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Abstract 

 

During embryonic development, new arteries and veins form from preexisting vessels in 

response to specific angiogenic signals. Angiogenic signaling is complex since not all 

endothelial cells exposed to angiogenic signals respond equally. Some cells will be 

selected to become tip cells and acquire migration and proliferation capacity necessary 

for vessel growth while others, the stalk cells become trailer cells that stay connected 

with pre-existing vessels and act as a linkage to new forming vessels. Additionally, stalk 

and tip cells have the capacity to interchange their roles. Stalk and tip cellular responses 

are mediated in part by the interactions of components of the Delta/Notch and Vegf 

signaling pathways. We have identified in zebrafish, that the transmembrane protein 

Tmem230a  is a novel regulator of angiogenesis by its capacity to regulate the number of 

the endothelial cells in intersegmental vessels by co-operating with the Delta/Notch 

signaling pathway. Modulation of Tmem230a expression by itself is sufficient to rescue 

improper number of endothelial cells induced by aberrant expression or inhibition of the 

activity of genes associated with the Dll4/Notch pathway in zebrafish. Therefore, 

Tmem230a may have a modulatory role in vessel-network formation and growth. Our 

study supports that the activity of Tmem230a is through restricting Vegfc/Flt4 signaling. 

As the Tmem230 sequence is conserved in human, Tmem230 may represent a promising 

novel target for drug discovery and for disease therapy and regenerative medicine in 

promoting or restricting angiogenesis. 
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Introduction 

In embryonic development two distinct processes take place to form the vascular tree. 

New vessels form de novo for the assembly of mesoderm-derived endothelial precursors 

(angioblasts) that differentiate into a primitive vascular labyrinth (vasculogenesis). 

Subsequently, vessel sprouting allows the formation of smaller size vessels 

(angiogenesis) necessary for growth of a vascular tree necessary creating a network that 

remodels into arteries and veins(Adams and Alitalo, 2007). 

Growth of a vascular tree requires the coordinated control of different functions including 

proliferation, directional migration and patterning of endothelial cells (ECs). Angiogensis 

is orchestrated by the regulatory interactions between the vascular endothelial growth 

factor (Vegf) and Notch signaling pathways that finely control the behavior and 

positional fate of ECs and determine which cells become tip or stalk behaving cells (Phng 

and Gerhardt, 2009) (Eilken and Adams, 2010). 

The exposure of vessels to pro-angiogenic signals such as Vegf induces the tip cell 

phenotype only in a fraction of the ECs (Phng and Gerhardt, 2009) (Eilken and Adams, 

2010). Tip cell behaviour is strongly controlled by the Notch pathway. Activation of 

Notch signaling occurs predominantly in stalk cells and takes place by the interaction of 

Notch with its ligand delta-like 4, Dll4, leading to the down-regulation of both the Vegfa 

and Vegfc receptors (Vegfr-2 and Vegfr-3/Flt4, respectively) in these cells (Hellstrom, 

2007; Lobov, 2007; Tammela et al., 2008). Therefore, cells with higher levels of Dll4, 

low Notch activity and strong Vegf receptor transcription are thought to convert into tip 

cells. (Phng and Gerhardt, 2009). 
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We identified two tmem230 paralogous genes in zebrafish, tmem230a and tmem230b, and 

investigated their expression patterns and determined that tmem230a is expressed in the 

vascular districts in early zebrafish development. Our data reveal that Tmem230a 

regulates the number of endothelial cells in vessels formed through angiogenic processes 

by cooperating with the Delta/Notch signalling pathway. In this capacity Tmem230a may 

have a modulatory role in vessel-network formation and growth.  

As only a fraction of the ECs acquires angiogenic behavior required for blood vessel 

branching, the identification of novel regulators of angiogenesis contributes to a better 

understanding of both the complex multifaceted regulation of angiogenesis in normal and 

pathological conditions. Signficantly, as the tmem230a sequence is conserved in 

mammals, TMEM230 may represent a new target for human therapy, in promoting or 

restricting angiogenesis in acute injury and chronic disease, and since blood vessel 

formation is also required for promoting tumor growth, invasion and metastasis, 

TMEM230 may also represent a novel target for human cancer therapy. 

 

 

Materials and Methods 

Zebrafish lines and maintenance. 

Zebrafish (Danio rerio) embryos obtained from natural spawning were raised and 

maintained according to established techniques(Westerfield, 1993). All experiments with 

live animals were performed at the University of Milan. All experimental protocols and 

methods were carried out in accordance with relevant guidelines and regulations of Good 

Animal Practice approved by the institutional and licensing committee IACUC 

(Institutional Animal Care and Use Committee) and University of Milan by the Italian 
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Decree of March 4
th

 2014, n.26. Embryos were staged according to morphological 

criteria(Kimmel et al., 1995). Beginning from 24 hpf, embryos were cultured in fish 

water containing 0.003% PTU (1-phenyl-2-thiourea; Sigma Aldrich, Saint Louis, Mo, 

USA) to prevent pigmentation and 0.01% methylene blue to prevent fungal growth. 

The following lines were used: AB (obtained from the Wilson lab, University College 

London, London, United Kingdom), tg(fli1:nEGFP)
y7 

(Roman et al., 2002), 

tg(fli1:EGFP)
y1 

(Lawson, 2002)
 
(from the N.D. Lawson lab, University of Massachusetts 

Medical School, Boston, USA) and the reporter line Tg(T2KTp1bglob:hmgb1-

mCherry)jh11 (from the Argenton Lab, University of Padua, Padua, Italy)(Schiavone et al., 

2014)  outcrossed with tg(fli1:EGFP)
y1

. 

 

Tmem230 sequence analysis.  

Sequence analysis was performed using Genomic Database (www.ensembl.org) NCBI 

(http://www.ncbi.nlm.nih.gov/BLAST/) ClustalW (http://www.ebi.ac.uk/Tools/clustalw/) 

Genomicus (http://www.genomicus.biologie.ens.fr/genomicus-83.01/cgi-bin/search.pl). 

