of carbonaceous deposits [78]. Limiting to a theoretical analysis only, we mention
as an example the DFT investigation of the fundamental step: C2H∗4 → C2H+ ∗

5 reported in [74].
This protonation was chosen by the authors on the basis of several experimental works, so they could
focus on the modeling of a few atomic configurations in order to compare the performance of two
different materials (bare or P-doped HZSM5). This calculation shows that, since carbocation forms
via a negative charge transfer along a Cδ+–Oδ− bond (where the O atom binds the ethylene), if the
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adsorption occurs on an O–P site the transfer along the Cδ+–Oδ−–P route has a larger activation energy.
This finding helps to rationalize on a firm ground the observed inhibition of coke in the presence of
P inclusions.

Going then back to simpler semi-empirical accounts of the ethanol–ethylene reaction, there exist
at least two works worth mentioning that propose relatively simple retro-fitting of lumped kinetic
models to dedicated sets of data.

In the first [79], Kang et al. resorted to a Langmuir–Hinshelwood lumped model of the form:

rethene = kethene
KAPEtOH

1 + KAPEtOH + KAKW1PEtOH Pwater + KW2Pwater
(9)

and set Kwi ≡ 0 for that temperature range (above 600 K) where effective water desorption makes the
dehydration reaction insensitive to the product.

In the second [80], the authors obtained conversion data with a wider range of products on
alumina, supporting the mechanism discussed above, but also confirming the hypothesis of DeWilde
et al. on the possible acetaldehyde outcome. Indeed, this experimental work showed selectivity trends
where ethylene and DEE appear as competitive paths, while ethylene and acetaldehyde could be on a
common route. Though the proposed kinetics is oversimplified, the various product concentrations
fitted fairly well to the model, probably because the selected reaction conditions make competitive
adsorptions irrelevant. Moreover, a reactor model more complex than the ideal plug-flow one was
used, treating thermal and mass transfer phenomena. We report here (Table 19) a comparison of the
kinetic selectivity towards ethylene and DEE of some of the reviewed works.

Table 19. Data extracted from the cited works, for ethanol conversions obtained on alumina at 623 K.

Reference [79] [70]

Catalyst α-Alumina γ-Alumina

kC2 H4

kEtOEt

18
(

10−8mol g−1
cat s−1

)
25

(
10−8mol g−1

cat s−1
) = 0.72

9.4
(

10−4mol g−1
cat s−1

)
6.8

(
10−4mol g−1

cat s−1
) = 1.38

In conclusion, we further mention a late DFT calculation [81] where the basic elimination
mechanism (α–H abstraction from the Cα by the same alcoholic hydroxyl group) is set to work
simultaneously in vacuum and on hematite surfaces modeled and oriented in different ways.
Though not so extended in scope as the other reviewed works, this paper let one appreciate
the fair compromise between accuracy, feasibility, and flexibility that a priori calculations have
reached today—not to mention the potential interest of establishing ethylene production on cheap
iron-based materials.

At the end, when the kinetic description of the process relies on a complex reactions set,
mixed approaches can be considered in order to obtain all the needed kinetic and thermodynamic
parameters. When possible, first principle study of the system can allow the independent determination
of some parameters, whereas the other, kinetically relevant ones, can be regressed against proper
experimental data. It is however strongly recommended to validate the calculated outcome against
independent experimental data. In this way, it is generally possible to achieve reliable plant
performance predictions on which process simulation can be safely carried out.

3. Conclusions

The present work outlines some case studies taken from process design and optimization,
as well as from kinetic studies, which exemplify the use of process simulation tools. For a detailed
and sound description of plant performance, the reactive steps have to be described with detailed
kinetic models. Kinetic modelling is therefore one of the key steps in process development and it may
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be carried out either by developing detailed mechanistic microkinetic models, or by considering
lumped/empirical approaches. In both cases, some indetermination may arise due to possible
correlation between the regressed parameters, which ends in unreliable productivity predictions.
First principle approaches to kinetic and thermodynamic description of reacting systems can be
a valuable approach to limit such problems. Indeed, some of the parameters can be calculated
independently, limiting the number of parameters to be regressed and therefore their correlation.

