Synthesis and crystal structure of $C2/c$ Ca(Co, Mg)Si$_2$O$_6$ pyroxenes: effect of the cationic substitution on the cell volume

C. GORI1, M. TRIBAUDINO1, L. MANTOVANI1, F. MEZZADRI3, D. DELMONTE2, E. GILIOLI2 AND G. CALESTANI3

1Department of Physics and Earth Sciences “Macedonio Melloni”, University of Parma, Italy
2IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parma, Italy
3Department of Chemistry, University of Parma, Italy

ABSTRACT

A series of clinopyroxenes along the CaMgSi$_2$O$_6$-CaCoSi$_2$O$_6$ join was synthesized by quenching from melt at 1500°C and subsequent annealing at 1250°C (at 0.0001 GPa). This protocol proved to be the most effective to obtain homogenous, free of impurities and stoichiometric pyroxenes as run products. Electron microprobe analyses in energy-dispersive mode were conducted and single-crystal X-ray diffraction data were collected on the Ca(Co$_x$Mg$_{1-x}$)Si$_2$O$_6$ pyroxenes, with $x = 0.2$, 0.4, 0.5, 0.6; anisotropic structure refinements were performed. The effects of the cation substitution at the $M1$ site are described at the atomic level. The experimental findings of this study allowed us to extend the comparative analysis of the structural features of pyroxenes with divalent cations at the $M1$ and $M2$ sites.

KEYWORDS: pyroxene, cobalt, site substitution, crystal chemistry

Introduction

Pyroxenes are a class of inosilicates with crystal formula $M2M1T2O$_6, where $M2$ is a distorted six-/eight-fold-coordinated polyhedron, $M1$ is a more
regular octahedron and \(T \) is a slightly distorted tetrahedron (Burnham et al.
1967; Fig.1). Extended solid solutions are possible at the octahedral and
tetrahedral sites. Therefore, pyroxenes-like materials may be synthesized,
whose properties are not yet explored and with compositional ranges that go
beyond those observed in natural ones. This extends the interest in
pyroxenes from petrology (as rock-forming minerals) to material science.
For example, NaFeSi_2O_6 was reported as a multiferroic phase (Jodlauk
et al., 2007; Redhammer et al., 2008, 2009, 2013), or diopside as a scaffold for
prosthetic applications (Ghomi et al., 2012; Karamiana et al., 2014) and Co-
pyroxene as a pigment in ceramic materials (Mantovani et al., 2015).

Co-pyroxene is a potential pink-violet pigment; the pink colour is due to the
six-fold coordinated Co^{2+} that populates the \(M1 \) and \(M2 \) sites (White et al.,
1971). The end-member CaCoSi_2O_6 was recently tested as a pigment for
ceramic applications (Mantovani et al., 2015), but with some open issues.
First, the temperature range for the synthesis is quite narrow, between 1000
and 1200°C; at lower temperature oxidation to Co^{3+} and formation of stable
Ca_2CoSi_2O_7 (Co-akermanite) occurs. In Co-akermanite, Co is present in
tetrahedral coordination and acts as a blue (instead of pink) pigment; even a
low fraction of akermanite in the run product, due to its high colouring
efficiency, hides the pink hue of Co^{2+} in octahedral coordination. Moreover,
akermanite occurs as a metastable phase also between 1000 and 1200°C,
and disappears only after prolonged heating in a silica-oversaturated
environment. The CaCoSi_2O_6 pigment acts as a dye, dissolving in a glass
under the aggressive environment in ceramic manufacturing. In fact, Co
usually occurs in tetrahedral coordination in a Si-glass and the resulting
colour is blue. Nevertheless, the amount of Co for the synthesis of CaCoSi₂O₆ is lower than in other Co-based pigments, as CoAl₂O₄ or Co₂SiO₄. However, the fraction of cobalt in CaCoSi₂O₆ is still high, considering environmental and economic concerns. Our investigation is focused on solid solutions between diopside (ideally CaMgSi₂O₆) and CaCoSi₂O₆. Diopside has a stability field extended up to higher temperature (melting at 1391°C at 0.0001 GPa) and metastable akermanite does not occur in Mg-pyroxenes. Therefore, we may expect a wider stability field for Ca-Mg-Co-pyroxenes, although no data on the CaMgSi₂O₆-CaCoSi₂O₆ phase diagram are available. In addition, only a few crystallochemical data are available for pyroxenes of the CaMgSi₂O₆-CaCoSi₂O₆ series. In the CaMgSi₂O₆-CaCoSi₂O₆ pyroxenes, the M_2 and T sites are buffered by the complete occupancy of Ca and Si, respectively, and Co can populate the M_1 only site along with Mg. Hence, structural changes induced by the cation substitution at the M_1 site would be investigated, showing the effect on the structure (at the atomic level) and on the unit-cell volume. We may expect that the substitution of cations with different ionic radii, at a given site, gives rise to a variation of the unit-cell volume. This effect for the M_1 site in pyroxenes has not so far been investigated. Structure refinements on CaM1Si₂O₆ pyroxenes, based on high-quality single-crystal X-ray diffraction data, are available only for the end-members with $M_1 = Mg, Co, Ni, Fe$; solid solutions between CaMgSi₂O₆ and CaFeSi₂O₆ and between CaCoSi₂O₆ and CaNiSi₂O₆ were described by X-ray Rietveld refinements only (Raudsepp et al., 1990; Pandolfo et al., 2015; Durand et al., 1996). Structure refinements based on single-crystal X-ray data for
Ca(Co,Mg)Si$_2$O$_6$ pyroxenes are available from Tabira et al. (1993); however, in this case, the composition is non-stoichiometric, as a significant fraction of Co$^{2+}$ at the $M2$ site was observed.