Prediction of transmembrane regions, topology and orientation analysis was performed 

using TMPRED (http://www.ch.embnet.org/software/TMPRED_form.html)(Hofmann, 

1993) and HMMTOP (http://www.enzim.hu/hmmtop/index.php)(Tusnady and Simon, 

2001). 

Expression pattern analysis. 

RT-PCR (Reverse Transcription-Polymerase Chain Reaction) was performed on total 

RNA prepared from zebrafish oocytes and embryos at different developmental stages 

using the Totally RNA Isolation Kit (Ambion, ThermoFisher, Waltham MA, USA) or the 
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RNAgents Total RNA Isolation System (Promega, Madison, WI, USA), treated with 

DNase I RNase free (Roche, Basel, Switzerland) to avoid possible contamination from 

genomic DNA and then reverse transcribed using the ImProm-II Reverse Transcription 

System (Promega) and random primers. The cDNAs were then PCR amplified using 

GOTaq polymerase (Promega).  

The following PCR primers were used: tmem230a for: 

5’GCAGAGGATCGAGCAGTGTT 3’, tmem230a rev: 

5’GAAGGCAACACATGCAACAG 3’, tmem230b left: 5' 

AGAAGATGCCTGCTCGAAGC 3’, tmem230b right: 5’ 

GCTGAGATCTCTGTCAGTCG 3’. Specific βactin primers were used as internal 

control to check cDNA quality and possible genomic contamination(Argenton et al., 

2004). 

In situ hybridization and imaging. 

Whole-mount in situ hybridization (WISH) was performed as described(Thisse et al., 

1993; Wu et al., 2011). For tmem230a and tmem230b probe preparations, templates 

spanning the last portion of coding sequence and the 3’ UTR region for tmem230a or the 

entire coding sequence for tmem230b were generated by RT-PCR on total RNA extracted 

from 26 hpf embryos using the following primers: tmem230a new1F:  5’ 

GCTTCCAAAGGTTACCGTGG 3’ tmem230a new2R: 5’ 

AAAGGCTTGGACACATCTGC 3’ tmem230b left: 5' 

AGAAGATGCCTGCTCGAAGC 3’ tmem230b right: 5’ 

GCTGAGATCTCTGTCAGTCG 3’. PCR products were cloned into the pGEM®-T Easy 

vector (Promega).  
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The cDNA-containing plasmids were linearized and transcribed with T7 and Sp6 RNA 

polymerase (Roche) for antisense and sense riboprobe synthesis.  

Plasmid probes for flk1(Fouquet et al., 1997), flt4(Thompson et al., 1998), and 

dll4(Siekmann and Lawson, 2007) were kindly provided by N.D Lawson, and efnb2a and 

ephB4(Lawson et al., 2001) were kindly provided by R. Patient (Weatherall Institute of 

Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, U.K.). 

Images of stained embryos were taken with a Leica MZFLIII epifluorescence 

stereomicroscope equipped with a DFC 480-R2 digital camera using the LAS imaging 

software (Leica, Germany). 

For histological sections, stained embryos were re-fixed in 4% PFA, dehydrated, wax 

embedded, sectioned (8 µm) by a microtome (Leitz 1516) and stained with eosin. Images 

were taken with a Leica DM6000 B microscope equipped with a Leica 480 digital camera 

using the LAS software (Leica, Germany). 

 

Morpholino and mRNA injections and detection of splice variants of the tmem230a 

transcript by RT-PCR. 

Two different antisense morpholinos (MOs) for tmem230a were synthesized by Gene 

Tools (Philomath, OR, USA): tmem230a-MO1 5’ 

GTGTTGTTTCGGGTTGCCATCATA 3’ and tmem230a-MO2 5’ 

CAGCTTAGATATTTTCTCACCTGTA 3’. tmem230a-MO1 was designed on the region 

surrounding the AUG translation start codon of the transcript. tmem230a-MO2 was 

designed on the exon2/intron2 boundary. The following morpholino was already 

described: dll4-MO(Hogan, 2009). As a control for unspecific effects, each experiment 
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was performed in parallel with a standard control morpholino control (std-MO) that has 

no target in zebrafish. All morpholinos were diluted in Danieau’s solution(Nasevicius and 

Ekker, 2000) and injected at the 1–2 cell stage embryo. Rhodamine dextran (Molecular 

Probes) was usually co-injected as a tracer. After injection, embryos were raised in fish 

water (previously described) at 28ºC and observed up to the stage of interest. For a better 

observation, the injected embryos were anaesthetized using 0.016% tricaine (Ethyl 3-

aminobenzoate methanesulfonate salt, Sigma Aldrich) in fish water. To assess the ideal 

concentration of morpholino we injected several dilutions and verified at 24 hpf the 

overall effects of the morpholino on embryo phenotype. The injection of tmem230a-MO1 

at a concentration above or equal to 0.4 pmol/embryo led to morphological defects, such 

as head defects and bent tail (not shown), and increased mortality in a dose dependent 

manner (Supplementary Fig. S4a), suggesting the activation of unspecific mechanisms at 

those concentrations. While, at a concentration of 0.3 pmol/embryo and below the 

survival rate was high and the embryos had a normal morphology and development 

(Supplementary Fig. S4a). We proceded in a similar way to determine the concentration 

of splicing morpholino tmem230a-MO2 to inject and we found we could inject an higher 

dose (1pmol/embryo) of this morpholino with not apparent effects in the gross 

morphology of the embryo (Supplementary Fig S4b).  

Images were acquired using a Leica MZFLIII epifluorescence stereomicroscope equipped 

with a DFC 480-R2 digital camera and the LAS imaging software (Leica, Germany).  

At 29 hpf, total RNA was extracted from embryos injected with tmem230a-MO2 or std-

MO with RNAgents Total RNA Isolation System (Promega). Reverse transcription was 

carried out with the ImProm-II Reverse Transcription System (Promega) and random 

Page 9 of 39

John Wiley & Sons, Inc.

