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Abstract
We study the problem of computing an equilibrium in leader-follower games with a single leader
and multiple followers where, after the leader’s commitment to a mixed strategy, the followers
play simultaneously in a noncooperative way, reaching a Nash equilibrium. We tackle the problem
from a bilevel programming perspective. Since, given the leader’s strategy, the followers’ subgame
may admit multiple Nash equilibria, we consider the cases where the followers play either the best
(optimistic) or the worst (pessimistic) Nash equilibrium in terms of the leader’s utility. For the
optimistic case, we propose three formulations which cast the problem into a single level mixed-
integer nonconvex program. For the pessimistic case, which, as we show, may admit a supremum
but not a maximum, we develop an ad hoc branch-and-bound algorithm. Computational results
are reported and illustrated.
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1 Introduction

In recent years, leader-follower (or Stackelberg) games have attracted a growing interest
not just in game theory, but also in areas such as transportation science, security science,
and combinatorial optimization. Such games model the interaction between rational agents
(or players) in the context of sequential decision making. Considering, for simplicity, the
two-player case, these games address situations where one agent plays first (the leader) and
the other agent (the follower) plays second, after observing the mixed strategy the leader has
committed to (a probability distribution over his/her actions). The algorithmic task is to
compute an equilibrium (often called solution to the game), that is, a set of mixed strategies,
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31:2 Bilevel Programming for Single-Leader-Multi-Follower Equilibria

one per player, with the property that no player could obtain a larger utility by deviating
from the equilibrium, provided that the other players act as the equilibrium prescribes.

In game theory, rich applications can be found in, among others, the security domain [2, 9].
A defender, whose aim is to protect a set of valuable targets from the attackers, plays first,
as leader, while the attackers, acting as followers, observe the leader’s defensive strategy
and play second. Among different applications in combinatorial optimization, we mention
interdiction problems [5, 13], toll setting problems [10], and network routing problems [1].

Most of the game-theoretical investigations on leader-follower games have, to the best of
our knowledge, chiefly addressed the case of a single-follower. In that setting, it is known
that the single follower can play, w.l.o.g., only a pure strategy (a probability distribution
where a single action is played with probability 1), i.e., that there is always a pure strategy
by which he/she can maximize his/her utility, and that computing an equilibrium is easy
with complete information [17], while it becomes NP-hard for Bayesian games [7]. Algorithms
are proposed in [7]. For what concerns games with more than two players, some works have
investigated the case with multiple leaders and a single follower, see [11]. For the problem
involving a single leader and multiple followers (the one on which we focus in this paper),
only few results are available. It is known, for instance, that an equilibrium can be found in
polynomial time if the followers play a correlated equilibrium [6], whereas the problem is
NP-hard [7] if they play sequentially one at a time.

In this paper, we focus on the single-leader multi-follower case where the followers play
simultaneously and noncooperatively, thus reaching a Nash Equilibrium (NE). We refer to an
equilibrium in such games as to a Single-Leader-Multi-Follower Nash Equilibrium (SLMFNE).
Computing such an equilibrium naturally amounts to solving a bilevel programming problem.
Since, for a given mixed strategy of the leader, multiple NE might arise in the followers’
subgame, we consider two cases: the optimistic one, where the followers play a NE which
maximizes the leader’s utility, and the pessimistic case, where the followers play a NE which
minimizes it. Solving these two problems allows us to compute the tightest range of values
the leader’s utility can take independently of which NE is selected. We remark that, although
the concept of SLMFNE has already been considered in the literature from a theoretical
perspective, see, in particular, [17], no algorithmic methods to compute such an equilibrium
are known.

The paper is organized as follows. The definition of the problem, its bilevel programming
nature, and some of its properties are described in Section 2. We tackle the optimistic
case in Section 3, where we construct three exact mixed-integer nonconvex mathematical
programming formulations for it. The pessimistic case is addressed in Section 4, where we
propose an ad hoc branch-and-bound method for its solution. Computational results are
illustrated in Section 5, while Section 6 draws some concluding remarks.1

2 The problem

Consider a game with n players, with index set N = {1, . . . , n}. For each p ∈ N , let Ap
be his/her set of actions, with mp := |Ap|, and let the vector xp ∈ [0, 1]mp , subject to∑
a∈Ap

xap = 1, be the player’s strategy vector (or strategy, for short). For each player p ∈ N ,
each component xap of xp corresponds to the probability by which action a ∈ Ap is played.
We call xp a vector of pure strategies if xp ∈ {0, 1}mp , or of mixed strategies if xp ∈ [0, 1]mp .
Throughout the paper, if not stated otherwise, we assume that all strategies are mixed. We

1 An extended abstract of a preliminary version of this work appeared in [4].
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also denote the collection of strategies of the different players, which forms a so-called strategy
profile, by x = (x1, . . . , xn).