The aim of the present study is to improve the synthesis protocol of pyroxene (single) crystals along the CaMgSi$_2$O$_6$-CaCoSi$_2$O$_6$ series and to describe their crystal-chemistry by electron microprobe analysis in energy-dispersive mode and by single-crystal X-ray diffraction. The results allow us to describe the effect of the cation substitution at $M1$ on the structure. It will be shown that the cation substitutions at the $M1$ and $M2$ sites produce a different effect on the structure, which depends on the inequivalent response of the $M1$- and $M2$-polyhedra to the ionic radius of the cation.

Experimental methods

Synthesis

The samples of this study were synthesized from oxide mixtures of stoichiometric Ca(Co$_x$Mg$_{1-x}$)Si$_2$O$_6$ with $x = 0.2$, 0.4, 0.5, 0.6 (hereafter referred to as Di-Co20, Di-Co40, Di-Co50 and Di-Co60, respectively). The oxide powders were ground in an agate mortar, pressed into pellets, placed into platinum crucibles and heated in a muffle furnace at 1500°C for two hours, and then quenched to obtain amorphous products. Afterwards, the synthesis products were annealed at 1250°C, until the crystallization was completed. Single crystals (up to 500 µm) were obtained. All thermal runs produced pink crystals with slightly different shades. The synthesis was also attempted by solid-state reaction, but even after prolonged treatment (e.g., 30 days at 1150°C), micro-crystals of pyroxene (5-10 µm long), akermanite
and cristobalite were obtained. Moreover, flux growth synthesis was also attempted: the oxide powders were mixed with Na₂B₄O₇ acting as flux compound; large crystals up to 1 mm were obtained, but spectroscopic and SEM-EDS analyses showed that the samples contained significant impurities of Co³⁺ and Na. The flux-grown crystals were, therefore, discarded for the present investigation.

Electron microprobe analysis (SEM-EDS)

A few grains of the synthesis products were embedded in epoxy and polished for SEM-EDS analysis using a Jeol 6400 SEM, equipped with an Oxford-INCA EDS, operated at 20 kV. Electron back-scattered images were also collected. The chemical composition data were obtained from the average of 10-15 point analyses; melt-grown samples did not show a deviation from the nominal composition.

Single-crystal X-ray structural refinement

Crystals optically free of defect (under polarized light microscopy) were selected for the X-ray diffraction experiments. Intensity data were collected on a Bruker AXS Smart diffractometer, equipped with an APEX II CCD and operating with MoKα radiation. Data of the full reflection sphere up to 2θ = 64° were collected, corrected for absorption effect using a multi-scan method (SADABS; Sheldrick, 1996). Corrections for Lorentz-polarization effects were also applied. The reflection conditions showed no violation of the extinction rules expected for the C2/c symmetry, as expected for this series.
The *SHELX-97* program (Sheldrick, 1997), implemented in the *WinGX* suite (Farrugia, 1999), was used for the anisotropic structure refinements. The refinements of the synthetic pyroxenes converged with agreement factors between 2.3 and 3.4%. The expected site occupancies, retrieved from stoichiometry and confirmed by SEM-EDS results, required the *M*2 site occupied by Ca, *M*1 by Co and Mg in different proportions, and the tetrahedral site by Si. The refined site occupancies did not deviate significantly from the expected stoichiometry. Further details pertaining to the data collection protocols and structure refinements are listed in Table 1; fractional atomic coordinates and equivalent displacement parameters are given in Table 2; a list of selected bond lengths is given in Table 3.