Journal of Cellular Physiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 

9 

9

primers. PCR was performed to detect splice variants of tmem230a. The following 

primers were used: tmem230a for: 5’GCAGAGGATCGAGCAGTGTT 3’ and tmem230a 

rev: 5’GAAGGCAACACATGCAACAG 3’. RT-PCR products were then sequenced.  

For tmem230a mRNA, the complete coding sequence was cloned into the pCS2
+ 

plasmid 

which was then digested with NotI and in vitro transcribed using the mMESSAGE 

mMACHINE kit (Ambion). Rescue experiments were performed with the co-injection of 

1pmol/embryo tmem230a-MO2 and 400 pg/embryo tmem230a mRNA diluted in the 

Danieau’s solution into 1-cell stage embryos. 

 

Analysis of ISV cell number. 

We scored ISV cell number by counting cell nuclei expressing the GFP in 

tg(fli1:nEGFP)
y7

 embryos at 29 hpf. We considered for our analysis the first 10 

intersegmental vessels anterior to the anus. We mounted injected embryos of each sample 

in 1% low-melting agarose (adding some drops of tricaine as anaesthetic) and observed in 

every embryo the same group of ISVs. Images were taken with a confocal Leica TCS 

SP2 AOBS microscope, equipped with an argon laser, with a PL FLUOTAR 20X x 0.50 

NA objective. The mean of the cell number was calculated by counting GFP positive 

nuclei in 10 segments/embryo for the number of embryos indicated by n. Standard error 

of mean (SEM) is indicated as vertical bars with caps. 

 

DAPT treatment. 

A 40 mM stock solution of DAPT (N-[N-(3,5-difluorophenacetyl-1-alanyl)]-S-

phenylglycine t-butyl ester, γ-secretase inhibitor IX; Calbiochem, La Jolla, CA, USA) 
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was diluted to a concentration of 200 µM in E3 embryo medium as 

described(Westerfield, 1993). tmem230a mRNA and std-MO injected embryos were 

dechorionated by pronase (Sigma Aldrich) treatment(Westerfield, 1993) and treated with 

DAPT from 17 hpf to 29 hpf at 28°C. As DAPT is prepared with DMSO, tmem230a 

mRNA and std-MO injected embryos were treated with E3 embryo medium containing 

the same concentration of DMSO used for the DAPT treated embryos. 

 

Live-imaging analysis of Notch reporter expression. 

To assay the capacity of Tmem230a to regulate Notch signalling, we injected tmem230a-

MO1 into 1-cell stage embryos generated from crossing the transgenic line 

Tg(T2KTp1bglob:hmgb1-mCherry) with Tg(fli1a:EGFP)
y1

. The level of mCherry 

fluorescence expression in the vessels of the embryos was scored by confocal 

microscopic analysis. We mounted five embryos at 48 hpf from each sample in 1.2% 

low-melting agarose (adding some drops of tricaine as anaesthetic) and observed in every 

embryo the same group of 3 ISVs up to the yolk extension. Images were taken with a 

Leica TCS SP2 confocal microscope, using a water-immersion objective 40X. 

 

Statistical analysis. 

Statistical analysis was performed with one-way ANOVA analysis of variance technique 

and with Dunnett’s post test using GraphPad PRISM versions 5.0 and 6.0 (GraphPad, San 

Diego, CA, USA). In the graphs, * and ** mark statistically significant data with a p 

value <0.05 and <0.01, respectively. Statistically highly significant data, with a p value 

<0.001, are marked by ***. 
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Results  

Tmem230 identification and bioinformatic analysis 

We have identified Tmem230 differentially expressed at the onset of in vitro 

differentiation of pluripotent mouse embryonic stem cells (mESCs) (manuscript in 

preparation, PP and RR). To identify the role of Tmem230 in the earliest stages of 

vertebrate embryogenesis, Tmem230 expression was modulated in zebrafish, as a model 

for embryo tissue and organ development.  

The zebrafish genome encodes two tmem230 genes, tmem230a (zgc:101123) on 

chromosome 10 and its paralogue tmem230b (zgc:162251) on chromosome 8. The 

analysis of tmem230 genes across vertebrates revealed that both genes are orthologs of 

mammalian Tmem230 and both genes may have arisen from a duplication event (Fig. 1a). 

The tmem230a and b transcripts are 1663 and 1019 bp in length and encode proteins of 

120 and 115 amino acids, respectively (Fig. 1b). The Tmem proteins are highly related to 

each other (83% identity, Supplementary Fig. S1a). In addition, Tmem230a protein 

shares 76% identity with their respective human and mouse orthologs, while Tmem230b 

shares 74% identity with the human and 75% with the mouse ortholog, respectively. 

Transmembrane topology prediction analysis of conserved domains revealed that 

Tmem230a and b proteins contain 2 transmembrane domains (Supplementary Fig. S1b).  
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tmem230a is expressed in blood vessels during embryonic and early larval zebrafish 

development.        

Temporal expression of both zebrafish tmem230 genes (a and b) was analyzed in 

embryonic and early larval development and in adult organs and tissues by RT-PCR 

analysis (Fig. 2a and Supplementary Fig. S2a). Both transcripts were detected at all 

analyzed stages from cleavage up to 5 dpf, as well as in oocytes, suggesting that both 

transcripts are both maternally and zygotically expressed. Furthermore, tmem230a and 

tmem230b expression was detected in all adult organs and tissues tested (brain, eyes, 

gills, gut, heart, liver and muscle). Whole-mount in situ hybridization (WISH) analysis 

revealed that from the mid somitogenesis stage (15 somites) to 2 dpf, tmem230a has 

higher expression in the developing vascular system than tmem230b (Fig. 2b-j and 

Supplementary Fig. S2b-f). At the 15 somite stage, tmem230a was expressed in the 

telencephalon, mesencephalon and hindbrain, and was starting to be expressed in the 