We consider normal form games (a reference can be found in [16]). They are characterized
by, for each p ∈ N , a multidimensional utility (or payoff) matrix Up ∈ Qm1×...×mn , whose
components Ua1,...,an

p correspond to the utility obtained by player p when all the players play
actions a1, . . . , an. For a strategy profile x = (x1, . . . , xn), the expected utility of player p is
the multilinear function:

up(x1, . . . , xn) =
∑
a1∈A1

. . .
∑

an∈An

Ua1,...,an
p xa1

1 . . . xan
n .

With n players, this is an nth-degree polynomial.
According to the standard definition, a strategy profile x = (x1, . . . , xn) is a Nash

Equilibrium (NE) if, for each player p ∈ N and for each strategy profile x′ with x′q = xq for
all q ∈ N \ {p} with, possibly, x′p 6= xp, the following inequality holds:

up(x1, . . . , xn) ≥ up(x′1, . . . , x′n).

Intuitively, this is the same as imposing that, for each p ∈ N and assuming the other players
in N \{p} played as prescribed by the strategy profile x, player p would be unable to improve
his/her utility when deviating from xp by playing any other strategy x′p 6= xp.

In the remainder of the paper and for ease of notation, we consider the case of two
followers (thus, with n = 3), assuming, w.l.o.g., m1 = m2 = m3 = m. The nth player
(player 3) takes the role of leader. The extension to the case of any n > 3 is, although
notationally more involved, not difficult.

2.1 Problem definition
Computing a SLMFNE amounts to solving a so-called bilevel programming problem with two
followers. Let, for each p ∈ N :

∆p := {xp ∈ [0, 1]m :
∑
a∈Ap

xap = 1}.

In the Optimistic case, we can compute a SLMFNE (O-SLMFNE) by solving:

(O-SLMFNE) max
(x1,x2,x3)∈
∆1×∆2×∆3

∑
i∈A1

∑
j∈A2

∑
k∈A3

U ijk3 xi1x
j
2x
k
3 (1a)

s.t. x1 ∈ argmax
x1∈∆1

{ ∑
i∈A1

∑
j∈A2

∑
k∈A3

U ijk1 xi1x
j
2x
k
3

}
(1b)

x2 ∈ argmax
x2∈∆2

{ ∑
i∈A1

∑
j∈A2

∑
k∈A3

U ijk2 xi1x
j
2x
k
3

}
. (1c)

Due to Constraints (1b)–(1c), the second level problems call for a pair (x1, x2) of followers’
strategies forming a NE in the followers’ subgame induced by the x3 ∈ ∆3 chosen by the
leader in the first level. Observe that, due to the definition of NE, the pair (x1, x2) is a
NE for the given x3 if and only if, at the same time, x1 maximizes player 1’s utility when
assuming that player 2 would play x2, and x2 maximizes player 2’s utility when assuming
that player 1 would play x1. Subject to those constraints, the first level calls for a triple
(x1, x2, x3) maximizing the leader’s utility.

SEA 2017
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The problem is optimistic as, assuming that the second level admits many NE (x1, x2)
for the chosen x3, it calls for a pair (x1, x2) which, together with x3, maximizes the leader’s
utility. Notice that, while any triple (x1, x2, x3) ∈ ∆1×∆2×∆3 is a feasible solution to the
problem as long as the pair (x1, x2) is a NE in the subgame induced by x3, Problem (1a)–(1c)
calls for a triple (x1, x2, x3) which is optimal—as, if not, the leader would prefer to change
his/her strategy and (x1, x2, x3) would not be a SLMFNE.

In the Pessimistic case, computing a SLMFNE (P-SLMFNE) calls for a solution to the
following problem:

(P-SLMFNE) max
(x1,x2,x3)∈
∆1×∆2×∆3

min
(x1,x2)∈
∆1×∆2

∑
i∈A1

∑
j∈A2

∑
k∈A3

U ijk3 xi1x
j
2x
k
3 (2a)

s.t. Constraints (1b), (1c). (2b)

This problem differs from its optimistic counterpart as, due to the assumption of pessimism,
the leader here maximizes the minimum value taken by his/her utility over all pairs (x1, x2)
which are NE in the followers’ subgame induced by x3.

2.2 Some properties of the problem
We observe that, as it is often the case in bilevel problems, the difference in leader’s utility
between an optimistic and a pessimistic SLMFNE can be arbitrarily large. Consider, for
some λ > 0, a game with n = 3, A1 = {i1, i2}, A2 = {j1, j2}, A3 = {k1}, and utilities:

j1 j2

i1 1,1,λ 0,0,0

i2 0,0,0 1,1,0

k1

The unique O-SLMFNE in this game is (i1, j1, k1), corresponding to a leader’s utility of λ,
while the unique P-SLMFNE is (i2, j2, k1), with a leader’s utility of 0. It follows that, for
λ→∞, their difference in terms of leader’s utility tends to ∞.