The site-labelling scheme proposed by Burnham et al. (1967) is used in this paper. In *C*2/*c* pyroxenes, there are four symmetrically equivalent tetrahedral chains, with two tetrahedra in each unit cell. Each tetrahedral chain is named by a different letter (A, B, C and D). Each tetrahedron of the chain is referred with a different number (1 or 2). The oxygen atoms in each tetrahedron are labelled as O1, O2 and O3, followed by the letter of the chain they belong to, and by 1 or 2 depending on the tetrahedron to which they are bonded. The O3 is a bridging oxygen atom shared between the SiO4 tetrahedra, the O1 and O2 are the non-bridging oxygen atoms. Using the Burnham’s labelling scheme, and according to the site symmetry, Ca has four pairs of symmetrically equivalent *M*2–O distances with O1A1,B1, O2C2,D2, O3C1,D1, and O3C2,D2; Mg and Co are bonded to six oxygen atoms and form three pairs of symmetrically equivalent *M*1–O distances with O1A1,B1, O1A2,B2 and O2C1,D1 (Fig. 1).
Results

M1 polyhedron

In CaCoSi₂O₆-CaMgSi₂O₆ pyroxene series, the only substitution occurs at the M1 site, where Co can replace Mg. The Co for Mg substitution promotes a slight increase in the average M1-O bond distance (up to 0.021 Å, Fig. 2b), in response to the different ionic radii of the two cations (i.e., \(\text{VI} \text{Co}^{2+} 0.745 \) Å and \(\text{VI} \text{Mg} 0.72 \) Å, Shannon and Prewitt, 1970). The three independent M1-O bonds (Fig. 1) increase differently in response to the Co content (Fig. 2a). Within the entire compositional range (i.e., Co = 0 -1 a.p.f.u.), the M1-O1A2B2 distance increases by 0.034 Å, whereas the longer M1-O1A1B1 and the shorter M1-O2 bond lengths increase only by 0.014 and 0.011 Å, respectively. A similar pattern was observed with the replacement of Fe for Mg (Fig. 2) at the M1 site of pyroxenes along the CaMgSi₂O₆-CaFeSi₂O₆ series (Raudsepp et al., 1990). As a consequence, the octahedral distortion, measured by the variance of the O-M1-O angles of the M1 polyhedron (Fig. 2c), decreases with Co content of the series, in response to a more regular polyhedron geometry.

M2 polyhedron

The substitution of Co for Mg at the M1 site affects also the geometry of the M2 polyhedron. The M2 polyhedron is asymmetric, the longer distances being that to the bridging oxygen atom of the tetrahedral chain O3 (Fig. 1). On the opposite side of the polyhedron, the M2 cation is bonded to the non-bridging oxygen atoms O2 and O1. Among the independent M2-O3
distances, the $M2$-$O3C1$,$D1$ increases by 0.04 Å and the $M2$-$O3C2$,$D2$ remains almost constant in response to the Co-content increase from 0 to 1 a.p.f.u. (Fig. 3). On the other hand, both the $M2$-$O2$ and $M2$-$O1$ bond lengths decrease with the increase of Co. On the whole, the $M2$-O bond distances and the $M2$ polyhedral volume increase in response to Co-for-Mg substitution at the $M1$ site, despite the Ca occupancy at the $M2$ site remains unchanged.

The re-arrangement of the $M2$-O distances is the effect of a slight shift of the $M2$ cation, by about 0.01 Å towards one side of the $M2$ polyhedron. This is clearly shown by the atomic fraction coordinates of the $M2$ site, and in particular by y/b which decreases from 0.3011 in diopside (Bruno et al., 1982) to 0.2990 in CaCoSi$_2$O$_6$ (Ghose et al., 1987). The same shift occurs in the coordinate of Ca in pyroxenes where Fe replaces Mg at the $M1$ site (Nestola et al., 2007).