On this basis, process simulators allow the reliable description of full plant size provided that
sufficiently reliable kinetic models are implemented. At first, kinetics of the studied reaction have
to be inspected, deciding the level of detail that allows reliable interpretation of catalyst behavior
and, thus, a credible process simulation. According to this choice, proper kinetic equation and the
relative parameters must be available, to be implemented either in the default form imposed by the
simulator, or by developing user models. When the complexity of the reaction network becomes too
high, care must be put in the proper selection of the reaction set and in the evaluation of the reliability
of the regressed kinetic parameters. In such cases, the user should evaluate the use of first principles
to independently assess some of the parameters, so limiting the number of those, kinetically most
relevant, to be regressed.

Author Contributions: M. Compagnoni and I. Rossetti. wrote Chapter 1; A. Tripodi and R. Martinazzo wrote
the contributions in Chapter 2 on DFT and ab initio modelling; A. Tripodi, I. Rossetti and G. Ramis wrote the
contribution on kinetics and process simulation in Chapter 2; I. Rossetti organized, revised and edited the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Luyben, W.L. Design and Control of a Methanol Reactor/Column Process. Ind. Eng. Chem. Res. 2010, 49,
6150–6163. [CrossRef]

2. Vanden Bussche, K.M.; Froment, G.F. A Steady-State Kinetic Model for Methanol Synthesis and the Water
Gas Shift Reaction on a Commercial Cu/ZnO/Al2O3Catalyst. J. Catal. 1996, 161, 1–10. [CrossRef]

3. Van-Dal, É.S.; Bouallou, C. Design and simulation of a methanol production plant from CO2 hydrogenation.
J. Clean. Prod. 2013, 57, 38–45. [CrossRef]

4. Lim, H.-W.; Park, M.-J.; Kang, S.-H.; Chae, H.-J.; Bae, J.W.; Jun, K.-W. Modeling of the kinetics for methanol
synthesis using Cu/ZnO/Al2O3<ZrO2 catalyst: Influence of carbon dioxide during hydrogenation. Ind. Eng.
Chem. Res. 2009, 48, 10448–10455. [CrossRef]

5. Zhang, C.; Jun, K.W.; Gao, R.; Kwak, G.; Park, H.G. Carbon dioxide utilization in a gas-to-methanol process
combined with CO2/Steam-mixed reforming: Techno-economic analysis. Fuel 2017, 190, 303–311. [CrossRef]

6. Matzen, M.; Alhajji, M.; Demirel, Y. Chemical storage of wind energy by renewable methanol production:
Feasibility analysis using a multi-criteria decision matrix. Energy 2015, 93, 343–353. [CrossRef]

7. Iyer, S.S.; Renganathan, T.; Pushpavanam, S.; Vasudeva, K.M.; Kaisare, N. Generalized thermodynamic
analysis of methanol synthesis: Effect of feed composition. J. CO2 Util. 2015, 10, 95–104. [CrossRef]

8. Rossetti, I.; Pernicone, N.; Ferrero, F.; Forni, L. Kinetic study of ammonia synthesis on a promoted Ru/C
catalyst. Ind. Eng. Chem. Res. 2006, 45, 4150–4155. [CrossRef]

9. Rossetti, I.; Pernicone, N.; Forni, L. Graphitised carbon as support for Ru/C ammonia synthesis catalyst.
Catal. Today 2005, 102–103, 219–224. [CrossRef]

10. Pernicone, N.; Ferrero, F.; Rossetti, I.; Forni, L.; Canton, P.; Riello, P.; Fagherazzi, G.; Signoretto, M.; Pinna, F.
Wustite as a new precursor of industrial ammonia synthesis catalysts. Appl. Catal. A Gen. 2003, 251, 121–129.
[CrossRef]

11. Rossetti, I.; Pernicone, N.; Forni, L. Promoters effect in Ru/C ammonia synthesis catalyst. Appl. Catal. A Gen.
2001, 208, 271–278. [CrossRef]

12. Yu, B.Y.; Chien, I.L. Design and Economic Evaluation of a Coal-Based Polygeneration Process to Coproduce
Synthetic Natural Gas and Ammonia. Ind. Eng. Chem. Res. 2015, 54, 10073–10087. [CrossRef]