Intermediate Cell Mass (ICM) and in the forming axial vasculature (Fig. 2b). At 26 hpf, 

tmem230a was expressed in the pharyngeal arch mesenchyme, in the Dorsal Aorta (DA) 

and Caudal Vein (CV) (Fig. 2c,c’,d,h,i). At 2 dpf, a strong hybridization signal was 

detected at the level of the mandibular arches and in the fin buds, and moreover 

tmem230a was expressed at low levels in the CV plexus region (Fig. 2e,f,g,j). In contrast, 

no hybridization signal was detected for tmem230b in the forming vasculature 

(Supplementary Fig. S2b-f). During somitogenesis (15 to 20 somite stages), WISH 

staining revealed a faint and ubiquitous tmem230b hybridization signal (Supplementary 

Fig. S2b,c). At the 15 somite stage, tmem230b expression appeared fairly widespread, 

while at the 20 somite stage was expressed in the tail and eyes. At 26 hpf, tmem230b was 
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detectable in the optic tectum, mesencephalon, hindbrain and in the tail including the CV 

region and in the somites (Supplementary Fig. S2d, d’,e). At 2 dpf, tmem230b was only 

slightly expressed in the mesencephalon (Supplementary Fig. S2f).  

Since our data indicate a robust tmem230a expression in the developing vasculature not 

overlapping with the expression of tmem230b, we investigated the role of Tmem230a in 

vascular development.  

Tmem230a modulates ISV endothelial cell number. 

To determine the role of tmem230a, we first looked to the effects of tmem230a knock-

down, to reduce Tmem230a protein in the developing vasculature. To not interfere with 

the early embryonic expression of tmem230a, a gene knockdown approach with 

morpholinos was used. Knockdown experiments were performed by independent 

injections of two different morpholinos: a low dose tmem230a-MO1 and tmem230a-

MO2, designed to block mRNA translation or splicing, respectively (Fig. 3). The 

sequences of both tmem230a-morpholinos were analyzed to exclude cross targeting to 

tmem230b (Supplementary Fig. S3a). We injected tmem230a-MO1 at the selected dose of 

0.3 pmol/embryo and tmem230a-MO2 at 1pmol/embryo in one cell stage 

tg(fli1:nEGFP)y7 embryos. These concentrations of morpholinos did not affect the gross 

phenotype of the zebrafish embryos and the main axial vessels appeared normal in all 

injected embryos at 29 hpf and 2 dpf (Fig. 3 and see Methods and Supplementary Figs. 

S4 and S5). The injections in transgenic embryos tg(fli1:nEGFP)
y7

 allowed for the 

quantification of  intersegmental vessel (ISV) cell numbers by counting cell nuclei 

expressing the green fluorescent protein (GFP) (Fig. 3 a-g). We counted cells in the first 

10 intersegmental vessels anterior to the anus and found a statistically significant increase 
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of the mean number of cells in ISVs when tg(fli1:nEGFP)
y7

  embryos were injected with 

0.3 pmol MO1 (n = 100) compared to control std-MO injected embryos (n = 69) (Fig. 

3e,k)(Roman et al., 2002). To further confirm these results, when we injected the splice-

blocking tmem230a-MO2 at 1 pmol/embryo in the same transgenic line embryos, we 

observed a comparable increase in ISV cell number though with a different penetrance 

(Supplementary Fig. S4b and Fig. 3e,i,l). The injection of tmem230a-MO2 which targets 

the exon2-intron2 boundary, generated a transcript unable to splice exon 2 from intron 2 

(Supplementary Fig. S3b). Sequencing of the smaller PCR product confirmed a sequence 

skipping tmem230a exon 2 consistent with a previous report showing that targeting of a 

E2/I2 junction may result in exon 2 skipping (Morcos, 2007).  This mRNA having no 

starting codon in frame with the tmem230a sequence yields a non-functional tmem230a 

mRNA. 

In parallel to the loss-of-function experiments, mRNA over-expression experiments were 

performed. We injected tmem230a mRNA (400 pg/embryo) in one cell stage 

tg(fli1:nEGFP)
y7

 embryos. As for the knock-down experiments, we counted the number 

of ISV cells present in the first 10 intersegmental vessels anterior to the anus. Consistent 

with the phenotype observed with the loss-of-function of Tmem230a, the gain-of-

function experiment resulted into the opposite phenotype. We found a statistically 

significant (p<0.0001) decrease of the mean number of cells in ISVs in the tmem230a-

over-expressing embryos (29.17 mean ISV cells present in the first 10 intersegmental 

vessels anterior to the anus for the tmem230a over-expressing embryos, n = 60, versus 

35.06 mean cell number for the control, n = 32), (Fig. 3 j,k).  
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Experiments using two independent morpholinos at concentrations that did not result in 

gross morphological defects, both gave the same in vivo phenotype affecting the ISV cell 

number. In addition, Tmem230a gain and loss of function experiments consistently 

produced opposite effects on the ISV cell number. Moreover, we fully rescued the effects 

on ISV cell number of injections of 1 pmol/embryo of tmem230a-MO2 by tmem230a 

mRNA over-expression (400 pg/embryo) (Fig. 3l).  

Taken together these data suggest a bona fide role of tmem230a in regulating ISV cell 

number during angiogenesis. Considering that both morpholinos produced the same 

phenotypes, we performed all following experiments by injecting tmem230a-MO1 into 

embryos, which we indicate as tmem230a morphants.   

 

 

Tmem230a knockdown affects angiogenic blood vessel growth rather than artero-

venous endothelial cell fate.   

The effect of Tmem230a in ISV cell number could be explained in two possible ways: 

either Tmem230a affects blood vessel growth or regulates artero-venous cell fate switch. 