T polyhedron

The configuration of the T-tetrahedron, in which the T site is fully occupied by Si, is not affected by the cation substitution at the $M1$ site. The polyhedral volume and the independent and average bond distances do not change along the CaMgSi$_2$O$_6$-CaCoSi$_2$O$_6$ and CaMgSi$_2$O$_6$-CaFeSi$_2$O$_6$ series (Fig. 4a). The tetrahedral angle involving the two bridging oxygen atoms (O3-Si-O3) is always close to 104.3° (the ideal value is 109.4°). The chemical substitution does not affect the geometry of the tetrahedral chain: the O3-O3-O3 kinking and the Si-O-Si intra-chain tetrahedral angle do not change significantly. The tetrahedral-angle variance (TAV), which measures
the polyhedron distortion, decreases from 27.4 to 25.3 between diopside and Co-pyroxene (Fig. 4b): the only effect on the tetrahedron geometry is a slightly more regular configuration in Co-rich pyroxenes.

Unit-cell parameters

Fig. 5 (a-f) shows the evolution of the unit-cell parameters along Di-Co pyroxenes series. A comparison with the trend observed in Ca(Mg,Fe)Si₂O₆ pyroxenes (with Fe replacing Mg) (Nestola et al., 2007; Raudsepp et al., 1990) is reported. With the increase of Co at the M1 site, the length of the unit-cell edges along [100] and [010] increase, the edge parallel to [001] does not change significantly and the monoclinic β angle decreases. The axial expansion pattern in response to the Co-Mg substitution is $a > b > c$. The little deformation of the (stiff) tetrahedron gives rise to a negligible variation along the c axis; as commonly observed in response to compositional, thermal and compressive strains in pyroxenes (Cameron et al., 1973; Nestola et al., 2007; Tribaudino and Mantovani, 2014).

The unit-cell edge along the c axis may change for a rotation of the SiO₄-unit in the tetrahedral chains (Cameron et al., 1973), measured by the O₃-O₃-O₃ tetrahedral kinking angle, or for an increase in the O₃C₁-O₃C₂ distance of the tetrahedron, which is elongated almost parallel to [001]. However, in Di-Co pyroxenes, the cell edge along c does not change, because the decrease of the kinking angle (which would lead to a decrease in the edge length along [001]) is counter-balanced by the increase of the distance O₃C₁-O₃C₂.
A calculation of magnitude and orientation of the Eulerian unit-strain ellipsoid between diopside and Co-pyroxene gives further insight into the unit-cell deformation. This was done comparing the unit cell of diopside with that of CaCoSi$_2$O$_6$ and CaFeSi$_2$O$_6$, and using the Winstrain software (http://www.rossangel.com). The unit-strain ellipsoid, with the components reported in Table 4, has the same orientation previously observed in the hedenbergite-diopside series (Nestola et al., 2007), i.e. the major deformation (along ε1) occurs on (010), describing an angle of about 36° to [100] (Table 4), and it is governed by the expansions of the M_2-O_3 bond distances observed here.

Discussion and conclusions

One of the most important experimental findings of this study is that the unit-cell volume of the M^2CaM1Mg7Si$_2$O$_6$ pyroxenes vary linearly along the series (Fig. 5f). In general, cell volume and M_1 polyhedral volume of (C2/c) CaM_1^{2+}Si$_2$O$_6$ pyroxenes increase with the (average) ionic radius of the M_1 cation (Fig. 6 and 7a). Also the M_2 polyhedral volume increases with the expansion of the M_1 polyhedral volume; this a ‘steric effect’, which adds to the contribution of ionic radii and Pauling’s bond strengths (Ghose et al., 1987).

In order to cope with the different M_1 ionic radii and with the M_2 steric effect, we normalized the unit-cell volumes and the M_1 and M_2 polyhedral volumes of Ca,Fe and Ca,Co pyroxenes to those of diopside. In Fig. 7b, the M_2 and M_1 polyhedral volumes in (Ca,Mg)MgSi$_2$O$_6$, (Ca,Fe)FeSi$_2$O$_6$ and (Ca,Co)CoSi$_2$O$_6$ pyroxenes are plotted vs. the ionic radius of the M_2 cation.
The diagram shows that the volume of the M_2 polyhedron is related to the M_2 cation radius, whereas the volume of the M_1 polyhedron does not change in response of the M_2 cation radius.

The contributions of the M_2 and M_1 polyhedra to the unit-cell volumes are shown in Figs 8a and 8b. As the unit-cell contains four M_1 and four M_2 polyhedra, the M_2 and M_1 volumes were multiplied by 4, in order to give the overall contribution of the polyhedra to the changes in cell volume. In samples where the substitution occurs only at the M_1 site, the M_1 polyhedral volume accounts for $\leq 30\%$ of the volume expansion (Fig. 8a), whereas the M_2 eight-fold polyhedron accounts for about 10%, due to the steric effect. Also, the sum of the M_1 and M_2 polyhedral expansions do not account for the entire cell volume. Therefore, we must also consider an expansion in the extra-polyhedral voids.