Differently from the O-SLMFNE case, where, as shown in [17], an equilibrium is always
guaranteed to exist, this is not the case for P-SLMFNE—a behavior which can be observed
in many pessimistic bilevel problems [18]. Consider a game with n = 3, A1 = {i1, i2},
A2 = {j1, j2}, A3 = {k1, k2}. The matrices reported in the following are the utility matrices
for, respectively, the case where the leader plays action k1 with probability 1, action k2 with
probability 1, or the strategy vector x3 = (1− ρ, ρ) for some ρ ∈ (0, 1) (the latter matrix is
the convex combination of the first two with weights x3):

j1 j2

i1 1,1,0 2,2,5

i2
1
2 ,

1
2 ,1 1,1,0

k1

j1 j2

i1 0,0,0 2,2,10

i2
1
2 ,

1
2 ,1 0,0,0

k2

j1 j2

i1 1−ρ,1−ρ,0 2,2,5+5ρ

i2
1
2 ,

1
2 ,1 1−ρ,1−ρ,0

x3 = (1 − ρ, ρ)

In the optimistic case, (i1, j2, k2) is the unique SLMFNE (it is the only pure one and, as
it achieves the leader’s largest utility in U3, mixed strategies cannot yield a better utility).
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In the pessimistic case, if the leader played k2, the followers would respond, among the two
NE (i2, j1) and (i1, j2), with (i2, j1) (so to minimize the leader’s utility). If the leader played
x3 = (1− ρ, ρ), we would obtain the subgame in the third matrix. For ρ < 1

2 , (i1, j2) is the
unique NE, giving the leader a utility of 5 + 5ρ. For ρ ≥ 1

2 , we have again the two NE (i1, j2)
and (i2, j1), with a utility of, respectively, 5 + 5ρ and 1. Since the latter is selected in the
pessimistic case, we conclude that the game admits no pessimistic SLMFNE. This is because
the leader’s utility (and the optimization problem), when written as a function of ρ, achieves
a supremum at ρ = 1

2 , but not a maximum. See the following graph for an illustration.

1
2

1

5

5 + 5
2

ρ

u3

From a combinatorial perspective, the hardness and inapproximability (in polynomial
time, up to within a constant factor) of the problem of computing a SLMFNE is a direct
consequence of the NP-hardness and inapproximability of computing, in a two-player game,
a NE which maximizes the sum of the players’ utilities [8]. Indeed, the latter problem is
directly reduced to the computation of a SLMFNE for the case where the leader has a single
action and his/her utility is equal to plus (in the optimistic case) or minus (in the pessimistic
case) the sum of the utilities of the followers.

3 Optimistic case

We propose three Mixed-Integer NonLinear Programming (MINLP) formulations to compute
a SLMFNE in the optimistic case.

3.1 MINLP-I
To obtain a first single level formulation for the problem, we proceed as follows, applying a
standard reformulation [16] involving complementarity constraints.

Let, for all i ∈ A1 and j ∈ A2, Ũ ij1 :=
∑
k∈A3

U ijk1 xk3 and Ũ ij2 =
∑
k∈A3

U ijk2 xk3 be the
matrices of the followers’ subgame, parameterized by x3. For (x1, x2) to be a NE, x1 must
be an optimal solution to the Linear Program (LP):

max
x1∈∆1

{ ∑
i∈A1

∑
j∈A2

Ũ ij1 x
i
1x
j
2

}
,

where Ũ ij1 xi1x
j
2 is a linear function of x1. Since the LP is feasible and bounded for any

x2 ∈ ∆2, we have, by complementary slackness, that x1 ∈ ∆1 is optimal if and only if there
is a scalar v1 such that, for all i ∈ A1:(

v1 −
∑
j∈A2

Ũ ij1 x
j
2
)
xi1 = 0

v1 ≥
∑
j∈A2

Ũ ij1 x
j
2.
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Applying a similar reasoning to x2, we obtain that x2 ∈ ∆2 is optimal if and only if there is
a scalar v2 such that, for all j ∈ A2:(

v2 −
∑
i∈A1

Ũ ij2 x
i
1
)
xj2 = 0

v2 ≥
∑
i∈A1

Ũ ij2 x
i
1.

We conclude that (x1, x2) is a NE if and only if there are v1, v2 ≥ 0 such that x1 and x2
simultaneously satisfy these four conditions.

After substituting for Ũ1 and Ũ2 their linear expressions in x3, we obtain, for player 1
and for all i ∈ A1, constraints:(

v1 −
∑
j∈A2

∑
k∈A3

U ijk1 xj2x
k
3

)
xi1 = 0

v1 ≥
∑
j∈A2

∑
k∈A3

U ijk1 xj2x
k
3

and, for player 2 and for all j ∈ A2, constraints:(
v2 −

∑
i∈A1

∑
k∈A3

U ijk2 xi1x
k
3

)
xj2 = 0

v2 ≥
∑
i∈A1

∑
k∈A3

U ijk2 xi1x
k
3 .