To gain insight into the molecular events following tmem230a-MO1 injection, we 

analyzed the expression of different vascular markers: ephrin-B2 (efnb2a) and its 

receptor ephB4, specifically expressed in arterial and venous endothelium, and flk1 (vegf 

receptor 2, vegfr2), flt4 (vegf receptor 3, vegfr3) and dll4 (notch ligand delta-like 4) 

which are preferentially expressed in tip rather than in stalk cells(Adams and Alitalo, 

2007; Blanco and Gerhardt, 2013; Fouquet et al., 1997; Gerety et al., 1999; Lawson et al., 

2001; Phng and Gerhardt, 2009; Shutter et al., 2000; Siekmann and Lawson, 2007; 
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Thompson et al., 1998; Wang, 1998). In std-MO and tmem230a-MO1 injected embryos, 

efnb2a and ephb4 expression levels were comparable (for efnb2a n=74, n=75 

respectively and for ephb4 n=77, n=76, respectively; Fig. 4a-d). In contrast, increase of 

flk1, flt4, and dll4 staining in ISVs and in the Dorsal Longitudinal Anastomotic Vessels 

(DLAVs) was observed in tmem230a morphants (for flk1 83% n=57; for flt4 79% n=52; 

and for dll4 53% n=44, respectively) compared with control embryos (for flk1 n=16; for 

flt4 n=19; and for dll4 n=18; Fig. 4e-j).   

No change in efnb2a and ephB4, but increase in flk1, flt4, and dll4 marker levels in 

tmem230a morphants strongly suggests that more ISV cells were generated by 

tmem230a-MO1 injection. These results provided support that the role of tmem230a is 

restricted to angiogenic blood vessel growth and that tmem230a promotes angiogenic cell 

behavior rather than the determination of artero-venous cell fates. The increase of cell 

number can be due to various cellular processes including increase in cell proliferation 

and/or a result of cellular migration of ISV cells from the aorta.  

 

Tmem230a and the Notch/Delta signaling pathway cooperate in modulating ISV 

endothelial cell number. 

Previous studies have demonstrated that Notch restricts angiogenesis and that loss of the 

Notch ligand dll4 led to supernumerary endothelial cells within the ISA(Leslie et al., 

2007; Siekmann and Lawson, 2007). As tmem230a mRNA over-expression reduced ISV 

cell number, we wanted to determine whether tmem230a is involved in the Notch 

signaling pathway, and whether it acts synergistically with dll4 in regulating the ISV cell 

number. Two independent approaches were used to answer these questions. First, we co-
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injected into embryos subcritical doses of tmem230a- (0.07 pmol/embryo) and dll4- (0.09 

pmol/embryo) MOs (Fig. 5a-f). Results show that the subcritical doses of each 

morpholino do not cause alterations in ISV cell number when injected separately (Fig. 

5e). However, when subcritical doses of both dll4- and tmem230a-MOs were co-injected 

into the same embryos a statistically significant increase in ISV cell number was 

observed, suggesting a synergistic effect of Dll4 and Tmem230a (Fig. 5c,e). Consistent 

with a role of Tmem230a in regulating ISV cell number, co-injection of tmem230a 

mRNA (400 pg/embryo) together with dll4-MO (0.4 pmol/embryo) rescued normal 

endothelial cell numbers in ISVs (Fig. 5d,f). As Dll4 is part of the Notch pathway and 

Notch restricts angiogenesis we hypothesized that a second and independent way to block 

Notch signaling would also produce the same results. Therefore, we investigated the 

effect of tmem230a in a context where the Notch signaling was blocked by using the γ-

secretase inhibitor, DAPT(Geling et al., 2002). Consistent with the results obtained with 

the dll4-morphants, embryos treated with 200 µM DAPT showed an increase in the 

number of ISV cells compared to DMSO-control treated embryos (Fig. 5g). Embryos 

injected with tmem230a mRNA and treated with DAPT showed a number of ISV cells 

comparable to that of std-MO injected control embryos treated with DMSO, while 

DMSO-control embryos injected with tmem230a mRNA showed a decrease in ISV cell 

number as previously seen (Fig. 3j,k). These results confirm that embryos over-

expressing tmem230a can rescue back the correct number of ISV cells in Notch signaling 

blocked embryos (Fig. 5g). Taken together, these data are consistent with the hypothesis 

that Tmem230a acts synergistically with Dll4 and has a role mediating Notch signaling 

pathway for ISV development.  
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We further tested the effect of Tmem230a down regulation in Notch-responsive vessels 

in vivo. We injected tmem230a-MO1 into embryos obtained by the outcross of the 

transgenic line tg(fli1:EGFP)y1 with the transgenic line tg(T2KTp1bglob:hmgb1-

mCherry)
jh11

 which expresses mCherry in tissues known to be Notch responsive. 

Expression of nuclear mCherry fluorescence protein occurs when the Notch intra-cellular 

domain (NICD) and its cofactor RBP-Jκ bind to the promoter of the Epstein Barr Virus 

terminal protein 1 (TP1) gene which contains two Rbp-Jκ binding sites(Parsons et al., 

2009; Schiavone et al., 2014). For a better visualization of the activated hmgb1-mCherry 

we analyzed embryos at 48 hpf instead of the 29 hpf time point used for our previous 

experiments. 

At 48 hpf, 76% (n = 98) of tmem230a morphants showed decrease of mCherry 

expression in ISVs and DA with respect to std-MO injected embryos (n = 125) (Fig. 6), 

strongly suggesting the involvement of Tmem230a in the positive modulation of Notch 

signaling in vascular districts responsive to Notch. 

All results presented here support that Tmem230a has a modulatory role in the 

Dll4/Notch signaling pathway to limit angiogenic cell behavior. 

 

Discussion  

In zebrafish, embryonic trunk angiogenesis takes place in two distinct waves: formation 

of primary and secondary sprouts. From about 20 hpf, primary sprouts bilaterally form 

from the DA to give rise to intersegmental arterial (ISA) vessels, which are completed by 

1.5 dpf. From about 32 hpf, secondary sprouts emerge from the posterior cardinal vein 

(PCV) to give rise to venous ISVs and lymphatic vascular precursors(Childs et al., 2002; 
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Isogai et al., 2003; Yaniv et al., 2006). At 29-30 hpf, ISVs consist of three or four 

endothelial cells with different positional fates: a tip cell that is the dorsal-most T-shaped 

cell that contributes to the DLAV, an adjacent connector cell which is situated along the 

length of the medial somite boundary, and a base cell connected to the DA(Siekmann and 

Lawson, 2007). Growth of intersegmental veins requires the coordination of tip and stalk 

cell behaviors with different capacities for proliferation, directional migration, patterning 

and positional fates of ECs.  