13. Arora, P.; Hoadley, A.F.A.; Mahajani, S.M.; Ganesh, A. Small-Scale Ammonia Production from Biomass:
A Techno-Enviro-Economic Perspective. Ind. Eng. Chem. Res. 2016, 55, 6422–6434. [CrossRef]

http://dx.doi.org/10.1021/ie100323d
http://dx.doi.org/10.1006/jcat.1996.0156
http://dx.doi.org/10.1016/j.jclepro.2013.06.008
http://dx.doi.org/10.1021/ie901081f
http://dx.doi.org/10.1016/j.fuel.2016.11.008
http://dx.doi.org/10.1016/j.energy.2015.09.043
http://dx.doi.org/10.1016/j.jcou.2015.01.006
http://dx.doi.org/10.1021/ie051398g
http://dx.doi.org/10.1016/j.cattod.2005.02.010
http://dx.doi.org/10.1016/S0926-860X(03)00313-2
http://dx.doi.org/10.1016/S0926-860X(00)00711-0
http://dx.doi.org/10.1021/acs.iecr.5b02345
http://dx.doi.org/10.1021/acs.iecr.5b04937


Catalysts 2017, 7, 159 31 of 33

14. Andersson, J.; Lundgren, J. Techno-economic analysis of ammonia production via integrated biomass
gasification. Appl. Energy 2014, 130, 484–490. [CrossRef]

15. Aráujo, A.; Skogestad, S. Control structure design for the ammonia synthesis process. Comput. Chem. Eng.
2008, 32, 2920–2932. [CrossRef]

16. Mostafavi, E.; Sedghkerdar, M.H.; Mahinpey, N. Thermodynamic and Kinetic Study of CO2 Capture with
Calcium Based Sorbents: Experiments and Modeling. Ind. Eng. Chem. Res. 2013, 52, 4725–4733. [CrossRef]

17. Abdelouahed, L.; Authier, O.; Mauviel, G.; Corriou, J.P.; Verdier, G.; Dufour, A. Detailed Modeling of Biomass
Gasi fi cation in Dual Fluidized Bed Reactors under Aspen Plus. Energy Fuels 2012, 26, 3840–3855. [CrossRef]

18. Rossetti, I.; Compagnoni, M.; De Guido, G.; Pellegrini, L.; Ramis, G.; Dzwigaj, S. Ethylene production from
diluted bioethanol solutions. Can. J. Chem. Eng. 2017. [CrossRef]

19. Rossetti, I.; Compagnoni, M.; Finocchio, E.; Ramis, G.; Di Michele, A.; Millot, Y.; Dzwigaj, S. Ethylene
production via catalytic dehydration of diluted bioethanol: A step towards an integrated biorefinery.
Appl. Catal. B Environ. 2017, 210, 407–420. [CrossRef]

20. Rossetti, I.; Compagnoni, M.; Finocchio, E.; Ramis, G.; Di Michele, A.; Zucchini, A.; Dzwigaj, S. Syngas
production via steam reforming of bioethanol over Ni-BEA catalysts: A BTL strategy. Int. J. Hydrogen Energy
2016, 41, 16878–16889. [CrossRef]

21. Rossetti, I.; Biffi, C.; Tantardini, G.F.; Raimondi, M.; Vitto, E.; Alberti, D. 5 kW e + 5 kW t reformer-PEMFC
energy generator from bioethanol first data on the fuel processor from a demonstrative project. Int. J.
Hydrogen Energy 2012, 37, 8499–8504. [CrossRef]

22. Rossetti, I.; Compagnoni, M.; Torli, M. Process simulation and optimization of H2 production from ethanol
steam reforming and its use in fuel cells. 2. Process analysis and optimization. Chem. Eng. J. 2015, 281,
1036–1044. [CrossRef]

23. Rossetti, I.; Compagnoni, M.; Torli, M. Process simulation and optimization of H2 production from ethanol
steam reforming and its use in fuel cells. 1. Thermodynamic and kinetic analysis. Chem. Eng. J. 2015, 281,
1024–1035. [CrossRef]

24. Tripodi, A.; Compagnoni, M.; Rossetti, I. Kinetic modelling and reactor simulation for ethanol steam
reforming. ChemCatChem 2016, 8, 3804–3813. [CrossRef]