By imposing them in lieu of the two second level argmax constraints of Problem (1), that
is, Constraints (1b)–(1c), we obtain a continuous single level formulation with nonconvex
trilinear terms.23

3.2 MINLP-II
What we propose now is aimed at achieving a formulation which can be solved more efficiently.

Since each term of the complementarity constraints we introduced is bounded, we can
apply a simple reformulation. Letting s1 ∈ {0, 1}m and s2 ∈ {0, 1}m be the antisupport
vectors of x1 and x2, it suffices to impose, for all i ∈ A1:

xi1 ≤ 1− si1

v1 −
∑
j∈A2

∑
k∈A3

U ijk1 xj2x
k
3 ≤Msi1

and, for all j ∈ A2:

xj2 ≤ 1− sj2

v2 −
∑
i∈A1

∑
k∈A3

U ijk2 xi1x
k
3 ≤Msj2,

where M is an upper bound on the entries of U1, U2. This way, while still retaining the
original trilinear objective function, only bilinear constraints are needed.

2 Note that strong duality can be employed in place of complementary slackness. Preliminary experiments,
though, suggest that the second option is computationally preferable.

3 We remark that, in this form, the problem correspond to a Mathematical Program with Equilibrium
Constraints (MPEC). The interested reader can find more references to this type of problems in [12].
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3.3 MINLP-III
Ultimately, we aim to solve the problem with spatial branch-and-bound techniques, such as
those implemented in SCIP. The main strategy of such methods to handle nonlinearities is
to isolate “simple” nonlinear terms (bilinear or trilinear in our case) by shifting them into a
new (so-called defining) constraint to which convex envelopes are applied.

We propose to anticipate this reformulation, so to be able to derive some valid constraints.
First, we introduce:
(i) variable yjk23 and constraint yjk23 = xj2x

k
3 for all j ∈ A2, k ∈ A3,

(ii) variable yik13 and constraint yik13 = xi1x
k
3 for all i ∈ A1, k ∈ A3,

(iii) variable zijk and constraint zijk = xi1y
jk
23 for all i ∈ A1, j ∈ A2, k ∈ A3.

Then, by substituting each bilinear and trilinear term with the newly introduced variables,
we obtain a formulation which is linear everywhere, except for the defining constraints.

We now observe that, by definition, the matrix {yjk23}jk∈A2×A3 is the outer product of
the stochastic vectors x2 and x3 and, as such, is a stochastic matrix itself. The same holds
for the tensor {zijk}ijk∈A1×A2×A3 , which is the outer product of the vectors x1, x2, x3 and,
as such, is a stochastic tensor. This implies the validity of the following three constraints:∑

i∈A1

∑
k∈A3

yik13 = 1

∑
j∈A2

∑
k∈A3

yjk23 = 1

∑
i∈A1

∑
j∈A2

∑
k∈A3

zijk = 1.

The final single level mixed-integer nonconvex formulation that we propose for O-SLMFNE
thus reads:

max
∑
i∈A1

∑
j∈A2

∑
k∈A3

U ijk3 zijk

s.t. v1 −
∑
j∈A2

∑
k∈A3

U ijk1 yjk23 ≤Msi1 ∀i ∈ A1

v2 −
∑
i∈A1

∑
k∈A3

U ijk2 yjk13 ≤Msj2 ∀j ∈ A2

xi1 ≤ 1− si1 ∀i ∈ A1

xj2 ≤ 1− sj2 ∀j ∈ A2

v1 ≥
∑
j∈A2

∑
k∈A3

U ijk1 yjk23 ∀i ∈ A1

v2 ≥
∑
i∈A1

∑
k∈A3

U ijk2 yik13 ∀j ∈ A2

yik13 = xi1x
k
3 ∀(i, k) ∈ A1×A3

yjk23 = xj2x
k
3 ∀(j, k) ∈ A2×A3

zijk = xi1y
jk
23 ∀(i, j, k) ∈ A1×A2×A3

∑
i∈A1

∑
k∈A3

yik13 = 1

∑
j∈A2

∑
k∈A3

yjk23 = 1

∑
i∈A1

∑
j∈A2

∑
k∈A3

zijk = 1

(x1, x2, x3) ∈ ∆1×∆2×∆3

y13, y23 ∈ [0, 1]m×m

z ∈ [0, 1]m×m×m

s1, s2 ∈ {0, 1}m

v1, v2 free.