On the contrary, in pyroxene series with the cation substitution at the M_2 site, the M_2 polyhedral volume accounts, almost completely, for the unit-cell expansion, albeit with some difference between Ca-Fe, Ca-Co and Ca-Mg pyroxenes (Fig. 8b).

The substitution of a given cation with one with longer ionic radius has a very different effect on the unit-cell volume, whether it occurs at the M_2 or at the M_1 site. We can assess the different effect of the M_2 and M_1 cation substitution comparing the $C2/c$ structures of the CaMgSi$_2$O$_6$-CaCoSi$_2$O$_6$ and the CaCoSi$_2$O$_6$-CoCoSi$_2$O$_6$ series. In the CaMgSi$_2$O$_6$-CaCoSi$_2$O$_6$ series, the structure is always $C2/c$; in CaCoSi$_2$O$_6$-CoCoSi$_2$O$_6$ series the structure is $C2/c$ between CaCoSi$_2$O$_6$ and Ca$_{0.4}$Co$_{0.6}$CoSi$_2$O$_6$, but it transform to $P2_1/c$ at higher Co-content (Mantovani et al., 2014).
The average $M1$ ionic radius and the unit-cell volume between CaMgSi$_2$O$_6$ and CaCoSi$_2$O$_6$ differ respectively by 0.025 Å and 5 Å3, whereas the $M2$ ionic radius and the cell volume between CaCoSi$_2$O$_6$ and Ca$_{0.4}$Co$_{0.6}$CoSi$_2$O$_6$, differ by 0.132 Å and 6.4 Å3 (Mantovani et al., 2014). This experimental finding shows how the same substituent can have a completely different effect if the substitution occurs at the $M1$ rather than at $M2$ site.

The different response of the crystal structure to the $M1$ and $M2$ substitutions gives also a clue to interpret the different effect on the unit-cell volume. The larger $M2$ polyhedron allows the cation site to displace along the 2-fold axis; thus, a smaller cation finds its local coordination in a subsite, *i.e.* the $M2’$ site (different from that of Ca), as previously observed by e.g. Rossi et al. (1987) or Gori et al. (2015). The substitution gives rise to a cation shift towards the O1 and O2 oxygen atoms, and thus away from the O3 oxygen atom. In addition, a slight deformation of the polyhedron shape also occurs.

The cation substitution at the $M2$ site has, overall, only a small effect on its polyhedral volume. On the contrary, the $M1$ polyhedron is stiffer, as cations are closely bonded: a substitution with longer ionic-radius cation affects strongly the $M1$-O bond distances and the polyhedral volume, and the expansion somehow affects the whole structure.
References

Redhammer, G.J., Roth, G., Treutmann, W., Hoelzel, M., Paulus, W., Andre, G., Pietzonka, C. and Amthauer, G. (2009) The magnetic structure of clinopyroxene-type LiFeGe\textsubscript{2}O\textsubscript{6} and revised data on multiferroic LiFeSi\textsubscript{2}O\textsubscript{6}. *Journal of Solid State Chemistry, 182*, 2374-2384.

Tabira, Y., Ishizawa, N. and Marumo, F. (1993) Cobalt atoms at M (2) site in C2/c clinopyroxenes of the system CaMgSi\textsubscript{2}O\textsubscript{6} (Di)-CaCoSi\textsubscript{2}O\textsubscript{6} (CaCoPx). *Mineralogical Journal, 16*, 225-245.

Figure captions

FIG. 1. The crystal structure of the C2/c clinopyroxenes viewed down [100]. The SiO$_4$ tetrahedra and the (Mg,Co)O$_6$ octahedra are shown as closed polyhedra. The atoms are labeled after Burnham et al. (1967). The crystal structure is visualized by using the VESTA software package (Momma and Izumi, 2008).

FIG. 2. (a) M_1-O bond-length variation with composition (Mg content) at the M_1 site in Ca-Fe, Ca-Mg pyroxenes and in the Ca(Mg,Co)Si$_2$O$_6$ series; (b) Average M_1-O bond lengths vs. composition (Mg content) at the M_1 site; (c) OAV angle variation with composition (Mg content) at the M_1 site. The Ca(Mg,Co) series is represented by purple squares, the Ca-Fe and Ca-Mg pyroxenes are represented by red and blue diamond, respectively. [Data of CaCoSi$_2$O$_6$ from Ghose et al. (1987); CaMgSi$_2$O$_6$ from Bruno et al. (1982); CaFeSi$_2$O$_6$ from Nestola et al. (2007) and Ca(Mg,Co)Si$_2$O$_6$ pyroxenes from this study].