25. Compagnoni, M.; Tripodi, A.; Rossetti, I. Parametric study and kinetic testing for ethanol steam refroming.
Appl. Catal. B Environ. 2017, 203, 899–909. [CrossRef]

26. Oakley, J.H.; Hoadley, A.F.A. Industrial scale steam reforming of bioethanol: A conceptual study. Int. J.
Hydrog Energy 2010, 35, 8472–8485. [CrossRef]

27. Khila, Z.; Hajjaji, N.; Pons, M.N.; Renaudin, V.; Houas, A. A comparative study on energetic and exergetic
assessment of hydrogen production from bioethanol via steam reforming, partial oxidation and auto-thermal
reforming processes. Fuel Process. Technol. 2013, 112, 19–27. [CrossRef]

28. Khila, Z.; Baccar, I.; Jemel, I.; Houas, A.; Hajjaji, N. Energetic, exergetic and environmental life cycle
assessment analyses as tools for optimization of hydrogen production by autothermal reforming of
bioethanol. Int. J. Hydrogen Energy 2016, 41, 17723–17739. [CrossRef]

29. Rossetti, I.; Biffi, C.; Forni, L.; Tantardini, G.F.; Faita, G.; Raimondi, M.; Vitto, E.; Alberti, D. Integrated 5 kWe
+ 5 kWt PEM-FC generator from bioethanol: A demonstrative project. In Proceedings of the ASME 2010 8th
International Conference on Fuel Cell Science, Engineering and Technology (FUELCELL 2010), Brooklyn,
NY, USA, 14–16 June 2010; Volume 2, pp. 465–471.

30. Rossetti, I.; Biffi, C.; Forni, L.; Tantardini, G.F.; Faita, G.; Raimondi, M.; Vitto, E.; Salogni, A. 5 KWE + 5
KWT PEM-FC generator from bioethanol: Fuel processor and development of new reforming catalysts.
In Proceedings of the ASME 2011 9th International Conference on Fuel Cell Science, Engineering and
Technology, Grand, Hyatt, DC, USA, 7–11 August 2011; pp. 47–53.

31. Rossetti, I.; Lasso, J.; Compagnoni, M.; De Guido, G.; Pellegrini, L. H2 production from bioethanol and its
use in fuel-cells. Chem. Eng. Trans. 2015, 43, 229–234. [CrossRef]

32. Francesconi, J.A.; Mussati, M.C.; Mato, R.O.; Aguirre, P.A. Analysis of the energy efficiency of an integrated
ethanol processor for PEM fuel cell systems. J. Power Sources 2007, 167, 151–161. [CrossRef]

33. Jaggi, V.; Jayanti, S. A conceptual model of a high-efficiency, stand-alone power unit based on a fuel cell
stack with an integrated auto-thermal ethanol reformer. Appl. Energy 2013, 110, 295–303. [CrossRef]

34. Aicher, T.; Full, J.; Schaadt, A. A portable fuel processor for hydrogen production from ethanol in a 250 Wel
fuel cell system. Int. J. Hydrogen Energy 2009, 34, 8006–8015. [CrossRef]

http://dx.doi.org/10.1016/j.apenergy.2014.02.029
http://dx.doi.org/10.1016/j.compchemeng.2008.03.001
http://dx.doi.org/10.1021/ie400297s
http://dx.doi.org/10.1021/ef300411k
http://dx.doi.org/10.1002/cjce.22828
http://dx.doi.org/10.1016/j.apcatb.2017.04.007
http://dx.doi.org/10.1016/j.ijhydene.2016.07.149
http://dx.doi.org/10.1016/j.ijhydene.2012.02.095
http://dx.doi.org/10.1016/j.cej.2015.08.045
http://dx.doi.org/10.1016/j.cej.2015.08.025
http://dx.doi.org/10.1002/cctc.201601075
http://dx.doi.org/10.1016/j.apcatb.2016.11.002
http://dx.doi.org/10.1016/j.ijhydene.2010.05.003
http://dx.doi.org/10.1016/j.fuproc.2013.02.013
http://dx.doi.org/10.1016/j.ijhydene.2016.07.225
http://dx.doi.org/10.3303/CET1543039
http://dx.doi.org/10.1016/j.jpowsour.2006.12.109
http://dx.doi.org/10.1016/j.apenergy.2013.04.001
http://dx.doi.org/10.1016/j.ijhydene.2009.07.064