4 Pessimistic case

For P-SLMFNE, we introduce an ad hoc method based on branch-and-bound. For simplicity,
we first describe it for the case where the followers are restricted to pure strategies, with the
extension to the mixed case following next.
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4.1 Basic enumerative idea and outcome configurations

The key ingredient of the method is what we call outcome configuration. Given a strategy
vector x3 ∈ ∆3, we call a pair (S+, S−), with S+ ⊆ A1 × A2 and S− = A1 × A2 \ S+,
outcome configuration if, for the given x3, it satisfies two constraints:
(i) all pairs of actions in S+ correspond to a NE in the followers’ subgame;
(ii) all pairs in S− do not.
Given a pair (S+, S−), a strategy vector x3 ∈ ∆3 such that i) and ii) are satisfied guarantees
that, if the leader played x3, the set of NE in the followers’ subgame would coincide with S+.
Since, given an outcome configuration (S+, S−), the leader’s utility at each NE in S+ is a
(linear) function of x3, we must then look (due to the pessimistic setting) for an x3 which iii)
maximizes the smallest value taken by the leader’s utility over S+.

By constructing (we will propose a more efficient method later on) all the pairs (S+, S−)
in 2A1×A2 and computing (if it exists) the corresponding x3, a P-SLMFNE (if it exists) is
obtained by choosing the triple (S+, S−, x3) which gives the leader the largest utility (and,
then, selecting the NE in S+ which minimizes the leader’s utility).

Let us discuss how to compute x3 for a given (S+, S−). By definition of NE, constraints i)
can be expressed as the following set of inequalities, which are linear in x3:

∑
k∈A3

U ijk1 xk3 ≥
∑
k∈A3

U i
′jk

1 xk3 ∀(i, j) ∈ S+, i′ ∈ A1 \ {i} (3a)

∑
k∈A3

U ijk2 xk3 ≥
∑
k∈A3

U ij
′k

2 xk3 ∀(i, j) ∈ S+, j′ ∈ A2 \ {j}. (3b)

Given some sufficiently small ε > 0, Constraints ii) can be (approximately) written as the
following disjunction:

∨
i′∈A1\{i}

(∑
k∈A3

U ijk1 xk3 + ε ≤
∑
k∈A3

U i
′jk

1 xk3

) ∨
∨

j′∈A2\{j}

(∑
k∈A3

U ijk2 xk3 + ε ≤
∑
k∈A3

U ij
′k

2 xk3

)
∀(i, j) ∈ S−. (4)

For every (i, j) ∈ S−, the disjunction imposes the existence of an action i′ of player 1 giving
him/her a utility larger than that obtained when playing i by, at least, some ε > 0, assuming
the other player played j (or vice versa for player 2 and an action j′).

Note that each term of the disjunction should be strict, as the disjunction represents
the complement of a polytope. The approximation with ε has the role of preventing x3
from reaching one of the breakpoints of the leader’s utility function (see the illustration in
Section 2), where the pessimistic problem always achieves a supremum but not a maximum.

We can cast Constraints (4) in terms of Mixed-Integer Linear Programming (MILP) by
introducing a binary variable per term of the disjunction, with a constraint requiring its
sum to be 1.4 After introducing the binary variables yiji′ ∈ {0, 1}, for i′ ∈ A1 \ {i}, and

4 Due to considering polytopes, the extended LP formulation of Balas [3] could be used. Nevertheless, we
have found the MILP approach computationally affordable.
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yijj′ ∈ {0, 1}, for j′ ∈ A2 \ {j}, the reformulation reads:∑
k∈A3

U ijk1 xk3 + ε ≤
∑
k∈A3

U i
′jk

1 xk3 +M(1− yiji′) ∀i′ ∈ A1 \ {i} (5a)

∑
k∈A3

U ijk1 xk3 + ε ≤
∑
k∈A3

U ij
′k

2 xk3 +M(1− yijj′) ∀j′ ∈ A2 \ {j} (5b)

∑
i′∈A1\{i}

yiji′ +
∑

j′∈A2\{j}

yijj′ = 1, (5c)

where M is a (previously introduced) upper bound on the entries of U1, U2.
A solution satisfying i) and ii) which is also optimal in the sense of iii) is then found by

solving the following MILP subproblem:

max
η free
x3∈∆3

 η : η ≤
∑
k∈A3

U ijk3 xk3 ∀(i, j) ∈ S+

Constraints (3), (4).

 (6)

4.2 Branch-and-Bound approach
We now propose an alternative method which does not require to carry out the complete
enumeration of the elements of 2A1×A2 .

Given a strategy vector x3 ∈ ∆3, we call a pair (S+, S−) relaxed outcome configuration if
S− ⊆ (A1 ×A2) \ S+, differently from the previous definition where S− = (A1 ×A2) \ S+.

Notice that, when S− ⊂ (A1 ×A2) \ S+, it is not always the case that, when the leader
plays a solution x3 to Subproblem (6), the only NE in the followers’ subgame are those
in S+. Indeed, due to S+ ∪ S− ⊂ A1 ×A2, the followers’ subgame may admit another NE
(i′, j′) ∈ A1×A2 \S+ \S− which provides the leader with a strictly smaller utility than that
he/she would receive from the pairs of NE in S+. Since, whenever this is the case, (i′, j′)
would be part of the P-SLMFNE corresponding to x3, the correctness of the method would
be lost.