Here, we identified two tmem230 paralogous genes in zebrafish. In this work, we 

investigated the expression pattern and the function of Tmem230a.  

As our preliminary data (Fig. 2) indicated that tmem230a may have diverse functions 

since it was expressed throughout embryonic development including pre-gastrulation 

development, to focus only on the role of tmem230a in vascular development we decided 

to modulate tmem230a levels by morpholinos. In contrast to morpholinos, transgenic 

technologies and use of the CRISPR-Cas9 approach to induce mutations could produce 

early phenotypes, thus, mask later developmental events, like the vascular phenotype that 

we were interested to study (Blum et al., 2015). Injections of two independent tmem230a-

MOs for the down regulation of Tmem230a led to the increase of endothelial cell number 

within the ISVs. Interestingly, over-expression of tmem230a mRNA resulted into the 

opposite phenotype, a marked decrease of endothelial cell number within the ISVs, 

supporting that the role of Tmem230a is to limit endothelial cell number and therefore 

modulate angiogenic vessel growth.  
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The fact that two independent morpholinos resulted into the same phenotype and that the 

tmem230a-MO phenotype was rescued by tmem230a mRNA injection, demonstrated the 

specificity of the tmem230a morpholino obtained phenotypes.  

The increase in number of ISV cells could be due to several events, such as increase in 

cell proliferation or a result of cellular migration of ISV endothelial cells from aorta 

which could be generally grouped in two main possibilities, changes in antero-venus cell 

fate or changes in precursors cell number. We showed here that flk1, flt4, and dll4 

staining in ISVs and in the Dorsal Longitudinal Anastomotic Vessels (DLAVs) increased 

and no difference in the arterial and venous marker expression were observed in 

tmem230a morphants compared to control embryos, suggesting that tmem230a does not 

regulate artero-venous cell fate specification but modulates the EC number in angiogenic 

blood vessels. It would be interesting to determine if these cells are generated by 

increased proliferation of local ISV cells or migration of ISV cells from aorta. We are 

planning to address this question in future work. 

Different signals regulate tip and stalk cell behaviors by the interactions of genes 

associated to the Vegf and Notch signaling pathways(Eilken and Adams, 2010; Phng and 

Gerhardt, 2009). As the tmem230a morphants displayed the same ISV phenotype 

observed with dll4 knockdown experiments previously described(Siekmann and Lawson, 

2007), we investigated whether Tmem230a cooperates with, and/or modulates the 

Dll4/Notch signaling pathway in regulating angiogenesis. The co-injection of subcritical 

doses of tmem230a-MO1 and dll4-MO demonstrated that the down regulation of the two 

genes resulted in a synergistic increase of the ISV cell number, while the subcritical dose 

of tmem230a-MO1 or dll4-MO when injected individually, did not promote change in the 

Page 21 of 39

John Wiley & Sons, Inc.

Journal of Cellular Physiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 

21 

21

number of ISV cells. Consistent with the subcritical co-injection results, a dose of dll4-

MO higher than subcritical resulted in a supernumerary ISV cell number, whereas the 

tmem230a mRNA and dll4-MO co-injection rescued the phenotype generated by the dll4-

MO higher dose. To further confirm the morpholino experiments, we decided to 

chemically block Notch signaling with DAPT treatment. The treated embryos displayed 

an excessive ISV cell number. In absence of Dll4 (dll4-MO) or with inhibition of Notch 

(NICD release with DAPT treatment), the injection of tmem230 mRNA rescued the 

excessive ISV cell number, suggesting that tmem230a mRNA can independently 

compensate for the knockdown of dll4 and inhibition of Notch. In agreement, decrease of 

mCherry expression under the control of Notch responsive elements was observed in 

vessels in tmem230a morphants supporting the involvement of tmem230a, like that for 

dll4 in the positive modulation of Notch signaling.  

These results strongly support that tmem230a has a role Dll4/Notch signaling. However, 

the precise epistatic relationships of tmem230a with respect the Dll4/Notch signaling in 

the modulation of EC numbers in ISVs still needs to be determined. In fact, our 

experiments suggest that tmem230a can compensate and/or cooperate with both the 

Dll4/Notch signaling pathways in limiting the number of endothelial cells in angiogenic 

processes in early development of zebrafish. Moreover, it still remains to be determined 

which components of the Dll4/Notch signaling pathways Tmem230a interacts with. For 

instance, does Tmem230a work with Notch as a co-receptor for Delta or cooperate with 

Notch within the cytoplasm for signal transduction. In order to answer these questions, 

co-localization of Tmem230a with Dll4/Notch signaling components need to be carried 

out. 
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Our study is the first to identify TMEM230 as a novel regulator and modulator of 

angiogenesis associated blood vessel-network formation and growth. Recently, 

TMEM230 has been identified when mutated to have a role in Parkinson’s disease. As to 

how TMEM230 mutation(s) contributes at the molecular level to the Parkinson’s 

phenotype is still under investigation.(Baumann et al., 2017; Deng et al., 2016; Giri et al., 

2017; He et al., 2016; Kim et al., 2017; Olszewska et al., 2016; Quadri et al., 2017; Wu et 

al., 2016; Yan et al., 2017). Our study is the first to associate and characterize TMEM230 

to specific signaling pathways and provides first insight into how TMEM230 functions at 

the molecular level. Additionally, our study and the recent discovery of role of 

TMEM230 in Parkinson’s disease suggest that novel genes with tantalizingly multiple 

functions in normal and disease vertebrate development are still to be discovered. 