Catalysts 2017, 7, 159 32 of 33

35. Nieto, D.L.; Biset, S.; Luppi, P.; Basualdo, M.S. A rigorous computational model for hydrogen production
from bio-ethanol to feed a fuel cell stack. Int. J. Hydrogen Energy 2012, 37, 3108–3129. [CrossRef]

36. Nieto Degliuomini, L.; Zumoffen, D.; Basualdo, M. Plant-wide control design for fuel processor system with
PEMFC. Int. J. Hydrogen Energy 2012, 37, 14801–14811. [CrossRef]

37. Stefan, M.; Wörner, A. On-board reforming of biodiesel and bioethanol for high temperature PEM fuel cells:
Comparison of autothermal reforming and steam reforming. J. Power Sources 2011, 196, 3163–3171. [CrossRef]

38. Gutiérrez, G.N.; Jiménez, V.M.; Serrano-Ruiz, J.C.; de Lucas-Consuegra, A. Electrochemical reforming vs.
Catalytic reforming of ethanol: A process energy analysis for hydrogen production. Chem. Eng. Process.
Process Intensif. 2015, 95, 9–16. [CrossRef]

39. Wang, C.B.; Lee, C.C.; Bi, J.L.; Siang, J.Y.; Liu, J.Y.; Yeh, C.T. Study on the steam reforming of ethanol over
cobalt oxides. Catal. Today 2009, 146, 76–81. [CrossRef]

40. Vaidya, P.D.; Rodrigues, A.E. Insight into steam reforming of ethanol to produce hydrogen for fuel cells.
Chem. Eng. J. 2006, 117, 39–49. [CrossRef]

41. Casanovas, A.; Roig, M.; De Leitenburg, C.; Trovarelli, A.; Llorca, J. Ethanol steam reforming and water gas
shift over Co/ZnO catalytic honeycombs doped with Fe, Ni, Cu, Cr and Na. Int. J. Hydrogen Energy 2010, 35,
7690–7698. [CrossRef]

42. Fatsikostas, A.N.; Verykios, X.E. Reaction network of steam reforming of ethanol over Ni-based catalysts.
J. Catal. 2004, 225, 439–452. [CrossRef]

43. Díaz, A.F.; Gracia, F. Steam reforming of ethanol for hydrogen production: Thermodynamic analysis
including different carbon deposits representation. Chem. Eng. J. 2010, 165, 649–657. [CrossRef]

44. Mas, V.; Kipreos, R.; Amadeo, N.; Laborde, M. Thermodynamic analysis of ethanol/water system with the
stoichiometric method. Int. J. Hydrogen Energy 2006, 31, 21–28. [CrossRef]

45. Vaidya, P.D.; Rodrigues, A.E. Kinetics of steam reforming of ethanol over a Ru/Al2O3 catalyst. Ind. Eng.
Chem. Res. 2006, 45, 6614–6618. [CrossRef]

46. Mathure, P.V.; Ganguly, S.; Patwardhan, A.V.; Saha, R.K. Steam reforming of ethanol using a commercial
nickel-based catalyst. Ind. Eng. Chem. Res. 2007, 46, 8471–8479. [CrossRef]

47. Akande, A.; Aboudheir, A.; Idem, R.; Dalai, A. Kinetic modeling of hydrogen production by the catalytic
reforming of crude ethanol over a CO–Precipitated Ni-Al2O3 catalyst in a packed bed tubular reactor. Int. J.
Hydrogen Energy 2006, 31, 1707–1715. [CrossRef]

48. Birot, A.; Epron, F.; Descorme, C.; Duprez, D. Ethanol steam reforming over Rh/CexZr1−xO2 catalysts:
Impact of the CO-CO2-CH4 interconversion reactions on the H2 production. Appl. Catal. B Environ. 2008, 79,
17–25. [CrossRef]

49. Comas, J.; Marino, F.; Laborde, M.; Amadeo, N. Bio-ethanol steam reforming on Ni/Al2O3 catalyst. Chem.
Eng. J. 2004, 98, 61–68. [CrossRef]