To verify whether this is the case, i.e., whether one such (i′, j′) exists, it suffices to carry
out an operation which we refer to as feasibility check. We solve the followers’ subgame (in
the pessimistic sense) for the given x3, and compare the NE (i′, j′) thus found to the worst
one in S+ (when working with pure strategies only, this check can be done in O(m2)). If
(i′, j′) /∈ S+, we resort to branching. More precisely, to account for the case where (i′, j′) is
a NE, we introduce a left node (S+

L , S
−
L ) with S+

L := S+ ∪ {(i′, j′)} and S−L := S−, whereas,
to account for the case where (i′, j′) is not a NE, we introduce a right node (S+

R , S
−
R ) with

S+
R := S+ and S−R := S− ∪ {(i′, j′)}.
We remark that, as a consequence of S− ⊆ (A1 × A2) \ S+, optimal solutions to

Subproblem (6) always yield an upper bound on the utility the leader would obtain with a
strategy x3 by which all pairs of followers’ actions in S+ constitute a NE, while all pairs in
S− do not.

At the root node, we solve the optimistic problem, obtaining a triple (x1 = ei, x2 = ej , x3).
If, by feasibility check, we find a pair (i′, j′) = (i, j) (or a different one, but yielding
the same utility), the problem is solved. If not, we create two nodes: (S+

L , S
−
L ) with

S+
L = {(i′, j′)}, S−L = ∅, and (S+

R , S
−
R ) with S+

R = ∅, S−R = {(i′, j′)}. Since Subproblem (6)
is not well–defined for (S+

R , S
−
R ) as, in it, S+

R = ∅, whenever S+ = ∅ in a (S+, S−) pair, we
solve, in lieu of Subproblem (6), one of the formulations we proposed for O-SLMFNE with
the further addition of Constraints (4) for all pairs in S−. This way, we can find an upper
bound also for the case where S+ is empty.
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4.3 Extension to the unrestricted case

To extend the method to the unrestricted mixed case, assume now that the components of
each pair (S+, S−) are, rather than pairs of actions, disjoint sets of pairs of strategy vectors
(x̄1, x̄2) of the followers, with (x̄1, x̄2) ∈ ∆1 ×∆2.

Constraints i) should now impose all strategy vectors in (x̄1, x̄2) ∈ S+ to be NE. Since
the utility obtained with any strategy vector xp is a convex combination with weights xp
of those obtained with pure strategies, it suffices to impose, for each follower, that (x̄1, x̄2)
should yield a utility at least as large as that obtained with any pure strategy. We arrive at
the following linear (in x3) inequalities:∑

i∈A1

∑
j∈A2

∑
k∈A3

U ijk1 x̄i1x̄
j
2x
k
3 ≥

∑
j∈A2

∑
k∈A3

U i
′jk

1 x̄j2x
k
3 ∀(x̄1, x̄2) ∈ S+, i′ ∈ A1 (7a)

∑
i∈A1

∑
j∈A2

∑
k∈A3

U ijk2 x̄i1x̄
j
2x
k
3 ≥

∑
i∈A1

∑
k∈A3

U ij
′k

2 x̄i1x
k
3 ∀(x̄1, x̄2) ∈ S+, j′ ∈ A2. (7b)

We can apply a similar argument when stating constraints ii) which, in the mixed case,
impose that all strategy vectors in S− are not NE. Indeed, it suffices to require the existence
of an action i′ ∈ A1 or of an action j′ ∈ A2 providing the respective player with a strict
improvement to his/her utility. Let π(xp) := {a} if xap = 1, ∅ otherwise. For a given,
sufficiently small, ε > 0, the constraints can be (approximately) written as the following
disjunction:

∨
i′∈A1\π(x̄1)

∑
i∈A1

∑
j∈A2

∑
k∈A3

U ijk1 x̄i1x̄
j
2x
k
3 + ε ≤

∑
j∈A2

∑
k∈A3

U i
′jk

1 x̄j2x
k
3

 ∨
∨

j′∈A2\π(x̄2)

∑
i∈A1

∑
j∈A2

∑
k∈A3

U ijk2 x̄i1x̄
j
2x
k
3 + ε ≤

∑
i∈A1

∑
k∈A3

U ij
′k

2 x̄i1x
k
3

 ∀(x̄1, x̄2)∈S−, (8)

which can be rewritten as a MILP as previously discussed for the restricted case.
A strategy vector x3 satisfying the previous constraints which is also optimal in the sense

of iii) is found by solving the following MILP:

max
η free
x3∈∆3

 η : η ≤
∑
i∈A1

∑
j∈A2

∑
k∈A3

U ijk3 x̄i1x̄
j
2x
k
3 ∀(x̄1, x̄2) ∈ S+

Constraints (7), (8)

 . (9)

The initialization of the search tree and the solution of nodes with S+ = ∅ can be carried
out as for the restricted case. Differently from that case though, we cannot perform feasibility
check in O(m2) by inspection. For it, we resort to solving one of the formulations we gave
for O-SLMFNE with a given, fixed x3, after changing the sign of the objective function into
a minus (so to consider the pessimistic case).