 

As the tmem230a gene sequence is conserved in vertebrates including human, and 

modulation of tmem230a expression alone was sufficient to rescue improper number of 

endothelial cells induced by aberrant expression levels of genes or by inhibition of gene 

activity in the Dll4/Notch pathway, this suggests that the TMEM230 protein is a novel 

and potentially clinically important alternative target for human regenerative therapy. For 

instance, extended modulation of TMEM230 expression by pharmacological agents may 

allow for inducing or mitigating new blood vessel formation for promoting following 

acute injury or restricting such as for macular degeneration in angiogenesis. As blood 

vessel formation is also essential for promoting tumor growth, circulation of cancer cells 
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and metastasis, TMEM230 protein may also be a target for cancer therapy by repressing 

new blood vessel growth.  
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Figure legends 

Figure 1. Genomic context of the tmem230 family across selected species and gene 

structure analysis of zebrafish tmem230a and tmem230b. (a) The genomic context of 

zebrafish tmem230a with its orthologous and paralogous gene tmem230b. The gene 

placed in the center of the panel and aligned over the vertical line is the reference gene 

used as query (tmem230a). Blue square nodes (left part of the figure) represent ancestral 

species leading from the same root ancestral species to orthologs and/or paralogs of the 

gene used as query. Red square nodes represent duplication events of an ancestral version 

of the gene used as query. Open blue square nodes represent extant species. Upper thicker 

blue line represents the path leading from the ancestral root to the reference species used 

as query. Genes indicated by the same color are paralogs (without black boundary) or 

orthologs (black boundary). The figure was derived from the output of the Genomicus 

website (version 83.01). (b) Schematic representation of genes tmem230a and tmem230b. 
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Exons are indicated by blue boxes (for untranslated sequences) or orange boxes (for 

coding sequences) and introns are indicated by lines. Intron and exon lengths are not to 

scale. Lengths are shown in base pairs (bp). Exon-intron structure is derived from the 

Ensembl Genome Browser.  

 

Figure 2. Spatio-temporal expression of zebrafish tmem230a. (a) tmem230a is 

expressed both maternally and zygotically during development. tmem230a and β-actin 

qualitative RT-PCR expression analysis on total RNA from oocytes, and various 

embryonic and larval stages (from 1-8 cells to 5 dpf) and adult organs and tissues. 

Negative control is no cDNA. The sizes of the PCR fragments are indicated. DNA 

Marker is a 1Kb ladder. (b-j) Whole Mount In Situ Hybridization (WISH) of tmem230a 

during embryo development. (b-d, f and g) Lateral views. (b) 15 somite stage embryo 

(after yolk removal), white arrowhead: forming axial vasculature. (c) 26 hpf embryo and 

(c’) higher magnification of the tail shows the expression in the CV, black arrowhead: 

CV. (d) Magnification of the head of a 26 hpf embryo, red arrowhead: the pharyngeal 

arch mesenchyme. (e) Dorsal and (f) lateral magnifications of the head, white asterisks: 

fin bud, and (g) lateral magnification of the tail of a 2 dpf embryo. Embryos are shown 

anterior to the left (b-g) Magnifications 40X and 63X. Transverse sections at the level of 

the trunk (h) and the tail (i) of a 26 hpf embryo, and tail (j) of a 2 dpf embryo. 

Histological analysis shows the signal in the DA: Dorsal Aorta, PCV: Posterior Cardinal 

Vein and CV: Caudal Vein. NC: Notochord. Magnification 280X. 
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Figure 3. tmem230a-MO1 injection increases endothelial cell number within the 

ISVs. (a,b) Bright-field images of 29 hpf embryos injected with (a) std-MO and (b) 

tmem230a-MO1. Boxed areas indicate the ISVs considered for endothelial cell count. 

Magnification 40X. (c-d) Confocal fluorescent images of the tail of 

tg(fli1:nEGFP)
y7

embryos injected with (c) std-MO and (d) tmem230a-MO1. Numbers 

indicate the cells within an ISV. Cell number is obtained by counting nuclei as the 

tg(fli1:nEGFP)
y7

embryos display GFP in nuclei of fli1 expressing cells. Magnification 

20X. (e) Quantitative analysis of the cell number within the ISVs of 29 hpf 

tg(fli1:nEGFP)y7 embryos injected with std-MO and tmem230a-MO1. The number of 

analysed embryos is indicated by n.  *** p<0.001 vs std-MO. (f,g) Cross sections of the 

trunk of 29 hpf embryos injected with (f) std-MO or (g) tmem230a-MO1. NC: 

NotoChord, DA: Dorsal Aorta, and PCV: Posterior Cardinal Vein. Magnification 350X. 

Horizontal line with cap is the mean ± s.e.m.  

 (h-j) Confocal fluorescent images of the tail of 29 hpf tg(fli1:nEGFP)y7embryos injected 

with (h) 1 pmol/embryo of std-MO, (i) 1 pmol/embryo of  tmem230a-MO2 or  (j) 400 

pg/embryo of tmem230a mRNA. Numbers indicate cells within an ISV. (k,l) Quantitative 

analysis of the cell number within the ISVs in 29 hpf tg(fli1:nEGFP)
y7

embryos injected 

with (k) std-MO, tmem230a-MO1 or tmem230a mRNA, or with (l) std-MO, or 

tmem230a-MO2 on its own or in combination with tmem230a mRNA. The number of 

injected embryos analysed is n. *** p<0.001 vs std-MO (k) and *** p<0.001 vs MO2 (l). 

Horizontal line with cap is the mean ± s.e.m.  Magnification 20X. 
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Figure 4. tmem230a morphants display an increase of tip cell markers. (a-j) 

Expression analysis of efnb2a, ephB4, flk1, flt4 and dll4 performed on 29 hpf embryos 

injected with (a,c,e,g and i) std-MO or (b,d,f,h and j) MO1. Lateral views of the trunk 

region with anterior to the left. Red arrowhead: DA, cyan arrowhead: posterior CV, black 

arrowhead: DLAV, and white arrowhead: ISV. Magnification 63X.  