50. Cavallaro, S. Ethanol Steam Reforming on Rh/Al2O3 Catalysts. Energy 2000, 1195–1199. [CrossRef]
51. Wang, F.; Cai, W.; Descorme, C.; Provendier, H.; Shen, W.; Mirodatos, C.; Schuurman, Y. From mechanistic

to kinetic analyses of ethanol steam reforming over Ir/CeO2 catalyst. Int. J. Hydrogen Energy 2014, 39,
18005–18015. [CrossRef]

52. Mas, V.; Bergamini, M.L.; Baronetti, G.; Amadeo, N.; Laborde, M. A kinetic study of ethanol steam reforming
using a nickel based catalyst. Top. Catal. 2008, 51, 39–48. [CrossRef]

53. Llera, I.; Mas, V.; Bergamini, M.L.; Laborde, M.; Amadeo, N. Bio-ethanol steam reforming on Ni based
catalyst. Kinetic study. Chem. Eng. Sci. 2012, 71, 356–366. [CrossRef]

54. Graschinsky, C.; Laborde, M.; Amadeo, N.; Le Valant, A.; Blon, N.; Epron, F.; Duprez, D. Ethanol steam
reforming over Rh/Al: A kinetic study. Eng. Chem. Res. 2010, 49. [CrossRef]

55. Sahoo, D.R.; Vajpai, S.; Patel, S.; Pant, K.K. Kinetic modeling of steam reforming of ethanol for the production
of hydrogen over Co/Al2O3 catalyst. Chem. Eng. J. 2007, 125, 139–147. [CrossRef]

56. Görke, O.; Pfeifer, P.; Schubert, K. Kinetic study of ethanol reforming in a microreactor. Appl. Catal. A Gen.
2009, 360, 232–241. [CrossRef]

57. Simson, A.; Waterman, E.; Farrauto, R.; Castaldi, M. Kinetic and process study for ethanol reforming using a
Rh/Pt washcoated monolith catalyst. Appl. Catal. B Environ. 2009, 89, 58–64. [CrossRef]

58. Bruschi, Y.M.; López, E.; Schbib, N.S.; Pedernera, M.N.; Borio, D.O. Theoretical study of the ethanol steam
reforming in a parallel channel reactor. Int. J. Hydrogen Energy 2012, 37, 14887–14894. [CrossRef]

http://dx.doi.org/10.1016/j.ijhydene.2011.10.069
http://dx.doi.org/10.1016/j.ijhydene.2012.01.169
http://dx.doi.org/10.1016/j.jpowsour.2010.11.100
http://dx.doi.org/10.1016/j.cep.2015.05.008
http://dx.doi.org/10.1016/j.cattod.2008.12.010
http://dx.doi.org/10.1016/j.cej.2005.12.008
http://dx.doi.org/10.1016/j.ijhydene.2010.05.099
http://dx.doi.org/10.1016/j.jcat.2004.04.034
http://dx.doi.org/10.1016/j.cej.2010.09.051
http://dx.doi.org/10.1016/j.ijhydene.2005.04.004
http://dx.doi.org/10.1021/ie051342m
http://dx.doi.org/10.1021/ie070321k
http://dx.doi.org/10.1016/j.ijhydene.2006.01.001
http://dx.doi.org/10.1016/j.apcatb.2007.10.002
http://dx.doi.org/10.1016/S1385-8947(03)00186-4
http://dx.doi.org/10.1021/ef0000779
http://dx.doi.org/10.1016/j.ijhydene.2014.06.121
http://dx.doi.org/10.1007/s11244-008-9123-y
http://dx.doi.org/10.1016/j.ces.2011.12.018
http://dx.doi.org/10.1021/ie101284k
http://dx.doi.org/10.1016/j.cej.2006.08.011
http://dx.doi.org/10.1016/j.apcata.2009.03.026
http://dx.doi.org/10.1016/j.apcatb.2008.11.031
http://dx.doi.org/10.1016/j.ijhydene.2012.01.175