We observe that, differently from the restricted case, the search tree might not be
finite when mixed strategies are considered. This is due to fact that a game may contain
uncountably many triples (x1, x2, x3) where (x1, x2) is a NE in the followers’ subgame. As
a consequence, the branch-and-bound algorithm might not terminate. Note, though, that,
by halting the method after any finite amount of iteration of computing time, one would
nevertheless be able to obtain a lower and an upper bound to the problem.
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Table 1 Results obtained when computing an O-SLMFNE with the three proposed MINLP
formulations.

MINLP–I MINLP–II MINLP–III
m Time Gap UB LB Sol Time Gap UB LB Sol Time Gap UB LB Sol
4 3600 46.5 100 53.5 80 3600 11.0 100 89.0 100 1 0.0 91.4 91.4 100
6 3600 93.2 100 6.8 10 3600 53.0 100 47.0 80 413 10.7 92.8 82.9 90
8 3600 91.0 100 9.0 10 3600 53.8 100 46.2 70 987 0.7 96.8 96.1 100
10 3600 99.0 100 1.0 0 3600 55.0 100 45.0 70 2147 22.1 99.0 77.1 80
12 3600 99.0 100 1.0 0 3600 64.7 100 35.3 60 3242 7.7 99.7 92.0 100
14 3600 99.0 100 1.0 0 3600 62.3 100 37.7 50 3240 11.8 99.8 88.1 100
16 3600 99.0 100 1.0 0 3600 92.3 100 7.7 10 3243 18.3 99.9 81.6 100
18 3600 99.0 100 1.0 0 3600 93.1 100 6.9 10 2887 7.1 99.9 92.8 100
20 3600 99.0 100 1.0 0 3600 79.2 100 20.8 30 3265 15.2 99.9 84.8 100
25 3600 99.0 100 1.0 0 3600 84.3 100 15.7 40 3600 15.7 100.0 84.3 100
30 3600 99.0 100 1.0 0 3600 99.0 100 1.0 0 3600 14.5 100.0 85.5 100
35 3600 99.0 100 1.0 0 3600 99.0 100 1.0 0 3600 16.7 100.0 83.3 100
40 3600 99.0 100 1.0 0 3600 99.0 100 1.0 0 3400 14.4 100.0 85.6 100
45 3600 99.0 100 1.0 0 3600 99.0 100 1.0 0 3600 22.9 100.0 77.1 90

Avg 3600 94.3 100 5.7 7 3600 74.6 100 25.4 37 2659 12.7 98.5 85.9 97

5 Computational results

We consider a testbed of instances constructed with GAMUT, a widely adopted suite
of game generators [14], of class Uniform Random Games. We assume the same number
of actions m for each agent, with U1, U2, U3 ∈ [1, 100]m×m×m, and construct 10 dif-
ferent instances per value of m. We experiment on games with n = 3 players, with
m = 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45 actions. In the upcoming Tables 1 and 2, we
report, for each value of m and on average over the 10 corresponding game instances, the
following four values:
1. computing time (Time), also including instances for which the time limit is reached,
2. optimality gap (Gap, defined as UB−LB

UB 100%),
3. upper bound (UB),
4. lower bound (LB),
plus a fifth value which, rather than an average, reports, for a given value of m, the:
5. percentage of games for which a feasible solution is found (Sol).
The experiments are run on a UNIX machine with a total of 32 cores working at 2.3 GHz,
equipped with 128 GB of RAM, within a time limit of 3600 seconds per game, on a single
thread. We assume, throughout the section, that leader and followers are entitled to mixed
strategies, both in the optimistic and pessimistic cases.

5.1 Optimistic case
We experiment with the three MINLP formulations we proposed in Section 3, solving them
with the spatial branch-and-bound solver SCIP 3.2.1. The results are reported in Table 1.

The results confirm that reformulating the complementarity constraints via binary vari-
ables yields (as expected) a considerable improvement, reducing the gap from 94.3% (MINLP-
I) to 74.6% (MINLP-II), on average. The reformulation with additional constraints carried
out to obtain MINLP-III allows for a very substantial improvement, bringing the gap down to
12.7%, on average. Although the UB is not substantially improved by MINLP-III, reaching
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Table 2 Results obtained when computing a P-SLMFNE with the proposed branch-and-bound
algorithm, for ε = 0.1, 1, 5.