 

Figure 5. tmem230a acts synergistically with the Dll4/Notch pathway in regulating 

ISV cell number. (a-d) Confocal fluorescent images of the tail of 29 hpf 

tg(fli1:nEGFP)y7embryos injected with (a) 0.4 pmol/embryo of std-MO; (b) 0.4 

pmol/embryo of dll4-MO; (c) 0.07 pmol/embryo (subcritical dose) of tmem230a-MO1 

together with 0.09 pmol/embryo (subcritical dose) dll4-MO; and (d) 400 pg/embryo of 

tmem230a mRNA together with 0.4 pmol/embryo dll4-MO. In a-d numbers indicate the 

cells within a representative ISV. Magnification 20X. (e-f) Quantitative analysis of the 

cell number within the ISVs of 29 hpf tg(fli1:nEGFP)y7embryos. (e) Embryos were 

injected with std-MO, or subcritical dose of tmem230a-MO1, or subcritical dose of dll4-

MO, or subcritical dose of tmem230a-MO1 together with subcritical dose of dll4-MO. 

*** p<0.001 vs std-MO, vs tmem230a-MO1 and vs dll4-MO. (f) Embryos were injected 

with 0.4 pmol/embryo dll4-MO on its own and together with tmem230a mRNA. *** 

p<0.001 vs dll4-MO. (g) Embryos were injected with std-MO or tmem230a mRNA and 

then treated with DAPT. *** p<0.001 vs std-MO + DAPT. Control embryos (std-MO) 

and tmem230a mRNA injected embryos were treated with the same concentration of 

DMSO as DAPT immersed embryos. The number of injected embryos analysed is n. 

Horizontal line with cap is the mean ± s.e.m.  
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Figure 6. tmem230a-MO1 injection inhibits Notch signalling activation in vessels. (a-

d) Analysis of mCherry expression in vessels of 48 hpf embryos derived from the 

transgenic line tg(T2KTp1bglob:hmgb1-mCherry)
jh11 

crossed with the transgenic line 

tg(fli1:EGFP)
y1

; injected with std-MO (a,b) or tmem230a-MO1 (c,d). ISV: InterSomitic 

Vessel, and DA: Dorsal Aorta. Magnification 40X. 

 

 

 

 

 

 

Supplementary Figure 1. Tmem230 protein analysis.  

(a) Amino acid identity and similarity (in parentheses) between zebrafish (Danio rerio) 

Tmem230a and Tmem230b and human and mouse ortholog proteins: Homo sapiens 

(gi:42476068) and Mus musculus (gi:213972600). (b) Topology prediction analysis of 

conserved domains revealed that Tmem230a and Tmem230b proteins contain 2 

transmembrane domains.  

 

Supplementary Figure 2. Spatio-temporal expression pattern of zebrafish 

tmem230b.  

(a) tmem230b and β−actin qualitative RT-PCR expression analysis on total RNA from 

oocytes, and embryonic and larval stages (from 1-8 cells to 5 dpf) and different adult 
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organs and tissues. DNA Markers are 100 bp ladder and 1Kb ladder. Negative control is 

no cDNA. The sizes of the PCR fragments are indicated. tmem230b is expressed both 

maternally and zygotically in embryo development. (b-f) WISH analysis of tmem230b at 

various developmental stages. (b) Lateral view of a 15 and of a (c) 20 somite stage 

embryo, white arrowhead: somites. (d) Lateral view of a 26 hpf embryo and (d’) higher 

magnification of the tail shows the expression of tmem230b in the CV region and 

somites, red arrowhead: somites and black arrowhead: CV region. Head at (e) 26 hpf and 

at (f) 2 dpf. Embryos are shown anterior to the left. Magnifications 40X and 63X. 

 

Supplementary Figure 3. MO1 and MO2 are designed to specifically target the 

tmem230a transcript.  

(a) Sequence alignments obtained with CLUSTAL W, between tmem230a and 

tmem230b, tmem230a and tmem230b with the sequences of tmem230a-MO1 and 

tmem230a and tmem230b with tmem230a-MO2 demonstrate the specificity of the MOs 

with the tmem230a sequence. Green box shows translation start sites. (b) Schematic 

representation of the position of tmem230a-MO1 and tmem230a-MO2 binding to 

tmem230a mRNA. Exon and intron lengths are indicated. The effectiveness of the splice-

blocking morpholino, tmem230a-MO2 designed to target exon 2 was shown by the 

generation of an amplification product that excludes exon 2 using forward (For.) and 

reverse (Rev.) primers designed in the first and last exons. Injection of splice-blocking 

tmem230a-MO2 results in the generation of a smaller product (in red box) corresponding 

to the tmem230a transcript lacking exon 2. The sizes of the PCR fragments are indicated. 

DNA Marker is a 1Kb ladder. 
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Supplementary Figure 4. Dose-response of tmem230a-MO1 on embryo survival and 

morphological defects and dose-response of tmem230a-MO2 on ISV cell number.  

(a) Survival and morphological defects (bent tail and small head) histograms of 

tg(fli1:nEGFP)
y7

embryos at 29 hpf injected with different doses of tmem230a-MO1. (b) 

Quantitative analysis of cell number in the ISVs for tg(fli1:nEGFP)
y7

embryos injected 

with std-MO and different doses of tmem230a-MO2 at 29 hpf. The number of injected 

embryos is n. ** p<0.01 vs std-MO. 

 

Supplementary Figure 5.  

tmem230a-MO1 injection causes no gross effects on vasculogenesis and angiogenesis 

at 2 dpf. In vivo analysis of tg(fli1:EGFP)
y1

 embryos injected with (a-d) std-MO or (e-h) 

tmem230a-MO1. (a,b,e and f) Bright field and (c,d,g and h) fluorescence images. 

Magnification of the caudal region (b,d,f, and h). Lateral views are shown anterior to the 

left. DLAVs: Dorsal Longitudinal Anastomotic Vessels, ISVs: Intersomitic Vessels, DA: 

Dorsal Aorta, and CV: Caudal Vein. Magnifications 25X and 63X. 
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