Catalysts 2017, 7, 159 33 of 33

59. Cunha, A.F.; Wu, Y.J.; Santos, J.C.; Rodrigues, A.E. Steam Reforming of Ethanol on Copper Catalysts Derived
from Hydrotalcite-like Materials. Ind. Eng. Chem. Res. 2012, 51, 13132–13143. [CrossRef]

60. Cunha, A.F.; Wu, Y.J.; Li, P.; Yu, J.G.; Rodrigues, A.E. Sorption-enhanced steam reforming of ethanol on a
novel K-Ni-Cu-hydrotalcite hybrid material. Ind. Eng. Chem. Res. 2014, 53, 3842–3853. [CrossRef]

61. Wu, Y.J.; Li, P.; Yu, J.G.; Cunha, A.F.; Rodrigues, A.E. Sorption-enhanced steam reforming of ethanol on NiMgAl
multifunctional materials: Experimental and numerical investigation. Chem. Eng. J. 2013, 231, 36–48. [CrossRef]

62. Wu, Y.J.; Li, P.; Yu, J.G.; Cunha, A.F.; Rodrigues, A.E. Sorption-enhanced steam reforming of ethanol
for continuous high-purity hydrogen production: 2D adsorptive reactor dynamics and process design.
Chem. Eng. Sci. 2014, 118, 83–93. [CrossRef]

63. Fierro, V.; Akdim, O.; Provendier, H.; Mirodatos, C. Ethanol oxidative steam reforming over Ni-based
catalysts. J. Power Sources 2005, 145, 659–666. [CrossRef]

64. Mondal, T.; Pant, K.K.; Dalai, A.K. Mechanistic Kinetic Modeling of Oxidative Steam Reforming of Bioethanol
for Hydrogen Production over Rh–Ni/CeO2–ZrO2 Catalyst. Ind. Eng. Chem. Res. 2016, 55, 86–98. [CrossRef]

65. Wang, J.H.; Lee, C.S.; Lin, M.C. Mechanism of ethanol reforming: Theoretical foundations. J. Phys. Chem. C
2009, 113, 6681–6688. [CrossRef]

66. Nørskov, J.K.; Bligaard, T.; Rossmeisl, J.; Christensen, C.H. Towards the computational design of solid
catalysts. Nat. Chem. 2009, 1, 37–46. [CrossRef] [PubMed]

67. Sutton, J.E.; Vlachos, D.G. Ethanol Activation on Closed-Packed Surfaces. Ind. Eng. Chem. Res. 2015, 54,
4213–4225. [CrossRef]

68. Sutton, J.E.; Panagiotopoulou, P.; Verykios, X.E.; Vlachos, D.G. Combined DFT, microkinetic,
and experimental study of ethanol steam reforming on Pt. J. Phys. Chem. C 2013, 117, 4691–4706. [CrossRef]

69. Koehle, M.; Mhadeshwar, A. Microkinetic modeling and analysis of ethanol partial oxidation and reforming
reaction pathways on platinum at short contact times. Chem. Eng. Sci. 2012, 78, 209–225. [CrossRef]

70. DeWilde, J.F.; Czopinski, C.J.; Bhan, A. Ethanol dehydration and dehydrogenation on Al2O3: Mechanism of
acetaldehyde formation. ACS Catal. 2014, 4, 4425–4433. [CrossRef]

71. Dumrongsakda, P.; Ruangpornvisuti, V. Theoretical investigation of ethanol conversion to ethylene over
H-ZSM-5 and transition metals-exchanged ZSM-5. Catal. Lett. 2012, 142, 143–149. [CrossRef]

72. Kim, S.; Robichaud, D.J.; Beckham, G.T.; Paton, R.S.; Nimlos, M.R. Ethanol dehydration in HZSM-5 studied
by density functional theory: Evidence for a concerted process. J. Phys. Chem. A 2015, 119, 3604–3614.
[CrossRef] [PubMed]

73. Maihom, T.; Khongpracha, P.; Sirijaraensre, J.; Limtrakul, J. Mechanistic studies on the transformation of
ethanol into ethene over Fe-ZSM-5 zeolite. ChemPhysChem 2013, 14, 101–107. [CrossRef] [PubMed]