ε = 0.1 ε = 1 ε = 5
m Time Gap UB LB Sol Time Gap UB LB Sol Time Gap UB LB Sol
4 2525 25.9 88.5 65.6 100 362 0.0 83.0 83.0 100 37 5.6 84.9 80.2 100
6 3600 41.6 89.9 52.5 100 3281 34.2 88.2 58.0 90 2247 11.5 85.7 75.8 100
8 3600 49.3 96.2 48.8 100 3600 42.7 95.4 54.6 100 3600 28.8 90.1 64.1 100
10 3600 56.9 98.3 42.4 100 3600 51.1 97.5 47.7 100 3600 46.1 94.9 51.1 100
12 3600 58.8 97.9 40.3 90 3600 60.0 97.3 38.9 80 3600 53.2 96.2 45.1 90
14 3600 58.1 98.2 41.1 100 3600 53.1 98.1 46.0 100 3600 52.6 97.6 46.3 100
16 3600 70.5 98.1 28.9 70 3600 65.5 97.7 33.7 80 3600 70.2 97.3 29.0 70

Avg 3446 51.6 95.3 45.7 94 3092 43.8 93.9 51.7 93 2898 38.3 92.4 56.0 94

an average of 98.5 (as opposed to 100 with both MINLP-I and MINLP-II), MINLP-III yields
LBs of substantially better quality. MINLP-I yields an average LB of 5.7, with feasible
solutions found only for 7% of the instances. MINLP-II achieves an average LB of 25.4, with
feasible solutions found for 37% of the instances. With MINLP-III, we arrive at a much
larger average LB of 85.9 (remember that, due to the way the games are constructed, the
leader’s utility is upper bounded by 100), with feasible solutions found in 97% of the cases.

5.2 Pessimistic case
For the experiments with our branch-and-bound algorithm, we use GUROBI 6.5.1 for the
solution of the MILP Subproblem (9), while employing SCIP 3.2.1 for the solution of nodes
(S+, S−) with S+ = ∅ and to perform the feasibility check. The tree search procedure is
implemented in Python. To select the next node to process, we adopt a “worst bound” policy.
This leads to always exploring a sequence of nodes (S+, S−) with S− = ∅ until a leaf node is
reached, thus quickly obtaining a feasible solution. The results are reported in Table 2 for
games with up to m = 16 actions, obtained with different values of ε, namely, ε = 0.1, 1, 5.5

The table shows that the algorithm finds solutions of better quality for larger values of ε,
in spite of the fact that, the larger ε, the poorer the solution should be, as a consequence of
larger portions of the leader’s feasible region ∆3 being discarded after a branching operation.
This result is due to the fact that, with a larger ε, fewer nodes are created and, thus, leaf
nodes are reached much faster, resulting in more feasible solutions being found in the time
limit. Note that, as the size of the games increases and the algorithm becomes less effective,
the method seems to be less affected by the choice of ε.

From a gap of, on average, 51.6% obtained with ε = 0.1, we achieve one of 43.8% with
ε = 1, and one of 38.3% with ε = 5. While the UB is not much affected by ε, we register a
larger improvement in the LB, which goes from, on average, 45.7 with ε = 0.1 to 51.7 with
ε = 1 to 56.0 with ε = 5. As the table shows, the problem becomes much harder to solve
for larger values of m, with an average gap which, from the 65.5%-70.5% range for m = 16,
considering the three values of ε, reaches 99% for m = 18 (not shown in the table).

Notwithstanding the problem being a nonconvex pessimistic bilevel program, we remark
that the branch-and-bound algorithm we proposed manages to find, with ε = 5, solutions
in 70% of the cases with an average (approximate, due to ε) gap of ∼70% for games with

5 We omit the results for larger values of m as, for them, the algorithm often fails to find a feasible
solution.
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m = 16 actions (4096 payoffs in each of the n = 3 matrices U1, U2, U3). Such games are not
much smaller, in terms of the number of outcomes, than those solved in papers concerned
with the computation of an optimal NE in the single level case, see [15], which is a special
case of the problem of computing a SLMFNE obtained when x3 is restricted to a constant.

6 Concluding remarks

We have considered the problem of computing leader-follower equilibria in games with two
or more followers, assuming that, after witnessing the leader’s commitment to a mixed
strategy, the followers play a mixed-strategy Nash equilibrium. We have proposed three
mixed-integer nonconvex mathematical programming formulations for the optimistic case,
and an ad hoc branch-and-bound method for the pessimistic one. Computational experiments
have revealed that, with the last of the three formulations for the optimistic case, we can
obtain average gaps smaller than 13% for games with up to 45 actions per player while, with
our branch-and-bound algorithm for the pessimistic case, we obtain average (approximate)
gaps below 70% for games with up to 16 actions. Future work includes the design of primal
heuristics to be embedded in the branch-and-bound algorithm for the pessimistic problem,
as well as the construction of dual bounds via the adoption of relaxed optimality conditions.
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