FIG. 3. M_2-O bond lengths vs. composition (Mg content) at the M_1 site. [References as in Fig. 2].

FIG. 4. (a) Si-O bond lengths vs. composition (Mg content) at the M_1 site; (b) TAV angle variation with composition. [References as in Fig. 2].

FIG. 5. (a-f) Unit-cell parameters vs. Mg content at the M_1 site in Ca(Mg,Co)Si$_2$O$_6$ (solid line) and Ca(Mg,Fe)Si$_2$O$_6$ (dashed line) pyroxenes. [Data of CaCoSi$_2$O$_6$, obtained by Rietveld refinement, are taken from Mantovani et al. (2014); for the other compositions see references of Fig. 2].

FIG. 6. Cell volume vs. average M_1 ionic radius for Ca(Mg,Co)Si$_2$O$_6$, Ca(Mg,Fe)Si$_2$O$_6$, Ca(Zn,Mn)Si$_2$O$_6$ and Ca(Co,Ni)Si$_2$O$_6$ pyroxenes. [Data of CaCoSi$_2$O$_6$, obtained by Ghose et al. (1987); CaMgSi$_2$O$_6$ from Bruno et al. (1982); CaFeSi$_2$O$_6$ from Nestola et al. (2007); CaMg,FeSi$_2$O$_6$ from Raudsepp et al. 1990; Ca(Co,Ni)Si$_2$O$_6$ from Durand et al. 1996; CaCoSi$_2$O$_6$ and CaNiSi$_2$O$_6$ from Ghose et al. (1987) and Nestola et al. (2005) respectively; Ca(Zn,Mn)Si$_2$O$_6$ from Nestola et al. (2010) and Ca(Mg,Co)Si$_2$O$_6$ from this study].

FIG. 7. M_1 and M_2 polyhedral-volumes (M_2 in eight-fold coordination) as a function of (a) average ionic radius of the cation at M_1, with the M_2 site fully occupied by Ca in Ca(Mg,Co)Si$_2$O$_6$ and CaFeSi$_2$O$_6$ pyroxenes; (b) average ionic radius of the cation at M_2 (in eight-fold coordination) in Ca-Co, Ca-Fe and Ca-Mg pyroxenes, with the M_1 site filled respectively by Co, Fe and Mg, and with Ca-Co, Ca-Fe, Ca-Mg substitution at the M_2 site. The volumes of the end-members were normalized to the value of diopside: i.e. the unit-cell, M_1 and M_2 volumes were corrected by subtracting the difference between those in diopside and hedenbergite for (Ca,Fe)FeSi$_2$O$_6$, and in diopside and CaCoSi$_2$O$_6$ for (Ca,Co)CoSi$_2$O$_6$ pyroxenes. [Data of Ca(Mg,Co)Si$_2$O$_6$ from this study; CaCoSi$_2$O$_6$ from Mantovani et al. (2013) and Ghose et al. (1987); (Ca,Co)CoSi$_2$O$_6$ from Tribaudino et al. (2005) and Bruno et al. (1982); (Ca,Fe)FeSi$_2$O$_6$ from Ohashi et al. (1975) and Nestola et al. (2007)]. The volume of polyhedra was calculated by using the VESTA software package (Momma and Izumi, 2008).

FIG. 8. (a) Polyhedral-volume difference vs. cell-volume difference in Ca(Mg,Co)Si$_2$O$_6$ and CaFeSi$_2$O$_6$ pyroxenes with cation substitution at the M_1 site. (b) Polyhedral-volume difference vs. cell-volume difference with cation substitution at the M_2 site in (Ca,Co)CoSi$_2$O$_6$, (Ca,Mg)MgSi$_2$O$_6$, and (Ca,Fe)FeSi$_2$O$_6$ pyroxenes. [Data of Ca(Mg,Co)Si$_2$O$_6$ from this study; CaFeSi$_2$O$_6$ from Nestola et al. (2007); (Ca,Co)CoSi$_2$O$_6$ from Mantovani et al. (2013) and Ghose et al. (1987); (Ca,Mg)MgSi$_2$O$_6$ from Tribaudino et al. (2005) and Bruno et al. (1982); (Ca,Fe)FeSi$_2$O$_6$ from Ohashi et al. (1975)].