74. Christiansen, M.A.; Mpourmpakis, G.; Vlachos, D.G. DFT-driven multi-site microkinetic modeling of ethanol
conversion to ethylene and diethyl ether on γ-Al2O3(111). J. Catal. 2015, 323, 121–131. [CrossRef]

75. Alexopoulos, K.; John, M.; Van der Borght, K.; Galvita, V.; Reyniers, M.; Marin, G.B. DFT-based microkinetic
modeling of ethanol dehydration in H-ZSM-5. J. Catal. 2016, 339, 173–185. [CrossRef]

76. DeWilde, J.F.; Chiang, H.; Hickman, D.A.; Ho, C.R.; Bhan, A. Kinetics and mechanism of ethanol dehydration
on Al2O3: The critical role of dimer inhibition. ACS Catal. 2013, 3, 798–807. [CrossRef]

77. Knaeble, W.; Iglesia, E. Kinetic and Theoretical Insights into the Mechanism of Alkanol Dehydration on Solid
Brønsted Acid Catalysts. J. Phys. Chem. C 2016, 120, 3371–3389. [CrossRef]

78. Bartholomew, C.H. Mechanisms of catalyst deactivation. Appl. Catal. A Gen. 2001, 212, 17–60. [CrossRef]
79. Kang, M.; Bhan, A. Kinetics and mechanisms of alcohol dehydration pathways on alumina. Catal. Sci. Technol.

2016, 6, 6667–6678. [CrossRef]
80. Kagyrmanova, A.P.; Chumachenko, V.A.; Korotkikh, V.N.; Kashkin, V.N.; Noskov, A.S. Catalytic dehydration

of bioethanol to ethylene: Pilot-scale studies and process simulation. Chem. Eng. J. 2011, 176–177, 188–194.
[CrossRef]

81. Lopes, J.F.; Silva, J.C.M.; Cruz, M.T.M.; De Carneiro, J.W.M.; De Almeida, W.B. DFT study of ethanol
dehydration catalysed by hematite. RSC Adv. 2016, 6, 40408–40417. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/ie301645f
http://dx.doi.org/10.1021/ie5000938
http://dx.doi.org/10.1016/j.cej.2013.06.125
http://dx.doi.org/10.1016/j.ces.2014.07.005
http://dx.doi.org/10.1016/j.jpowsour.2005.02.041
http://dx.doi.org/10.1021/acs.iecr.5b03828
http://dx.doi.org/10.1021/jp810307h
http://dx.doi.org/10.1038/nchem.121
http://www.ncbi.nlm.nih.gov/pubmed/21378799
http://dx.doi.org/10.1021/ie5043374
http://dx.doi.org/10.1021/jp312593u
http://dx.doi.org/10.1016/j.ces.2012.05.017
http://dx.doi.org/10.1021/cs501239x
http://dx.doi.org/10.1007/s10562-011-0737-5
http://dx.doi.org/10.1021/jp513024z
http://www.ncbi.nlm.nih.gov/pubmed/25802969
http://dx.doi.org/10.1002/cphc.201200786
http://www.ncbi.nlm.nih.gov/pubmed/23161503
http://dx.doi.org/10.1016/j.jcat.2014.12.024
http://dx.doi.org/10.1016/j.jcat.2016.04.020
http://dx.doi.org/10.1021/cs400051k
http://dx.doi.org/10.1021/acs.jpcc.5b11127
http://dx.doi.org/10.1016/S0926-860X(00)00843-7
http://dx.doi.org/10.1039/C6CY00990E
http://dx.doi.org/10.1016/j.cej.2011.06.049
http://dx.doi.org/10.1039/C6RA08509A
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction: How to Implement Kinetic Models into Process Simulators 
	Methanol Synthesis 
	Ammonia Synthesis 
	Effect of Transport Phenomena 
	User Defined Models 

	Processes Following Complex Kinetic Schemes 
	Simulations of Reforming Processes 
	Kinetic and Theoretical Analysis of Ethanol Reforming 
	ESR: Conversion Rates and Steady States 
	ESR: From Stoichiometry to Mechanism 
	Other Reforming Models 
	ESR: From Chemical Bonds to Hydrogen 

	Ethanol to Ethylene 
	Ethanol to Ethylene: Direct Dehydration 
	Ethanol to Ethylene: Parallel Paths 


	Conclusions 

